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Abstract: Undifferentiated embryonal sarcoma of the liver is a rare mesenchymal malignancy that pre-
dominantly occurs in children. The relationship between this tumor entity and germline pathogenic
variants (PVs) remains undefined. Here, we present the clinical case of a male patient diagnosed
with undifferentiated embryonal sarcoma of the liver. Both germline and tumor samples were ana-
lyzed using next-generation sequencing. In the tumor tissue, PVs in TP53 (NM_000546.5):c.532del
p.(His178Thrfs*69) and CHEK2 (NM_007194.4):c.85C>T p.(Gln29*) were identified, with both con-
firmed to be of germline origin. Copy number analyses indicated a loss of the wildtype TP53 allele
in the tumor, consistent with a second hit, while it was the variant CHEK2 allele that was lost in
the tumor. Our data indicate that the germline TP53 PV acts as a driver of tumorigenesis in the
reported case and support a complex interaction between the germline TP53 and CHEK2 PVs. This
case highlights the dynamic interplays of genetic alterations in tumorigenesis and emphasizes the
need for continued investigation into the complex interactions between TP53 and CHEK2 PVs and
into the association of undifferentiated embryonal sarcoma of the liver and Li–Fraumeni syndrome.

Keywords: TP53; CHEK2; double heterozygosity; embryonal sarcoma of the liver; synthetic lethality

1. Introduction

Genetic predisposition is increasingly recognized in children and adolescents with
cancer [1,2]. To identify patients with an increased probability of an underlying cancer pre-
disposition syndrome (CPS), various questionnaires and mobile apps have been developed.
These tools incorporate data on clinical features, treatment toxicity, cancer subtype, somatic
mutational spectrum, and family (cancer) history [3–5].

Sarcomas can arise in the setting of CPSs. Pathogenic variants (PVs) in cancer pre-
disposing genes (CPGs) have been reported in 7–33% of children, adolescents, and adults
with various types of soft-tissue sarcomas (reviewed in [6]). The most frequently mutated
gene in patients with sarcoma is the cell cycle/cell death regulator tumor suppressor TP53,
followed by the Ras/MAPK pathway inhibitor neurofibromin 1 (NF1), and the DNA repair
regulators breast cancer associated 1 and 2 (BRCA1 and BRCA2).

Germline variants in TP53 are associated with Li–Fraumeni syndrome (LFS), charac-
terized by a high and early-onset cancer risk. The tumor spectrum is broad and includes
soft-tissue sarcomas and bone tumors, brain tumors, hematologic malignancies, breast
cancer, and adrenocortical carcinoma, among others.
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PVs in BRCA1/2 have been associated with adult-onset cancer, most notably hereditary
breast and ovarian cancer (HBOC) [7]. BRCA1 and BRCA2 are essential regulators of
the homologous recombination repair (HRR) pathway and their inactivation results in
impaired DNA-double strand-break repair and HRR deficiency (HRD). Additional genes
participating in the HRR pathway, such as ATM, ATR, CHEK1, and CHEK2, the BRCA2
loading factor PALB2, the recombinase RAD51, and the DNA–interstrand crosslink repair
regulators of the FANC protein family contribute to the HRR pathway as well [8]. Recently,
germline PVs in the HRR genes have recurrently been identified in children and adolescents
diagnosed with cancer [1,9–11], although the clinical significance of these PVs in the context
of pediatric cancer is only beginning to emerge [12].

A notable example of such pediatric cancers is undifferentiated embryonal sarcoma
of the liver, a rare hepatic tumor of mesenchymal origin mainly occurring in children [13].
Therapeutic modalities for this entity encompass a multimodal strategy including chemother-
apy, surgery, radiotherapy, and liver transplantation as appropriate. Data on the potential
association between this tumor entity and CPS are, however, limited [14,15].

This case report uses the example of an undifferentiated embryonal sarcoma to illus-
trate the complex functional interplays of PVs in different genes against the background of
Li–Fraumeni syndrome. It also aims to raise awareness of the need for comprehensive ge-
netic profiling and a complete understanding of the genetic landscape of pediatric cancers.

