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Abstract—Due to the objectivity of emotional expres-
sion in the central nervous system, EEG-based emotion
recognition can effectively reflect humans’ internal emo-
tional states. In recent years, convolutional neural networks
(CNNs) and recurrent neural networks (RNNs) have made
significant strides in extracting local features and tempo-
ral dependencies from EEG signals. However, CNNs ig-
nore spatial distribution information from EEG electrodes;
moreover, RNNs may encounter issues such as explod-
ing/vanishing gradients and high time consumption. To
address these limitations, we propose an attention-based
temporal graph representation network (ATGRNet) for EEG-
based emotion recognition. Firstly, a hierarchical attention
mechanism is introduced to integrate feature representa-
tions from both frequency bands and channels ordered
by priority in EEG signals. Second, a graph convolutional
neural network with top-k operation is utilized to capture
internal relationships between EEG electrodes under differ-
ent emotion patterns. Next, a residual-based graph readout
mechanism is applied to accumulate the EEG feature node-
level representations into graph-level representations. Fi-
nally, the obtained graph-level representations are fed into
a temporal convolutional network (TCN) to extract the tem-
poral dependencies between EEG frames. We evaluated
our proposed ATGRNet on the SEED, DEAP and FACED
datasets. The experimental findings show that the pro-
posed ATGRNet surpasses the state-of-the-art graph-based
mehtods for EEG-based emotion recognition.

Index Terms—Affective computing, attention mechan-
ism, EEG, emotion recognition, graph convolution network.
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[. INTRODUCTION

MOTION, as a psychological and physiological state ex-

perienced by human beings, drives human cognition and
behaviors [1]. Emotions are critical for interpersonal commu-
nication and mental-physical health, and they also substantially
influence decision-making capabilities [2]. As a result, precise
recognition of emotions is imperative for diverse applications,
encompassing medical diagnosis, brain-computer interfaces,
and education [3].

The original studies focus on emotion recognition through
facial expressions, gestures, and speech. However, due to the in-
fluence of subjective consciousness, a person’s inner emotional
experience may not be accurately reflected in an assessment
of their emotional state made based on external behaviors [4],
which could confound the outcomes of affective computing. In
comparison, physiological signals including electroencephalo-
grams (EEG) [5], electrooculograms (EOG), and electromyo-
grams (EMG), which originate from unconscious recordings
in the central nervous system, can provide a more veridical
representation of one’s emotional state [6]. These physiological
signals, being devoid of subjective modulation, serve as objec-
tive markers of human affect and provide a promising mehtod
for emotion recognition.

As a type of neurophysiological signal, EEG reflects the
electrical activity generated by the central nervous system and
can be captured from the scalp [7]. Due to their high temporal
resolution, low acquisition cost, and ability to reflect internal
emotional states, researchers have increasingly turned to deep
learning models to extract EEG features in order to recognize
emotions in recent years [8]. For example, ACRNN is proposed
as a method of extracting spatial and temporal features from raw
EEG signals [9]. R2G-STNN are introduced as a means of learn-
ing discriminative spatio-temporal EEG features [10]. STRNN is
designed to create a unified spatio-temporal dependency model
by combining feature learning from the spatial and temporal
information of signal sources [11]. Additionally, the TSception
is designed to capture temporal dynamics and spatial asymmetry
from EEG signals [12]. Furthermore, the 3DCANN model has
been expressly designed to extract the dynamic interconnections
between multi-channel EEG signals and their intrinsic spatial
relations over continuous time periods [13]. To extract multi-
variate modulated oscillations for EEG emotion recognition, the
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proposed mehtod involves transforming EEG signals from the
time-domain into time-frequency representation images, which
are then fed into a pre-trained image classification network [14],
[15]. The GLFANet enhanced the effectiveness of emotion
recognition by focusing on both the topological and local fea-
tures of EEG signals [16]. FLD3QN significantly improved the
accuracy of valence and arousal recognition by simulating key
neuroanatomical structures involved in reward learning [17]. Liu
et al. employs coordinate attention and a pre-trained convolu-
tion capsule network to handle the complexity and diversity
of emotion signals [18]. By incorporating a semantic-aware
attention mechanism, a bidirectional recurrent prediction model
has been proposed to explore the spatio-temporal and semantic
relationships between attributes [19]. However, most of the
above-mentioned methods only consider a single characteristic
or a fusion of two attributes. In most cases, these methods
disregard the complementarity of the spatial distribution data
of electrodes, temporal dependencies, and frequency elements
within EEG signals.

EEG signals inherently contain spatial information [20]. To
acquire EEG signals, electrodes are positioned on the scalp to
sense brain activity and transpose it into a signal. [21]. The
spatial distribution of these electrodes determines the graph-
ical structure of the signal, which may contain valuable in-
formation for emotion recognition [22]. Therefore, leveraging
spatial information to improve EEG-based emotion recogni-
tion has emerged as an active research area. Recent studies
have utilized deep learning methods based on graph neural
networks (GNN5s) to explore the spatial representation of EEG
signals. DGCNN leverages graph modeling to capture features
in multi-channel electroencephalographic signals and dynami-
cally learn intrinsic relationships among different channels [23].
A regularized graph neural networks (RGNN) enhances the
accuracy of emotion recognition by modeling the topological
relationships between different brain regions and using two
regularization methods to improve both the robustness and gen-
eralization performance [24]. The EEG-GCN method employs
spatio-temporal adaptive graph convolutional networks, spatial
attention mechanisms, and adaptive brain network adjacency
matrices for single-view and multi-view EEG-based emotion
recognition [25]. The graph structure of the self-organizing
graph neural network (SOGNN) is dynamically constructed
by self-organizing modules, and it has demonstrated excel-
lent performance in cross-subject EEG-based emotion recog-
nition [26]. A multi-domain fusion deep graph convolution neu-
ral network (MdGCNN) automatically extracts brain topology
features by introducing graph convolution theory and func-
tional connectivity [27]. CSGNN, an improved graph convo-
Iution method with dynamic channel selection, also effectively
demonstrates emotion classification in complex dataset envi-
ronments [28]. STGATE utilizes a transformer-encoder to learn
time-frequency features and applies a spatial-temporal graph
attention mechanism for emotion classification [29]. whereas
the above-mentioned graph-based methods have demonstrated
the ability to capture spatial representations of EEG signals, they
may fail to fully consider the crucial spectral-temporal domain
features. These features are critical in characterizing the dynamic

patterns of brain activity over time; thus neglecting them can lead
to incomplete or inaccurate analyses.

