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Abstract

In recent years, considerable advances have been made in the development of
Deep Reinforcement Learning (DRL) algorithms. As a result of these advances,
DRL agents are increasingly introduced into high-risk domains such as health-
care or automated vehicles. To ensure proper use in these critical domains,
users must understand the agents’ strategies and know when to rely on them.
At the same time, the increasing complexity and opacity of DRL algorithms
present substantial hurdles to their explainability, especially when applied to
large visual states.
This thesis is dedicated to improving the explainability of DRL agents with

visual input. While there has been a resurgence of interest in developing eX-
plainable Artificial Intelligence (XAI), it has primarily focused on classification
tasks. However, DRL presents its own set of challenges and requirements for
explainability. First, DRL agents engage in sequential decision-making where
actions are interconnected and contribute to a long-term strategy that is poten-
tially influenced by delayed rewards. Second, DRL agents learn by interacting
with an environment in which their goals are only indirectly defined by the re-
wards they receive for their actions. Consequently, the strategies developed by
DRL agents might deviate from human expectations, even if they are optimal
for the given reward function.
To address these specific challenges for explainable deep reinforcement learn-

ing, this dissertation pursues five objectives.
The first three objectives relate to the development of novel explanation meth-

ods that are tailored to the needs of DRL. First, this thesis introduces a novel
saliency map algorithm that identifies relevant information for an agent’s deci-
sion. Compared to other saliency map methods, this algorithm focuses on more
selective areas within the input. As a result, it helps to quickly interpret multiple
states and uncover their interrelationship within the agent’s strategy. Second,
this dissertation proposes a model-agnostic method for generating counterfac-
tual explanations for visual DRL agents, illustrating how states can be changed
to alter the agent’s action. Third, to extend the insights from the local ex-
planations to the global strategy of the agent, this dissertation introduces a
novel combination of local explanations with global strategy summaries. Strat-
egy summary methods identify representative states for the agent’s strategy
and thus allow users to gain a good understanding of the agent’s strategy by
examining a limited budget of states.
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The last two objectives of this dissertation are concerned with the evaluation
of XRL methods. Here, this thesis starts by evaluating the proposed methods
and other local explanation methods with computational metrics that assess
their fidelity to the agent’s internal reasoning. Finally, the complementary and
individual contributions of the global and local explanations in the aforemen-
tioned combination are investigated in three user studies. These studies measure
agent understanding, appropriate trust, and satisfaction with the explanations.
The results of the experiments in this dissertation demonstrate the significant
potential of combined explanations for DRL agents and identify challenges that
inform the development of future explanation frameworks for DRL.
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Zusammenfassung

In den letzten Jahren wurden beträchtliche Fortschritte bei der Entwicklung
von Algorithmen des tiefen bestärkenden Lernens (Deep Reinforcement Learn-
ing, DRL) erzielt. Diese Fortschritte haben dazu geführt, dass DRL-Agenten
zunehmend in Hochrisikobereichen wie dem Gesundheitswesen oder automa-
tisierten Fahrzeugen eingesetzt werden. Um den richtigen Einsatz in diesen
kritischen Bereichen zu gewährleisten, müssen die Nutzer die Strategien der
Agenten verstehen und wissen, wann sie sich auf sie verlassen können. Gle-
ichzeitig stellen die zunehmende Komplexität und Undurchsichtigkeit der DRL-
Algorithmen jedoch erhebliche Hürden für ihre Erklärbarkeit dar, insbesondere
wenn sie auf große visuelle Zustände angewendet werden.
Diese Arbeit widmet sich der Verbesserung der Erklärbarkeit von DRL-Agenten

mit visuellem Input. Während das Interesse an der Entwicklung von erklärbarer
künstlicher Intelligenz (eXplainable Artificial Intelligence, XAI) wieder auflebt,
konzentriert es sich hauptsächlich auf Klassifikationsaufgaben. DRL stellt je-
doch eine eigene Reihe von Herausforderungen und Anforderungen an die Er-
klärbarkeit. Erstens treffen DRL-Agenten sequenzielle Entscheidungen, bei de-
nen Aktionen miteinander verbunden sind und zu einer langfristigen Strategie
beitragen, die möglicherweise durch verzögerte Belohnungen beeinflusst wird.
Zweitens lernen DRL-Agenten durch Interaktion mit einer Umgebung, in der
ihre Ziele nur indirekt durch die Belohnungen, die sie für ihre Handlungen
erhalten, definiert sind. Folglich können die von DRL-Agenten entwickelten
Strategien von den menschlichen Erwartungen abweichen, selbst wenn sie für
die gegebene Belohnungsfunktion optimal sind.
Um diese spezifischen Herausforderungen für erklärbares tiefes bestärkendes

Lernen anzugehen, verfolgt diese Dissertation fünf Ziele.
Die ersten drei Ziele betreffen die Entwicklung neuartiger Erklärungsmethoden,

die auf die Bedürfnisse von DRL zugeschnitten sind. Zunächst wird in dieser
Arbeit ein neuartiger Saliency-Map-Algorithmus vorgestellt, der relevante In-
formationen für die Entscheidung eines Agenten identifiziert. Im Vergleich
zu anderen Saliency-Map-Methoden konzentriert sich dieser Algorithmus auf
selektive Bereiche innerhalb des Inputs. Dadurch hilft er, mehrere Zustände
schnell zu interpretieren und ihre Wechselbeziehungen innerhalb der Strategie
des Agenten aufzudecken. Zweitens wird in dieser Dissertation eine model-
lunabhängige Methode zur Generierung kontrafaktischer Erklärungen für vi-
suelle DRL-Agenten vorgeschlagen, die veranschaulicht, wie Zustände geändert
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werden können, um die Aktion des Agenten zu verändern. Drittens: Um die
Erkenntnisse aus den lokalen Erklärungen auf die globale Strategie des Agenten
auszuweiten, wird in dieser Dissertation eine neuartige Kombination von lokalen
Erklärungen mit globalen Strategiezusammenfassungen vorgestellt. Die Meth-
oden der Strategiezusammenfassung identifizieren repräsentative Zustände für
die Strategie des Agenten und ermöglichen es dem Benutzer, durch die Unter-
suchung einer begrenzten Anzahl von Zuständen ein gutes Verständnis für die
Strategie des Agenten zu erlangen.
Die letzten beiden Ziele dieser Dissertation befassen sich mit der Evaluation

von Erklärungsmethoden für DRL-Agenten. Dazu werden zunächst die in dieser
Dissertation vorgeschlagenen Methoden und andere lokale Erklärungsmethoden
mit rechnerischen Metriken bewertet, die ihre Übereinstimmung mit der inter-
nen Logik des Agenten messen. Schließlich werden die komplementären und
individuellen Beiträge der globalen und lokalen Erklärungen in der oben genan-
nten Kombination in drei Nutzerstudien untersucht. Diese Studien messen
Agentenverständnis, angemessenes Vertrauen und die Zufriedenheit mit den
Erklärungen. Die Ergebnisse der Experimente in dieser Dissertation zeigen das
bedeutende Potenzial kombinierter Erklärungen für DRL-Agenten. Außerdem
identifizieren sie Herausforderungen für die Entwicklung zukünftiger Erklärungs-
systeme für DRL-Agenten.
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1. Introduction

1.1. Motivation

I want to begin with a personal story that illustrates the motivation behind this
thesis. Some time ago, my father got a new car that was able to recognize traffic
signs automatically and combined this with adaptive cruise control to brake and
accelerate accordingly. While he was demonstrating this feature, which was still
novel and interesting to us, we encountered a situation where the car slowed
down far more than necessary. This incident was concerning to us. Was the
unexpected behavior due to the system misinterpreting a traffic sign, was it due
to a malfunction in the adaptive cruise control, or was there no malfunction and
we just overlooked a traffic sign that the system recognized accurately? We spent
the rest of the drive trying to figure out what happened and whether it would
happen again. We carefully observed how the car reacted to each new traffic
sign, and my father was ready to hit the brakes at any moment. Any initial
trust in the system was gone after experiencing this unexpected behavior. We
were concerned about the potential dangers of a similar error causing inadequate
braking in a more dangerous situation. An explanation mechanism that could
clarify why the car was excessively slowing down would have allowed us to judge
whether we could continue to trust the system.
This anecdotal story illustrates the motivation of my dissertation. As artificial

intelligence (AI) continues to evolve, Reinforcement Learning (RL) agents are
introduced into increasingly high-risk domains such as healthcare, automated
vehicles, and robotic navigation [Yu et al., 2021; Kiran et al., 2022; Fan et al.,
2020]. Since these systems are used by humans in such high-stakes domains,
users must be able to understand and anticipate their behavior to facilitate
human-agent cooperation [Silva et al., 2022]. For instance, in the example above,
we wanted to anticipate in which situations we could rely on the automated
vehicle. Similarly, a clinician must understand the treatment plan proposed by
an agent to assess whether it aligns with the patient’s preferences.
The growing recognition of the importance of human understanding of agent

behavior, coupled with the increasing complexity of modern AI systems, has
sparked a rising interest in developing Explainable AI (XAI) methods [Doshi-
Velez and Kim, 2017; Gunning and Aha, 2019]. The idea of making AI systems
explainable is not new. It has been a topic of discussion since the early days of
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expert systems [Swartout, 1983; Chandrasekaran et al., 1989]. However, mod-
ern AI algorithms use more complex representations and algorithms (such as
deep neural networks), making them more difficult to interpret. For instance, in
classical planning approaches such as the Belief-Desire-Intention (BDI) frame-
work [Rao and Georgeff, 1995] the agent’s goals are explicitly defined. In con-
trast, current RL agents often employ policies that have been trained using
complex reward functions and high-dimensional feature representations that are
difficult for humans to understand [Heuillet et al., 2021].
This thesis addresses the challenge of explaining the behavior of Deep Re-

inforcement Learning (DRL) agents with visual input. Several factors make
explaining the decisions of such DRL agents particularly challenging.
For one, RL agents are employed in sequential decision-making tasks – their

actions are not isolated. These actions are part of a long-term strategy that
might be influenced by delayed rewards. For example, consider a warehouse
robot trained to place packages on shelves. An observer watching the robot
navigate through empty space may not immediately understand the purpose
of the robot’s movement. Understanding the robot’s current actions requires
knowledge of its future goals (e.g., reaching an empty shelf).
Second, RL agents are not trained on a given ground truth strategy. RL agents

learn by interacting with an environment and observing what reward they re-
ceive for each action. Here, the reward only indirectly specifies the agent’s goals
[Langosco et al., 2022]. Thus, the emerging strategies might differ from what
humans expect, even if the strategy is optimal for the reward function. A promi-
nent example of this phenomenon is the chess-playing DRL agent AlphaZero
[Silver et al., 2018]. This DRL agent learned to play chess at a superhuman
level only by self-play without being exposed to human strategies. As a result,
it adopted strategies that were rare in human play before AlphaZero. Today,
these strategies have begun influencing human play after players thoroughly
analyzed AlphaZero’s games [Sadler et al., 2019].
Finally, DRL agents are trained by employing deep neural networks. Such

networks typically train millions of interconnected parameters when they are
used on vast visual input spaces. This complexity adds another layer of difficulty
to interpreting and explaining the behavior of DRL agents.
When I started working on this thesis, the majority of previous work in XAI

concentrated on classifiers trained by supervised learning. The unique challenges
associated with explaining DRL agents, as outlined above, received less atten-
tion. Research on Explainable Reinforcement Learning (XRL) leaned towards
global explanations that describe the agent’s overall policy [Alharin et al., 2020].
Such methods include demonstrating informative interactions or distilling the
agent’s policy into more comprehensible models, such as decision trees [Amitai
and Amir, 2023]. Local explanations, which analyze individual decisions of an
RL agent, have mainly applied XAI methods for image classifiers directly to
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DRL [Alharin et al., 2020], especially in the context of DRL with visual input.
This dissertation addresses this research gap by proposing a combined global

and local explanation framework for DRL. To this end, it builds on existing
work from XAI for image classifiers to develop local explanation methods that
are specifically tailored to DRL with visual input. The effectiveness of these
local explanation methods is initially assessed through computational metrics.
Such computational metrics provide a good way to choose promising methods
before moving on to more extensive user studies. Furthermore, they are crucial
for selecting explanation methods that accurately reflect the agent’s internal
reasoning rather than producing explanations that only appear convincing to
users [Mohseni et al., 2021b]. Finally, this dissertation describes a method to
integrate local explanations for DRL agents with global strategy summaries that
demonstrate the agents’ behavior. The individual and complementary benefits
of the local and global explanations in this integration are evaluated in three user
studies using the Atari game Pacman. Such user studies are equally important as
computational metrics since they determine whether the explanations actually
help users understand the agents [Mohseni et al., 2021b]. An explanation that
perfectly reflects the agent’s reasoning but is incomprehensible to users is not
helpful [Miller et al., 2017].
The following section elaborates on the individual research objectives of this

dissertation.

1.2. Research Objectives

The main research question in this thesis is how we can make the behavior
of deep reinforcement learning agents explainable. To address this overarching
question, this thesis delineates five specific research objectives. The first three
deal with the development of novel explanation methods that address the specific
challenges of DRL agents, while the remaining ones address the evaluation of
such approaches.

1.2.1. Developing Selective Explanation Methods that Focus
on Specific Areas.

The most common explanation method for neural networks with visual input
is the creation of saliency maps, which highlight the most important pixels for
the network’s decision [Arrieta et al., 2020]. Previous methods for such saliency
maps have focused primarily on classification tasks, attempting to uncover mul-
tiple detailed reasons behind a decision. However, as we have seen above, DRL
involves long-term decision-making where it is often necessary to analyze mul-
tiple states to understand individual actions. This nature of DRL necessitates
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a departure from previous saliency map approaches, as the amount of informa-
tion becomes unwieldy when attempting to comprehend detailed explanations
for multiple states. Recognizing this, one research objective of this thesis is the
development of more selective saliency maps that focus on specific areas within
states. This selective approach not only helps users to parse information more
effectively but is also supported by existing literature, which indicates that DRL
agents tend to concentrate on specific objects within their visual input [Iyer et
al., 2018; Goel et al., 2018].
In particular, this thesis:

introduces a selective saliency map method for explaining DRL agents,
which does not overwhelm the user with unnecessary information.

demonstrates how this approach can be applied to state-of-the-art DRL
agents.

