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Abstract

In course of the energy transition, the growing share
of Renewable Energy Sources (RES) makes electricity
generation more decentralized and intermittent.
This increases the relevance of exploiting flexibility
potentials that help balancing intermittent RES
supply and demand and, thus, contribute to overall
system resilience. Digital technologies, in the form
of automated trading algorithms, may considerably
contribute to flexibility exploitation, as they enable
faster and more accurate market interactions. In this
paper, we develop an integrated algorithmic framework
that finds an optimal trading strategy for flexibility on
multiple markets. Hence, our work supports the trading
of flexibility in a multi-market environment that results
in enhanced market integration and harmonization
of economically traded and physically delivered
electricity, which finally promotes resilience in highly
complex electricity systems.

1. Introduction

In course of the energy transition, the growing
share of Renewable Energy Sources (RES) makes
electricity generation more decentralized and highly
intermittent, resulting in various challenges for system
resilience [1]. This requires different flexibility
options that make electricity systems future-proof
and resilient given an increasingly intermittent RES
feed-in. Literature describes the need for an increase
in flexibility as the “flexibility gap” [2]. In leveraging
the necessary flexibility potentials and closing this
gap, digital technologies play a crucial role, as
they facilitate information exchange among electricity
market participants and make actual flexibility needs
more transparent [3, 4]. Moreover, digital technologies
enable faster (market) interactions and automated
trading close to real-time [3]. As a result, digital
technologies and corresponding trading algorithms may
exploit flexibility potentials with higher speed and better
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temporal and spatial accuracy than human traders and,
thereby, contribute to overall system resilience.

Currently, however, the potential of digital
technologies in electricity trading and the corresponding
exploitation of flexibility potentials is not fully realized.
Even though, algorithmic trading based on Artificial
Intelligence (AI) can considerably raise market
efficiency, e.g., by increasing market transparency, only
about half of the trades on European spot markets are
carried out automatically via algorithms [5]. Against
this background, algorithmic trading on electricity
markets clearly lags behind financial markets [6].
Moreover, only few electricity trading algorithms
actively take into account flexibility exploitation,
leading to (partially) decoupled electricity and flexibility
trading and, ultimately, a mismatch of traded electricity
and physical system needs. Even though, some first
algorithmic solutions exist for flexibility exploitation,
they are mostly restricted to (passive) decision-support
and do not actively participate in electricity markets
like, e.g., in [7, 8, 9]. Autonomously trading flexibility
on wholesale electricity markets as well as flexibility
markets would allow algorithms to learn trading
strategies that simultaneously maximize profit on
multiple markets (for electricity and flexibility) and,
thus, foster enhanced market integration and overall
system efficiency. Moreover, current approaches to
flexibility trading are mainly based on single-market
optimizations, for which it becomes increasingly
difficult to cope with the complexity of close to
real-time, multi-market settings. Thus, standard
optimization models may lead to inferior flexibility
marketing solutions as compared to AI algorithms that
actively learn flexibility marketing strategies by directly
interacting and experimenting with the respective
market environment.

In this paper, we contribute to existing research
by developing an integrated Machine Learning (ML)
framework that incorporates flexibility trading on
wholesale electricity markets as well as flexibility
markets and copes with the challenges of an RES-based
electricity system. Against this background, we
address the following research questions: What is an
applicable categorization scheme for existing electricity
and flexibility trading algorithms? What is a suitable
design for a ML framework that simultaneously trades
different flexibility options across multiple markets?
Augmenting existing research on ML-based electricity
transactions, our approach allows us, first, to identify
current concepts for decentralized flexibility trading
from the perspective of individual market participants
(instead of electricity system operators). Second, this
allows us to derive an appropriate ML framework that

is able to handle different, partially unknown, market
environments and the time dependency of providing
flexibility. Building upon prior work in the combined
fields of ML, electricity trading, and flexibility (e.g., [10,
11, 12]), we augment existing research by introducing
a multi-market environment with partially unknown
market characteristics and different flexibility products
in terms of, e.g., time discretization, bid size, speed of
availability, etc. To the best of our knowledge, we are
the first to propose a holistic algorithmic framework that
handles the highly complex and large-scale problem of
flexibility trading.