To address the existing challenges discussed above, we pro-
pose a hierarchical attention-based temporal graph representa-
tion network, named ATGRNet. In this work, we first utilize
hierarchical attention mechanisms and graph neural networks
to aggregate spatial and spectral features of EEG data. Fur-
thermore, we employ TCN to extract temporal dependencies
within EEG signals. The proposed method effectively captures
spatial, spectral, and temporal features of EEG data, leading to
significant improvements in emotion recognition performance.
The primary innovations of this work can be summarized as
follows:

1) We propose a hierarchical attention mechanism that dy-
namically assigns differential weights to integrate feature
representations from both frequency bands and channels
ordered by priority in EEG signals.

2) We further employ a graph convolutional neural net-
work with top-k operation to capture internal relation-
ships between EEG electrodes. Moreover, we introduce a
residual-based graph readout mechanism to aggregate the
EEG feature node-level representations into graph-level
representations.

3) TCN is adopted to learn spatio-temporal features and
extract the temporal dependencies between EEG frames
efficiently.

4) The proposed ATGRNet fully capitalizes on the com-
plementarity of spatial features, temporal dependencies,
and frequency domain features to to enhance emotion
recognition capabilities. The outcomes of experiments
conducted onthe SEED [30], [31] and DEAP [32] datasets
exhibit the superiority and viability of the proposed
mehtod.

The organization of the remainder of this paper is as follows.
Section II reviews related works including those on feature
extraction, graph neural networks, and temporal dependency.
Section III first provides an overview of the proposed ATGR-
Net, followed by a delineation of the data preprocessing steps.
Finally, we elaborate on our ATGRNet architecture. Section IV
documents the outcomes of our experiments. Section V analyzes
and discusses the proposed ATGRNet. To conclude, Section VI
provides the final remarks and conclusions of this article.

Il. RELATED WORK

In this section, we review studies related to EEG-based emo-
tion recognition, including works utilizing feature extraction,
graph neural networks, and temporal dependency.

A. Feature Extraction

The time-domain waveform of raw EEG data is extremely
complex and contains all information in both the temporal and
frequency domains, which makes it difficult for models to extract
and learn emotion-related features from this data. To address this
challenge, researchers have explored frequency-domain [33] and
time-frequency domain features [34]. These types of features can



filter out redundant information and highlight emotion-related
features, ultimately making modeling easier.

Data preprocessing, the first step in raw EEG signal feature ex-
traction, includes noise removal [35], resampling, and baseline
correction [9]. After basic data preprocessing, the EEG signal
can be extracted into five frequency bands using short-time
Fourier transform [36], [37], [38]: § (1-4 Hz), 8 (4- Hz), «
(8-13 Hz), 8 (13-30 Hz), and v (>30 Hz). Subsequently,
common frequency—domain features can be extracted from these
signals: examples include the differential entropy (DE) fea-
ture [31], [38], the power spectral density (PSD) feature [39],
[40], the differential asymmetry (DASM) feature [41], the ratio-
nal asymmetry (RASM) feature [42], and the differential cau-
dality (DCAU) feature [30]. Research studies have demonstrated
the effectiveness of these features for EEG emotion recognition.

B. Graph Neural Networks

Graph Neural Networks (GNNs) adapt deep learning to
non-Euclidean graph data, extending convolutional concepts to
graphs. Inspired by CNNs, Bruna et al. [43] linked spectral
graph theory to neural networks, using spectral filters from the
graph Laplacian to generalize convolutions to graphs. Recent re-
search explores GNNs for EEG-based emotion recognition [23],
[24], [25], [26], [27], utilizing the graph-like structure of EEG
electrode distribution to model spatial dependencies. In this
context, a graph G = (V, E, A) represents EEG signals, where
V(|V| = n) are nodes (electrodes), E(|E| = n?) are edges, and
A € R™™ is the adjacency matrix. This mehtod adapts Fourier
transform and convolution to graphs via the eigenvectors of the
graph’s Laplacian matrix.

The Laplacian matrix L of graph G can be calculated from
L =D — A, where D € R™*" is the diagonal matrix and each
diagonal entry D,; is is calculated as D;; = Z?Zl Aij. By
performing the singular value decomposition of the Laplacian
matrix L, we can obtain the Fourier basis U of graph G as
L =UAUT, where A € R™"*" is the eigenvalue matrix of L.
The graph Fourier transform & can be obtained by & = U Tz
and its inverse is given by xz = Uz. The convolution of two
signals 1 and x5 on graph G, denoted as G(z1 * 22), is defined
as follows:

G(fE1 * LCQ) =U [(UT.Tl) O] (UTLEQ)} s (l)

where © is the element-wise Hadamard product. This formula
represents the convolution operation on a graph, where U is the
matrix of eigenvectors of the graph Laplacian, and U”'z; and
UT x4 are the signals x; and x5 transformed into the spectral
domain using the eigenvectors U. This means the filtering oper-
ation of signal x can be expressed as follows:

y=g(L)x =g (UAUT) r=Ug(NUz, 2)

where g(A) = diag([01,02,...,0,]) is the defined filtering
function, g(A) is a function that applies the filter coefficients
0; to the eigenvalues X; of L.