1.2.2. Creating Counterfactual Explanations for DRL Agents
with Visual Input.

Another prominent and successful family of explanation approaches for classi-
fication systems are counterfactual explanations [Arrieta et al., 2020]. In the
context of reinforcement learning, counterfactual explanations answer ”Why
not?” or ”What if?” questions by demonstrating the smallest modification re-
quired in a state to prompt the agent to select an alternative action. Creat-
ing counterfactual explanations for DRL agents with visual input poses unique
challenges compared to image classification. This is due to the fact that the
counterfactual explanations have to account for the agent’s overarching policy,
which requires long-term decision-making. Furthermore, many counterfactual
generation methods for classification models rely on the models’ training data.
Because of the absence of direct training datasets for DRL agents, these methods
cannot be directly applied to DRL [Wells and Bednarz, 2021]. Consequently, at
the start of this thesis, there was only a single method for generating counter-
factual explanations for deep RL agents with visual inputs - the counterfactual
state explanation method by Olson et al. [2021]. However, this approach is quite
dependent on the model architecture, making it difficult to apply to different
agents, and it only indirectly incorporates the agent’s actions.
This thesis

proposes a novel model-agnostic approach to create counterfactual expla-
nations for DRL agents with visual input.

shows that our approach outperforms the previous method in computa-
tional metrics and a user study.
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1.2.3. Combining Local and Global XRL Methods.

Explainable reinforcement learning methods can broadly be divided into two
classes based on their scope: local and global explanations [Alharin et al., 2020].
Local explanations analyze specific actions of the agent, whereas global expla-
nations attempt to describe the overarching policy of an agent. These meth-
ods offer complementary perspectives, with local explanations providing insight
into the agent’s reasoning in specific instances and global explanations offering
a broader view of the agent’s strategy without detailing the specific reasons for
each decision. To leverage these complementary perspectives, this thesis investi-
gates the integration of different local and global explanation methods for DRL
agents.
In particular, this thesis

presents the first combination of local explanations and global strategy
summaries for DRL agents.

evaluates their joint and separate contributions through human user stud-
ies.

1.2.4. Computational Evaluation of XRL methods.

Computational metrics provide a systematic approach to assess explanations
by quantifiable measures that can be calculated automatically without human
intervention. This approach facilitates the cost-effective evaluation of a wide
range of explanation methods prior to resource-intensive user studies. Moreover,
it enables the evaluation of the fidelity of explanations to the internal reasoning
of the agent [Mohseni et al., 2021b].
DRL agents pose unique challenges to computational evaluation due to the in-

herent complexity of their sequential decision-making, which is integrated into
overarching policies involving long-term considerations [Heuillet et al., 2021].
For instance, in value-based DRL algorithms, the output encodes both the value
of the current state and the expected future reward after performing each pos-
sible action in that state. This ambiguity should be taken into account when
evaluating explanations for DRL agents.
Computational evaluation is particularly important for post-hoc explanation

methods that are not intrinsically built into the agent’s model but are applied
after the agent has been trained. Further, it is even more important for model-
agnostic methods that do not interact with the agent’s internal model at all.
This dissertation targets the aforementioned challenges and considerations in

two ways:

It proposes a computational evaluation methodology for saliency maps
that is tailored to the specific needs of DRL.

19



It computationally evaluates two model-agnostic post-hoc explanation meth-
ods for DRL agents: perturbation-based saliency maps and counterfactual
explanations.

1.2.5. Holistic User Evaluations of Combined Global and
Local Explanations for DRL.

In addition to computational metrics, user studies are necessary to ensure ex-
planations are not only technically accurate but also comprehensible and prac-
tical for human users [Miller et al., 2017; Mohseni et al., 2021b]. Previous
user studies on XRL have mostly focused on individual explanation techniques
in isolation, overlooking the potential synergistic effects of combining different
types of explanations. Before this dissertation, no study evaluated the combined
and individual benefits of global and local explanations for DRL agents despite
their potential complementary benefits. Another problem is that many XRL
studies focused on individual dimensions of the explanation process, such as the
participants’ mental model of the agent or their subjective satisfaction with the
explanations.
This dissertation addresses these shortcomings by conducting comprehensive

user studies that evaluate combinations of global and local explanations in the
context of DRL agents. Moreover, it presents a holistic user study design that
evaluates three distinct dimensions: agent understanding, appropriate trust,
and explanation satisfaction. By exploring these dimensions in tandem, the
study aims to uncover the unique and combined contributions of different local
and global explanation approaches. The insights gained from the studies in this
dissertation will inform the future development of XRL frameworks.

1.3. Overview

This thesis is structured as follows. The remainder of Part I provides the theo-
retical background that is necessary to understand the thesis. Chapter 2 gives
a brief introduction to deep reinforcement learning. In particular, it introduces
the Deep-Q Network (DQN) and its application to the Arcade Learning Envi-
ronment (ALE). This will be the main test-bed throughout this work. Chapter
3 serves as an introduction to Explainable AI (XAI). It provides an overview
of key XAI concepts and XAI methods for image classifiers that have served as
the basis for explainable RL methods.
Part II gives an overview of the related work on Explainable Reinforcement

Learning (XRL). It focuses on XAI works that specifically target RL agents.
Chapter 4 deals with related methods on how to explain RL agents in contrast
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to classification models. Chapter 5 shows related work on how to evaluate expla-
nations for (deep) RL agents. The chapter starts by introducing computational
metrics and then describes different user studies.
Part III presents novel concepts and techniques for explaining RL agents.

Chapter 6 presents a novel algorithm that selectively highlights the information
that was important for an agent’s decision. Chapter 7 introduces a novel algo-
rithm for generating counterfactual explanations for RL agents and evaluates
these explanations computationally. Chapter 8 presents the first combination
of local explanations with global strategy summaries for RL agents.
Part IV deals with the computational evaluation of explanations for RL

agents. Chapter 9 computationally benchmarks model-agnostic XRL methods
with respect to their fidelity to the agents’ internal reasoning and their depen-
dence on the agents’ learned parameters.
Part V describes user studies that evaluate different combinations of global

and local explanation methods for RL agents, including the methods proposed in
the previous parts. The studies were conducted over the course of three different
experiments that used a very similar setup, but each evaluated different explana-
tion approaches. All three studies use the Atari game Pacman and evaluate the
users’ agent understanding and subjective explanation satisfaction. Chapters
10 and 12 also measure appropriate trust. Chapter 10 examines a combination
of strategy summaries and saliency maps. Chapters 11 and 12 investigate com-
binations of strategy summaries with reward decomposition and counterfactual
explanations, respectively. Finally, Chapter 13 discusses the individual study
results in a common context.
Finally, Part VI concludes the thesis by summarizing the contributions in

Chapter 14 and outlining future work in Chapter 15.
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2. Deep Reinforcement Learning

The background of this thesis is divided into two parts.
First, this chapter will provide the theoretical background of the Reinforce-

ment algorithms that stand at the center of this thesis since they are the agents
that we want to explain. The chapter starts by providing a basic background on
reinforcement learning. Then, it will introduce the DQN as a specific example
of a DRL algorithm.
Second, Chapter 3 will provide an overview over general XAI concepts and

XAI methods that focus on classification models.

2.1. Reinforcement Learning

This section lays out the foundations of Reinforcement Learning (RL) that are
necessary for this thesis.

2.1.1. The Reinforcement Learning Setting and Notation

In the context of reinforcement learning, the system that is supposed to solve
the problem is called agent, and everything that this agent can interact with is
called environment. For example, in an Atari game like Pacman (see Section
2.1.2.1), the game itself is the environment, and the player controlling Pacman
is the agent. To make the abstract environment tangible, one defines states s,
which represent different states of the environment, and subsumes them in the
so-called state space S. In the Atari example, the states can, for example,
be defined based on the visual frames of the game (more specifics in Section
2.1.2.1).
The agent also has a set A of actions a that it can use to influence the

environment. This thesis is limited to agents with discrete actions {a1, a2, . . . }
(e.g., Pacman can move up, down, left, etc.) instead of a continuous action
space. After each action, the agent receives a reward r ∈ R that describes
how good the chosen action was in this situation (e.g., Pacman receives points
for eating pellets). These rewards implicitly specify the agent’s goal. To ease
the notation in this thesis, we assume that the reward can be described by a
deterministic reward function r : S × A × S → R. The concepts within this
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Agent Environment

Action at

Reward r(st, at, st+1)

New State st+1

Figure 2.1.: Interaction of an RL agent with its environment.

thesis can be extended to stochastic reward functions as long as R is bounded.
The basic interaction loop of an RL agent is shown in Figure 2.1.
A sequence of successive states and actions s1, a1, ....at−1, st is called a tra-

jectory. For reinforcement learning, one usually assumes that the environment
has one or more final states, after which the interaction ends. In a computer
game like Pacman, this occurs when the agent loses or wins the game. A se-
quence of successive states and actions s1, a1, ....aT−1, sT that ends with a final
state sT is called an episode.
The behavior of an agent is determined by its strategy or policy π. This

thesis mostly focuses on deterministic policies π : S → A, where π(s) directly
specifies the action to be performed in the state s ∈ S. There are also stochas-
tic policies where π(s) describes the agent’s action probability distribution for
each action a ∈ A in state s ∈ S. Every deterministic policy can be written as a
stochastic policy by setting the likelihood of the deterministic action, which the
agent should execute, to 1 and the likelihood of all other actions to 0. Unless
stated otherwise, this thesis assumes deterministic policies.
The agent’s goal is to learn an optimal strategy π∗. Here, optimal means that

the agent receives the maximum amount of cumulative reward over the course
of an episode or trajectory if it follows this strategy. To assess how successful a
time-step t was within a given episode s1, a1, ..., aT−1, sT , we define an episode-
dependent return Gt. The idea here is that the time-step t also participated
to some extent in the rewards of the next steps. For example, in Pacman, every
action on the way to a pellet contributes to the points received by the pellet.
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Thereby, the share of the time-step t in the subsequent rewards decreases more
and more since these were less and less influenced by the step – the action in
which Pacman eats a pellet contributes more than the actions on the way to the
pellet. To formulate this, we choose a so-called discount value γ ∈ [0, 1] and
define the discounted return:

Gt(s1, a1, ..., aT−1, sT ) :=
T−1∑
i=t

γi−tr(si, ai, si+1).

This definition also works for environments without final states and potentially
infinite trajectories since

∑∞
i=t γ

i−tr(si, ai, si+1) converges for γ < 1 and bounded
rewards.
In addition to this general problem definition, many RL algorithms assume

that they operate in a Markov Decision Process, which we will define now.
Let P (st+1 = s′|s1, a1, ..., at, st) denote the conditional transition probabil-

ity that the agent ends up in state s′, given the condition that it has so far
passed through states s1, . . . , st and performed actions a1, . . . , at. In computer
games like Pacman, the transition probability P is given by the game rules. In
this thesis, we assume a finite number of states and actions since it allows us
to use simple probabilities to ease notation. The concepts work analogously for
infinite state and action spaces, but we would have to use probability densities.
A tuple (S,A, P, r) of a finite state-space S, a finite action-space A, transition

probabilities P and a reward function r is called a finite Markov Decision
Process (MDP) if S, A and P satisfy the Markov property.
S,A and P satisfy the Markov property if, for any trajectory s1, a1, ....st, at

of successive states si ∈ S and actions ai ∈ A, the next state depends only on
the current state st and the currently chosen action at. That is, for all s′ ∈ S
holds

P (st+1 = s′|st, at) = P (st+1 = s′|s1, a1, ....st, at).

Given a MDP, we can shorten the notation for the probability that state
s′ ∈ S follows state s ∈ S and action a ∈ A to:

P (s′|s, a) := P (st+1 = s′|st = s, at = a)

2.1.2. Running Example: The Arcade Learning Environment

As an example of an MDP, this section introduces the Arcade Learning Environ-
ment (ALE) [Bellemare et al., 2013], which will be used as the running example
and use case throughout this thesis.
The ALE contains over 55 Atari 2600 game environments, serving as a stan-

dardized test-bed for reinforcement learning algorithms. Since the ALE provides
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a common interface for all of its games, it allows for RL algorithms to be tested
across various games without the need for substantial modifications. Each game
has a unique set of rules, objectives, and dynamics. This diversity ensures that
the algorithms are not just tailored to a specific kind of task but are capable of
handling a wide range of scenarios.
Another feature of the ALE is the provision of existing human baselines

through the scores within the Atari 2600 games. These baselines enable a direct
comparison of the performance of RL algorithms with human-level performance.
In the remainder of this section, we will look at how the ALE defines the

transition probabilities P , the action space A, the rewards r, and the state space
S necessary for an MDP A(S,A, P, r). This will include some adjustments to
the ALE by Mnih et al. [2015].

Transition Probabilities P . The ALE uses the Stella1 emulator to simulate
Atari 2600 games. Thus, this emulator defines the transition probabilities
P (s′|s, a) based on the different game rules.

Figure 2.2.: The Atari 2600
Controller.

Action Space A. The actions that the Stella
emulator can use correspond to all 18 possible
actions of the Atari 2600 joystick (see Figure
2.2). Depending on the game, only the actions
that are meaningful within the game are used.
For example, in Pacman, the agent has nine
different actions to choose from (do nothing,
up, down, left, right, up-left, up-right, down-
left, down-right). An addition by Mnih et al.
[2015] is that the agent chooses an action only
every four frames, and this action is repeated
for the next four frames. This is often called

frame skipping. In the first row of Figure 2.3, these skipped frames are rep-
resented by ”...”.

Reward r. The ALE’s base reward is the increase in the in-game score between
the beginning of the four skipped frames and the frame after them. This thesis
uses different variations of this reward, which will be explained when they are
employed.

State Space S. As observations, the ALE uses 210 × 160 × 3 RGB images
with a 128-color palette consisting of the raw pixel values of each frame of the

1http://stella.sourceforge.net/
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Figure 2.3.: The state preprocessing steps used by the Atari environment in
this thesis. The first row shows the in-game frames of the Atari emulator. The
dots represent skipped frames, where the agent repeats the action chosen in
the last state. Only the penultimate frame shows a skipped frame to illustrate
the max -operation during preprocessing. For each observed frame, we take
the maximum of the color values of the frame and the immediately preceding
skipped frame. The reason for this is that the Atari 2600 did not display
every object in every frame to conserve computing power. The green circles
in the last two frames highlight this phenomenon. In the last frame of the
first row, the red ghost is visible (green circle), but the yellow ghost is not. In
contrast, the red ghost is not visible in the penultimate image, but the yellow
ghost is (green circle). By taking the maximum value of each color channel
before converting to grayscale, both ghosts become visible in the last frame
of the second row, as highlighted by the green circles. Finally, the last four
preprocessed frames (second row) are stacked to encode temporal information
in the final states (third row).
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in-game screen. Mnih et al. [2015] further preprocess these frames. First, to
encode a single frame, they take the maximum value for each pixel color value
over the frame being encoded and the immediately preceding frame (a skipped
frame where the agent did not even choose an action). This is done since the
Atari 2600 did not show every object in every frame to save computing power
(illustrated by the green circles in Figure 2.3). Second, the resulting frame is
converted to grayscale and resized down to 84 × 84 pixels. In Figure 2.3, the
transition from the first to the second row represents these two preprocessing
steps.
Looking only at single frames does not result in an MDP since, for exam-

ple, the direction of movement of game objects like Pacman is not observable.
Therefore, the states used by the agents in this thesis and by Mnih et al. [2015]
consist of the last four preprocessed frames for which the agent chooses an ac-
tion. These frames are stacked, resulting in final states of size 84 × 84 × 4.
So-called stacked frames. In Figure 2.3, this stacking process is represented
by the transition from the second to the third row. The skipped frames are only
implicitly included in the state through the max -operation described above. If
we count the skipped frames, each state contains information about the last 16
frames.