2. Results
2.1. Case History

We report the case of an 18-year-old male patient with recurrent undifferentiated
embryonal sarcoma of the liver. The patient initially presented at the age of 9.1 years
with swelling of the left upper abdomen, vomiting, and recurrent abdominal pain. Fol-
lowing diagnosis (Figure 1), the patient was treated according to the Cooperative Soft
Tissue Sarcoma (CWS) guidance. After three courses of neoadjuvant chemotherapy (I2VA:
ifosfamide 3000 mg/m2 day 1 and 2 for each course, vincristine 1.5 mg/m2 day 1, 8, and
15 for courses 1 and 2, day 1 for all other courses, actinomycin D 1.5 mg/m2 day 1 for
all courses, except courses 7 and 8), a left hemihepatectomy including complete tumor
resection was performed, followed by six courses of adjuvant chemotherapy. Radiotherapy
of the tumor bed was administered with up to 41.4 Gy.
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Figure 1. Hematoxylin and eosin staining of the biopsy tissue showing a myxoid and necrotic
tumor with pleomorphic tumor cells, giant cells, and partial rhabdoid features that were classified
as undifferentiated embryonal sarcoma of the liver (a) 12.5× magnification; (b) 400× magnification.
Immunohistochemistry revealed positivity for CD56, but negativity for SMA, desmin, pancytoker-
atin, CD99, myogenin, MyoD1, MDM2, S100, EMA, WT1, and CD34 in the tumor cells. The Ki67
proliferation index was measured up to 40% in the sample.
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Both ultrasound and MRI-based scans were performed as part of the follow-up care
and in the further course of the disease history as preventive examinations. Since the onset
of the disease, the patient has undergone a total of 41 ultrasound scans, all of which covered
the abdomen. At least two ultrasound scans were performed per year, usually every two to
three months. Up to the age of 15, 11 MRI scans were performed at approximately 6-month
intervals. In the further course, annual whole-body MRIs were conducted.

Two years later, at the age of 11, a suspicious lesion in the liver in segments 5/6 was
detected by a routine ultrasound scan. Sonographic-controlled liver biopsy and subsequent
partial atypical liver resection were performed. Histopathological evaluation demonstrated
a regenerative node.

Two years after that, at the age of 13, another new lesion in the liver in segment 7
was identified during a routine ultrasound scan. Due to its increase in size, the lesion
was subsequently excised through partial atypical liver resection. Histopathological eval-
uation was challenging, with differential diagnoses including mesenchymal hamartoma,
intrasinsusoidal spread of the known sarcoma, and other sarcoma types. Ultimately, after
a thorough review, three pathologists reached a consensus, diagnosing the lesion as a
mesenchymal hamartoma with slight pleomorphism.

Another two years later, at the age of 15, additional lesions in segments 6/7 were
detected by a routine ultrasound scan. Biopsy revealed a myxoid lesion with a proliferation
rate of 5–15%, corresponding to the intrasinusoidal spread of the previously diagnosed
undifferentiated embryonal sarcoma (Figure 2). Immunohistochemistry revealed positivity
for CD56 but a lack of hepar 1 and glypican expression, confirming that the lesion was most
likely not a neoplasm of primary liver origin. Systemic therapy was initiated according to
the CWS guidance VACA-2 regimen, including vincristine 1.5 mg/m2 day 1 each course,
actinomycin D (not administered), cyclophosphamide 1.200 mg/m2 day 1 each course,
and doxorubicin 20 mg/m2 day 1–3 course 1 and 2. Following two courses of systemic
chemotherapy, orthotopic liver transplantation was performed 4 months following diagno-
sis of relapse. Since then, the patient has been treated with ciclosporin and everolimus for
immunosuppression.
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Figure 2. Hematoxylin and eosin staining of the recurrent undifferentiated embryonal sarcoma of the
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Three years later, at the age of 18, a routine whole-body magnetic resonance imaging
(MRI) revealed several ambiguous osseous lesions in multiple vertebrae. A follow-up MRI
three months later indicated disease progression, raising the suspicion of distant metastases
of the undifferentiated embryonal sarcoma (Figure 3). To further characterize these lesions,
an 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomog-
raphy (CT) was performed, demonstrating a moderate uptake of the lesions. A subsequent
CT-guided biopsy confirmed a second (metastatic) relapse, showing small focally accen-
tuated spindle cell infiltrates of an unclassified tumor compatible with the pre-diagnosed
undifferentiated sarcoma. In immunohistochemistry, the tumor tissue showed a complete
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loss of p53 and regularly maintained Rb1 expression. Additionally, the tumor was negative
for most immunohistochemical markers (CKAE1/AE3, p63, CD23, CD21, MUC4, NUT,
CDK4, Pan-TRK, STAT6, SS18, MDM2, Desmin, S100, ERG, TLE1, Fli) and showed only
weak and most probably unspecific expression of CD99, CD56, and CD34.
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2.2. Comprehensive Genetic Tumor Analyses