However, the filtering function g has high computational cost
for large-scale graphs, scaling with complexity O(n?). To tackle
this problem, Defferrard et al. [44] developed a method for fast
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localized convolutions. To approximate filters, the researchers
employed a recursive formulation of K-th-order Chebyshev
polynomials, which enabled them to obtain a representation
for each node by aggregating information from its K-th-order
neighborhood. The K-th-order Chebyshev expansion can be
expressed as follows:

K-1 K-1 N
g(h) =D 6 =D 6T (M), 3)
k=0 k=0

where 6 is the coefficient of the Chebyshev polynomials and A
denotes the normalized eigenvalues of the Laplacian matrix L.
The recursive formula provided below can be used to calculate

the Chebyshev polynomials T (A):

TO(x) = 1,T1(.T) =z (4)
Tk(]}) = QITk_l(I) — Tk_g(af), k Z 2
A = 2A/Amax — In, (&)

where A, ., denotes the maximum diagonal entry in A, and I, is
the n x n identity matrix. As mentioned above, the [ th dynamic
graph graph convolution is defined as follows:

K-1
Xl=¢ (Z ang(z)Xl—1> , (6)
k=0

where 92 is a trainable parameter, L is the normalized Laplacian
matrix, and o is an activation function. In addition to the network
parameters, the adjacency matrix A is also optimized during the
training process to learn the optimal matrix.

C. Temporal Dependency

EEG signals are time-sequential data, and it is essential to
consider the temporal dependency in emotion recognition [45].
Recurrent neural networks (RNNs) and long short-term memory
(LSTM) networks are two popular mehtods developed to handle
the temporal dependency in time-series data [46]. RNNs utilize
a recursive structure to model temporal dependencies, updating
the hidden state at each time step using the prior hidden state
and current input. However, RNNs suffer from the vanishing and
exploding gradient problems when processing long sequences,
which makes them less suitable for handling long-term depen-
dencies [47]. LSTMs address vanishing gradients in traditional
RNNs by incorporating a memory cell to retain long-term de-
pendencies and gating units to modulate information flow. These
gating mechanisms include input, output, and forget gates, which
together enable LSTMs to learn longer-term dependencies ef-
fectively [48].

The Temporal Convolutional Network (TCN) [49] is a neural
network architecture designed to process a long sequence of
data. A TCN consists of dilated causal convolutions and residual
connections, and has achieved a long effective history size.
Recent research has shown that TCNs are more effective than
both LSTMs [48] and gated recurrent units (GRUs) [50] when
it comes to processing long sequence data. TCNs demonstrate
superior capability to capture long-term dependencies between
consecutive time frames when dealing with EEG signals, which



Fig. 1.

leads to significant improvements in emotion recognition accu-
racy. Furthermore, TCN offers the advantage of parallel com-
putation, which substantially accelerates the processing speed.
Therefore, we opt to utilize TCN due to its status as a promising
tool for extracting the time dependency of EEG signals in the
proposed ATGRNet. The TCN architecture can be represented
as follows:

TCN = 1D FCN + causal convolutions . @)

In order to capture distant past information, TCN incorporates
dilated convolutions and residual layers. For a 1D input sequence

X ={x1,x9,...,zr} and filter F' = (f1, fa,..., [K), the di-
lated convolution of F' at position ¢ is defined as:
K
F(zy) = (FgX) (z¢) = kal‘tf(ka)d’ (8)
k=1

where K denotes the filter size, d represents the dilation factor,
and the expression ¢t — (K — k)d indicates the direction of the
past. Formally, the TCN is represented as a function7 : X — Y,
where X = {x1,22,...,xr} is the input sequence, K is the
filter size, and d is the dilation. This function produces a mapping
from the input sequence to the output sequence Y as follows:

Doy =7 (21,27, K, d, A) 9)

where Y = {¢1,...,9r}, T is the sequence length, and A
controls the dimension of each TCN layer.

According to (8), the dilation factor d and the depth of the
TCN determine the receptive field size (shown in Fig. 2). The
generic residual block used in TCN (shown in Fig. 3) addresses

Hierarchical attention-based temporal graph representation learning for EEG-based emotion recognition.

Fig. 2. Receptive field coverage of dilated causal convolution is af-
fected by dilation factors d and filter size k.

the issues of vanishing gradients and exploding gradients that
can arise when expanding shallow networks into deep networks.

[ll. METHODOLOGY

In this section, we give a brief overview of the proposed
ATGRNet for EEG emotion recognition. Next, we introduce
the EEG signal preprocessing method. Finally, we provide a
comprehensive account of each module incorporated in the
proposed ATGRNet.

A. Framework Overview

Generally, most existing EEG-based emotion recognition
work [9], [10], [12], [13], [14], [15] focuses primarily on using
single features or combinations of two features; as a result,
these works overlook the complementarity of different domain
features and are unable to learn spatial distribution information.
Meanwhile, most graph neural network-based works [23], [24],
[25],[26], [27], to some extent, overlook time-frequency domain
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Fig. 3. TCN residual block diagram showing 1x1 convolution for di-
mensionality matching between residual input and output.

features to some extent. However, EEG recordings contain mul-
tidimensional data representing brain activity, including robust
temporal, spatial, and spectral information. They may offer
complementary perspectives that, when integrated, can allow
for more comprehensive characterization of the affective states.

The proposed ATGRNet applies a hierarchical attention
mechanism for spatial-frequency analysis, aggregates spatial
data via a graph representation, and employs TCN for temporal
integration. Its process begins with preprocessing EEG signals to
extract and smooth features. These features are then processed
through a hierarchical attention mechanism and a graph con-
volutional neural network to understand relationships between
EEG electrodes and capture temporal dependencies. Emotion
classification is done using a multilayer perceptron (MLP) [51],
optimized with Adam and cross-entropy loss.

B. Data Preprocessing

Data preprocessing involves removing the baseline, extracting
features, and sliding window operation. Typically, recorded
EEG signals consist of both baseline signals and stimulus stage
signals. To remove the baseline signals, an average is computed
for the points in the baseline period and then subtracted from
each point in the waveform [52].

In our experiment, the raw EEG signal is Xr = [X 5, X7],
where X5 € RE*M s the baseline signal, X1 € RE*Nz2 g the
stimulus stage signal, C'is the number of EEG electrode nodes,
and Ny, Ny are the numbers of sampling points. Let H be the
sampling frequency.

The mean value of the baseline per second can then be
calculated via (10), where X5 € RE*H is the mean value of
the baseline signal per second, and 77 = N7 /H is the number
of seconds of X .