Episodes. Originally, an ALE episode starts with the first frame of the game
and ends when the game ends. However, Mnih et al. [2015] adjust this for
games that contain lives, such that a new episode starts whenever a life is lost.
This thesis uses these episodes proposed by Mnih et al. [2015]. Furthermore,
to introduce randomness into deterministic games, Mnih et al. [2015] force the
agent to repeat the “do nothing” action at the beginning of each game for a
random amount of steps between 0 and 30 until it is allowed to choose actions
based on its policy.

2.1.2.1. Pacman

One Atari game that will be used as an example throughout all parts of this
thesis is Pacman. Specifically, we will use the Atari 2600 version called MsPac-
man, which we will refer to as Pacman for simplicity and because it is commonly
known by that name. Since this game will be used throughout the thesis, this
section explains the rules of the game. In the game, the player controls Pac-
man by moving the joystick of the Atari controller (Figure 2.2) in a specific
direction (up, down, left, right, up-left, up-right, down-left, down-right) or by
doing nothing. The ambiguous actions, like down-right, always prioritize chang-
ing Pacman’s current direction of movement, e.g., at an intersection or when
turning around.

27



Figure 2.4.: A typical screen of the game Pacman. The bottom of the screen
displays the remaining lives and the score (green circles). The other objects
are explained in Table 2.1.

Pacman earns points by eating food pellets while navigating through a maze
(see Figure 2.4) and avoiding ghosts. There are two types of pellets: regular
pills, for which Pacman receives 10 points, and power pills, which are worth
50 points. Power Pills also turn the ghosts blue, which makes them edible by
Pacman. Pacman receives 200, 400, 800, 1600 points for each ghost it eats
successively. After a blue ghost is eaten, it turns into eyes and moves back to
the center of the maze. At random intervals, cherries spawn and move through
the labyrinth. Eating a cherry is worth 100 points. The total score is displayed
at the bottom of the screen. Table 2.1 shows a list of all relevant objects in
Pacman.
Pacman has three lives, shown at the bottom left of the screen. When Pacman

is touched by ghosts, it loses a life and respawns in the center of the maze. When
Pacman loses its last life, the game ends.
After eating every normal pill in the maze, Pacman is transferred to a new

maze with a modified layout. This sometimes even changes the color scheme of
the game and is one of the reasons why RL agents struggle to perform well in
Pacman [Mnih et al., 2015].
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Table 2.1.: Important objects within the game Pacman.

Visual Representation Object Name Function within the Game

Pacman Controlled by the player.

Ghost
When Pacman touches a ghost,
it loses a life.

Normal Pill Gives 10 points when eaten.

Power Pill
Gives 50 points when eaten,
turns ghost blue for a short du-
ration

Blue Ghost
Pacman receives 200, 400, 800,
1600 points for each blue ghost
it eats successively.

Ghost Eyes

When Pacman eats a blue
ghost, the ghost turns into eyes
and returns to the center of the
maze.

Cherry Gives 100 points when eaten.

2.1.3. Value-Based Reinforcement Learning and Q-Learning

So-called value-based reinforcement learning approaches, like the DQN
that will be used as the running example in this thesis, do not learn the policy
π directly. Instead, they approximate the expected future return of states and
actions and choose the actions that promise the biggest return.
To this end, these algorithms define the state value function V π : S → R

that assigns to each state s ∈ S the estimated discounted return that the agent
will achieve if it starts in state s and then acts according to the policy π. For
example, a Pacman state where Pacman is close to an edible pellet should be
more valuable than a state where Pacman is far away from any pellet. To define
V π, we set

V π(s) = Eπ{Gt(s1, a1, ..., aT−1, sT )|st = s},

where Eπ{Gt(s1, a1, ..., aT−1, sT )|st = s} computes the expected value of all
episodes played with strategy π and where s appears at the t-th position of
the episode. We need the expected value because the policy and the problem do
not have to be deterministic. That is, different actions at and successor states
st+1 can follow the state st.
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Analogously we can define a state-action-value or Q-value function Qπ :
S × A → R that assigns to each state-action pair (s, a) ∈ S ×A the estimated
reward that the agent will achieve if it performs action a in state s and then
follows strategy π. Going back to the Pacman example from above, a state-
action pair that moves closer to a pellet should be more valuable than a state-
action pair that moves away from a pellet. To define Qπ , we set

Qπ(s, a) = Eπ{Gt(s1, a1, ..., aT−1, sT )|st = s, at = a},

where Eπ{Gt(s1, a1, ..., aT−1, sT )|st = s, at = a} computes the expected value of
all episodes played with strategy π and where s followed by a appears at the
t-th position of the episode. Again, we need the expected value because the
problem does not have to be deterministic. That is, different successor states
st+1 can follow the state-action pair (st, at).
To ease notation, the policy π is often omitted from V π(s) or Qπ(s, a) if it is

clear which policy is meant.
The prominent reinforcement learning algorithm family of Q-Learning ap-

proaches, aims to learn the optimal Q-Value function Q∗(s, a) = maxπ Q
π(s, a).

If Q∗(s, a) was known, then we could define an optimal strategy π∗ by choosing
in each state s ∈ S the action a ∈ A for which Q∗(s, a) is largest. We call
such a strategy π(s) = argmaxa∈AQ(s, a) for a Q-value function Q a greedy
strategy.
To approximate Q∗, in reinforcement learning, one assumes that the prob-

lem is a finite MDP. In this case, there exists a unique Q∗ and it satisfies the
Bellman optimality equation:

Q∗(s, a) =
∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

)
.

See [Sutton and Barto, 2018] equation (3.20).
Q-learning methods use the Bellman optimality equation to iteratively adjust

the Q values. That is, in each step i one chooses

Qi+1(s, a) =
∑
s′∈S

P (s′|s, a)
(
r(s, a, s′) + γmax

a′∈A
Qi(s′, a′)

)
. (2.1)

where Q0 often sets all values to 0.
This converges to Q∗ due to the Bellman equation for i → ∞ (see [Sutton

and Barto, 2018] chapter 4.4).
In practice, it is usually not possible to calculate this limit. Therefore,

Q-value-based reinforcement learning uses different approximation functions
Q(s, a; θ), where we adjust the parameters θ to approximate Q∗.

30



Q(s, a)

fc1 fc2conv3conv2conv1

Figure 2.5.: A simplified illustration of the architecture of the DQN. It consists
of three convolutional and two fully connected layers.

2.2. The deep Q-Network

The running example for Deep Reinforcement Learning agents used in this thesis
is the deep Q-Network (DQN) [Mnih et al., 2015]. It uses a neural network
Q(s, a; θ) with trainable parameters θ to approximate the optimal strategy Q∗.
In this section, we will take a detailed look at the architecture of this network
as it will be the use case for all XAI algorithms in this thesis. Section 2.2.1 will
describe the specific architecture of the DQN. Section 2.2.2 will define all the
neural network basics needed to understand the DQN architecture. If you are
already familiar with this background, you can skip Section 2.2.2.

2.2.1. The deep Q-Network Architecture

The architectural graph of the DQN is depicted in Figure 2.5. We use the DQN
version of Dhariwal et al. [2017], which differs slightly from Mnih et al. [2015]
in the number of neurons in the hidden, fully connected layer. It consists of
three 2D convolution layers followed by two fully connected layers. The first
convolutional layer conv1 applies 32 filters with a width and height of 8 and
a stride of (4, 4) to convolve the 84 × 84 × 4 ALE input states. The second
convolutional layer, conv2, consists of 64 filters of size 4 × 4 with a stride of
(2, 2) and the last convolutional layer, conv3, consists of 64 filters of size 3 × 3
with a stride of (1, 1). All convolutional layers use same-padding. The output
of conv3 is flattened and fed into the first fully connected layer, fc1, which has
256 neurons. Finally, fc1 is succeeded by the output layer fc2, which is a fully
connected layer with one neuron for each possible action of the current game.
All layers except the output layer fc2 use a ReLU activation function. The
output layer does not use an activation function to allow for Q-values in the full
range of R.
This architecture covers the most common building blocks of DRL architec-

tures while avoiding domain-specific techniques. Therefore, the results of this
thesis can be applied to a broad range of DRL variations.
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2.2.2. Neural Network Basics

To understand the architecture of the DQN, we have to understand how the
underlying neural network works. Therefore, this section briefly introduces the
necessary theory about artificial neural networks.
In the most general description, artificial neural networks are functions of the

form f : Rn × Θ → Rm. Here, we call θ ∈ Θ ⊂ Rk the parameters of the
network. The goal of such a network is to approximate given functions. Let
f ∗ : Rn → Rm be a given function, which is called ground truth. In the ex-
amples presented in this thesis, the ground truth function is the optimal policy,
π∗, for solving an Atari game such as Pacman. Then we try to find parameters
θ ∈ Θ such that f(·, θ) approximates this function as well as possible. It can be
shown that any continuous function can be approximated by simple neural net-
works, albeit with an arbitrary amount of parameters (see for example [Pinkus,
1999]). The process of determining optimal parameters is commonly referred to
as training. The act of applying f(·, θ) to an input x is called forward pass.
Employing a neural network after training is known as inference.
In the remainder of this section, we will take an in-depth look at how the

network used by the DQN works during the forward pass, since this thesis
focuses on explaining trained DRL agents during inference.

Neurons. Inspired by biological neural networks, we want to trace artificial
neural networks back to neurons. So first, we need to define neurons, the basic
building blocks of neural networks. The following definition can be found, for
example, in [Haykin, 2009] page 11 and in [Goldberg, 2017] page 41.
A neuron is a function f : Rn × Rn × R→ R of the form

f(x;ω, b) = σ(ω · x+ b)

where σ : R→ R und n ∈ N is the so-called activation function.
Further, we call x ∈ Rn the input, ω ∈ Rn the weights, and b ∈ R the

bias of the neuron. The result f(x;ω, b) of a neuron is typically referred to
as output. For example, when learning to play Pacman, a neuron’s output
might approximate the Q-value of an action, and the input could be a vector of
features derived from the state. Figure 2.6 shows a visual representation of the
structure of a neuron.
If we choose m = 1 and Θ = Rn×R, then a neuron satisfies the general form

f : Rn×Θ→ Rm of a neural network. To make it clear that the parameters are
split into weights and biases, they are often separated from the input x with a
semicolon instead of just a comma.
The motivation behind the definition of neurons is that the weights ωi “learn”

how important each input xi is to the neuron. The activation function σ repre-
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Figure 2.6.: The inside of a single neuron.

sents the neuron’s “firing”. Last, the bias b ensures that a neuron’s input can
take values throughout R, even if it is constrained a priori.
The parameters (ω, b) are adjusted during training. Therefore, the activation

function is the crucial factor in the choice of a neuron. Pinkus [1999] showed
that using non-polynomial activation functions is sufficient for neural networks
to be able to approximate arbitrary continuous functions in theory. However, in
practice, different activation functions are used depending on the application.
One of the most common activation functions, which the DQN also uses, is

the rectified linear Unit (ReLU) function:

σ(x) = max(0, x).

The Architectural Graph. To combine neurons into a neural network, we need
the concept of a directed graph (cf. [Haykin, 2009] page 15). A directed graph
consists of a finite set V , called vertices, and a set of edges E ⊂ V × V . We
say an edge (v1, v2) ∈ E is directed from v1 to v2.
With this concept, we can precisely describe the connections of different neu-

rons.
Let V be a set of neurons, then (v1, v2) ∈ V × V describes that the output of

neuron v1 is used as part of the input of neuron v2. Thus, the output of v2 is
given by v2(. . . v1(x; θ1) . . . ; θ2).
Let (V,E) be a directed graph whose nodes V consist only of neurons. We call

the composition of all neurons from V according to the links given by E in the
aforementioned way a (artificial) neural network. We will refer to the graph
(V,E) in this thesis as the architectural graph of the neural network since it
defines the network’s architecture. For simplicity, there is often no distinction
between a neural network and its architectural graph.
Figure 2.7 shows an example of an architectural graph for a neural network.

33



v5
v1 v10

v6
v2

v7
v3

v8
v4

v9

Figure 2.7.: Visualization of a neural network by an architectural graph.

In this example, the output of v10 is given by

v10

((
v5((v1(x; θ1), . . . , v4(x; θ4)); θ5), . . . , v9(. . . ; θ9)

)
; θ10

)
.

Layers. Since neural networks often consist of millions of neurons, it is difficult
to convey the structure of a network only by neurons. For this reason, when
describing neural networks, one often uses network sub-structures that occur in
several networks and are represented by functions that can be understood more
quickly.
Motivated by representations such as Figure 2.7, in which neurons are ar-

ranged in rows or layers, such a sub-network is called a layer (cf. [Goodfellow
et al., 2016] page 168f, [Goldberg, 2017] page 41f). Thus, when we refer to a
neural network as a layer, we want to emphasize that the network is part of a
larger neural network. In this sense, a neural network can be thought of as a
composition of layers that are connected according to a directed graph.
In the following, we adhere to [Goodfellow et al., 2016] Page 168f. In a network

composed of several layers, it is common to call the last layer the output
layer and to consider the input as its own layer, the input layer. All other
layers are called hidden layers. An example of how an architectural graph
can be organized into layers is shown in Figure 2.8. The intuition behind such
architectures is that each layer progressively learns features that are increasingly
specific to the given task. Consider the DQN architecture used for learning
ALE games such as Pacman, as depicted in Figure 2.5, which includes five
layers. Here, the motivation is that the initial layers focus on identifying basic
elements within the frames of Pacman, such as edges, while the subsequent
layers capture more complex features, like Pacman’s position. This structured
approach to learning, where basic features are discerned first and more intricate
ones later, led to the idea that the hidden layers’ outputs effectively create a
latent space within the network, representing embedded states.
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Figure 2.8.: An example of the arrangement of the architectural graph in
layers.

