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Abstract— Heart sound classification is one of the non-
invasive methods for early detection of the cardiovascular
diseases (CVDs), the leading cause for deaths. In recent years,
Computer Audition (CA) technology has become increasingly
sophisticated, auxiliary diagnosis technology of heart disease
based on CA has become a popular research area. This paper
proposes a deep Convolutional Neural Network (CNN) model
for heart sound classification. To improve the classification accu-
racy of heart sound, we design a classification algorithm com-
bining classical Residual Network (ResNet) and Long Short-
Term Memory (LSTM). The model performance is evaluated in
the PhysioNet / CinC Challenges 2016 datasets using a 2 D time-
frequency feature. We extract the four features from different
filter-bank coefficients, including Filterbank (Fbank), Mel-
Frequency Spectral Coefficients (MFSCs), and Mel-Frequency
Cepstral Coefficients (MFCCs). The experimental results show
the MFSCs feature outperforms the other features in the
proposed CNN model. The proposed model performs well on
the test set, particularly the F1 score of 84.3 % – the accuracy of
84.4 %, the sensitivity of 84.3 %, and the specificity of 85.6 %.
Compared with the classical ResNet model, an accuracy of
4.9 % improvement is observed in the proposed model.

I. INTRODUCTION

CVDs is the number one killer of people who die from
the disease worldwide. According to the 2019 World Health
Organization report, there are 9 million deaths worldwide
because of heart disease, representing 16 % of all deaths
[1]. While there are many ways to detect heart disease,
patients usually need to be in the hospital for diagnosis. And
people cannot make timely and effective diagnosis of heart
health by themselves, which is an important reason for the
high mortality rate of heart disease. Therefore, early aided
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diagnosis of heart disease is one of the most important ways
to prevent heart disease.

The heart is the source of life-sustaining in the body
and makes sound when it contracts. Heart sound contain
a wealth of information about the state of heart health.
Usually, people use a stethoscope to get a heart sound signal.
Nevertheless, ordinary people cannot recognize abnormal
heart sound signals because of the limited sensitivity of the
human auditory system, and only experienced physicians can
recognize heart sound. However, with the development of
Computer Audition (CA) technology, heart sound classifi-
cation based on artificial intelligence has become a popular
research area. Currently, there are many artificial intelligence
algorithms to classify heart sound maps, and there are two
main categories of algorithms, machine learning and deep
learning [2]–[6]. In the classical machine learning field, Goda
et al. used the SVM method to classify the time-frequency
features of heart tone signals [7]. Safara et al. used a com-
bination method of wavelet and Support Vector Machines
(SVM) for classification of heart sound [8]. In deep learning,
Grzegorczyk et al. proposed a deep learning algorithm for
classification of heart sound [9]. Humayun et al. designed
a Convolutional Neural Network (CNN) model to identify
heart sound using a time convolutional (tCONV) unit to
simulate a Finite Impulse Response (FIR) filter [10]. Zhang
et al. [11] designed a segmented CNN model, which uses two
different designs to adjust the convolutional layers for cardiac
abnormality detection. Muqing Deng et al. proposed the use
of improved Mel-Frequency Spectral Coefficients (MFCCs)
features combined with Rerrent Neural Network (RNN)
model for heart sound classification [12]. The advantage of
traditional machine learning is that the algorithm can achieve
good classification results even with small sample size and
features, yet the disadvantage is low anti-interference ability
and poor robustness. Instead, deep learning can overfit or
under fitting with fewer samples, and the explainable of deep
learning is also a major drawback. However, it can full use
feature information and achieve excellent results when the
sample size is large enough, and the robustness is also better
than machine learning under the same conditions. Therefore,
deep learning has more potential for application in smart
healthcare.

In this paper, we consider the time and frequency domain
information of heart sound signals, and propose a joint
network model for the classification of individual heart sound
cycles, which combines the classical Residual Network
(ResNet) [13] and Long Short-Term Memory (LSTM). In
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TABLE I
EXPERIMENTAL DATA

Subset Abnormal Subject Normal Subject Total Subject

a 292 117 409
b 104 386 490
c 24 7 31
d 28 27 55
e 183 1958 2141
f 34 80 114

Total 665 2575 3240

this algorithm, we integrate the LSTM into the ResNet,
firstly using the ResNet to extract the frequency domain
information of the heart sound signal, and then put the
frequency domain information into the LSTM to obtain the
temporal information of the heart sound signal. In the end, a
fully connected layer and a SoftMax layer are used for heart
sound prediction. Meanwhile, we validated the performance
of the proposed model using the publicly PhysioNet/CinC
Challenge 2016 dataset, which is one of the well-known
cardiology datasets available at present. In addition, we
design two different CNN models to compare with the
classical ResNet model, and study the performance of the
proposed CNN model using different features.