We proceed by providing important background
information on electricity and flexibility trading as
well as resilience of electricity systems in Section
2. We make use of a systematic literature review to
identify and cluster existing algorithmic frameworks
for electricity and flexibility trading (Section 3 &
Section 4). Subsequently, we present an integrated ML
framework for multi-market flexibility trading (Section
5) and illustrate directions for future research (Section
6).

Search String:
(“bid*” OR “trad*”) AND (“electricity” OR “energy” OR 

“power” OR “capacity” OR “flexibility”) AND 

(“algorithm*” OR “ai” OR “artificial” AND “intelligence” 

OR “agent” OR “automat*” OR “reinforc*” OR 

“learning”)

Research Identification:
Search from Scopus (n = 1208 results)

Article Selection:
1. Title screening (n = 175)
2. Abstract screening (n = 66)

Results:
Full text screening (n = 36)

Exclusion Criteria:
• Mere optimization models
• Mere forecasting models
• Generation / load prediction
• Optimization from an operator / market clearing 

perspective

Inclusion Criteria:
• Peer-reviewed articles
• Article must be available in full-text

Further Criteria:
• Title, abstract, keywords search
• Publication years: 2016 – 2021 (last five years)
• Subject area: Energy
• Language: English

Figure 1: Overview of Literature Review

2. Background

As we aim to provide a ML framework for
multi-market flexibility trading, this section gives a brief
overview about the process of trading on electricity
markets as well as a definition of flexibility and
flexibility markets.

Trading on wholesale electricity markets generally
follows three stages. First, in the bidding stage,
Generation companies (GENCOs), electricity suppliers,
and electricity consumers place their bids according
to their marginal costs, respective, willingness to pay.
Second, in the market clearing stage, the market clearing
price, given total electricity demand and supply, is set.
Third, the last stage is the physical delivery of electricity
by the GENCOs [13]. However, these steps may differ
and may be adapted when using, e.g., different clearing
mechanisms. As our proposed ML framework targets
flexibility trading, we focus on the bidding stage of
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electricity trading.
Further, we establish a definition of flexibility for

the remainder of this paper. From the flexibility supply
perspective, flexibility is defined as a deviation from
an ex-ante planned baseline electricity generation or
load profile [14, 15]. From an electricity system
perspective, flexibility is needed to balance the demand
and supply of electricity at every point in time [16].
Literature knows the following five flexibility options:
(1) supply-side flexibility, (2) storage flexibility, (3)
transmission flexibility, (4) demand-side flexibility,
and (5) inter-sectoral flexibility [17]. As flexibility
can be used for different services, from congestion
management to frequency control, a number of different
flexibility markets exists. Flexibility can be traded
at an (inter-)national level to provide system and grid
stability, among others. Moreover, flexibility can also be
used on a local level to counteract regional imbalances
[18]. To realize market-side benefits, flexibility can
also be traded on wholesale electricity markets. These
different markets all have their own entry barriers
and product characteristics such as pre-qualification
requirements or minimum bidding volumes. This results
in a complex environment where a flexibility provider
has to consider numerous combinations of flexibility
products on multiple markets.

To handle these complexities and to provide faster
– close to real-time – flexibility trading, Information
System (IS) tools within the AI field can be used.
These tools can help a flexibility provider, but also the
electricity system, to ensure a (market-based) optimal
use of flexibility, which in turn can improve electricity
system resilience.

3. Methodology

We conduct a systematic literature review following
the guidelines of [19] and [20] to identify the body of
knowledge regarding existing algorithmic frameworks
for trading on electricity and flexibility markets. In
Figure 1 we depict the entire process of our systematic
literature review. Regarding the database for our
search, we choose Scopus. We derive a search string
and complement the relevant topics related to our
research question with synonyms. A connection of
the topics is established by boolean operators. This
results in the following search string: (“bid*” OR
“trad*”) AND (“electricity” OR “energy” OR “power”
OR “capacity” OR “flexibility”) AND (“algorithm*”
OR “ai” OR “artificial” AND “intelligence” OR “agent”
OR “automat*” OR “reinforc*” OR “learning”). For
our systematic literature review, we consider the last
five years, covering the period from 2016 to 2021, to

account for the fast-moving nature of this emerging
field of research. For the year 2021, we include papers
that are available on Scopus until May, 2021. Besides,
we involve only articles written in English language.
Regarding the subject area, we specify via a filter option
on Scopus to solely consider articles with a focus on
energy, since our goal of the systematic literature review
is to identify algorithms for electricity trading.