T
Xp =Y Xi/T\. (10)
i=1

We can represent the baseline-removed data using (11), where
Xr=[X7r1, X719, » Xpp,], and Ty = N /H denotes the
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number of seconds of X7.

Xy = Xr; — Xp. (11)

After bandpass filtering preprocessing, five frquency-domain
features are extracted with a window of 1 s on five frequency
bands. The extracted features X € RE*B*F can be expressed
as follows:

Xp = FE[BP(X})], (12)

where BP(-) denotes the bandpass filter, FE(:) denotes the
feature extraction operation, C’ represents the new EEG channel
after feature extraction, BB represents the number of frequency
bands, and F' represents the extracted feature vector length.

To investigate the temporal dependence of EEG signals, the
feature-extracted EEG data X is segmented into several tem-
poral frames Xg = { X1, X, ..., X,, } using window slide pro-
cessing without overlapping. Each window data frame X;(i =
1,2,...,m) € RE*Bxd represents the i-th temporal slice, and
m is the total number of windows. Here, d = F/m represents
the length of each window.

C. Proposed ATGRNet

The proposed ATGRNet comprises a hierarchical attention
mechanism, a graph convolutional neural network with top-k op-
eration, a graph readout module to aggregate spatial information,
and a TCN module for temporal dependency extraction. The
proposed ATGRNet architecture pipeline is depicted in Fig. 1.

1) Hierarchical Attention Mechanism: To determine the rela-
tive importance of the channels and frequency bands, we employ
the SSR module for each segment X; from the preprocessed
EEG signal Xg = {X1, Xo,..., X, }. A hierarchical attention
mechanism is subsequently utilized to integrate feature repre-
sentations from both frequency bands and channels ordered by
priority, on the segment X;.

We adopt squeeze-and-excitation blocks to implement the
frequency band and channel-wise attention. Compared to Trans-
former self-attention, SE Layer is more computationally effi-
cient, has fewer parameters, simpler structure, focuses on local
correlations, and provides more interpretability of the attention
weights. These characteristics make SE Layer well-suited for
learning adaptive weighting of frequency bands and channels in
our model. First, we apply average pooling for each frequency
band to obtain a vector a); = avgpooling(X;) € R*5.

A fully connected (FC) layer is then employed to compress
the frequency bands with parameter w; and bias by, and the
other FC layer is used to recover to the former dimension with
parameter wo and bias bs. Thus, the frequency bands attention
score can be calculated as follows:

v, = softmax(ws - (ReLU (wq - @} + by)) +ba),  (13)

where v, € R(*B) denotes the attention mask across the fre-
quency bands. wy, wsy are the weight matrices of the two fully
connected (FC) layers, and by, b are the corresponding biases.
al; is the input to the frequency band attention module. Applying
this mask yields the masked segment X! = v} ® X[, with X
having identical dimensions to the original Xj.



Channel-wise attention is implemented in the same way as
frequency bands attention. First, average pooling of each chan-
nel is a”; = avgpooling(X!) € R(1 x C"). The channel-wise
attention mask can be calculated as follows:

v"; = softmax(wy - (ReLU (w3 - a”; +b3)) + bs).  (14)

Let ws, w4 be the parameters of the first and second FC layers re-
spectively, and b3, b, the corresponding biases. In the same way,
the channel-wise attention masked segment can be represented
as X”; = v} ® X'] with the dimension C' x B x d.

2) Graph Representation Learning: To derive node-level
representations from the EEG features, a Conv2d operation (15)
is utilized to decrease the dimensionality of the feature map. The
node-level representations aim to encode the feature information
of each individual EEG channel node. In graph convolutional
networks, these node representations serve as a medium for
information propagation between neighboring nodes and for
learning intrinsic relationships in the graph structure.

F; = Conv2d(X";), (15)

where F; € RE*¢ denotes the feature map output from fre-
quency bands and channels’ attention. A graph convolutional
neural network based on Chebyshev polynomials is then used
to learn the graph representations of the new feature map F3,
which is used to integrate the information from each EEG chan-
nel related to emotion recognition. The K -th order Chebyshev
polynomial graph layer can be represented as follows:
Fl=¢ (Z k= oK*eka(ﬁ)Fﬁ) 7 (16)
where L = 2 L/Amax — I, and L = D — A. The network pa-
rameters 0, and adjacency matrix A are both trainable.

To emphasize edges exhibiting greater correlations, we ap-
plied a top-k technique that preserves only the k edges with the
strongest connectivity throughout training. Since |E| = N2, we
set a parameter k ratio to determine the percentage of edges to
be retained. Edges that are not retained are set to 179 to avoid
computational issues. The application of the top-k operation is
as follows:

k = [|E|/k-ratio]
index = topk(A, k)
Alindex] = 1710

a7

In the proposed ATGRNet, the graph layers aim to extract node-
level representations from the input feature map, after which the
readout layer is used to obtain its graph-level representation. The
readout function is defined as follows:

G, = sigmoid (F} - ws + bs) @ tanh (F} - wg + bg) . (18)

Equation (18) serves to transform node-level features utilizing
soft attention weights and non-linear mapping, while ws, wg
denote the weights of linear transformations, and b5, bg are
biases. In order to aggregate information from all EEG chan-
nels, we use channel-wise average pooling to integrate the
contribution of EEG electrodes to emotion recognition and

maxpooling to capture the role played by critical EEG elec-
trodes. To mitigate the vanishing gradient problem in deep
learning networks, we introduced residual connections in the
graph readout module, as shown in (19). The role of residual
connections is crucial. Qin et al. employed three deep residual
connections, allowing the network to focus on the residual
mapping when learning the mapping, instead of directly learning
the more complex original mapping, thereby simplifying the
optimization objective and alleviating the gradient vanishing
issue [53].

Vi

1
= m Gij + MaXpooling (Gil ‘e G2|V\) + Fl (19)
j=1

T;
After the operations described above are complete, we ob-
tain a high-dimensional feature 7; € R'*! for each time win-
dow. The proposed hierarchical attention architecture, encom-
passing mechanisms for EEG frequency bands and chan-
nels, graph representation learning, and graph readout, ex-
tracts high-dimensional EEG signal features across both spa-
tial and frequency domains. The combination of these meth-
ods is referred to as the spatial-spectral representation (SSR)
extraction module. The SSR modules can be represented as
follows:

T= SSRS(Xs),

where T = {11, 15, ..., Tin}.

