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Abstract— Hyperspectral imaging (HSI) of the skin enables 
far-reaching diagnostic statements concerning anatomical and 
physiological aspects. However, hyperspectral cameras are 
expensive and have limitations with regard to spatial and 
temporal resolution. Hyperspectral reconstruction provides a 
means to transfer RGB data to a hyperspectral representation, 
potentially overcoming limitations of equipment for HSI. This 
contribution investigates whether a state-of-the-art deep 
learning (DL) technique is usable to transform RGB videos to a 
hyperspectral representation and if such representation can be 
used to extract the blood volume pulse (BVP) and heart rate 
(HR). Our results indicate that the chosen DL technique 
performs well on the reconstruction task using the Hyper-Skin 
database. At the same time, the physiological information is 
preserved. E.g. with respect to HR extraction in own 
experimental data, using the original green channel yields a 
correlation coefficient of 0.81 to a reference HR. When using a 
synthesized green channel from the DL reconstruction, the 
correlation even rises to 0.93. Using a regression-based 
approach for hyperspectral reconstruction, we achieved a 
correlation of 0.92. Our findings indicate the potential of using 
hyperspectral reconstruction to yield physiological information 
from videos. Future works will focus on dedicated methods to 
process the reconstructed hyperspectral data to exploit the full 
potential of the pursued approach. 

Keywords— imaging photoplethysmography, hyperspectral 
reconstruction, heart rate, blood volume puls 

I. INTRODUCTION 
Over the last years, imaging photoplethysmography 

(iPPG) has been attracting immense interest. iPPG assesses 
the cutaneous perfusion by exploiting subtle color variations 
from videos to yield various physiological information. The 
technology is extremely attractive, as conventional RGB 
cameras can be used, and measurements do not require any 
contact. iPPG can capture multiple parameters such as heart 

rate (HR), heart rate variability (HRV), oxygen saturation, 
blood pressure, venous pulsation, strength of cutaneous 
perfusion and spatiotemporal dynamics of cutaneous 
perfusion [1–3]. Such variety opens up multiple clinical and 
non-clinical applications [4]. 

Conventional iPPG processing procedures create a blood 
volume pulse (BVP) signal, which is processed afterwards [3]. 
BVP signal creation invokes three steps: (1) segmentation and 
tracking of a region of interest (ROI), (2) formation of a raw 
signal from the ROI, and (3) signal filtering. The subsequent 
processing of the BVP signal depends on the target, e.g., to 
yield HR, most often time-frequency-analysis is used. The 
formation of the raw signal (step 2) turned out to be of 
particular relevance for iPPG. The usage of a single color 
channel (owing to the best signal quality typically the green 
color channel) or linear combinations of RGB are common 
[5]. Recently, the use of machine learning (ML) has become 
very popular in iPPG [6, 7]. Proposed ML approaches cover 
different strategies: image sequence to target parameter (end-
to-end strategy), image sequence to BVP, and raw signal to 
BVP and raw signal to target parameter. Accordingly, the 
usage of ML can imply modifications to the outlined 
processing procedure, e.g., make ROI segmentation obsolete. 

Hyperspectral imaging (HSI) also can yield diagnostic 
statements remotely [8, 9]. By exploiting spectroscopic 
characteristics of cutaneous chromophores, HSI enables far-
reaching statements on metabolism, perfusion and anatomical 
aspects. Hyperspectral recordings, however, typically suffer 
from reduced spatial and/or temporal resolution and 
equipment for HSI is expensive. Hyperspectral reconstruction 
has the potential to overcome such limitations by computing 
hyperspectral data from RGB data as obtained by regular 
cameras. Hyperspectral reconstruction is an area of active 
research [10, 11]. Recently, deep neural networks have been 
demonstrated to yield most accurate results for hyperspectral 
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reconstruction considering common error measures as mean 
squared error (MSE) or spectral angle mapper (SAM). 
However, using hyperspectral reconstruction in the context of 
iPPG is not common and, to the best of our knowledge, there 
are no works to investigate to which extend deep neural 
networks maintain the information on BVP. 

 This contribution presents a preliminary evaluation on the 
effect of hyperspectral reconstruction by DL for iPPG. The 
contribution covers training of a state of the art network for 
hyperspectral reconstruction using the Hyper-Skin database 
[12], formation of an iPPG signal in the green channel (using 
either the native green channel or reconstructed green 
channels) using own experimental data [13], and finally an 
assessment regarding the hyperspectral reconstruction and the 
ability of the used network to retain information on the BVP 
and capture HR.  