We apply the search string to the title, abstract, and
keywords, obtaining 1.208 articles as a result of our
initial search. To further narrow down the number of
eligible articles, we proceed with the article selection
process, which consists of three steps: title screening,
abstract screening, and full text screening. In each of
these steps we refer to defined exclusion and inclusion
criteria: First, we exclude mere optimization models
and mere prediction models. Next, we eliminate
algorithms that optimize from the point of view of an
operator/market clearing authority rather than from the
point of view of a market participant. As inclusion
criteria, we define that exclusively papers for which a
full text is available are taken into account. A further
inclusion criterion ensures that only peer-reviewed
papers are considered in our review.

As a first step of the selection process, we screen
the titles and reduce the number of papers to 175, for
which we additionally screen the abstract. After abstract
screening, 66 papers remain for full text screening. As a
result of the full text screening, we obtain 36 articles that
are relevant to our first research question. To structure
the individual algorithmic approaches identified for
trading on electricity and flexibility markets, we follow
the concept-centric organization of results as proposed
by [19]. Therefore, we develop a concept matrix
listing the identified articles from the literature review
and the identified content assorted to concepts and
corresponding units of analysis. Hence, for each article,
we analyze which groups of algorithms and approaches
for trading electricity and flexibility were identified in
the respective article. We use the following concepts
to classify the results from the literature review: Type
of algorithm, considered electricity market, involved
players/participants, algorithm objective, and data input.
The classification was carried out by a joint discussion
of the authors. With regard to the type of algorithm, we
follow the classification of [21] for AI approaches for
energy demand response.

4. Overview of algorithmic approaches
for electricity and flexibility trading

In the following, we will present the results
of our literature review of algorithmic approaches
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for electricity and flexibility trading. Although
there already exist manifold optimization models for
trading, respectively bidding, optimization models have
difficulties coping with the complexity of interactive
trading in close to real-time markets like, e.g., in
[22, 23, 24]. Further, AI-based approaches allow
for learning viable solutions without having to derive
abstractions for the representation of the real-world
[25]. Given this focus on algorithmic approaches
for electricity and flexibility trading, we present the
identified publications that propose trading algorithms
for electricity or flexibility grouped by the used
algorithmic approaches. For each category, we describe
the identified players, respectively market participants,
as well as the considered electricity market(s). Figure 2
shows our proposed classification of all identified
algorithmic approaches for electricity and flexibility
trading. The individual classification of a publication
indicates the applied type of algorithm. In case of
an overlap, the respective authors combined several
algorithm types.

[26],
[27], [28]

Artificial Neural Networks

[11], [29], [30],
[31], [32], [33], [34]
[35], [12], [36], [37],

[38], [39], [40]

Reinforcement Learning

[41],
[42], [43],
[44], [45]

[46], [47], [48],
[49], [50], [51],
[52], [10], [53]

Nature-Inspired
Intelligence

[54]

[55]

Supervised Learning

[56], [57]

Automated Negotiations

[58]

Cooperative Game Theory

Figure 2: Overview of algorithmic approaches for
electricity and flexibility trading

The largest part of existing research on electricity
trading or flexibility trading relates to Reinforcement
Learning (RL), where RL is a ML approach that
focuses on learning from the interaction of a specific
agent with its environment. The agent learns to
improve its actions with respect to a given goal [59].
[11] employs several Q-learning agents, i.e., electricity
consumers that contribute to an overall learning strategy,
maximizing the consumers’ profits. In doing so, the
authors include a retail, a wholesale, and a balancing
market. [29] also develops a machine learning algorithm
for bidding on multiple markets, i.e., the day-ahead
and the real-time electricity market. In contrast to
previous publications, their approach bases on dynamic
programming and the authors compute their results from
the perspective of virtual financial entities that do not
physically trade their electricity. Similarly, [34] propose