3) Temporal Dependency Extraction: The TCN architecture
has proven effective for EEG emotion recognition, owing to its
capacity for learning temporally dependent features from EEG
data [54]. Given that EEG data processed with SSR modules can
be treated as sequential data, TCN is well-suited for extracting
high-level emotion-related features. Given an input EEG feature
sequence 1" =T1,T5,...,T,, generated by the SSR module,
with a filter size K and dilation factor d, the TCN operation in
ATGRNet can be defined as:

(20)

S=7(X,k,d,N), 21

where S € R™*" is the output of TCN and r = N|[—1] denotes
the dimension of the last layer of the TCN.

To obtain predicted emotions, a classifier is used to enhance
the model’s discriminability. The feature map .S obtained from
the TCN needs to be flattened before it is input into the classifier:
H = flatten(S). Equation (22) describes the architecture of the
classifier.

) = softmax(o(MLP(H))). (22)

The loss function utilized for parameter optimization consists of
two components: a cross-entropy loss term for the classification
outputs and an L2 regularization term weighted by «. The
formula of the loss function is shown below; here, y is the label
of the input sample, y is the predicted label, and 6 denotes all
parameters of ATGRNet.

Loss = cross-entropy (y, 7) + o||0]|3. (23)



IV. EXPERIMENTAL RESULTS

In this section, we first introduce the two datasets used in our
experiments (SEED [30], [31] and DEAP [32]), both of which
are commonly leveraged for EEG-based emotion recognition
research. The model configuration is then described. Subse-
quently, We present the results of the subject-dependent (SD)
and subject-independent (SI) of the proposed ATGRNet on these
two datasets. Finally, we analyze and discuss the experimental
results.

A. Datasets

The SEED database includes EEG recordings from 15 sub-
jects (seven males, eight females) as they viewed 15 film clips
eliciting positive, neutral and negative emotions. Clip duration
was restricted to 4 minutes to preclude subject fatigue. EEG
signals were acquired from 62 electrodes positioned per the
10-20 system [55] and downsampled to 200 Hz. The EEG
recordings corresponding to each stimulus were labeled as pos-
itive, neutral or negative based on the elicited emotion. Data
were collected over three sessions per subject, with each session
comprising 15 EEG trials, yielding 45 trials total per subject. To
validate concordance between the presented clips and subjects’
emotional states, self-reported assessments were administered
after each session.

The DEAP [32] database collected multimodal physiological
signals from 32 subjects (16 females and 16 males) who watched
music videos limited to 1 minute in length. The sampling
rate of recorded physiological signals was 512 Hz with 32
electrodes, down-sampled to 128 Hz. The data were annotated
with the subjects’ self-reported scores from 1-9 on arousal, va-
lence, liking and dominance, obtained using the self-assessment
manikins (SAM) technique. To facilitate binary classification,
trials with scores above 5 were labeled as positive samples,
while those with scores of 5 or below were labeled as negative
samples.

The FACED dataset (Finer-grained Affective Computing
EEG Dataset) [56] comprises EEG activity from 123 subjects
recorded across 32 channels. These subjects viewed 28 videos,
each 30 seconds long, designed to evoke one of nine emo-
tion types. The dataset categorizes emotions into four positive
(amusement, motivation, happiness, tenderness), four classical
negative (anger, disgust, fear, sadness), and neutral.

B. Experiment Settings

The Adam optimizer was used to minimize the loss function
in (23) for training ATGRNet, with a learning rate of 0.0001.
Furthermore, a learning rate scheduler and an early stopping
strategy were employed to adapt the training approach based on
validation set performance. Specifically, the learning rate sched-
uler dynamically adjusted the learning rate, decreasing it by a
factor if training metrics plateaued over epochs. Additionally,
early stopping monitored validation set metrics, halting training
if no improvement occurred within a defined number of epochs.
The model was set to run for a maximum of 200 epochs, with a
batch size of 16, a regularization coefficient of a= 0.0001, and
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a division of 12 time window frames. The experiment was run
in the Ubuntu 18.04 evironment of Python 3.8.8, Pytorch 1.9.1
on a workstation with an Intel Xeon Silver CPU and a NVIDIA
RTX TITAN GPU.

To evaluate the proposed ATGRNet, we conducted SD and SI
experiments, with some variations in the experimental settings
between the SEED, DEAP, and FACED datasets.

In the SD experiment on SEED, we selected two sessions
of a subject for training and one session for testing. Each
subject was tested three times, after which the average result
was computed as the SD experimental result. The final SD
result of the ATGRNet was obtained by averaging the results
of 15 subjects. For the subject-independent (SI) experiments
on SEED, leave-one-subject-out (LOSO) cross-validation was
used, where one subject’s EEG data served as the test set and all
other subjects’ data comprised for training. The final SI result
was obtained by averaging the results of all tests.

For the SD experiment with the DEAP dataset, a ten-fold
cross-validation was employed. This involved splitting the 40
samples per participant into 10 equal groups, each time using
36 samples for training and 4 for testing. In the SI experi-
ment, aligned with the SEED dataset protocol, we treated each
subject’s data as a separate test set, resulting in 32 individual
experiments. The final classification result for the SI experiment
is the average of these 32 trials.

Given the extensive subject numbers in the FACED dataset,
we employed a 10-fold cross-validation approach in the ST exper-
iment to evaluate ATGRNet’s performance. In addition, 5-fold
and 3-fold cross-validation experiments were also conducted.
For the SD experiment, we utilized LOSO experiment protocol.
The final classification accuracy was determined by averaging
the LOSO accuracies across all 123 subjects.