II. USED DATA  

A. Hyper-Skin data set 
1) Overview 
To train the methods for hyperspectral reconstruction we 

use the Hyper-Skin data set [12]. The Hyper-Skin database 
was developed with the objective of optimizing research in the 
field of hyperspectral reconstruction from RGB images with a 
medical context. Moreover, as stated by the authors, the 
database is designed to facilitate the examination of skin 
characteristics, including melanin and hemoglobin 
concentration. In order to allow for comparisons with the 
NTIRE challenges, the database was designed to match the 
database of the NTIRE challenges [14, 15]. 

2) Experimental Procedure 
The faces of healthy subjects were captured from the front, 

left, and right with both a neutral and a smiling facial 
expression, resulting in six data cubes per subject. To ensure 
the accuracy and consistency of the data, the subjects were 
instructed to stand still with the help of a chin rest. 

3) Technical Setup 
The recordings were conducted under controlled 

illumination conditions, utilizing two halogen lamps, and 
employed spectral scanning with the FX-10 from Specim 
(Oulu, Finland). The camera is capable of capturing both the 
visible spectrum (400 nm–700 nm) and the near-infrared 
spectrum (700 nm–1000 nm), with a spatial resolution of 
1024 × 1024. For each defined spectrum, 224 bands were 
captured, resulting in a maximum of 448 bands. The authors 
[12] downsampled the number of bands to ensure 
comparability with the NTIRE challenges database. The 
Matlab function "HSI2RGB" was employed to extract RGB 
reference images from all hyperspectral images. For this 
study, only the VIS was utilized. 

4) Participants  
A total of 51 healthy participants volunteered for the 

experiment. The majority of them were in their early 20s or 
30s, and there were slightly more male than female 
participants. 

B. Imaging PPG Data 
1) Overview 
To assess the ability to pertain the BVP and extract the 

HR, we use data from own multimodal experiments. Our 
experiments invoke healthy volunteers of Caucasian origin 
who underwent different stimuli, namely paced deep 
breathing (PDB), multiple orthostatic maneuvers, and cold 
pressure test (CPT). Throughout the experiment, we recorded 
three videos and multiple biosignals as reference. The study 
was approved by the Ethics Committee at TU Dresden (EK 
311082018). All subjects gave written consent. A more 
detailed explanation on the study can be found in [13]. 
Below, we provide details on those aspects that are relevant 
to this contribution. 

2) Experimental Procedure 
Fig. 2 depicts the experimental protocol. The experiments 

had a duration of approximately 49 minutes and were carried 
out on a tilt table. During the experiment, the tilt-table was 
alternated between supine and upright position every seven 
minutes, defining seven phases. Between orthostatic 
maneuvers participants had resting epochs and executed CPT 
or PDB. Each participant executed at least one CPT (denoted 
as CPT1), which was randomly assigned to phase 1 or phase 
3. A random subset of participants executed another CPT 
(CPT2) in phase 5. During CPT, participants immersed their 
left hand into cold water at a temperature of approximately 
4° C for 60 s (termination was possible at any time if 
participants felt uncomfortable). CPT is known to induce a 
sympathetic activation owing to the painful stimuli. As a 
result, blood pressure typically increases rapidly and stays 
increased throughout the time of immersion. HR shows a 
more undefined behavior. Typically, there is a fast increase 
upon immersion. Afterwards, the behavior varies between 
subjects. In some cases, increased heart rate levels are 
preserved while in other cases heart rate recedes, sometimes 
falling below the initial level. Within this contribution, we 
use data excerpts of 90 s starting 30 s before CPT1 and ending 
60 s after CPT1. 

3) Technical Setup 
We recorded RGB videos and reference signals 

continuously throughout the experiment. Videos were 
recorded by three UI-3060CP-C-HQ Rev.2 RGB cameras 
(IDS Imaging Development Systems GmbH; Obersulm, 
Germany). The cameras were mounted on the tilt table and 
had fixed orientation with respect to the subject during the 
experiment. Within this work, only videos from camera 2 are 
considered. This camera was placed at a distance of 
approximately 40 cm to subject´s head and covered to a 
subject's head and a small portion of the shoulders (see Figure 
2). Videos were captured at a color depth of 8 bit, a frame rate 
of 25 Hz, and a spatial resolution of 1280 × 960 pixel. We 
stored all videos in a format with lossless compression. We 
used artificial illumination by two spotlights Walimex pro 
LED Sirius 160 Daylight 65 W (color temperature 5600 K, 
color rendering index ≥ 90) (WALSER GmbH & Co. KG; 
Gersthofen, Germany). Biosignals were acquired by two 



 

 

Biopac MP36 (Biopac; Goleta, United States of America) and 
HR. HR was derived from a single lead electrocardiogram 
(Einthoven II). Camera frame times are synchronized by 
feeding each camera's trigger signal into the Biopac units 
along with the biosignals. 