a polynomial-time online learning algorithm for virtual
trading on the day-ahead and the real-time electricity
market. [30] propose a Q-learning approach for a
double auction mechanism for trading between several
micro-grid operators. Hence, the focus of this approach
is more on bilateral trading rather than the application
of trading strategies on a specific electricity market.
[32] also propose a Q-learning approach. The agents
within the Q-learning algorithm of the authors are not
micro-grid operators, but micro-grid investors that want
to maximize the long-term profit of their respective
micro-grids. [33] present an algorithmic approach for
trading between micro-grids. In the environment of a
Peer-to-Peer (P2P) market, the micro-grids’ objective is
to learn a strategy that maximizes the financial reward
for the prosumers of the respective micro-grids. In
contrast to [30], [33] propose a dynamic programming
algorithm. [44] and [45] combine RL approaches with
Artificial Neural Networks (ANNs). Their deep RL
algorithms likewise consider a P2P market environment
where the operators of micro-grids trade electricity
with each other. Several algorithmic approaches focus
on automating the processes that implement bidding
strategies on electricity markets from the perspective
of electricity suppliers, i.e., GENCOs. [31] propose
a Q-learning approach to maximize the profit from
selling electricity on the day-ahead market and on a
futures market. Similarly, [36] present a RL approach
for wind electricity generators on a day-ahead and a
subsequent balancing market. [40] also consider bidding
strategies on multiple markets, in their case, a day-ahead
and a subsequent reserve market. The authors use
an eligibility traces algorithm, similar to Q-learning.
[35] explore a RL approach with a hybrid stochastic
model coupled with a Stackelberg game for bidding on
a day-ahead market. [39] employ a RL approach with a
Roth-Erev learning strategy to improve the bidding of
GENCOs on a wholesale electricity market. Further,
[41] and [43] apply a deep deterministic policy gradient
algorithm, i.e., an actor-critic approach, to combine the
functionalities of RL and ANN, maximizing profits of
electricity suppliers by selling their generated electricity.
[12] encompass both sides of a double-sided auction,
i.e., the selling as well as the buying agents. In
order to model the trade between electricity sellers
and buyers, the authors apply a Q-learning algorithm.
[38] and [42] focus on trading strategies for prosumers,
e.g., electricity storage facilities. In contrast, [38]
apply RL with a policy function approximation to
an intraday-market. [42] apply deep Q-learning in
a P2P environment. [37] implement a RL algorithm
with multiple agents, representing multiple market
participant roles, i.e., prosumers and consumers, on a
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local electricity market.
Besides RL, supervised, and unsupervised learning

represent other groups of ML algorithms that detect
patterns from data inputs either given a certain output
(supervised) or not (unsupervised) [21]. Within our
literature review, we have identified one publication
that combines supervised learning, more specifically
Bayesian networks, with ANNs: [55] analyze the
behavior of electricity suppliers within a day-ahead and
an intraday market.

By means of our literature review, we identify
various approaches relying on Nature-Inspired
Intelligence (NII). These approaches take natural
processes, e.g., the evolution of individuals within a
population or biological swarms, and develop a search
algorithm to iteratively find the optimal or near-optimal
solution [60]. The identified publications for electricity
trading illustrate the range of existing nature-inspired
algorithms. [46], [52], [10], [51], and [49] provide
a NII approach to derive the best bidding strategy as
an electricity supplier on a day-ahead market. [52]
and [10] provide a Genetic Algorithm (GA). [49]
combines a GA with a particle swarm algorithm. [46]
further applies a GA based on a hybrid particle swarm
optimization and an improved firefly algorithm. [51]
evaluates various NII where a differential evolution and
vortex search algorithm perform best. [48] also searches
for an optimal bidding strategy from the perspective
of electricity suppliers. However, the authors further
include a reserve market besides a electricity spot
market like a day-ahead market, where they propose
an extended gravitational search algorithm. [50] and
[47] evaluate NII within a local electricity market
environment where P2P trading is conducted between
the market participants. While [50] applies an ant
colony optimization, [47] analyze different solution
approaches to a bi-level problem, including, amongst
others, an ant colony optimization, a hybrid-adaptive
differential evolution, and an algorithm vortex search.
[54] combine NII with ANNs to derive a bidding
strategy for electricity suppliers as well as large
consumers. With this approach, the authors deploy
an artificial bee colony algorithm and use an ANN
to optimize the parameters of the algorithm. [53]
combine particle swarm and GAs in order to establish
optimal smart contracts for demand response on a
blockchain-based platform for electric vehicles.