To identify therapeutic targets, the comprehensive genetic analyses of tumor tis-
sue from the first relapse were performed within the Pediatric Targeted Therapy 2.0
project [16]. DNA methylation analysis demonstrated no concordance with established
methylation classes within the sarcoma classifier, where the highest score corresponded
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to ‘well/dedifferentiated liposarcoma’. Numerous chromosomal gains and losses were
observed in the copy number variation analysis. Immunohistochemical analysis for p-Akt
and p-S6 demonstrated an activation of the mTOR signaling pathway (H score ≥ 100),
constituting a potential therapeutic drug target. PVs in TP53 and CHEK2 were identified in
the tumor tissue, suggesting germline origin.

To obtain further details about the genetic landscape of the lesion, an additional
next-generation sequencing analysis (NGS) of the tumor tissue from the first relapse was
initiated. NGS with the TruSight Oncology 500 HRD assay (Illumina®) confirmed the
previously identified PVs in TP53 and CHEK2 from the initial genetic analysis. Specifically,
the TP53 PV (NM_000546.5):c.532del p.(His178Thrfs*69) in exon 5 of 11 exons) was observed
with a variant allele frequency (VAF) of 78%, and the CHEK2 PV (NM_007194.4):c.85C>T
p.(Gln29*) in exon 2 of 15 exons) was detected with a VAF of 25% in the tumor tissue.
Copy number analyses, adjusted for tumor purity, indicated an absolute copy number
of three for both the TP53 and the CHEK2 genes in the tumor specimen, in addition to
further copy number alterations. No additional driver mutations classified as oncogenic or
likely oncogenic were detected. The tumor mutational burden was determined to be low
(8.8 mutations per megabase), and the microsatellite status was stable (0.96%). The genomic
instability score (GIS) [17] was 36, which appears to be elevated; however, established
cutoffs for this specific entity are not available. All NGS findings are summarized in the
variant call file, which is available in the Supplementary Materials.

2.3. Molecular Genetic Testing of TP53 and CHEK2 Genes

Germline genetic testing using the peripheral blood of the patient confirmed the diagno-
sis of Li–Fraumeni syndrome and HBOC, with both variants [TP53 (NM_000546.5):c.532del
p.(His178Thrfs*69), heterozygous, and CHEK2 (NM_007194.4):c.85C>T p.(Gln29*), het-
erozygous] being of germline origin. Since then, the patient was followed up according
to LFS surveillance recommendations [18]. Family history has been unsuspicious on both
parental sides across three generations. Both parents have refused to undergo genetic
testing so far.

3. Discussion

This report presents a unique case of a child with a very rare liver cancer, carrying
double heterozygous germline PVs in the TP53 and CHEK2 genes. The simultaneous pres-
ence of germline PVs in CHEK2 alongside other predominantly high-penetrance CPGs has
been documented previously [19]. In HBOC patients, double or—more general—multiple
heterozygosity commonly involves PVs in BRCA1 or BRCA2, with less frequent instances
involving PVs in ATM, CHEK2, and other moderate-risk CPGs [20,21]. In contrast, double
heterozygosity among TP53 carriers is exceptionally rare and involves, amongst others,
co-occurring PVs in genes such as PALB2 and ATM [22]. To the best of our knowledge,
this is the first report of co-occurring PVs in TP53 and CHEK2 in a pediatric cancer patient.
Double heterozygous PVs in both genes are extremely rare in adults but have previously
been reported, e. g., in breast cancer patients [23].