4) Participants  
Overall, 61 recordings were carried out using the setting 

described above. Within this preliminary study we used data 
from 20 subjects. The mean age and standard deviation of the 
subjects was 30.95±12.25. 

III. METHODS 

A. iPPG Processing 
1) Overview 
The employed processing adheres to the general 

processing scheme to yield the BVP, and from it the HR, 
consisting of (1) segmentation and tracking of a ROI, (2) 
formation of a raw signal from the ROI, and (3) signal 
filtering. Using such filtered signal, we finally derive the HR 
in the frequency domain. Below, we provide details on the 
single steps. 

2) Segmentation and Tracking 
In order to create the iPPG signal quality, only pixels 

within a ROI, i.e., pixels showing skin, were used. The ROI 
was formed by a specialized segmentation algorithm 
introduced by Woyczyk et al. [16]. The algorithm uses a 
modified level set approach and subject dependent skin color 
models to derive a suitable ROI. 

a) Skin Model Initialization 
The segmentation algorithm uses Gaussian Mixture 

Models (GMMs) to model the color distributions of 
foreground (skin) and background (non skin). To initialize 
both models, a face detection algorithm searches for a face in 
the first frame. The employed face detector is distributed with 
OpenCV and uses a cascaded classifier with haar features 
[17]. The detector provides a bounding box indicating the 
position and size of the detected face. Using Jones and Rehg's 
static skin classifier, definitive background pixels are 
eliminated from the bounding box. The remaining pixels are 
then used to train the GMM of the foreground. As further 
refinement step, kernels showing a low overlap with the static 
skin model are excluded from the GMM, as this indicates a 
possibility of unwanted color information in the model. The 

background GMM on the other hand is trained on all pixels 
outside the bounding box. As the number of pixels is large 
enough, no further adjustments of the background kernels are 
made. 

b) Level Set Segmentation  
The actual segmentation (see Fig. 2) and tracking is 

carried out by a level set formulation which is loosely based 
on the work of Chan and Vese [18]. A level set segmentation 
formulates a function (𝜙 function) over the two-dimensional 
image space, giving every pixel an energy value. The 
segmentation is then concluded by setting a threshold (usually 
a zero threshold) and assigning each pixel either to fore or 
background depending on its energy value, i.e., above 
threshold is foreground and below threshold is background. 
The crucial part of a level set segmentation is to define the 
energy term, which defines the 𝜙 function. In our solution, the 
𝜙 function of an image is approximated by minimizing the 
total energy of a contour and the area enclosed. The total 
energy is derived from the length of the contour, its enclosed 
area, and lastly the distance of each pixel’s intensity to the 
GMM of its assigned class. The final approximation of the 𝜙 
function is calculated through an iterative algorithm.  

3)  Formation of Raw Signal 
Within this contribution, we consider only the green 

channel (the original one and two reconstructed versions; see 
below for details on the reconstruction). The raw BVP signal 
for the native RGB data is calculated by averaging the green 
color channel intensities within the ROI. For the reconstructed 
data, a synthetic green channel is calculated by a weighted 
average (Gaussian, centered at 550 nm, standard deviation 20 
nm) over the reconstruced HSI data cube. The reconstructed 
green channel is afterwards processed in the same way as the 
native green channel, i.e., averaging the intensities within the 
ROI to yield a time varying signal. 

4) Signal Filtering 
As we are only interested in the pulsatile behavior of BVP 

and HR, we apply a narrow band bandpass filter. The used 
filter is a 5th order Butterworth filter with lower and upper 
cutoff frequencies of 2/3 Hz and 4 Hz. The filter is applied in 
forward and backward direction to avoid phase shifts. An 
example of the PPG and iPPG can be seen in figure 2.  