Even though, some of the publications presented
have combined algorithmic approaches like RL or NII
with Artificial Neural Networks (ANNs) to improve the
outcome of individual approaches, several publications
base solely on ANNs. ANNs are a specific form of
algorithms inspired by the human nervous system. Since

the basic structure and framework of ANNs differ from
classic NII like evolutionary algorithms, we present
these publications in a different category. [26] use
an ANN to maximize the profit of participants of a
day-ahead market. [28] apply a feed-forward ANN
for the participants of the Iberian Electricity Market.
[27] propose a dynamic ANN to support electricity
market participants in identifying an appropriate bidding
strategy independent of a specific electricity market.

The remaining publications can be summarized as
systems where multiple agents interact in an intelligent
way [21]. [57] and [56] present automated negotiation
protocols for trading between several local buyers and
sellers, i.e., in a P2P market. [58] minimize the total
transaction costs of micro-grid operators that trade with
each other based on cooperative game theory.

The identified algorithms provide a solid overview
of general algorithms for trading electricity. However,
most of the identified algorithms only address
day-ahead, intraday, or wholesale electricity markets
without including the perspective of flexibly adjusting
the planned electricity consumption schedule or
providing flexibility services to the varying markets.
Only [33], [38] and [42] consider prosumers that are
able to provide flexibility to the grid from the supply
as well as the demand side. Furthermore, several
publications consider P2P market trading, i.e., [42],
[45], [37], [57], [56], [50], and [47]. The possibility
of trading small units of electricity on a local market
enables the participating agents to provide flexibility.
However, these publications focus on trading electricity
without considering potential benefits and costs of,
for example, shifting generation and load profiles. In
summary, we identify only one publication where the
authors incorporate flexibility in the trading algorithm
in a specific form by developing optimal smart contracts
for demand response on a blockchain-based platform
for electric vehicles [53].

Accordingly, the results of our literature review
illustrate that a lack of trading algorithms for flexibility
exists. In particular, the identified papers lack
the integration of the existing multiple markets for
electricity and flexibility trading up to the actual
physical delivery at the consumer’s site, e.g., an
energy-intensive production site. Hence, our work aims
at closing this gap by developing an integrated ML
framework for general flexibility trading.

5. Algorithmic Framework

In order to trade flexibility on several markets, a
flexibility provider has to, first, define the quantity
and time when flexibility can be provided. During
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this process, the flexibility provider has especially to
consider the dependence between providing flexibility
at a certain time interval and “recovering” from this
adjustment of the planned baseline of generation or load
[14]. Second, a flexibility provider has to evaluate a
variety of possible markets where he*she can market
a unit of his*her flexibility as well as the potential
“consequences” and costs of adjusting the baseline
profile. Finally, the provider has to evaluate, based on
the expected profit and specific market restrictions, e.g.,
minimum bid requirements, on which market to actually
place a bid. Our literature review illustrates that in
order to handle the complexities and price volatility of
different markets as well as to subsequently determine
an appropriate trading strategy, tools within the AI
environment seem appropriate. Based on the analyzed
literature, we propose a ML- and NII-based integrated
algorithmic framework for flexibility marketing. The
objective of the proposed framework is to derive an
optimal, multi-market trading strategy using a GA as
a meta-learner, which relies on several market-level
Q-learners to provide market-specific bidding strategies.
Furthermore, we aim at including the interdependencies
of baseline adjustments and different time horizons of
markets by applying two different time intervals, i.e.,
a smaller time horizon for the market-level Q-learners
compared to the GA meta-learner. Figure 3 depicts our
proposed integrated framework.

The framework rests on a set of RL algorithms that
learn optimal bidding strategies for different markets
(i.e., spot markets, balancing markets, or local flexibility
markets) where flexibility can be traded. During
the learning process, the individual RL algorithms
interact with the respective market environment by
experimenting with different actions a ∈ A (i.e.,
bidding strategies) and the corresponding transitions to
a new state s that is associated with a certain reward
r. Whenever an action results in improvements (i.e.,
higher reward), the considered action is reinforced. In
such a learning process, the RL agents are searching for
the bidding strategy, through which the selected actions
will bring the highest, long-term accumulated rewards.