The neurons within a given layer are often called the layer’s units. To com-
pare neural networks, the number of units of a layer, i.e., the dimension of its
output, is called the width of the layer. The number of layers in a network is
called the depth of the network. This nomenclature inspired the notion of deep
neural network for neural networks with more than one layer. This is also the
origin of the term deep reinforcement learning for RL algorithms that utilize
neural networks.
For a generally valid theory of neural networks, the definition of neural net-

works as a composition of layers is problematic. It is not uniformly definable
which structures count as layers since almost any function can be used as a layer
(cf. [Goodfellow et al., 2016] page 376). Thus, notions such as the depth of a
network are highly dependent on the convention of the person using them (cf.
[Goodfellow et al., 2016] page 7).
In practice, however, this way of thinking about neural networks is very useful.

Precisely because a layer does not have to fulfill clearly defined templates, it is
possible to test a wide variety of functions. Thus, in some applications, layers are
used that contain functions that cannot be represented by the neurons defined
in this thesis.

Fully Connected Layers. The simplest layers for neural networks are so-called
fully connected or dense layers, where all neurons are executed in parallel.
They correspond to a vector (f1, ..., fn), where each component is a neuron of
the form fi = σ(ωi · x + bi). Here, one uses the same activation function σ for
all neurons. The weights ωi and biases bi of the individual neurons can then be
combined into a matrix W and a vector b, respectively. Taken together, they

35



are a function f : Rn × (Rm×n × Rm)→ Rm with

f(x;W, b) = σ(Wx+ b),

where σ describes the component-wise application of an activation function
σ : R → R. As with single neurons, we call the two parameters the weight
matrix W ∈ Rm×n and the bias vector b ∈ Rm.
We have already seen the architectural graph of fully connected layers in

Figure 2.8. As an example application, we saw that the DQN for solving ALE
games like Pacman 2.5 uses fully connected layers as the last two layers. Their
role is to connect the learned high-level features, such as Pacman’s position, and
map them to the final Q-values.

Convolutional Layers. In contrast to fully connected layers, there are also
layers where each neuron is connected to only a subset of its input. This allows
these neurons to learn to describe patches of the input. By covering the entire
input with such patches, the network can thus recognize patterns learned on
the patches within the input. This process can be used, for example, to identify
Pacman within the in-game screen of an ALE state.
Since this method is inspired by the mathematical convolution operation, such

layers are called convolutional.
To define convolutional neural layers, we first need to formalize what we mean

by a subset of the input. Here, we write the input space as Rn1×n2×...×nk since
convolutional networks are often applied to input in matrix or tensor form –
e.g., on images where each pixel corresponds to an entry of a matrix,
Let m <

∏k
j=1 nj. A window or patch is a projection p : Rn1×n2×...×nk → Rm

onto specific components, that is, there exists an injective π : {1, ...,m} ↪→
{1, ..., n1} × {1, ..., n2} × . . . {1, ..., nk}, so that

p(x) = (xπ(1), ..., xπ(m)).

We will look at concrete examples of patches later in this section.
Another feature of convolutional networks is that multiple neurons share pa-

rameters. The same neuron is applied to all selected patches.
A Convolutional Layer consists of a finite set P = {p1, ..., ps} of patches

pi : Rn1×n2×...×nk → Rm and a set {k1, ..., kr} of neurons ki : Rm → R, which all
use the same activation function and are called filters or kernels. The network
as a function Rn1×n2×...×nk → Rs × Rr is then given by

f(x, θ)ij = kj(pi(x), θj).

Figure 2.9 shows the architectural graph of a simplified Convolutional Neu-
ral Network (CNN) with 3 patches and only a single filter k.

36



k k k

x1 x2 x3 x4 x5

Figure 2.9.: The architectural graph of a highly simplified convolutional net-
work with only a single filter k. The filter is represented by three different
neurons, all sharing the same parameters.

k1 k2 k3

x1 x2 x3 x4 x5

Figure 2.10.: The architectural graph of the convolutional network in Figure
2.9 interpreted as a fully connected layer. The kernel k is split into three
individual neurons ki where the black arrows represent the learned weights of
the kernel k while the gray arrows represent zero weights.

We can see that it looks similar to the architectural graph of a fully connected
layer, but not all neurons are connected, and some neurons share their weights.
If we look solely at fully trained networks (i.e., without any further parameter
adjustments), we can write convolutional layers as fully connected layers in
the following way: Each time a kernel is applied to the input, we consider it
to be an individual neuron, where the weights connecting the kernel and the
corresponding patch in the input are the learned weights of the kernel, and
all other weights are zero. The bias and activation function are the same as
the bias and activation function of the kernel. Figure 2.10 illustrates how the
convolutional network shown in Figure 2.9 can be viewed as a fully connected
layer. This may not be useful in practice, but it will help to unify mathematical
statements about neural networks later in this thesis.
The choice of patches for a convolutional layer depends strongly on the type

of input data. In natural language processing, for example, sentences are often
represented as vectors in Rn where each entry corresponds to a word. In this
case, the patches within the sentence are usually chosen to be m consecutive
words. A more detailed description can be found in [Goldberg, 2017] chapter
13.1.
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In this work, we focus on visual input since the states generated by the ALE
consist of visual frames representing the game screen. As mentioned above, such
visual inputs are often represented as matrices, where each entry corresponds
to a pixel with several channels. More specifically, the inputs are elements of
Rn×m×c where n and m are the height and width of the input, respectively,
and c is the number of channels (e.g., four channels for the temporal frames of
the ALE). For this type of data, the most common convolutional architecture
is called 2D convolution. For a 2D convolution, one chooses the patches as
k1 × k2 × c subtensors where k1 and k2 are called the height and width of the
convolution filters, respectively. These patches are moved across the input with
a stride (s1, s2). That is, the patch that produces the output in the i-th row
and the j-th column is a sub-tensor of the form

xis1,js2,c . . . xis1,js2+k2,c

...
. . .

...
xis1+k1,js2,c . . . xis1+k1,js2+k2,c

xis1,js2,1 . . . xis1,js2+k2,1

...
. . .

...
xis1+k1,js2,1 . . . xis1+k1,js2+k2,1

pi,j =

for i, j ∈ N0 with is1 + k1 ≤ n and js2 + k2 ≤ m. To use this tensor as input to
filter neurons, it is converted to vector form by writing its columns one below
the other. This vector form quickly becomes unwieldy. Therefore, the weights
of the filters of a 2D convolution are often also written in tensor form. To better
understand this abstract procedure, Figure 2.11 contains an example calculation
of a 2D convolution with only one filter.
If there is more than one filter, the output of a convolutional layer contains a

separate channel for each filter.
The final concept used during the forward pass of the DQN is padding. Here,

the input is padded with zeros so that the filters are able to cover the edges of
the input states even if they would not normally fit. The DQN uses a padding
that results in an output that has the same height and width as the input as long
as the stride is (1, 1). This type of padding is called half-padding or same-
padding. To see how this padding works, we will only look at the padding in
the height direction. The width is done analogously. Assume a 2D-convolution
with input height n, kernel height k1 and stride (s1, s2), then the number of
zeros p to be padded according to same-padding is

p =

{
max(k1 − s1, 0) if n mod s1 = 0

max(k1 − (n mod s1), 0) else

Half of this padding p/2, rounded down, is appended at the beginning of the
input (above the input in the case of the height dimension) and the other half
at the end (below the input).
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Output

Figure 2.11.: Example for a 2D convolution with a single filter k with bias b
and activation function σ, and stride (1, 1).
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2.3. Training the DQN

In this section, we will look at how we can use the ideas from Q-Learning in
Section 2.1.3 to train the neural network behind the DQN introduced in Section
2.2.1.

2.3.1. The DQN Loss Function

To train the neural network behind the DQN, we have to define a loss function
L : Θ → R which shows us how much the current Q-values Q(s, a; θ) diverge
from the optimal Q-values Q∗(s, a). For this, we want to use themean squared
error between our current Q-values and the optimal Q-values:

L(θ) = Es∈S,a∈A

(
Q∗(s, a)−Q(s, a; θ)

)2

However, since we work in a reinforcement learning setting (Section 2.1), we
do not know the optimal policy π∗ or optimal Q-value function Q∗ for a given
state-action pair s ∈ S, a ∈ A.
Thus, the DQN utilizes the Q-learning idea of iteratively approaching the opti-

mal Q-value function Q∗ through the Bellman optimality equation (see Equation
2.1). It uses intermediate targets

Y DQN
i (s, a, s′) = r(s, a, s′) + γmax

a′∈A
Q(s′, a′; θ−i ), (2.2)

where the so-called target parameters θ−i are parameters that have been
learned in previous iterations. The target parameters are not trained but simply
get replaced by the current learned parameter θ every τ learning steps. This
procedure gives rise to a sequence of loss functions

Li(θ) = Es,a

((∑
s′∈S

P (s′|s, a)Y DQN
i (s, a, s′)

)
−Q(s, a; θ)

)2

=
∑

s∈S,a∈A

Pπ(s, a)

((∑
s′∈S

P (s′|s, a)Y DQN
i (s, a, s′)

)
−Q(s, a; θ)

)2

,

(2.3)

where Pπ(s, a) describes the probability of encountering the state s ∈ S and
action a ∈ A when following the strategy π given by the current Q-values.
At a high level, the DQN trains the network parameters θ by minimizing the

sequence of loss functions Li(θ) via gradient descent.
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Gradient Descent. Gradient descent is a method for finding local minima of
real-valued functions. It was first proposed by Cauchy [1847].
This method uses the fact that one can think of a partially differentiable

function L : Θ → R as a graph over Θ ⊂ Rn, where L(θ) describes the height
over θ ∈ Θ. The slope or rate of change of this graph at the point θ ∈ Θ, in a
direction v ∈ Rn, is then given by the directional derivative DvL(θ) = ∇L(θ) ·v.
In other words, DvL(θ) gives us the rate of change for the function L when we
move the parameters θ in a given direction v. To find a local minimum of L
and thus minimize the average difference from the target Y DQN

i , we look for
the direction v for which L decreases the most. This is the case if the direction
v corresponds to the negative gradient −∇L(θ). Therefore, we update our
parameters by slightly moving them in the direction −∇L(θ). To this end, we
choose a so-called learning rate α > 0 and calculate the updated parameters
θ̃ as follows:

θ̃ = θ − α∇L(θ).

This ensures that the new L(θ̃) is smaller than L(θ) in each iteration, as long
as we do not cross a local minima.

2.3.2. Experience Replay

To train the DQN via gradient descent using the loss functions defined in Equa-
tion 2.3, we would need a list of all possible states s ∈ S and actions a ∈ A.
Furthermore, we would need to know the probability Pπ(s, a) of encountering
each state-action pair under the current strategy and the transition probabilities
P (s′|s, a). None of this is readily available to the agent in most RL environ-
ments.
Therefore, calculating this loss function is not feasible in practice. Instead,

Mnih et al. [2015] use experience replay. They create a replay memory data
set D by sampling experience tuples (st, at, st+1) consisting of a state st, an
action at, and the state st+1 that followed that state-action pair. Initially, D is
filled by randomly selecting actions within the environment until D reaches a
predefined minimum size N . Then, they let the agent run in the environment
with a ϵ-greedy strategy with respect to the currently learned Q-value function
Q(s, a; θ). A ϵ-greedy strategy does not always choose actions greedily but
also chooses random actions with a chance of ϵ ∈ [0, 1] to facilitate exploration.
After each time step, the experience tuple (st, at, st+1) is added to the replay
memory D, and a step of stochastic gradient descent is performed on D.
In stochastic gradient descent, the loss is not calculated for the entire data set
D, but only for a randomly chosen subset B, a so-called batch or mini-batch.
Since we know all the states and actions in D, and we also store the transition
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to the next state for all those state-action tuples, we can calculate the DQN loss
functions (Equation 2.3) for B ⊂ D in the following way

Li(θ) =
1

|B|
∑

(st,at,st+1)∈B

(
Y DQN
i (st, at, st+1)−Q(st, at; θ)

)2

. (2.4)

When the size of the replay memory exceeds a predefined maximum size M , the
oldest experience is removed from the memory.

2.3.3. Double DQN

This thesis uses an improved training method for the DQN called double DQN
[Van Hasselt et al., 2016].
When calculating the targets Y DQN

i of the DQN, both the expected fu-
ture action at+1 = argmax

a∈A
Q(st+1, a; θ

−
i ) as well as the Q-value for this action

Q(st+1, at+1; θ
−
i ) are determined by the target parameters θ−i . If the learned

parameters θ diverge too much from the target parameters θ−i , the agent might
choose very different actions than expected by the target Y DQN

i . To avoid this
problem, double DQN selects the expected future action based on the currently
learned parameters θ and only calculates the Q-value based on the target pa-
rameters θ−i . That is, double DQN replaces the targets Y DQN

i with

Y DoubleDQN
i (s, a, s′) = r(s, a, s′) + γQ(s′, argmax

a′∈A
Q(s′, a′; θ); θ−i ).

Apart from replacing Y DQN
i with Y DoubleDQN

i , the training process remains un-
changed.

2.3.4. Alternative to the DQN: Actor-Critic Algorithms

In addition to the DQN, some sections of this dissertation will also use actor-
critic DRL algorithms.
The most prominent actor-critic DRL algorithm, A3C (Asynchronous Ad-

vantage Actor-Critic), was proposed by Mnih et al. [2016]. This method elimi-
nates the need for experience replay and target parameters by asynchronously
running multiple agents in parallel. Each of these agents maintains its own
parameters, updating the global parameters every k steps and subsequently
synchronizing their parameters with the global parameters. To simplify the no-
tation and unify it with the previous sections, we will assume k = 1 in this
section.
The A3C algorithm learns two outputs in tandem. Similar to the DQN, it

trains a value function V (s; θV ) with parameters θV . As was the case with
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Q∗(s, a) for the DQN, A3C approximates the optimal value function V ∗(s) by
utilizing the bellman equation. The algorithm minimizes the following loss for
individual samples st, at, st+1:

LV (θV ) =
(
r(st, at, st+1) + γV (st+1; θV )− V (st; θV )

)2
This loss can be viewed as a modified version of Equation 2.4, where V (S)
replaces Q(s, a) and the target parameters are omitted.
The biggest difference to the DQN is that actor-critic methods directly train

the policy π(a, s; θ) with trainable parameters θ. Here, π(a, s; θ) describes a
stochastic policy that returns the probability of choosing action a in state s.
This probability should be high if the agent expects a promising reward in the
future, both in the short and long term. To this end, A3C uses the following
loss function for individual samples st, at, st+1:

L(θ) = −
[
r(st, at, st+1) + γV (st+1; θV )− V (st; θV )

]
log π(at, st; θ)

Here, the negative sign at the beginning ensures that the rest of the formula is
maximized. The term

[
r(st, at, st+1) + γV (st+1; θV ) − V (st; θV )

]
describes how

good the chosen action was. It combines the immediate reward r(st, at, st+1)
with the advantage of transitioning from state st to state st+1 – as measured
by the difference in the state value function V (s, θV ). For example, if Pacman
moved closer to a pellet, the action was valuable even if it did not result in
an immediate reward. The only part of L(θ) that depends on θ is π(at, st; θ).
Therefore, the loss pushes π(at, st; θ

′) to be high when at was beneficial and low
when at was less effective or detrimental.
To train V (s; θV ) and π(a, s; θ), Mnih et al. [2016] use the same network

architecture as the DQN (Section 2.2.1). However, they use distinct output
layers for V (s; θV ) and π(a, s; θ). Therefore, most parameters in θ and θV are
shared, except for the weights of the respective output layers.
While A3C by Mnih et al. [2016] asynchronously runs several agents in par-

allel, Wang et al. [2016a] proposed an actor-critic variant (Actor Critic with
Experience Replay, ACER) that works on a single agent by utilizing experience
replay similar to the DQN (Section 2.3.2).