C. Sl and SD Experiments

To assess ATGRNet’s performance, we compared it against
several baselines, including traditional machine learning algo-
rithms like SVM [30] and DBN [57], deep learning methods
incorporating graph neural networks, such as DGCNN [23] and
SOGNN [26], and other recent models, including, RGNN [24],
MdAGCNN [27], and TAG [58]. We conduct SI LOSO cross-
validation experiments on the SEED dataset and summarize the
results in Table I. The mean emotion recognition accuracy and
standard deviation (STD) obtained by ATGRNet across the five
frequency bands are reported. For a single-band experiment,
the SSR module in the proposed ATGRNet removes the band
attention. For experiments across all bands, the complete AT-
GRNet architecture was utilized for training and validation, with
mean classification accuracy and standard deviations computed.
Notably, our proposed model outperforms all other comparison
baselines. Specifically, our model achieves a classification accu-
racy 0.74% higher than SOGNN whereas maintaining a lower
standard deviation (5.25). The main factors contributing to this
improvement are as follows: 1) the hierarchical attention mech-
anism highlights the contribution of certain frequency bands
and channels to emotion generation; 2) the use of graph readout
preserves node features whereas capturing the role of critical



TABLE |
COMPARISON OF MEAN ACCURACIES (%) AND STD OF S| EXPERIMENT (ACC/STD) ON THE SEED DATASET USING TEN CLASSIFIERS: SVM, DBN,
EEG_GCN, DGCNN, RGNN, MDGCNN, IAG, SOGNN, TMLP+SRDANN, GRU-CONV AND ATGRNET

Method 4 band 6 band « band B band ~ band all(6,0,a,5,7)
SVM [30] 43.06/08.27  40.07/06.50  43.97/10.89  48.64/10.29  51.59/11.83  56.73/16.29
DBN [57] 57.12/13.22  65.94/14.41  72.40/16.46  67.22/11.71  64.28/10.96  58.50/10.94
EEG_GCN [25] - - - - - 77.30/08.21
DGCNN [23] 49.79/10.94  46.36/12.06 ~ 48.29/12.28  56.15/14.01  54.87/17.53  79.95/09.02
RGNN [24] 64.88/06.87  60.69/5.79 60.84/7.57 74.96/8.94 77.50/08.10  85.30/06.72
MdAGCNN [27] 56.63/6.99 61.64/03.57  64.75/04.24  79.35/06.98  85.40/02.13  83.72/02.94
IAG [58] - - - - - 86.30/06.91
SOGNN [26] 70.37/07.68  76.00/6.92 66.22/11.52  72.54/08.97  71.70/08.03  86.81/05.79
TMLP+SRDANN [59] - - - - - 81.04/06.28
GRU-Conv [60] - - - - - 87.04/13.35
ATGRNet 81.93/04.93  83.41/05.73  79.85/03.08 85.33/05.31 87.56/05.43  87.55/05.25

The bold values represent the maximum value in the current column.

TABLE Il
COMPARISON OF MEAN ACCURACIES (%) AND STD OF S| EXPERIMENT (ACC/STD) ON THE SEED DATASET FOR FIVE DIFFERENT FEATURES USING FIVE
CLASSIFIERS: SVM, DBN, EEG_GCN, DGCNN, RGNN, AND ATGRNET

Features DE PSD DASM RASM DCAU
SVM [30] 48.58/4.24 48.57/4.24 56.56/9.22 56.56/9.22 56.56/9.22
DBN [57] 51.64/7.84 52.82/8.71 51.88/9.67 52.56/9.31 48.60/10.71
DGCNN [23] 79.95/9.02 64.27/13.80 52.50/11.92 58.46/10.08 65.19/10.49
ATGRNet 87.55/05.25 59.37/07.11 77.71/05.69 80.59/4.01 81.63/4.83

The bold values represent the maximum value for accuracy in the current column.

TAB

LE I

COMPARISON OF MEAN ACCURACIES (%) AND STD OF SD EXPERIMENT (ACC/STD) ON THE SEED DATASET USING Six CLASSIFIERS: SVM, DBN,
EEG_GCN, DGCNN, RGNN, MDGCNN, AND ATGRNET

model SVM [30] DBN [57] EEG-GCN

[25] DGCNN [23] MdAGCNN [27]  ATGRNet

acc/std  83.99/9.72  86.08 / 8.34

85.65/7.49

90.40/8.49 91.54/3.99 92.59/8.73

The bold values represent the maximum value in the current row.

TABLE IV
COMPARISON OF MEAN ACCURACIES (%) AND STD oF SD EXPERIMENT (ACC/STD) oN THE DEAP DATASET FOR TWO EMOTION CLASSES (NEGATIVE AND

POSITIVE) AND TWO DIMENSIONS(VALENCE AND AROUSAL) USING FIVE

CLAssIFIERS: SVM, DBN, DGCNN, TMLP+SRDANN, AND ATGRNET

Models St SD
valence arousal valence arousal
SVM [30] 48.58/4.24 50.75/4.87 51.60/6.32 55.80/9.49
DBN [57] 51.64/7.84  56.68/13.28 51.58/6.35 62.43/11.87
DGCNN [23] 58.46/7.85  61.65/13.34 86.32/6.04 83.68/5.68
TMLP+SRDANN [59]  57.70/7.23 61.88/5.55 - -
ATGRNet 68.65/9.09 68.75/7.85 78.22/18.33  76.46/19.48

The bold values represent the maximum value in the current column.

electrodes; 3) the top-k operation enables the network to em-
phasize connections with greater correlations, underscoring the
influence of inter-regional connections on emotion recognition.

On the SEED dataset, we also conducted sentiment classifi-
cation experiments using different features, and the results of
which are shown in Table II. Our proposed ATGRNet achieved
the highest accuracy across all features. Among the five extracted
EEG features, the DE feature showed the highest recognition ac-
curacy, which is consistent with some previous studies. Notably,
the accuracy of ATGRNet was on average 7.60% higher than that
of DGCNN and the standard deviation was also lower, indicating

that the proposed method achieved better stability. Furthermore,
as can be seen from Table III, our model outperformed other
graph convolutional neural network methods in classifying the
data in the SD experiment. Overall, We achieved a notable
increase in accuracy compared to baseline models.