Fig. 1. Overview on the experimental protocol and used data (highlighted in red). Within this work, we use data excerpts of 90 s around CPT1. Left: whole 
experimental protocol and placing of the data excerpt. Right: data excerpt and expectation on the HR, which is assumed to show intrasubject and intersubject 
variations upon cold stress. 
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5) Heart Rate Estimation 
HR is estimated in windows of 10 s by simple peak 

detection in the frequency domain. Thereto, we calculate from 
our input data (native or reconstructed green channel) spectra 
using Fast Fourier Transformation for windows of 10 s. HR is 

identified by the highest peak in the range between 40 and 180 
bpm. The window displacement was set to 1 s resulting in a 
HR estimate for every second. As reference for the HR 
estimation from videos, we extract a heart rate from the ECG, 
which is considered as ground truth.  

B. Employed Hyperspectral Reconstruction 

1) Overview 
For hyperspectral reconstruction we use a deep learning 

approach and a regression-based approach. The following 
chapter provides a description of the deep neural network 
utilized for hyperspectral reconstruction along with an 
explanation of the training strategy. The regression-based 
approach is less complex (has less parameters and is not at risk 
of overfitting) and serves as a reference for hyperspectral 
reconstruction. 

2) Hyperspectral Reconstruction by MST++ 
MST++ [19] is a multi-stage transformer model for 

hyperspectral reconstruction from RGB images. The model 
employs transformer blocks to capture both spatial and 
spectral information, thereby ensuring that the reconstruction 
is gradually refined in several stages. Furthermore, MST++ 
utilizes positional coding to place pixels in the context of the 
image and residual connections to retain information from 
earlier stages. A comprehensive account of the model's 
architectural nuances can be found in the paper by Cai et al. 
[19]. 

The MST++ was trained with the Hyper-Skin database 
over 200 epochs and a batch size of 20. All RGB images are 
linearly rescaled to the range [0, 1] and the HIS samples 
randomly cropped to 128 × 128 pixels. We implement four 
training sessions with different seeds. Furthermore, a cosine 
annealing scheduler was utilized and the training objective 
metric is the mean relative absolute error (MRAE). After 
training, the weights with the lowest loss were selected for 
hyperspectral reconstruction of the iPPG database. To validate 
the MST++ during the training phase, three subjects (p049, 
p050 and p051) were selected as validation data. To evaluate 
the performance of the MST++ on previously unseen data, 
four subjects (p006, p021, p037 and p042) were randomly 
selected as test data. 

3) Hyperspectral Reconstruction by Polynomial 
Regression 

To compare the results of the MST++ with a less complex 
hyperspectral reconstruction, we employ a regression-based 
approach. Lin and Finlayson [20] compared different 
regression methods for hyperspectral reconstruction in their 
work and according to their findings, the most promising 
results can be achieved using polynomial regression. 
Polynomial regression represents an extension of linear 
regression, wherein the model describes a curve represented 
by a higher-order polynomial. The objective of polynomial 
regression is to construct a model that describes the 
relationship between independent variables 𝑥 and dependent 
variables 𝑦 by raising the input values to powers.  

 
a) Frame 1 

 
b) Frame 564 

 

 
c) Frame 1237 

 
d) Frame 1690 

Fig. 3. Examplary images of the iPPG data. The red area reflects 
the ROI used to derive the iPPGsignal by averaging over the whole 
ROI 

Fig. 2. Example PPG and iPPG of subject015 



 

 

Because of the computational limits, the training data was 
downsampled to 256 × 256. To evaluate the performance of 
the polynomial regression on previously unseen data, also 
four subjects (p006, p021, p037 and p042) were selected as 
test data. 

4) Quality Assessment 
Quality assessment relates to both, the performance of 

hyperspectral reconstruction as well as the reconstructions' 
performance to retain BVP and extract HR. In order to 
evaluate the spatial quality of hyperspectral reconstruction, we 
employ the MSE and Mean relative absolute error (MRAE). 
The MSE is often used for the training of neural networks due 
to the advantageous scaling of the error in relation to the 
optimization process. Conversely, the MRAE is a widely 
utilized metric in the field of hyperspectral reconstruction due 
to its capacity to account for varying illumination conditions. 
Another crucial element is the spectral error. To address this, 
we employ the SAM, which calculates the angles of pixels to 
describe a spectral orientation. Subsequently, it compares the 
angles of the reconstructed images with those of the ground 
truth. To assess the performance to retain BVP and extract 
HR, we employ the Pearson correlation coefficient (PCC) in 
two ways. First, we compare the reconstructed green channels 
to the original green channel and the contact PPG by means of 
PCC. Secondly, we compare the extracted HR (from native 
and reconstructed green channels) to the reference heart rate 
by means of PCC. In addition, we employ Bland-Altman-
Plots together with mean errors and limits of agreements to 
assess HR estimation accuracy as well as MSE and MAE to 
compare the extracted heart rates to the reference heart rates. 