For solving the RL problem, we propose a set
of Q-learning algorithms for the different electricity
and flexibility markets. Analogous to the RL
problem, Q-learners receive market signals that link
action-selection to market states and individual rewards.
At each time step t, the Q-learner observes the current
market state st. Accordingly, the Q-learner follows a
certain bidding strategy at. As a result, the Q-learner
then transitions to a new state st+1 and receives the
corresponding reward rt+1, i.e., the revenue from
activating the submitted flexibility quantity minus the

Begin

Initialize Population

Generation = 0

Calculate Fitness: Evaluation

Next 
GenerationSelection

Crossover

Mutation

Condition

Stop

No

Yes

Agent

Environment

action at
bidding (MWh) rt+1

st+1

reward rt
profit

state st
flexibility 
provided 

or not

Market m

Market |M|

…

rt (at, st), rt+1 (at+1, st+1), 
…, rt+T (at+T, st+T) 

Figure 3: Integrated ML framework for flexibility
trading

costs of the “inconvenience” and efficiency loss due
to the adjustment of the baseline generation or load.
During the learning process, the Q-learner gathers the
corresponding state-action pairs in an expected value
function that are stored in the so-called Q-table. With
this table, the Q-learner is continuously searching for
the best bidding strategy on the respective electricity
or flexibility market. Thus, each individual Q-learner
aims at maximizing Q-values and, thus, the expected
reward from the respective bidding strategies. In this
sense, the proposed Q-learners follow the following
logic, proposed by [59]:

Qnew
i = (1−α)Qi(s, ai)+α[πi+γmaxQi(s

′, ai] (1)

The above logic describes, how Q-learners update
the Q-table at each time step. The learning rate α,
taking values between 0 and 1, describes, how much
weight the Q-learner attributes to recent experiences
(e.g., rewards). The discount rate γ, which also takes
values between 0 and 1, indicates, how foresighted
Q-learners behave, i.e., how much they value future
payoffs. When updating the Q-table, Q-learners face
the trade-off between exploiting current rewards or
choosing a seemingly inferior action at+1 for the sake
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of learning. For tackling this trade-off, we propose
an ε-greedy policy that chooses the action with the
maximum Q-value with a probability 1−ε and one of the
remaining actions with the probability ε ≥ 0, regardless
of their Q-value. This allows agents to experiment with
different bidding strategies, while still maintaining a
certain level of maximum returns.

Then, we propose the deployment of a meta-learner
to derive the optimal combination of bidding
strategies on the previously chosen electricity or
flexibility markets. Given our analysis in Section 4,
nature-inspired search algorithms are a suitable
approach for finding an integrated optimal trading
strategy. Consequently, we include a GA in our
algorithmic framework to identify an optimal trading
strategy for flexibility. Figure 3 depicts the process of
applying the GA in our framework. Our approach of
using a meta-learner in order to combine the optimal
bidding strategies of different electricity markets not
only allows us to consider different market requirements
like, e.g., minimum bid size, but also to account for the
time-dependence of providing flexibility. Especially in
the case of a prosumer, which can provide flexibility on
the supply as well as on the demand side, it is important
to integrate the bidding strategies over several time
intervals.

In order to initialize our population, we first have to
encode the results of our individual Q-learning agents.
Therefore, we aggregate the individual bidding actions
at, states st, and corresponding rewards rt until (t +
|T |)with T being the entire calculation period of the
GA meta-learner. To account for the time-dependency
of providing flexibility, we apply the GA for every
θ, where θ represents a time interval from t until
t + |T |. Consequently, the local Q-learners could, for
example, consider hourly time intervals for deriving
the bidding strategy on the respective electricity or
flexibility markets. The GA would then aggregate
the individual hourly bids into daily bid functions.
Following this time-aggregation from the Q-learning
results of each market, the encoding of our individual
strings represent the share of available flexibility in
θ that is submitted to the respective electricity and
flexibility market. Thus, the number of genes of each
individual string in our population equals the number of
considered electricity markets. C = {0, 0.25, 0.15, 0.6}
represents an exemplary string where the trader would
bid for nothing on the day-ahead market – see the first
entry of C – , 25% of the available flexibility on the
intraday market, 15% on a real-time balancing-market,
and 60% on a secondary frequency market following the
pre-learned bidding course for θ. After the encoding
of the individual chromosomes, the population size for

the initialization of the population has to be determined
having the trade-off between computational time and
optimality in mind. Hence, the decision on population
size also depends on the number of electricity markets
that are included and, thus, partly on the length of each
individual string.