The TP53 gene encodes p53, which plays a key role in regulating the cellular response
to DNA damage by regulating DNA repair, apoptosis, and growth arrest [24]. Upon
genome damage, p53 is activated through post-translational modifications, including
phosphorylation by DNA damage-activated protein kinases including ATM, ATR, CHEK1,
and CHEK2 at specific sites. Phosphorylation at Serine 20 by the CHEK2 in response to
DNA damage stabilizes p53 by inhibiting its inactivation with the negative regulator MDM2.
While some experimental studies have suggested a critical role of CHEK2 in activating
the p53 apoptotic response to genotoxic stress [25,26], other studies have suggested that
CHEK2 may be dispensable for p53 activation concerning apoptosis and growth arrest [27].
Since p53 can also suppress carcinogenesis by regulating DNA repair, this may provide an
additional explanation for CHEK2-mediated effects on p53.
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Both TP53 and CHEK2 are classified as tumor suppressor genes. Given that the TP53
PV in this patient is a frameshift variant, it is not anticipated to exhibit a dominant-negative
effect [28]. According to the two-hit hypothesis proposed by Knudson, tumorigenesis
requires the inactivation of both alleles of a tumor suppressor gene [29]. Loss of heterozy-
gosity (LOH), which results from the deletion of one allele, represents a well-established
mechanism for this second hit. LOH events can be followed by duplications of the retained
allele, leading to either copy-neutral loss LOH or, when overcompensated, to copy-gain
LOH [30]. The tumor analyses presented in the patient reported herein support a copy-gain
LOH mechanism, suggesting that the tumor cells may harbor three mutated TP53 alleles,
while the mutated CHEK2 allele is lost (Figure 5). The absence of functional TP53 alleles
and the resultant loss of TP53 function are thus posited as significant drivers of cancer
development in this patient.
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The loss of the variant CHEK2 allele, despite the presence of a germline PV, is striking.
This observation aligns with a model suggesting that the co-occurrence of a loss of CHEK2
function with a loss of TP53 may establish a synthetic lethal interaction. Synthetic lethality
refers to a genetic interaction concept wherein the simultaneous loss of function of two
genes leads to cell death, whereas the loss of either gene alone permits cell viability [31,32].
As a consequence of synthetic lethality, only cells that have lost either TP53 or CHEK2
(or retain functional activity of both genes) may be observed. Within this framework,
CHEK2 mutations have been proposed to exhibit synthetic lethality in conjugation with
TP53 mutations [33].

The interplay between TP53 and CHEK2 in the patient presented herein underscores
the necessity for a nuanced understanding of the genetic landscape in pediatric cancers [12].
The presence of multiple genetic alterations can lead to complex interactions that sig-
nificantly influence tumor behavior. Therefore, further investigation into the functional
consequences of these PVs, as well as their interactions, is essential to elucidate their roles in
tumor development and progression. This case not only links undifferentiated embryonal
sarcoma of the liver with the Li–Fraumeni syndrome but also highlights the importance of
comprehensive genetic analysis involving tumor and germline analyses in understanding
pediatric cancers effectively.
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4. Methods

Molecular genetic tests were performed on genomic DNA samples isolated from the
peripheral blood leukocytes using the QIAamp DNA Blood Mini Kit (Qiagen, Hilden,
Germany). CNV analysis was also performed based on coverage using NGS data.

Tumor DNA was extracted from the FFPE samples using the Maxwell® CSC DNA
FFPE Kit (Promega; Madison, WI, USA), and nucleic acids were quantified using the
Quantus System (Promega). Library preparation was performed using the hybrid capture-
based TruSight Oncology 500 HRD Library Preparation Kit (Illumina; San Diego, CA, USA)
according to the manufacturer’s protocol. Finally, the libraries were pooled, denatured,
and diluted to the appropriate loading concentration. TSO500 libraries were sequenced on
a NextSeq™ 550Dx system (Illumina). For a secondary analysis, raw data were analyzed
using DRAGEN TruSight Oncology 500 Analysis Software 2.5.2 on a local DRAGEN server
(Illumina).

Sequence variants were described using HGVS nomenclature [34]. Variant classi-
fication was based on the guidelines of the American College of Medical Genetics and
Genomics (ACMG) [35].

5. Conclusions

This case report presents the unique occurrence of double heterozygous pathogenic
variants in TP53 and CHEK2 in a pediatric patient with undifferentiated embryonal sar-
coma of the liver. Our findings underscore the potential role of TP53 as a key driver in
tumorigenesis, with the additional loss of CHEK2 possibly facilitating tumor development
through a synthetic lethal mechanism. This case contributes valuable insights into the
complex interplays of genetic factors in pediatric liver sarcoma, advocating for further
research into the interactions between the TP53 and CHEK2 mutations. It highlights the
necessity of comprehensive genetic screening in pediatric cancer patients, which can lead to
improved risk stratification, personalized surveillance, and targeted therapeutic strategies.
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