IV. RESULTS 

A. Reconstruction Performance 
The reconstruction results on the test data of the Hyper-

Skin database are presented in Table 1. 

B.  BVP Preservation 
Table 2 shows the mean PCCs of all ten seconds segments 

between the BVP signals of all subjects. The results indicate 
distinct differences in the preservation of BVP. 

 ABLE Ⅱ. MEAN PCCS OF ALL SUBJECTS BVP SIGNALS 

Figures 3, 4, and 5 show the Bland-Altman plots and 
scatter plots for HR estimation. Table 2 shows the MSE and 
MAE between the reference HR and the estimated HR for the 

different iPPGs. Table 3 summarizes the resulting 
correlations for heart rate estimation. 

  ABLE Ⅲ. MAE AND MSE OF ESTIMATED HR: 
REFERENCE VS. GREEN CHANNEL 

  ABLE Ⅲ. PCCs OF ESTIMATED HR: REFERENCE VS. 
GREEN CHANNEL 

TABLE Ⅰ.  RESULTS OF THE HYPERSPECTRAL RECONSTRUCTIONS 
USING THE TEST SUBJECTS 

Method\Metric MSE MRAE SAM 
MST++ 0.0008 0.5288 0.1334 
Regression 0.0009 0.8232 0.1557 

Methods PPG iPPGRGB iPPGMST++ 
PPG 1 - - 
iPPGRGB 0.422 1 - 
iPPGMST++ 0.463 0.898 1 
iPPGRegression 0.647 0.724 0.780 

Method MAE (STD) MSE (STD) 
RGB 2.649 (1.786) 41.509 (40.330) 
MST++ 1.647 (1.282) 12.540 (13.001) 
Regression 1.570 (1.220) 16.370 (24.340) 

Method PCC 
RGB 0.81 
MST++ 0.93 
Polynomial Regression 0.92 

Fig. 4. Bland-Altmann Plot and regression of PPG and iPPG of 
RGB 

Fig. 6. Bland-Atlman Plot of regression of PPG vs iPPG of 
Polynomial Regression 

Fig. 5. Bland-Altman Plot and regression of PPG vs iPPG of 
MST++ 



 

 

V.  DISCUSSION AND CONCLUSION 

A. Discussion 
 As evidenced in Table 1, the MST++ demonstrates 

superior quantitative performance compared to polynomial 
regression.  This outcome was anticipated, as neural networks 
typically demonstrate superior performance in hyperspectral 
reconstruction, exhibiting enhanced adaptability to specific 
databases. Furthermore, as shown by Tables 2 to 4 and 
Figures 4 to 6, hyperspectral reconstruction using polynomial 
regression and MST++ can retain the BVP. As our results 
indicate, the reconstruction (and synthesizing a green channel 
again) can even improve extraction of BVP and HR. 
However, such finding is true for the current data but might 
not be generalizable (future investigation will have to 
confirm). Anyways, hyperspectral reconstruction is intented 
to be a first step and our future works will direct at methods 
to combine spectroscopic information thus actually achieving 
generizable improvements.  

B. Limitations 
Our study is a preliminary study and there are some 

limitations. The objective was to assess the impact of 
hyperspectral reconstruction. The method employed for HR 
extraction was not optimized, as this would have required the 
use of alternative techniques for color channel combination, 
which are known to improve HR detection compared to using 
the green channel only. In addition, our findings are true for 
the employed setting (cameras, illumination, collective, ...). 
While the general statement on the usability of hyperspectral 
reconstruction, particularly using MST++, is valid, 
particularly with respect to quantitative results, other settings 
might differ and more work towards generizable statements 
are required. 

C. Conclusions 
Spectroscopic information bears wide information on 

physiological parameters. Hyperspectral reconstruction is an 
innovative approach, to combine the advantages of 
hyperspectral imaging and conventional RGB videos. Our 
preliminary analysis indicates the potential of hyperspectral 
reconstruction. 
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