The fitness function represents the solution value
to the addressed problem. Consequently, the fitness
value of the best overall trading strategy represents the
reward for the activated flexibility from the considered
electricity markets. Hence, our fitness function
aggregates the individual rewards rt determined by the
individual strings corresponding to the bidding strategy
pre-defined by actions at and states st over t to (t+|T |).
Depending on the objectives of the application of the
framework, the fitness function could be adjusted by
adding risk preferences to the function.

For selecting the individuals of the population for
the crossover and mutation process, various selection
methods may be applied. The Roulette Wheel selection
is a classic selection method where the individuals in
the population are selected by randomly ”spinning” the
wheel of individuals. The probability that the selection
will result in a particular string is calculated by the
ratio of the fitness value of the individual to the total
fitness of the population. However, often an alternative
selection method, i.e., Tournament selection, converges
faster than selection methods based on probability or
rank [61]. With the Tournament selection, the genetic
operator randomly selects two or more individuals that
compete with each other based on their fitness value and
the winning individual is added to the mating pool for
reproduction. The reproduction includes a crossover
and, if applied, a mutation function. For crossover,
several crossover functions, e.g., single-site, two-site,
or uniform crossover, are possible [62]. Depending on
the case, applying mutation and the mutation rate may
have positive or negative effects on the convergence
of the GA, see for example [63]. As evaluating
these hyper-parameters goes beyond the scope of this
publication, we refer to further research to analyze
the optimal hyper-parameter setting for our framework
given a specific electricity market selection.

After the reproduction process is completed, the
new generation of the population is evaluated given
the fitness function. This process is iterated until a
specific termination condition is met. In order to reduce
computational time, we propose choosing a specific
number of generations after which the GA is terminated.
With the combination of the learned market bidding
strategies, our framework allows identifying flexibility
trading strategies on multiple markets, i.e., electricity
markets like a day-ahead market as well as flexibility
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markets like a balancing market.

6. Conclusion

To conclude, flexibility trading is indispensable for
the resilience of the future electricity system. As
flexibility can be used for different applications such as,
e.g., congestion management or frequency reserve, and
consequently be traded on different markets, an optimal
multi-market trading strategy is needed. In this paper,
following a literature review on algorithmic approaches
trading electricity and flexibility on corresponding
markets, we provide a classification of these existing
approaches. Additionally, we successfully achieved our
objective to provide an algorithmic framework that
learns a profit-maximizing strategy by simultaneously
trading different flexibility products in a multi-market
setting. Consequentially, when implementing our
framework, a flexibility provider can consider multiple
markets, where the flexibility provider wants to offer
flexibility. The application of the framework can
provide incentives to leverage flexibility potentials
within the electricity system to address the challenges
presented by a rising penetration of renewable energies.
Furthermore, the implementation of our AI framework
may help to increase the resilience of the electricity
system by increasing the overall amount of traded
flexibility. However, the range of potential trading
strategies depend on the characteristics of the markets
relevant in the respective environment and the respective
market design, e.g., existence of regionally resolved
price signals (financial incentives) and market entry
barriers.

Regarding further research, we aim to provide a
“reality check” using expert interviews with interview
partners from the application side of flexibility
trading algorithms from GENCOs, large electricity
suppliers, municipal utility companies, and specialized
traders. Based on these expert interviews, we
further aim to implement the proposed framework
using historical electricity market data, e.g., EPEX
SPOT day-ahead prices, and obtained data regarding
demand side flexibility from companies within the
Kopernikus-Project SynErgie to evaluate the benefits of
multi-market flexibility trading. Further, the framework
can also be used to minimize the risk of flexibility
trading by optimizing the trade over different markets,
time horizons, and delivery times. Therefore, a risk
portfolio management perspective can be added to the
framework in future research using existing literature,
e.g., [64] and [65].

7. Acknowledgments

The authors gratefully acknowledge the financial
support of the Kopernikus-Project “SynErgie” by the
Federal Ministry of Education and Research of Germany
(BMBF) and the project supervision by the project
management organization Projektträger Jülich (PtJ).
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