2.4. Conclusion

This chapter explored the basic notation and foundational principles of DRL,
which we will use throughout this thesis. As a specific example of a DRL al-
gorithm, it introduced the DQN and its application to the game of Pacman
within the ALE. This detailed examination lays the groundwork for the use of
DQN agents as the primary objects of investigation throughout this disserta-
tion. Understanding how these DQN agents perceive their environment, make
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decisions, and learn over time is crucial for the subsequent exploration of XAI
techniques intended to make their operations transparent and comprehensible.
As we move forward, the insights from this chapter will guide our efforts to
develop and apply XAI methods to DRL with visual input.
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3. Explainable AI

Besides RL, this thesis focuses on the field of Explainable AI (XAI), which is
dedicated to enhancing the explainability of artificial intelligence systems. XAI
seeks to shed light on how AI models arrive at their decisions, making them
more comprehensible to humans.
Many works on XAI concentrate on explaining classifiers that make decisions

in isolation without affecting other decisions of the classifier. Thus, they do
not fully address the problem of explaining behavior in sequential decision-
making settings, where an agent’s actions, rewards, and effect on the state of
the world are interconnected. Nonetheless, these established XAI methods can
still be adapted for use with reinforcement learning (RL) agents, as we will see
in Part II. Additionally, numerous methods for explaining RL agents have been
developed drawing from XAI techniques for classification models.
This chapter will introduce key general XAI ideas that are relevant to Ex-

plainable RL and XAI methods for classifier models that have served as the
basis for explainable RL methods.

3.1. Terminology

In recent years, there has been a plethora of work on defining XAI terminology
and concepts [Lipton, 2018; Tomsett et al., 2018; Adadi and Berrada, 2018;
Miller, 2019; Arrieta et al., 2020; Molnar, 2022]. To prevent potential confusion
or misinterpretation, this section defines how the different terminologies are used
in this thesis.
The first concept we need to define is explainability since it is crucial to

XAI. Following Miller [2019] and Molnar [2022], this dissertation uses the terms
interpretability and explainability as synonyms that refer to the “degree to which
an observer can understand the cause of a decision”.
The second core concept we need to define is an explanation. Adopting the

definition by Tomsett et al. [2018], this thesis uses the term explanation to
describe “the information provided by a system to outline the cause and reason
for a decision or output for a performed task”.
Now, we can look at what an XAI system entails. As outlined by Gunning

and Aha [2019], an XAI system consists of an explainable model and an expla-
nation interface. The explainable model is responsible for providing decisions
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along with insights into the model’s reasoning process for those decisions. The
explanation interface communicates this information to the user.
This dissertation focuses on the exploration of explainable models. In gen-

eral, there are two approaches to creating explainable models [Molnar, 2022].
The first approach is to build the model in such a way that it is intrinsically
explainable, for example, by using a simple model architecture. In the same
vein, some methods only make certain parts of the model intrinsically explain-
able. We refer to those as intrinsic explanation methods. In contrast to the
intrinsic approach to explainability, the second approach is the use of post-hoc
explanation methods that are employed after the model has been trained.
Besides this distinction, Molnar [2022] and Adadi and Berrada [2018] intro-

duce two additional categorizations for explainable models:

Scope. We can divide explanations into local explanations, which provide
information regarding the AI’s decision-making in a particular instance, and
global explanations, which attempt to convey the overall behavior of the
model.

Model Dependency. Finally, we can divide XAI methods into model agnos-
tic methods that can be applied to arbitrary black-box AI models and model
specific methods that require specific model architectures and need access to
the inner-workings of the model.
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Figure 3.1.: An overview of the XAI methods for classifiers that we will explore
in this thesis.

3.2. Explanation Methods for Classifiers

There is a plethora of different methods to explain classification models in the
literature. This thesis focuses on two common types of explanation methods for
classifiers that also have been used for explaining DRL agents, as we will see in
Part II: Feature attribution (or saliency maps) and counterfactual explanations.
Both of these two methods are primarily used as local explanation methods
that explain a fully trained agent post-hoc. Figure 3.1 shows an overview of the
methods we will look at in this section.

3.2.1. Saliency Maps or Feature Attribution

One of the most common XAI methods is called feature attribution or fea-
ture relevance [Arrieta et al., 2020]. It refers to the process of determining
the relevance or importance of individual input features for the decision of an
AI model. Feature Attribution is mostly used as a local post-hoc explanation
method. Here, we assume a fully trained agent π and a given input state s. A
feature attribution method now assigns a relevance score R(si, π) to each feature
si of the state s. The value R(si, π) measures how relevant or important the
feature si was for the decision of the agent π in the state s. If it is clear which
agent is meant, we will omit π and only write R(si).
For visual input, the relevance information is often displayed as saliency

maps, which are heatmaps that visualize the relevance of each pixel for a par-
ticular decision of the agent. Since the Atari agents used in this thesis rely on
visual input, we will use the term saliency map method even if the very same
algorithm can be applied to non-visual input data. Figure 3.2 illustrates the
idea behind saliency maps.
In the remainder of this section, we will look at different saliency map gener-
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Figure 3.2.: The idea behind saliency maps or feature attribution: instead of
just returning a prediction, the AI model also provides a saliency map that
visualizes how important the input features were for the prediction. In this
example, the green heatmap shows how relevant each pixel was for the AI –
the brighter a pixel is, the more relevant it was.

ation methods proposed for image classifiers.

3.2.1.1. Gradient-based Saliency Maps

Gradient-based saliency map genera-
tion methods [Simonyan et al., 2013;
Springenberg et al., 2014; Sundarara-
jan et al., 2017; Selvaraju et al., 2020]
utilize the derivative with respect to
the input to estimate how much a small
change in this input’s value would
change the prediction. This section de-
scribes different gradient-based methods and is based on text from our paper:

Tobias Huber, Dominik Schiller, and Elisabeth André [2019]. “Enhancing
Explainability of Deep Reinforcement Learning Through Selective Layer-
Wise Relevance Propagation”. In: KI 2019: Advances in Artificial Intelli-
gence. Springer International Publishing, pp. 188–202

One of the first methods used to measure the relevance of pixels of visual
input data is to see how much a change in that pixel impacts the prediction
of a neural network. If a pixel is relevant for the decision of the model, then
even small changes in the pixel will greatly impact the output of the model.
This local rate of change with respect to certain inputs of the network can be
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calculated by using partial derivatives. Simonyan et al. [2013], for example, use
the derivative of an image classifier with respect to an input pixel to determine
the relevance of that input pixel. To get this derivative, they use the backprop-
agation algorithm, which is also used during the training of the neural network.
The deconvolution [Zeiler and Fergus, 2014] and guided backpropagation [Sprin-
genberg et al., 2014] approaches are based on the same theory but use modified
versions of the backpropagation algorithm to get relevance values for the input
pixels of image classifiers. Another similar approach is Grad-CAM [Selvaraju
et al., 2020]. This approach was introduced for CNN-based image classifiers and
uses partial derivatives of the fully connected part of a CNN with respect to the
output of the last convolutional layer to identify regions inside the input, which
were relevant for the specific prediction of the CNN. Guided backpropagation
and Grad-CAM can be combined by computing the component-wise product
of the attention maps created by the different approaches. The result is called
guided Grad-CAM and creates a fine-granular but class-specific saliency map
[Selvaraju et al., 2020].

3.2.1.2. Perturbation-based Saliency Map Approaches

Perturbation-based methods ([Zeiler
and Fergus, 2014; Ribeiro et al., 2016;
Petsiuk et al., 2018; Greydanus et al.,
2018; Puri et al., 2020]) perturb ar-
eas inside the input and measure how
much this changes the model’s predic-
tion. The idea behind this is to intro-
duce uncertainty to the perturbed area

and to see how much the model is influenced by the loss of information in that
area. Perturbation-based methods often come with the advantage of being inde-
pendent of the model’s structure but with the drawback of not being as precise
as some model-specific methods. This section describes different perturbation-
based saliency map generation methods and is based on text from our paper:

Tobias Huber, Benedikt Limmer, and Elisabeth André [2022]. “Bench-
marking Perturbation-Based Saliency Maps for Explaining Atari Agents”.
In: Frontiers in Artificial Intelligence 5. issn: 2624-8212. doi: 10.3389/

frai.2022.903875

The basic saliency map generation process is the same for all perturbation-
based approaches. Although three out of the five methods presented in this
section were originally proposed for image classifiers, we employ a consistent
DRL notation (Section 2.1) to formalize all the methods. This notation clarifies
how they can be applied to the DQN agents in this thesis. Let π be the agent
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that takes a visual input state s and maps it to a Q-valueQ(s, a) for each possible
action. To ease notation, we use Q(s) to describe the Q-value of the action that
should be analyzed. Most often, this is the action with the highest Q-value
for the unperturbed input s since this is the action that a fully trained agent
would choose for s. A visual input state s with height H and width W can be
defined as a mapping s : Λs → Rc of each pixel λ ∈ Λs = {1, ..., H}× {1, ...,W}
to c channels (e.g. c = 4 for the Atari environment which uses the channels
to store the last 4 frames). To determine the relevance R(λ) of each pixel λ
for the prediction of the agent, perturbation-based approaches feed perturbed
versions s′ of s to the agent and then compare the resulting output values with
the original results.
Based on this general approach, different perturbation-based approaches are

defined by two methods: First, a perturbation method that describes how the
perturbed input states s′ are created. Second, a relevance method R(λ) that
calculates the relevance of each pixel based on the perturbed outputs Q(s′, a)
and the original outputs Q(s, a).
We will now take a look at popular perturbation-based saliency map ap-

proaches and how they implement these two methods.

Occlusion Sensitivity. This approach is the most basic perturbation-based
saliency map approach and was first proposed by Zeiler and Fergus [2014] for
image classifiers. It creates perturbed states s′ by shifting a n× n patch across
the original state s and occluding this patch by setting all the pixels within to
a certain color (e.g., black or grey). An example is shown in Figure 3.3.
The relevance R(λ) of each pixel λ inside the patch is then computed based

on the agent’s confidence after the perturbation

R(λ) = 1−Q(s′). (3.1)

Since the original source does not go into details about the algorithm, we use
the tf-explain implementation as reference1. As long as the saliency maps are
normalized, this is equivalent to Q(s) − Q(s′) since all values in the saliency
map are shifted by the same constant Q(s)− 1.

Noise Sensitivity. Greydanus et al. [2018] proposed noise sensitivity specifi-
cally for DRL agents with visual input. Instead of completely occluding patches
of the state, this approach adds noise to the state s by applying a Gaussian blur
to a circle with radius rad around a pixel λ (see Figure 3.3). The modified state
s′(λ) is then used to compute the relevance of the covered circle by comparing
the agent’s logit units π(s). For the DQN agents in this thesis, π(s) is the vector

1Available under: https://github.com/sicara/tf-explain
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Input State Black
Occlusion

Grey Occlusion Noise
Sensitivity

RISE
LIME

Segmentation
LIME

Perturbed

Figure 3.3.: An example of the different types of perturbation used by
perturbation-based saliency map approaches. The parameters are chosen in
such a way that the idea of the perturbation can be easily identified. For
Occlusion and Noise, the disturbed area is marked with a red circle.

of all Q-values Q(s, a) for each possible action:

R(λ) =
1

2
||π(s)− π(s′(λ))||2 (3.2)

This is done for every radth pixel, resulting in a temporary saliency map smaller
than the input. For the final saliency map, the result is up-sampled using bilinear
interpolation.

Randomized Input Sampling for Explanation (RISE). RISE was developed
by Petsiuk et al. [2018] for image classifiers. This approach uses a set of N
randomly generated masks {M1, ...,MN} for perturbation. To this end, tempo-
rary n× n masks are created by setting each element to 1 with a probability p
and 0 otherwise. These temporary masks are upsampled to the size of the input
state using bilinear interpolation. The states are perturbed by element-wise
multiplication with those masks s⊙Mi (see Figure 3.3). The relevance of each
pixel λ is given by

R(λ) =
1

p ·N

N∑
i=1

Q(s⊙Mi) ·Mi(λ), (3.3)

where Mi(λ) denotes the value of the pixel λ in the ith mask.
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Local Interpretable Model-agnostic Explanations (LIME). Ribeiro et al.
[2016] proposed LIME and tested it on image classifiers. LIME uses image seg-
mentation algorithms, like SLIC, Quickshift, and Felzenszwalb, to divide the
input state into superpixels (i.e., groups of pixels that share similar visual prop-
erties such as color). Then, a dataset of N perturbed samples in the neigh-
borhood of the input state is created. For each of those samples s′, a different
combination of superpixels is “deleted” by setting all pixels within the superpix-
els to a certain value (in this thesis, we use 0). An example for a segmentation
of a state s and a corresponding perturbed state s′ can be seen in Figure 3.3.
Using this dataset, an interpretable surrogate model is trained to predict the
agent’s decision based on the presence of superpixels. This surrogate model can
for example be trained with gradient descent. During training, the samples are
weighted based on their proximity to the original input state. Finally, analyzing
the weights of the trained surrogate model provides a relevance value R(λ) for
each superpixel, which is assigned to all pixels λ within this superpixel.