II. METHODS

A. Dataset

In this section, we use the Physionet/Cinc Challenge 2016
dataset to train and test the proposed model [14]. The dataset
has 7 subsets, recorded by seven research groups using
different devices in both clinical and non-clinical environ-
ment, with recording times ranging from several seconds to
minutes [15]. Specifically, the dataset collected data from
3240 heart sound with 84 426 heartbeats, of which 2575 heart
sound data were collected from the normal population and
665 data were collected from patients. Table I shows a brief
description of the dataset.

B. Preprocessing

The preprocessing step of the heart sound is extremely
important to eliminate the negative effects of different sam-
pling rates and environmental noise for recognition of heart
sound. In this section, there are two-stage for heart sound
preprocessing. In the first step, a 3rd-order Butterworth band-
pass with cut-off frequencies of 20 and 400 Hz [16] are
used to filter out the noise. In step two, we adopt the
method proposed by Schmidt [17] to eliminate spikes. It is
worth noting heart sound preprocessing can standardises the
dataset and removes the noise, such as lung sound, stetho-
scope fricatives, breathing sound and external environmental
noise. Nevertheless, we do not focus on the heart sound
preprocessing for the signal preprocessing techniques are
well established.

C. Segmentation

There are two primary purposes for heart sound segmen-
tation, expanding the dataset and extracting the entire cycle

TABLE II
SUMMARY OF DIFFERENT FEATURES

Name Feature Description

Fbank Filterbank energy features
MFSCs Log-filterbank energy

MFCCs-26 MFCCs retaining all coefficients
after DCT compression

MFCCs-13 MFCCs retaining 13 coefficients
after DCT compression

of individual heartbeat, which is essential for heart sound
classification. Different methods of heart sound segmentation
have been proposed. And the methods are generally classified
into two types, one is the heart sound segmentation algo-
rithm referenced to electrocardiogram (ECG) information
annotation, and the other is direct segmentation with no
referenced. In this section, Hidden Semi-Markov Models
(HSMM) algorithm improved by Springer’s [18] is used
to segment the heart sound signal into individual heartbeat
cycles, which does not require the ECG signal as a reference.
In particular, the heart sound segmentation length is set to
the longest heartbeat cycle length in the dataset [19], i.e.,
2.5 s, and padding zeros are applied for data with a cardiac
cycle of less than 2.5 s. This step effectively minimizes the
effect of the imbalance of the dataset on the classification
results.

D. Feature Extarction

MFCCs is a feature proposed based on the auditory
characteristics of the human ear. It has an excellent per-
formance in the area of acoustics and has been widely
used in speech recognition systems [18]. Therefore, we
adopt MFCCs features as input to test performance of the
proposed model. In addition, we extract the other acoustic
features based on the different filter-bank to validate the
effect of various features on the proposed model, Table II
shows the detailed information. In particular, Mel-Frequency
Spectral Coefficients (MFSCs) is a special form of MFCCs,
which omits the Discrete Cosine Transform (DCT) step with
respect to MFCCs. Yet the MFSCs feature adds log operation
compared to Fbank feature.

E. Residual Network Model

ResNet has been one of the hottest deep learning methods
in the past five years [11]. Residual Block (RB) is the
basic building block of the ResNet. As Figure. 1(a) depicted,
the input data is performed in the RB unit with two Bach
Normalization (BN), two convolution, and two Rectified
Linear Unit (RELU), and then connected with an identity
shortcut as the output of RB. It is worth noting that identity is
a crucial step to deal with the explosion or disappearance of
gradient, which is its merit in comparison with the traditional
Convolutional Network (ConvNet). In the traditional Con-
vNet, the cross-entropy error is propagated backward layer
by layer, while using identity allows the gradient to be passed
to the nearer layers of the input layer earlier, thus updating
the model parameters more efficiently.
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Fig. 1. (a) a RB unite of traditional ResNet, (b) a RB unite of RSN-SL,
(c) a RB unite of RSN-PL, (d) a framework of RSN-SL.

In this paper, the idea for the model is derived from the
classical ResNet, and we designed two types of residual
shrinkage networks (RSN), the RSN series LSTM (RSN-
SL) and the RSN parallel LSTM (RSN-PL), which are a
variant of ResNet. Figure. 1(b) and Figure. 1(c) show the
RB structures of RSN-SL and RSN-PL respectively, and
they differ mainly in the location of the LSTM layers.