We conducted SI and SD experiments on the DEAP dataset
and present the results in Table IV. In the SI experiments, our
classification accuracies for valence and arousal were 68.65%
and 68.75%, respectively. Compared to DGCNN, our model
achieved higher accuracy, with an increase of 10.19% for va-
lence and 7.10% for arousal. However, in SD experiments, the
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Fig. 4. SD classification accuracy for valence and arousal labels and
average anomaly score per subject on the DEAP dataset.

TABLE V
COMPARISON OF MEAN ACCURACIES (%) AND STD OF SD EXPERIMENT
(ACC/STD) oN THE FACED DATASET FOR TWO EMOTION CLASSES
(NEGATIVE AND POSITIVE) AND TWO FEATURES(DE AND PSD) UsING FIVE
CLAssIFIERS: SVM, KNN, DBN, DGCNN, AND ATGRNET

SI SD

Models DE PSD DE PSD
SVM [30]  69.30/01.50 54.97/05.67 78.80/01.00  67.44/07.62
KNN [62]  52.44/10.33  50.19/08.79  65.71/12.28  61.15/09.69
DBN [57]  60.32/1448  52.63/07.13 70.25/11.07  65.64/17.49
DGCNN [23]  70.94/03.79  53.58/03.40 71.28/14.60  66.75/15.07
ATGRNet  75.76/05.58  67.33/09.47 87.97/13.99  75.83/20.41

The bold values represent the maximum value in the current column.

performance of our model was better than traditional models but
slightly lower than DGCNN. It is noteworthy that the standard
deviation of these results was relatively high, which implies
a significant degree of variability among subjects. From the
Fig. 4 , it is evident that some subjects have substantially lower
classification accuracy than others. We hypothesized that some
subjects in the DEAP dataset might show lower data quality
and more variable distributions as outliers. To validate this, we
used outlier detection experiments employing the isolation forest
algorithm, a proven method for identifying outliers [61]. This
approach is based on the idea that outliers, due to their rarity, are
easier to isolate compared to regular data points. The procedure
began by normalizing EEG DE features for all subjects, then
constructing an isolation forest model. This model was created
using randomly selected data subsets, forming several isolation
trees. Each tree split the data by randomly selecting features and
cut-off values until a specific criterion was met. We calculated
the average path length for each subject in the isolation forest
to determine an anomaly score. To account for the effects of
random data selection, multiple experiments were conducted
with cross-validation, averaging anomaly scores per subject for
accurate outlier identification.

Our experimental results, depicted in Fig. 4, show that subjects
4,7, and 15, with lower classification accuracies, had the lowest
anomaly scores. Subjects like 21 and 24, despite having slightly
higher anomaly scores, still fell below the majority, aligning
with their lower accuracies. This trend highlights how outlier
anomalies affect overall model performance and supports our
hypothesis about the impact of data quality and distribution
variability on effectiveness.

Our ATGRNet model was benchmarked against SVM, KNN,
DBN, and DGCNN on the FACED dataset (see Table V). The
results demonstrate that ATGRNet surpasses these methods
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Fig. 5. Sl classification accuracy for 2-class and 3-class on DE and
PSD features on the FACED dataset.

in both SI and SD scenarios. In the SI experiment, ATGR-
Net achieved average accuracies of 75.76% (DE features) and
67.33% (PSD features), with standard deviations of 5.58 and
9.47, respectively. These figures not only reflect higher accuracy
but also greater stability compared to other methods. In the SD
experiment, ATGRNet’s performance further excels, achieving
87.97% accuracy for DE features and 75.83% for PSD features,
significantly outperforming the compared methods.

The aforementioned results were based on the dichotomous
label setting of the FACED dataset. We also extended our exper-
iments to a 3-class classification task (refer to Fig. 5), utilizing
10-fold cross-validation. In the 2-class task, ATGRNet achieved
an average accuracy of 75.76% (DE features) and 67.33% (PSD
features), with standard deviations of 5.58 and 9.47, respectively.
For the 3-class task, the model recorded average accuracies of
70.24% (DE features, STD: 5.31) and 67.11% (PSD features,
STD: 9.47). The model demonstrated notably stable and superior
performance on DE features. The variation in classification accu-
racies across different tasks is depicted in a box plot. ATGRNet
performs well in binary and tertiary emotion classification with
DE features, while PSD features show variability in binary tasks,
due to EEG signals’ spectral complexity in diverse emotions.
The accuracy decline in three-class tasks suggests added diffi-
culty in discerning emotions, particularly neutral ones.

V. DISCUSSION

In this section, we first conduct an ablation study to verify
the validity of each component of the model. Next, ATGRNet is
evaluated using a confusion matrix to assess metrics including
accuracy and recall. Subsequently, the model’s performance is
analyzed by varying the slide window size and compression
coefficients in the SSR module. Lastly, t-SNE analysis is utilized
to assess the model’s feature extraction capabilities.

A. Ablation Study

We conducted an ablation study to investigate the contribu-
tion of each key component in our proposed ATGRNet. The



TABLE VI
ABLATION STUDY FOR S| AND SD CLASSIFICATION ACCURACY (MEAN/STD) ON SEED AND DEAP

Model SEED(SD) SEED(SI) DEAP(SD) DEAP(SI)
ATGRNet 92.59/8.73  87.55/05.25 78.22/18.33  68.65/9.09
—band attention 84.34/6.72 85.36/4.33 67.29/8.55 59.69/8.32
—channel-wise attention 85.77/8/23 82.58/5.41 67.38/6.83 62.35/5.67
—readout layer 88.54/9.47 81.17/7.39 66.70/8.27 63.38/7.56
—top k operation 90.29/5.56 85.59/6.62 67.38/8.55 65.58/5.21
—TCN(relpaced with LSTM) 88.32/9.44 83.57/8.61 68.46/7.46 66.67/9.44
Symbol “—” indicates the following component is removed.

The bold values represent the maximum value in the current cloumn.

Fig. 6. t-SNE visualization of EEG feature representations in the
SEED dataset before training.