Specific and Relevant Feature Attribution (SARFA). SARFA by Puri et al.
[2020] is another algorithm proposed explicitly for DRL agents. This approach
does not use a specific perturbation method. Puri et al. test noise perturbation
[Greydanus et al., 2018] for Atari games and occlusion [Zeiler and Fergus, 2014]
for other domains. Given a perturbed state s′, SARFA measures the informa-
tion specific to the action a′, which should be analyzed, by utilizing a softmax
normalization P (s, a′) := exp(Q(s,a′))∑

a∈A exp(Q(s,a))
and calculating

∆p = P (s, a′)− P (s′, a′). (3.4)

To only measure information that is relevant to a′ and not relevant to other
actions a ̸= a′ (i.e., the perturbation should not affect actions other than a′),
they additionally calculate

K =
1

1 +KL(Prem(s, a′), Prem(s′, a′))
, (3.5)

where KL is the Kullback–Leibler divergence and the vector Prem(s, a
′) :=( exp(Q(s,a′))∑

a̸=a′ exp(Q(s,a))

)
∀a ̸= a′ is the softmax over all outputs except the chosen action

a′. The final relevance for each pixel that is perturbed in the state s′ is then
given by the harmonic mean of ∆p and K:

R(λ) =
2K∆p

K +∆p
(3.6)
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3.2.1.3. Layer-Wise Relevance Propagation

In contrast to the aforementioned
methods for generating saliency maps,
Bach et al. [2015] proposed to use the
intermediate activations of the neurons
during the forward pass to estimate the
contribution of each input pixel to the
prediction of an image classifier. This
section describes their approach and is

based on text from our paper:

Tobias Huber, Dominik Schiller, and Elisabeth André [2019]. “Enhancing
Explainability of Deep Reinforcement Learning Through Selective Layer-
Wise Relevance Propagation”. In: KI 2019: Advances in Artificial Intelli-
gence. Springer International Publishing, pp. 188–202

Instead of calculating how much a change in an input pixel would impact the
prediction, Bach et al. investigate the contribution of the input pixels to pre-
diction. For this purpose, they not only describe a single specific algorithm but
introduce a general concept, which they call Layer-wise Relevance Propagation
(LRP). This concept has two advantageous properties that the aforementioned
saliency map approaches lack. The first is the conservation property, which says
that the sum of all relevance values generated by LRP is equal to the value of
the prediction. This ascertains that the relevance values reflect the certainty
of the prediction and facilitates the comparison of saliency maps for different
states. The second property is positivity, which states that all relevance val-
ues are non-negative. This ascertains that the generated saliency maps do not
contain contradictory evidence [Montavon et al., 2018]. Some gradient-based
approaches achieve positivity by squaring the partial derivatives, but this only
masks the negativity for the viewer. Finally, LRP is computationally efficient
compared to perturbation-based methods and can even be more efficient than
gradient-based methods in cases where the inference has to be run without GPU
since LRP can reuse the values of the forward pass.

Basic Algorithm. As mentioned above, LRP does not describe a specific al-
gorithm but a concept that can be applied to any classifier f that fulfills the
following two requirements. First, f has to be decomposable into several lay-
ers of computation, where each layer can be modeled as a vector of real-valued
functions. Secondly, the first layer has to be the input x of the classifier con-
taining, for example, the input pixels of an image, and the last layer has to be
the real-valued prediction of the classifier f(x). Any DRL agent fulfills those
requirements if we consider the inputs x to be the input states s and f(x) to be
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the output value Q(s, a′) that corresponds to the action a′ we want to analyze.
For a given input x, the goal of any method following the LRP concept is

to assign relevance values Rl
j to each computational unit j of each layer of

computation l, in such a way that Rl
j measures the local contribution of the unit

j to the prediction f(x). A method of calculating those relevance values Rl
j is

said to follow the LRP concept if it sets the relevance value of the output unit
to be the prediction f(x) and calculates all other relevance values by defining

Rl
j :=

∑
k∈{j is input for neuron k}

Rl,l+1
j←k , (3.7)

for messages Rl,l+1
j←k , such that

Rl+1
k =

∑
j∈{j is input for neuron k}

Rl,l+1
j←k . (3.8)

In this way, an LRP variant is determined by choosing messages Rl,l+1
j←k . Through

Definition 3.7, it is then possible to calculate all relevance values Rl
j in a back-

ward pass, starting from the prediction f(x) and going towards the input layer.
Furthermore, Equation 3.8 gives rise to∑

k

Rl+1
k =

∑
k

∑
j∈{j is input for neuron k}

Rl,l+1
j←k

=
∑
j

∑
k∈{j is input for neuron k}

Rl,l+1
j←k =

∑
j

Rl
j.

This ensures that the relevance values of each layer l are a linear decomposition
of the prediction

f(x) = · · · =
dim(l)∑
j=1

Rl
j = · · · =

dim(input)∑
j=1

Rinput
j .

Such a linear decomposition is easier to interpret than the original classifier
because we can think of positive values Rl

j to contribute evidence in favor of the
decision of the classifier and of negative relevance values to contribute evidence
against the decision.

The z+-Rule. To see how specific LRP variants look in practice, we will look
at one of the most basic LRP messages, the z+-rule.
Let f be a CNN with a mixture of convolutional layers convi and fully con-

nected layers fci like the DQN described in Section 2.2.1. Following the LRP
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Figure 3.4.: Visualization of the LRP z+-rule on a 5-layer CNN like the DQN.
Each node symbolizes a neuron with activation aj during the forward pass,
and the red hue illustrates the relevance Rj of each neuron for the prediction.
Notably, the last fully connected layer (the output layer) is depicted solely
by the chosen action’s neuron, as the others aren’t involved in LRP. To sim-
plify the visualization, there is no differentiation between fully connected and
convolutional layers.

notation, we denote the relevance value of the j-th neuron in the layer l with
Rl

j.

As described above, we have to define messages Rl,l+1
j←k for any two consecutive

Layers l, l+1 to determine an LRP variant. To simplify the notation, we assume
that both l and l+1 are fully connected layers fci. The convolutional case works
analogously, as we have seen in Section 2.2.2 that a trained convolutional layer
can be written as a fully connected layer. For an input x, we write fci(x) for
the output of the layer fci during the forward pass that calculates f(x). Rl,l+1

j←k

should measure the contribution of the j-th neuron of fci−1 to the k-th neuron of
fci, therefore we have to look at the calculation of fci(x)k. The fully connected
layer fci uses a weight matrix Wi, a bias vector bi and an activation function σi

as parameters for its output (See Section 2.2.2). Let W k
i be the k-th row of Wi

and bki the k-th entry of bi. Then the activation of the k-th neuron in fci(x) is

σi(W
k
i · fci−1(x) + bki ),

where · denotes the dot product and fc0 is the flattened input.
Usually, the ReLU function σ(x) = max(0, x) is used as the activation func-

tion σi in the DQN architecture. Bach et al. [2015] argue that any monotonous
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increasing function σ with σ(0) = 0, like the ReLU function, conserves the rel-
evance of the dot product W k

i · fci−1(x). Newer LRP variants, like the one used

by Montavon et al. [2018], also omit the bias when defining Rl,l+1
j←k . With those

two assumptions the relevance of each neuron of fci−1 to fci(x)k is the same as
their contribution to the dot product

W k
i · fci−1(x) =

∑
j

wjk fci−1(x)j.

This is a linear decomposition, so we can use wjk fci−1(x)j to measure the con-
tribution of the j-th neuron of fci−1.
Since we want to find the parts of the input that contributed evidence in favor

of the decision of the DQN agent, we restrict ourselves to the positive parts of
that sum. That is, we set

z+jk :=

{
wjk fci−1(x)j if wjk fci−1(x)j > 0

0 if wjk fci−1(x)j ≤ 0
.

With this, we define the messages as

Rl,l+1
j←k :=

z+jk∑
n∈{n is input for neuron k}

z+nk
Rl+1

k . (3.9)

This method is called the z+-rule (without bias) and satisfies the LRP Equa-
tion 3.8. Figure 3.4 shows a visualization of the z+-rule on a 5-layer CNN like
the DQN.
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(a) Original state where
Pacman goes left.

(b) Counterfactual state
where Pacman goes right.

Figure 3.5.: Example for a counterfactual explanation: In the original situation
(a), the agent does not take the fastest path to the pill in the top right corner.
It is unclear if the agent is afraid of the ghost or does not recognize the shortest
path. The counterfactual state (b) shows that the agent would have taken the
fastest path to the pill if the ghost was not there. This indicates that the
agent is afraid of the ghost.

3.2.2. Counterfactual Explanations

Another prominent local explanation
paradigm to make the decisions of
black-box AI agents transparent and
comprehensible are so-called counter-
factual explanations. This section
describes these kinds of explanations.
It extends text from our previous pub-
lication:

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Olson,
and Elisabeth André [2023]. “GANterfactual-RL: Understanding Reinforce-
ment Learning Agents’ Strategies through Visual Counterfactual Explana-
tions”. In: Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages

By providing an alternative reality where the AI would have made a different
decision, counterfactual explanations follow a rather human way of describing
decisions [Miller, 2019; Byrne, 2019]. For example, if a person would have to
explain why a warehouse robot took a detour instead of directly moving to its
desired target, they would probably give an explanation similar to If there was
no production worker in the way, the robot would have moved straight to its
target - and, by doing so, give a counterfactual explanation of the warehouse
robot’s behavior. Figure 3.5 shows a similar situation from the Atari game
Pacman (see Section 2.1.2.1 for the rules of the game).
Several desirable properties of counterfactual explanations have been high-
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Figure 3.6.: A second counterfac-
tual state for the situation in Fig-
ure 3.5 containing an additional
pill that is not necessary to change
the agent’s decision. Through
this additional modification of the
original image, an observer cannot
determine whether the agent was
afraid of the ghost or is now con-
vinced by the additional pill.

Figure 3.7.: An illustration of
the idea of counterfactual explana-
tion. The figure shows two coun-
terfactual instances that slightly
cross the decision boundary of an
RL agent.

lighted in the literature. One widely supported idea is to minimize the changes
required to cross the AI’s decision boundary [Wachter et al., 2017; Mothilal et
al., 2020]. Altering as little as possible makes it easier to detect relevant changes
(see Figure 3.6). Furthermore, it helps to create plausible counterfactuals that
do not deviate too far from realistic scenarios. However, recent work [Keane
et al., 2021] has challenged this principle of minimal change. It is often unclear
what it means for a change to be minimal. In Pacman, for instance, it is not
clear if adding a normal pill is a smaller change than adding a ghost, which
contains more pixels than a pill. Addressing this problem, another desirable
property for counterfactual explanation approaches is the ability to generate
multiple, diverse counterfactuals that enable exploration of the decision bound-
ary [Wachter et al., 2017; Keane et al., 2021]. Figure 3.7 illustrates the idea
behind desirable counterfactual explanations.
In the remainder of this section, we will look at two families of methods for

generating counterfactual explanations for classifier models.

Optimization-based Counterfactual Explanations. The first family of ap-
proaches to generating counterfactual explanations defines them as optimiza-
tion problems. These approaches formulate objective functions that describe
the desired properties of the counterfactual explanations for a given input and
the desired AI decision. This objective function can then be solved case-by-
case using optimization methods such as gradient descent (see Section 2.3).
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Optimization-based counterfactual methods have been applied to tabular data
[Wachter et al., 2017; Mothilal et al., 2020] and images [Looveren and Klaise,
2021]. However, a major limitation of these optimization-based approaches is
their dependence on complete optimization processes to generate each individ-
ual counterfactual explanation. Running full optimization processes is often not
feasible at runtime.

GAN-based Counterfactual Explanations. The second family of approaches
to generating counterfactual explanations uses generative models like Gener-
ative Adversarial Networks (GANs). GANs consist of two neural networks that
are trained in tandem: a generator and a discriminator. The generator is trained
to generate images that look like images from a given target domain. The dis-
criminator aims to distinguish between images generated by the generator and
original images from the target domain.
Nemirovsky et al. [2022] and Zhao [2020] use a modified GAN architecture

to train a generator that takes an image as input and generates a residual that
is added to the input image to change the decision of an image classifier. To
this end, they propose novel loss functions that include the classifier to ensure
that the counterfactuals are classified as intended. The losses also contain terms
that ensure that the residuals are minimal. One drawback of these approaches
is that they use the classifier in the loss function and thus require access to
the gradient of the classifier. Therefore, they are not fully model-agnostic.
However, Nemirovsky et al. [2022] also propose an alternative loss function that
is applicable to black-box classifiers without access to the gradient.
Instead of adding a residual to the original image, other approaches train

GANs that take the original image as input and directly generate a complete
counterfactual image. To do this, Mertes et al. [2022a] train a GAN to transfer
between the domains given by the labeled classes from the classifier’s training
dataset. Additionally, their loss function includes the classifier, which is to be
explained. Including the classifiers ensures that the generated counterfactuals
are actually classified as the desired class. Finally, their loss function requires the
GAN to recreate the original image to enforce the minimal change constraint
for counterfactual explanations. While Mertes et al. [2022a] can only handle
binary classifiers, Matsui et al. [2022] propose a similar loss function but use a
different GAN architecture that is able to create counterfactuals for more than
two classes. Singla et al. [2023] also propose a similar approach but adapt it to
account for models with continuous outputs instead of discrete classes.
All of the GAN-based approaches described above have been tested on image

classifiers. For images, the slow runtime of the optimization-based counter-
factual generation approaches mentioned above is particularly problematic. In
contrast, the GAN-based counterfactual explanation approaches fully train their
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GAN models before runtime. During runtime, they can generate counterfactuals
with a single forward pass of the GANs. However, training the GANs requires
a training set that is often not available for RL agents. Furthermore, most of
the proposed loss functions require the gradient of the classifier and are, thus,
not model-agnostic.

3.3. Evaluating XAI

Having explored various methods for making AI systems understandable in Sec-
tion 3.2, we now shift our focus to evaluating the effectiveness of these meth-
ods in this section. In general, evaluation metrics for XAI approaches can be
separated into two broad categories: Human user studies and computational
measurements [Mohseni et al., 2021b].
Both categories are crucial for making the behavior of deep reinforcement

learning agents explainable. On the one hand, it is important that the ex-
planations actually reflect the agents’ reasoning. This is best evaluated with
computational metrics. Furthermore, computational metrics provide a cost-
effective way to evaluate different explanation methods before investing in more
resource-intensive user studies. On the other hand, only user studies can reveal
whether the explanations are clear, useful, and truly make these systems easier
for the user to understand. Moreover, the long-term adoption of an XAI system
by users depends on their satisfaction with the explanatory interface.
The section begins with an exploration of computational metrics in Subsection

3.3.1, followed by an examination of metrics for human user studies in Subsection
3.3.2. The section extends text from our publications:

Tobias Huber, Benedikt Limmer, and Elisabeth André [2022]. “Bench-
marking Perturbation-Based Saliency Maps for Explaining Atari Agents”.
In: Frontiers in Artificial Intelligence 5. issn: 2624-8212. doi: 10.3389/

frai.2022.903875

and

Tobias Huber, Katharina Weitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy sum-
maries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi: 10.