Figure. 1(d) illustrates the framework of RSN-SL, with the
model included two RB units. Note that it adds a convolu-
tional layer before the first RB. The motivation for adding
convolutional layers is to increase the output feature map
and thus integrate the different features into discriminative
features. For instance, the model input is a MFCCs feature
of shape 246 × 26 × 1, the output feature size is 246 ×
26 × 8 after the convolutional layer. In addition, each RB
adds the global average pooling (GAP) unit to match the
LSTM layer, and incorporates L2 regularisation to prevent
overfitting. And the kernel size in each RB unit is set to
3 × 3 and the number of output filters in the convolution
is 8 and 16, respectively. Meanwhile, the stride of the first
convolutional layer and the second convolutional layer are
set to 2 and 1 respectively. Setting the stride to 2 reduces
the width of the output features, the motivation for this step

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS

ON THE TEST SET [%]

Method F1 Score Precision Recall Accuracy Specificity

RSN 79.0 78.9 79.2 79.5 86.2
RSN-PL 80.3 80.3 80.2 80.5 82.9
RSN-SL 84.3 84.2 84.3 84.4 85.6

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT FEATURES

USING THE RSN-SL MODEL [%]

Feature F1 Score Pprecision Recall Accuracy Specificity

Fbank 82.5 82.9 82.1 81.1 84.3
MFSCs 84.3 84.2 84.3 84.4 85.6

MFCCs-26 79.2 79.3 79.2 79.5 78.0
MFCCs-13 83.6 83.46 83.7 83.7 85.7

is to reduce the amount of calculation in the following layers.

III. EXPERIMENTAL AND RESULTS

A. Setup

We adopt TensorFlow (version–2.2.0) and Keras (version–
2.3.1) to build our experimental environment, using a server
configuration of i7-9700k and a GTX3080TI GPU. In the
experiment, we divide the dataset into four folds randomly,
each fold containing samples of “a-f” subset labels.In each
subset, an individual subject contributes the data to both
training an testing data. Further, a full training cycle carries
out 100 epochs. The experimental results are calculated by
the average of the 4 fold.

In this work, we first evaluated the performance of three
models using MFCCs-13 features and deep learning indi-
cators. These indicators include F1 score, accuarcy, recall,
precision and specificity, which are defined as follows:

Accuracy =
T P+T N

T P+T N +FP+FN
(1)

Recall =
T P

T P+FN
(2)

Speci f icity =
T N

T N +FP
(3)

Precision =
T P

T P+FP
(4)

F1 =
2×Precision×Recall

Precision+Recall
(5)

where TP indicates the number of true positives in abnormal
samples, TN indicates the number of true negatives in normal
samples, FP indicates the number of false positives in normal
samples and FN indicates the number of false negatives in
abnormal samples.
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B. Results

Table III shows the performance of the different models
when using MFSCs features. The RSN-SL model obtains
the best performance, the F1 score and accuracy are 84.3 %
and 84.4 %, respectively. Of notes, compared to RSN and
RSN-PL, the F1 score of RSN-SL is 5.3 % and 4.0 % higher,
respectively, while the accuracy of RSN-SL is 4.9 % and
3.9 % higher, respectively. Consequently, we chose the RSN-
SL model to further investigate the effect of different features
on the model.

Table IV illustrates the performance of the model with
different features. The experimental results show that the
MFSCs feature achieves the best performance with F1 score,
precision, recall, accuracy and specificity of 84.3 %, 84.2%,
84.3%, 84.4%, and 85.6% respectively, which shows that
Log operation of the feature can improve the performance
of deep learning.

IV. DISCUSSION

As can be seen from Table III, in the classical ResNet
model, the F1 score and accuracy are 79.0 % and 79.5 %,
respectively. Although the specificity of the RSN model is
higher at 86.2 % than the RSN-SL at 85.6 %, it is lower than
the RSN-SL in all other indicators. Moreover, the F1 score,
the precision, the recall, the specificity, and the accuracy
of RSN-PL are 80.3 %, 80.3 %, 80.2 %, 80.5 % and 82.9 %
respectively, which clearly showed that the performance of
RSN-PL is not noticeable improved compared to RSN. Obvi-
ously, we use ResNet to extract high-dimensional features in
the frequency domain of the heart sound as CNN possesses a
more reasonable feature representation capability. Meanwhile
the LSTM takes the frequency domain features as input and
extracts the heart sound time domain features. We combine
ResNet with LSTM to effectively improve the heart sound
recognition accuracy. Then, we discuss the effect of DCT on
performance, with both MFCCs-26 and MFCCs-13 showing
a decrease in performance relative to MFSCs, with MFCCs-
26 showing a more noticeable decrease in performance.
It is clear that the model does not to address the linear
transformation in the DCT. In the theory, the deep ResNet
can effectively deal with the effects of linear transformation,
but the experimental results show the performance indicators
of the model are dropped except for specifically, i.e. the
model does not efficiently cope with the DCT operations.

V. CONCLUSION

In this study, we develope a RSN-SL model based on
ResNet for the classification of individual heart sound cy-
cles. We compare the model performance of three different
networks, the experimental results show the proposed RSN-
SL model can effectively accomplish the classification of
heart sound signals. And the accuracy of RSN-SL improved
by 4.9 % compared to the classical residual network. Fureth-
more, we evaluate the performance of the RSN-SL model by
extracting four different features using the PhysioNet/CinC
Challenge 2016 dataset. The experiments show the MFSCs

features can achieve better classification results in the RSN-
SL model. In summary, deep learning has considerable
potential for applications in intelligent healthcare. In future
research, we will consider designing end-to-end models that
allow for more efficient heart sound recognition.
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