SD classification results on the SEED dataset are reported in
Table VI. Regarding the removal of components, we observed
a decrease in classification accuracy when both band attention
and channel-wise attention were removed; this suggests that the
attention mechanism effectively removes redundant information
from EEG signals. Additionally, the results indicate that the
graph readout mechanism is more effective at extracting spatial
information from the graph compared to dimensional transfor-
mation. We further compared the top-k adjacency matrix with
the adjacency matrix without connection removal and found that
the top-k adjacency matrix performed better. Specifically, the
top-k operation allows a network to concentrate on electrodes
with higher relevance; it disregards insignificant connectivity
patterns and eliminates redundant information, leading to im-
proved classification accuracy. Additionally, the TCN module
was substituted with LSTM under identical experimental condi-
tions to validate the efficacy of TCN. Our experimental results
demonstrate that TCN exhibits stronger time-dependent feature
extraction capabilities compared to LSTM in this scenario.

B. Confusion Matrix

The proposed ATGRNet’s performance on the SEED dataset
was evaluated using a confusion matrix and the results are
shown in Figs. 8 and 9. The SD experiments achieved higher

Fig. 7. t-SNE visualization of EEG feature representations in the
SEED dataset after training.
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Fig. 8. Confusion matrices for SD experiment using the proposed

ATGRNet on the SEED dataset.

classification accuracy than the SI experiments for negative,
neutral, and positive emotions, with accuracies of 86.83%,
95.96%, and 93.24%, respectively. This difference in accuracy
may be attributed to inter-individual differences that challenge
the model’s generalization ability, causing the model to learn
specific emotional patterns of individual subjects in the SD



Fig. 9. Confusion matrices for S| experiment using the proposed AT-
GRNet on the SEED dataset.

Fig. 10.  Classification accuracy of our proposed ATGRNet under vari-
ous window sizes in SD experiments on the SEED dataset.

experiments. For neutral classification results, SD experiments
results were much higher than SD experiments results, but the
opposite was true for negative results. This may be because
the model cannot rely on specific personal information in SD
experiments and thus loses some useful information. How-
ever, the characteristics of negative emotions may exhibit some
commonality among different subjects, and the model captures
this commonality.

C. Parameter Optimization

We found that the sliding window length and the k-ratio of
the top-k operation had a significant effect on the experimental
results.

The model’s performance was analyzed by varying the win-
dow slide number and compression coefficients in the SSR
module, as illustrated in Fig. 10. For the SEED dataset, in-
creasing the sliding window numbers from 5 to 12 generally
increases the model performance. However, as the number of
windows continues to increase, the performance of the model
decreases significantly. Our hypothesis is that increasing the
number of time windows enables TCN to extract more time-
related features. However, this may limit the spatial informa-
tion input into each SSR module, resulting in reduced spatial
information extraction. Conversely, fewer time windows allow
for greater spatial information input into each SSR module, but
may hinder time-related feature extraction. Thus, a balance must
be struck between these factors. Through experimentation, we
found that a window size of 23 and dividing the signal into
12 windows resulted in the highest classification accuracy. This
optimal balance between temporal and spatial feature extraction
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Fig. 11.  Classification accuracy of our proposed ATGRNet under vari-
ous k-ratio in SD experiments on the SSED dataset.

Fig. 12. EEG adjacency matrix visualization in the SEED dataset on
Sl experiment.

enhances our proposed ATGRNet’s classification performance
on the SEED dataset.

The k-ratio is a parameter that determines the number of edges
removed in the top-k operation. Increasing the k-ratio removes
more irrelevant connections, but may also result in the loss of
useful information for emotion recognition tasks. We conducted
experiments with different k-ratios ranging from 1 to 12 the
present the results in Fig. 11. We found that setting the k-ratio to
6 resulted in the best performance. This suggests that a k-ratio
of 6 effectively eliminates unnecessary connection information
in EEG graph structural data whereas valuable information for
emotion recognition tasks is retained.

D. Visualization

Relational ring diagrams were employed to illustrate the EEG
electrode connections across different emotional states. These
visualizations focus on the top-k connection nodes with higher
weights in negative, neutral, and positive emotions (see Fig. 12).

In the negative emotion state, strong connections were iden-
tified between electrodes FP1, FPZ, F3, F4, FC1, FC2, T7, and
T8, located in the frontal and temporal lobes, which are crucial
for emotion processing. The frontal lobe activity is significantly
associated with the processing of negative emotions such as
sadness or fear [63]. Simultaneously, the temporal lobes (T7, T8)
are implicated in emotional memory and recognition, suggesting
their enhanced role in negative states. In neutral emotional states,
strong connections were observed between occipital (O1, 02)
and frontal electrodes, indicating a mix of visual information
processing and emotion regulation [64]. For positive emotions,
the pattern shifted to strong connections among FP1, FP2, F7,
F3, and T7, covering various frontal and temporal regions. This
suggests these areas’ involvement in the cognitive processing
and emotional memory associated with positive emotions [65].



The results highlight distinct patterns of brain network ac-
tivity across various emotional states. Visualizing the adja-
cency matrix of the proposed method enabled us to discern the
linkage between emotional states and regional brain activities.
These observations are consistent with previous neuroscience
research [66], [67], [68].

To evaluate the model’s feature extraction ability, we used
t-SNE to analyze the features extracted by the model. We utilized
the features from the last layer of the FC layer of the model for
t-SNE clustering analysis, and present the results in Figs. 6 and
7. The t-SNE visualization results indicate that most samples are
well-clustered according to their respective categories. However,
there are a few samples from different categories that lack
clear boundaries between them. This may result from individual
variances in emotional expression, which can impact feature
extraction quality.

VI. CONCLUSION

This paper presents a hierarchical attention-based temporal
graph representation network (ATGRNet) for EEG emotion
recognition. The ATGRNet was motivated by neuroscience
theories stipulating high correlation between EEG signals
from specific brain regions and particular emotions. Based on
these theories, our model fully exploits the complementarity
among spatial features, temporal dependencies, and frequency
domain features in EEG signals. We subsequently validated
the effectiveness of the proposed hierarchical multi-attention
mechanism, graph representation learning, and TCN in
EEG-based emotion recognition. Extensive evaluations on two
public datasets exhibit the proposed ATGRNet architecture
outperforming baseline methods.
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