1016/j.artint.2021.103571

The discussion will be limited to the evaluation of XAI methods for classi-
fiers introduced in Section 3.2. An examination of XAI evaluation specifically
targeting RL agents can be found in Chapter 5.
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3.3.1. Computational Metrics

Computational metrics offer a way to evaluate explanations through quantifi-
able measures that can be calculated automatically, without needing human
intervention at runtime.
Some computational metrics are intended to serve as proxies for measuring

subjective criteria desired by human users. In the case of counterfactual
explanations (Section 3.2.2), this is, for example, done by measuring how sim-
ilar the counterfactuals are to the original state [Pawelczyk et al., 2021; Keane
et al., 2021; Mothilal et al., 2020]. This ensures that the counterfactuals de-
scribe the smallest possible modification that would change the AI’s prediction.
For saliency maps (Section 3.2.1), some work computationally compares the
generated saliency maps to prerecorded human visual attention [Schiller et al.,
2020; Mohseni et al., 2021a]. This comparison aims to check if the attentional
patterns of the saliency maps resemble those of humans. The intuition is that
users subjectively prefer saliency maps that reflect human attention patterns.
However, this comparison does not objectively measure whether the saliency
maps focus on the correct information that was important to the AI. Further-
more, this methodology requires human users to record their visual attention.
These recordings can then be used to evaluate various different saliency maps
automatically. As such, this methodology can be seen as a hybrid between
computational metrics and user studies.
More important, however, is the use of computational metrics to determine

objectively whether explanations reflect the AI’s internal reasoning. For coun-
terfactual explanations, this is usually done by evaluating their validity, i.e.,
the degree to which the counterfactuals actually evoke the target prediction for
the AI [Mertes et al., 2022a; Mothilal et al., 2020]. In the case of saliency maps,
we want to know whether the most relevant input features according to the
saliency map are actually the most relevant features for the AI. This metric
is often referred to as the saliency map’s fidelity [Mohseni et al., 2021b] or
faithfulness [Tomsett et al., 2020].

3.3.1.1. Evaluating Saliency Map Fidelity

There is a growing body of work on computationally evaluating the fidelity of
saliency maps for image classification models. The most common measurement
is input degradation. Here, the input of the model is gradually perturbed,
starting with the most relevant input features according to the saliency map.
For visual input, this is either done by perturbing individual pixels per step
[Petsiuk et al., 2018; Ancona et al., 2018] or by perturbing patches of the image
in each step [Samek et al., 2017; Kindermans et al., 2018; Schulz et al., 2020].
If the saliency map matches the model’s reasoning, then the model’s confidence
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Figure 3.8.: Representation of the different variations of the input degradation
metric. Based on a given saliency map, the metric either perturbs features
from the input (top row) or inserts them into an empty input (bottom row)
step by step. The red circles are added in this thesis to highlight the areas
that have changed. At each step, the confidence of the AI model is measured
to see how much the features influence the AI’s decision.

should fall quickly. In addition to perturbing features, some newer approaches
also propose an insertion metric where they start with fully perturbed inputs
and gradually insert relevant features [Ancona et al., 2018; Petsiuk et al., 2018;
Schulz et al., 2020]. Figure 3.8 shows a representation of how these different
variations of the input degradation metric work. Recently, Tomsett et al. [2020]
demonstrated that input degradation can be unreliable and is sensitive to imple-
mentation details like the type of perturbation. They conclude that researchers
should employ several versions of this metric and try to understand potential
reasons for unreliability.
A different technique to computationally evaluate saliency maps for classifi-

cation models is to compare them with ground-truth saliency maps on modified
datasets [Yang and Kim, 2019; Zhou et al., 2022]. Here, a natural dataset is
manipulated by adding artificial features that a model has to focus on to classify
the dataset perfectly. Now, saliency maps for a perfect model on the manip-
ulated dataset can be evaluated based on how well they localize the artificial
features. However, we cannot be 100% certain that the perfect model learned to
focus on the artificial features. Furthermore, it is not obvious how this method
could be applied to DRL agents. First, in a reinforcement learning setting, there
is no easily available dataset that can be manipulated. Secondly, DRL agents
do not directly classify which objects or features are contained in an image.
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Therefore, it is not clear how the long-term decision-making of DRL agents is
supposed to react to artificial features.
Another prominent computational measurement for saliency maps for image

classification models are the so-called sanity checks proposed by Adebayo et
al. [2018]. These tests measure whether the saliency maps are dependent on
the learned parameters of the model’s neural network. One method for this
is gradually randomizing the layers of the neural network and measuring how
much this changes the saliency maps. If the saliency maps are faithful to what
the network learned, then they should change considerably for each randomized
layer. Examples of this can be seen later in Figure 9.5.
Adebayo et al. conducted sanity checks for various gradient-based approaches

and Sixt et al. [2020] additionally tested modified propagation methods. Both
groups found that some approaches did not really depend on the parameters of
the network and, therefore, cannot faithfully reflect the model’s internal reason-
ing. As far as I know, before this thesis, no work has verified whether different
types of perturbation-based saliency maps depend on the network’s learned pa-
rameters for any kind of model even though this is one of the most popular
saliency map approaches.

3.3.2. Human User Studies

One critical challenge in evaluating XAI is the lack of consensus on how to com-
putationally evaluate XAI [Tomsett et al., 2020]. Currently, there is no definitive
method for discerning the reasoning processes of black box models, such as neu-
ral networks. Consequently, we lack ground truth explanations against which to
benchmark the explanations generated by these models. Without this ground
truth, computational metrics can only provide different ways to approximate
the fidelity of XAI methods.
This underscores the need to approach the evaluation of XAI not just through

computational metrics but also through human user studies. Furthermore, user
studies are necessary to avoid explanations that are technically sound but not
user-friendly [Miller et al., 2017]. This is especially important for explanations
that target end users without a machine learning background.
First, to understand how we can design user studies to evaluate XAI, we look

at the process of explanation in the context of XAI, as outlined by Hoffman
et al. [2018] and Gunning and Aha [2019] (Figure 3.9).
After receiving initial instructions about the AI system, the user forms an

initial mental model of how the AI operates. Here, the mental model is
the cognitive representation that the user has about a complex system [Halasz
and Moran, 1983; Norman, 2014], in our case, the AI model or the RL agent.
For example, an observer of an RL agent trained to play Pacman might form a
mental model that says: “The Pacman agent looks at the area in front of Pacman
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Figure 3.9.: The explanation process as outlined by Hoffman et al. [2018] and
Gunning and Aha [2019].

and moves toward regular pills to eat them.” Note that the mental model need
not be correct. In our example, DRL agents for Pacman typically do not just
look at the area in front of Pacman, and depending on the reward function, they
have goals other than regular pills. Humans automatically form mental models
of intelligent agents based on their behavior [Anjomshoae et al., 2019]. These
mental models help users understand and explain an agent’s behavior.
After the initial instructions, the user does not have enough information to

trust the AI system appropriately and may even mistrust it. Here, the term
appropriate trust is based on the work of Lee and See [2004], who present a
conceptual “trust in automation” framework. They define appropriate trust as
a well-calibrated trust that matches the true capabilities of a technical system.
While interacting with the AI, the user receives explanations from the XAI

system. Through these explanations, the user refines their mental model of the
AI. Ideally, this leads to a better mental model of how the AI works and a more
appropriate level of trust. This improved mental model enhances the user’s
performance. At the same time, appropriate trust leads to more appropriate
use of the AI model.
This model of the process of explanation shows us four different metrics

through which we can measure the effectiveness of XAI systems:

Explanation Satisfaction. The first metric is how subjectively satisfied the
users are with the explanations. To measure this satisfaction, Hoffman et al.
[2018] proposed a satisfaction scale with the following items:
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1. From the explanation, I understand how the [software, algorithm, tool]
works.

2. This explanation of how the [software, algorithm, tool] works is satisfying.

3. This explanation of how the [software, algorithm, tool] works has sufficient
detail.

4. This explanation of how the [software, algorithm, tool] works seems com-
plete.

5. This explanation of how the [software, algorithm, tool] works tells me how
to use it.

6. This explanation of how the [software, algorithm, tool] works is useful to
my goals.

7. This explanation of the [software, algorithm, tool] shows me how accurate
the [software, algorithm, tool] is.

8. This explanation lets me judge when I should trust and not trust the
[software, algorithm, tool]

The participants rate those items on a 5-point Likert scale from “I disagree
strongly” to “I agree strongly”. For XAI on image classifiers, variants of the ex-
planation satisfaction scale have been used by Mertes et al. [2022a] and Mertes
et al. [2022b]. Other studies used custom questions to evaluate the users’ subjec-
tive satisfaction with the explanations [Weitz et al., 2019b; Weitz et al., 2021].

Mental Models. Second, we can measure the users’ mental model of the AI.
The examination of users’ mental models and their correctness helps to verify
whether XAI has been successfully applied [Rutjes et al., 2019; Arrieta et al.,
2020]. An example of a direct method for eliciting a user’s mental model are
teach-back interviews in which the user describes their own understanding of
the system [Hoffman et al., 2018]. However, these interviews are very time-
consuming. Therefore, mental model assessments are frequently conducted us-
ing indirect methods, such as proxy tasks like the prediction task. In such
prediction tasks, users are asked to predict the AI’s decision based solely on the
input and explanations provided. A well-formed mental model of the AI should
enable users to accurately predict its decisions, indicating successful understand-
ing facilitated by the XAI technique. Alqaraawi et al. [2020] and Selvaraju et al.
[2020] found that participants who saw saliency maps were able to predict the
decision of an image classification model better than participants who did not
see them. However, the participants were still only correct in about 60% of the
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cases, and Alqaraawi et al. proposed to look beyond instance-level explanations
in the future. Moreover, in another prediction task experiment for image clas-
sifiers conducted by Mertes et al. [2022a], counterfactual explanations (Section
3.2.2) were more useful than LRP and LIME saliency maps (Section 3.2.1).

Appropriate Trust. Third, we can measure how calibrated the user’s trust in
the AI models is Lee and See [2004] – i.e., does the user place greater trust
in models that perform better? For example, Selvaraju et al. [2020] measure
appropriate trust by presenting participants with decisions and explanations
from two distinct image classifiers. In all instances that are presented to the
participants, the decisions of the AI models are identical – only the explanations
differ. However, one model generalizes better to the entire dataset than the
other model. In this way, the participants’ trust in the individual models can
be evaluated to determine whether the participants’ trust is aligned with the
accuracy of the models.

Performance. The fourth metric to evaluate the effectiveness of XAI in user
studies is user performance. Given that enhancing user performance is one of the
primary objectives of XAI, this metric is arguably the most crucial. However,
assessing user performance during real-world tasks is challenging and may not
always be feasible in a rigorous scientific manner. Some previous work has
measured user performance in simulated tasks. For instance, in a study by
Buçinca et al. [2020], participants had to identify the percentage of fat in various
meals with the assistance of an XAI system. Similarly, Bansal et al. investigated
the effect of XAI on user performance in several AI-assisted decision-making
tasks [Bansal et al., 2019; Bansal et al., 2021].

3.4. Conclusion

This chapter has provided the necessary XAI background for the contributions
of this dissertation.

It introduced the basic terminology and concepts of XAI.

It explored established XAI methods for classifiers, setting the stage for
adapting these methods to meet the unique challenges posed by DRL.
In particular, this chapter discussed saliency map methods, including the
perturbation-based methods we will evaluate for DRL in Chapter 9, and
LRP, for which this dissertation will introduce a DRL-specific variant in
6. Additionally, we explored counterfactual explanation methods, provid-
ing the groundwork for the novel DRL-specific counterfactual generation
method that Chapter 7 will propose.
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It provided a comprehensive foundation for evaluating XAI methods. By
discussing both computational and user-centered metrics for assessing ex-
planation effectiveness, this chapter provided the background for the com-
putational evaluations in Chapters 6, 7, and 9 as well as the user studies
in Part V.
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Part II.

Related Work - Explainable
Reinforcement Learning
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Chapter 3 laid the foundation by introducing general XAI concepts and pre-
senting examples of explanation methods and XAI metrics proposed for image
classifiers. Building on this foundation, this part will discuss related work that
focuses specifically on explaining (deep) RL agents. With the growth of work
on XAI in recent years, Explainable Reinforcement Learning (XRL) solidified
itself as a distinct subfield [Heuillet et al., 2021; Alharin et al., 2020; Puiutta
and Veith, 2020]. This part will show how this dissertation fits into and extends
the XRL research field. As with Chapter 3, this part will begin by exploring
explanation methods for DRL in Chapter 4 and then cover the evaluation of
XRL in Chapter 5.
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4. Explanation Methods for DRL

This chapter explores different methods that are used to explain (deep) RL
agents. To this end, Section 4.1 starts by looking at local explanation meth-
ods, which explain individual decisions of the agent. Then, in Section 4.2, this
chapter covers global explanation methods for DRL, which explain the agent’s
overall behavior. To provide an overview, Table 4.1 lists all the explanation
methods for DRL that this thesis will cover and how I categorize them in the
XAI terminology (see Section 3.1).

Table 4.1.: Categorization of the XRL methods covered in this thesis.

Method Global or Local Intrinsic or Post-hoc

Saliency Maps Local Post-hoc
Counterfactual Explanations Local Post-hoc
Reward Decomposition Local Intrinsic
Explainable Surrogate Models Global (can be

used locally)
Post-hoc

Intrinsically Explainable
Agent Architectures

Global (can be
used locally)

Intrinsic

Example-based
Policy Explanation

Global Post-hoc
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4.1. Local Explanations of Agent Behavior

Local explanation approaches in the context of DRL aim to elucidate specific
decisions of the agent – e.g., why the agent turned right in a specific Pacman
state. Figure 4.1 shows the local XRL methods we will explore in this thesis.

Figure 4.1.: An overview of the local XRL methods we will explore in this
thesis.

4.1.1. Saliency Maps for DRL

Similar to image classification, the
most common explanation methods for
DRL are saliency maps that highlight
which input information was most rele-
vant to the agent’s decision. In Section
3.2.1, we covered methods to gener-
ate saliency maps for image classifiers.
This section looks at implementations
of saliency maps that focus on DRL. It

extends text from our publication:

Tobias Huber, Dominik Schiller, and Elisabeth André [2019]. “Enhancing
Explainability of Deep Reinforcement Learning Through Selective Layer-
Wise Relevance Propagation”. In: KI 2019: Advances in Artificial Intelli-
gence. Springer International Publishing, pp. 188–202

Because many DRL algorithms utilize similar CNNs as image classifiers, it
is possible to apply the methods we covered in section 3.2.1 directly to DRL
agents.
For gradient-based saliency maps (Section 3.2.1.1), Zahavy et al. [2016]
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(a) Input State (b) Noise
Sensitivity

(c) SARFA (d) LRP

Figure 4.2.: The left image (a) shows a Pacman screen. Images (b) and (c)
show perturbation-based saliency maps for this state generated by the noise
sensitivity approach of Greydanus et al. [2018] (b) and the SARFA approach
of Puri et al. [2020] (c). Image (d) shows an LRP z+-rule saliency map for a
state similar to (a).

and Wang et al. [2016b] utilize the gradient of the network with respect to the
input pixels to explain DQN agents (Section 2.2), similar to what Simonyan
et al. [2013] did for image classifiers. Weitkamp et al. [2019] tested Grad-CAM
on an actor-critic DRL agent.
Lapuschkin et al. [2019] used LRP (Section 3.2.1.3) to create saliency maps

for DQN agents. Similar to the gradient-based methods mentioned above, they
applied LRP without adapting it to the specific challenges of DRL.
Prior to this dissertation, the only saliency map variants tailored to the spe-

cific challenges of explaining DRL agents were perturbation-based saliency
maps (Section 3.2.1.2). As mentioned in Section 3.2.1.2, Greydanus et al. [2018]
and Puri et al. [2020] already targeted DRL agents with their model-agnostic
perturbation-based saliency maps. Furthermore, Iyer et al. [2018] proposed
a novel mixture of an intrinsically explainable model and perturbation-based
saliency maps. Their approach uses template matching to identify objects in
each input image and uses this information as additional input channels to train
the DRL agent. Given an agent trained in this way, the relevance of an iden-
tified object can be measured by comparing the prediction of the input image
containing that object with the prediction for the same input image without
that specific object.
A drawback of perturbation-based saliency maps is that they are computa-

tionally expensive. This often means that they cannot be generated at runtime
while the agent is interacting with the environment. Furthermore, while the
perturbation-based saliency maps of Greydanus et al. [2018] and Puri et al.
[2020] have the advantage of being model agnostic, they depend on various hy-
perparameters. These hyperparameters must be tuned carefully to avoid the risk
of saliency maps that do not faithfully represent the agent’s internal reasoning
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(see Section 3.3.1).
Figure 4.2 shows example saliency maps for the methods used by Greydanus

et al. [2018], Puri et al. [2020], and Lapuschkin et al. [2019]. Chapters 6 and 9
will show additional examples.
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Original State where Pacman
moves down.

CSE Counterfactual State:
Pacman is supposed to move up.

Figure 4.3.: An example of a counterfactual explanation generated with the
CSE approach by Olson et al. [2021]. Interestingly, the counterfactual com-
pletely removes Pacman from the maze. This may be a consequence of the
fact that CSE uses an action-invariant latent space. If Pacman is not in the
state, it does not matter which action the agent chooses.

4.1.2. Counterfactual Explanations for DRL

RL is often used to create counter-
factual explanations for other models
(for example, in [Chen et al., 2021]).
However, to the best of my knowledge,
there is only one previous work on gen-
erating visual counterfactual explana-
tions for RL agents [Olson et al., 2021].
This section describes this approach
by Olson et al. [2021]. The section is
based on text from our publication:

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Olson,
and Elisabeth André [2023]. “GANterfactual-RL: Understanding Reinforce-
ment Learning Agents’ Strategies through Visual Counterfactual Explana-
tions”. In: Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages

Olson et al. [2021] train a neural network E that creates an action-invariant
latent representation of the agent’s latent space. This is achieved by adversari-
ally training E in tandem with a discriminator D, where D tries to predict the
agent’s action and E aims to make the decision of D as uncertain as possible.
In addition, they train a generative model G to replicate states s based on the
action-invariant latent representation E(s) and the agent’s action probability
distribution π(s) for this state. By providing G with a counterfactual action
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distribution π(s)′, they obtain a state that is similar to s but brings the agent’s
action distribution closer to the desired counterfactual distribution. However,
Olson et al. argue that an arbitrary counterfactual action distribution does not
represent a realistic agent output and thus leads to unrealistic counterfactual
states. To avoid this, they train an additional neural network that reduces the
dimension of the agent’s latent space. This low dimensional latent space is used
to perform gradient descent towards a realistic agent output that resembles the
desired counterfactual action. Olson et al. refer to their approach as Counter-
factual State Explanations (CSE). Therefore, we will also refer to it as CSE in
this thesis.
The CSE approach is fairly complex and requires extensive access to the

agent’s inner workings. Furthermore, as Olson et al. mention themselves, the
loss function of the generator G does not directly force the resulting state
G(E(s), π(s)′) to be classified as the counterfactual action distribution π(s)′.
This is only learned indirectly by replicating states based on the action-invariant
latent space and the desired action distribution π(s)′. As we will show in Section
7.2, this does not seem to be enough to change the agent’s decision correctly.
Figure 4.3 shows an example of a counterfactual explanation generated by CSE
that illustrates this problem. To solve those problems, we formulate a simpler
counterfactual generation method that uses the counterfactual actions in a more
direct way.

4.1.3. Intrinsic Explaination Methods

Intrinsic explanation methods are built
into the agent’s underlying decision
model to make it more explainable.
Most intrinsic approaches to explain-
ability use intrinsically explainable ar-
chitectures that cover the global model
of the agent. Section 4.2 will go
into more detail about such methods.
However, there are also intrinsic ap-

proaches that only explain local decisions. One such example, which we will
focus on in this thesis, is reward decomposition.
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Figure 4.4.: A schematic of reward decomposition using the hybrid reward
architecture.

4.1.3.1. Reward Decomposition

Using the Hierarchical Reward Architecture (HRA) as an example, this subsec-
tion introduces reward decomposition. The text is based on our publication:

Yael Septon, Tobias Huber, Elisabeth André, and Ofra Amir [2023]. “In-
tegrating Policy Summaries with Reward Decomposition for Explaining Re-
inforcement Learning Agents”. In: Advances in Practical Applications of
Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Col-
lection - 21st International Conference. Vol. 13955. Lecture Notes in Com-
puter Science. Springer, pp. 320–332. doi: 10.1007/978-3-031-37616-

0_27

Van Seijen et al. [2017] proposed the HRA model. HRA takes as input a
decomposed reward function and learns a separate Q-function for each reward
component. In a game like Pacman (see Section 2.1.2.1 for the game rules),
such reward components could, for instance, correspond to dying or eating pills.
Because each component typically only depends on a subset of all features, the
corresponding Q-function can be approximated more easily by a low-dimensional
representation, enabling more effective learning.
This can be incorporated in the MDP formulation by specifying a set of re-

ward components C and decomposing the reward function r into |C| reward
functions rc(s, a, s

′). The objective for the HRA agent remains the same as
for traditional Q-learning: to optimize the overall reward function r(s, a, s′) :=∑

c∈C rc(s, a, s
′). HRA achieves this by training several Q-functions Qc(s, a)

that only account for rewards related to their component c. If the under-
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lying agent uses deep neural networks, the different Q-functions Qc(s, a) can
share multiple lower-level layers of the neural network. In this case, the col-
lection of Q-functions that each have one type of reward can be viewed as a
single agent with multiple heads, such that each head calculates the action-
values of the current state under its own reward function. For choosing an
action for the next step, the HRA agent uses the sum of these individual
Q-functions: QHRA(s, a) :=

∑
c∈C Qc(s, a). For the update Y DoubleDQN

i (Sec-
tion 2.3) each head is used individually. That is, we set the target for Qc to
Y DoubleDQN
i,c (s, a, s′) := rc(s, a, s

′) + γQc(s
′, argmax

a′∈A
Qc(s

′, a′; θ), θ−i ). Figure 4.4

shows a schematic of the HRA architecture.
HRA was originally proposed to make the learning process more efficient.

However, Juozapaitis et al. [2019] and Erwig et al. [2018] suggested the use
of Reward Decomposition (RD) as a local explanation method. Traditional Q-
values do not give any insight into the positive and negative factors contributing
to the agent’s decision since the individual reward components are mixed into a
single reward scalar. Showing the individual Q-values Qc(s, a) for each reward
component c can explicitly reveal which rewards an agent expects from different
actions. Figure 8.3 will show an example of how the individual Q-values can
be displayed to users as bar graphs. A user study exploring the usefulness of
different local RL explainability methods showed that reward decomposition
contributed to people’s understanding of agent behavior [Anderson et al., 2019].
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4.2. Global explanations of agent behavior

Global explanations for RL agents attempt to describe the high-level policy of an
agent. This section will first give a brief overview of common global explanation
methods for DRL to put this work in context. Then, we will discuss strategy
summarization, which is the global explanation method this thesis focuses on.
Figure 4.5 shows the global XRL methods we will explore in this section.

Figure 4.5.: An overview of the global XRL methods that we will explore in
this thesis.

4.2.1. Explainable Surrogate Models

The most common global explanation
method for DRL agents is to distill
the policy of the black-box agent into
an intrinsically explainable surrogate
model that approximates the policy of
the black-box agent. Here, the deci-
sions of the black-box RL agent are
sampled to generate training data for
the surrogate model. Analyzing the in-
trinsically explainable surrogate model provides insight into the global policy
of the original agent, but it can also be used to create local explanations for
specific decisions. Typically, surrogate models are not used to choose actions
but only to analyze the agent’s strategy or to generate explanations. However,
they can also replace the black-box agent. In this case, they can considered a
hybrid between post-hoc methods and intrinsically explainable models.
A common group of intrinsically explainable architectures are reasonably

small decision trees. Bastani et al. [2018] sample informative state-action
pairs from the trajectories of a black-box RL agent. Based on this dataset, they
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train a decision tree to approximate which discrete action the agent takes in a
given state. Liu et al. [2019] use decision trees containing linear functions to
approximate the Q-values of value-based DRL agents (see Section 2.1.3). The
linear functions also allow them to utilize gradient descent during the train-
ing of their surrogate models. Similarly, Coppens et al. [2019] also use trees
that contain linear functions but use them to approximate the agent’s policy
directly. Bewley and Lawry [2021] aim to train surrogate decision trees that
capture the temporal dynamics of the environment by including the difference
between successive states in the training.
Besides decision trees, graphs are another popular explainable surrogate

model. Topin and Veloso [2019] extract what they call policy graphs from a
trained DRL agent. They search for abstract states that encompass a set of en-
vironment states where the agent chooses the same action and expects a similar
outcome. Examining how the agent transitions between these abstract states
provides a good understanding of its policy. Bewley et al. [2022] build on the
policy graph method by extracting them during the RL agent’s training to reveal
how the agent’s policy evolves over time.
Madumal et al. [2020] propose structural causal graphs. These causal graphs

are trained together with the RL agent. They approximate the causal relation-
ships between environmental variables and how the agent’s actions affect those
variables. Thus, this structural graph can be used to infer causal explanations
for the agent’s policy.
A drawback of surrogate-based global explanations is that training intrinsi-

cally explainable surrogate models for high-dimensional state spaces, such as
visual states, poses considerable challenges. All of the examples above were
tested on feature-based state spaces.

4.2.2. Intrinsically Explainable Agent Architectures

Rather than relying on surrogate
models to approximate black-box RL
agents, other approaches employ RL
to directly train agents whose archi-
tectures are inherently explainable. In
contrast to the previous section, these
models are used for both the action se-
lection and the explanation generation.
Similar to intrinsically explainable

surrogate models, decision trees are also used directly as an explainable archi-
tecture for the agent. Silva et al. [2020] propose the use of differential decision
trees and show how to train them with deep reinforcement learning algorithms
while keeping their size at an explainable level. Topin et al. [2021] introduce
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a method to extend normal MDPs so that any DRL policy trained on the ex-
tended MDP can be converted into a decision tree for the original MDP. They
do this by adding states, which describe bounded value ranges of the original
states, and information-gathering actions that compare input features to a given
value. In this way, the agent can learn to test which value range the features
currently belong to. Using these additions, DRL agents can mimic decision tree
nodes by checking which value range the current state belongs to.
Mathematical expressions can also serve as an intrinsically explainable policy.

Landajuela et al. [2021] train a neural network to generate a policy given by a
mathematical expression. This mathematical expression consists of “operators,
input variables, and constants” that compute an action for a given state (e.g.,
a = s1 + 0.5s2). When utilized to execute multiple episodes, this expression
yields a reward for the network. To optimize this reward, Landajuela et al. use
reinforcement learning.
As with explainable surrogate models, training intrinsically explainable RL

agents for complex environments poses substantial challenges and has been lim-
ited to relatively simple non-visual scenarios. The aforementioned methods were
all tested on feature-based state spaces.

4.2.3. Example-based Policy Explanations

The final category of global explana-
tion methods for DRL agents discussed
in this thesis is example-based pol-
icy explanation. The main idea here
is to illustrate the agent’s strategy to
the user through representative or in-
formative examples that demonstrate
how the agent behaves in different sce-
narios. In contrast to the previous two
categories of global XRL, this approach does not attempt to explain the whole
logic of the model underlying the agent, which is how Molnar [2022] and Adadi
and Berrada [2018] define global explainability for general AI agents. Instead,
the objective is to convey the global policy that the RL agent has learned. This
category of global XRL aligns with what Amitai and Amir [2023] refer to as
explanation by demonstration. It is also similar to the “example-based expla-
nation” approaches described by Adadi and Berrada [2018]. However, Adadi
and Berrada [2018] also subsume in this category approaches that explain lo-
cal decisions by presenting similar examples (e.g., counterfactual explanations).
The example-based policy explanation approaches described in this section aim
exclusively at explaining the global policy without the need for the examples
to resemble a specific local state. Finding suitable examples is not as complex
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as creating symbolic descriptions, making example-based policy explanations
feasible for the complex visual environments and agent architectures common
in DRL.

T-SNE. One way of demonstrating an agent’s policy through examples is the
use of t-SNE (t-distributed Stochastic Neighbor Embedding) [Maaten and Hin-
ton, 2008] on latent space representations (Section 2.2.2) of a DRL agent. T-SNE
visualizes high-dimensional data by projecting it to a 2D or 3D representation.
During this process, the proximity of data points is preserved – data points
that are close together in the original high-dimensional space remain close in
the low-dimensional representation. Several publications apply t-SNE to latent
space representations – generated by the agent – of states from different episodes
[Jaderberg et al., 2019; Jaunet et al., 2020; Mnih et al., 2015; Such et al., 2019;
Zahavy et al., 2016]. This process creates a 2D visualization where states that
are close to each other have similar representations in the agent’s latent space.
Exploring examples from this visualization gives the user an understanding of
how the agent divides the state space. To facilitate the analysis of this 2D
state-space visualization, the data points are often colored according to addi-
tional useful information. Mnih et al. [2015] and Zahavy et al. [2016] use color
to represent the agent’s state value V (s). Other examples of color-coding visu-
alize handcrafted values such as specific game situations or the agent’s position
[Zahavy et al., 2016; Jaderberg et al., 2019]. While t-SNE visualizations are
a useful debugging tool for machine learning experts, they are less suitable for
users without a machine learning background.

4.2.3.1. Strategy Summarization and HIGHLIGHTS

Strategy Summarization. An approach to explanation-based policy explana-
tion that is more suitable for general users is strategy summarization [Amir
et al., 2019].
Strategy summarization addresses the following problem: given a trained

agent π, we search for a set of state-action pairs that are representative of
the agent’s strategy. The motivation is that users lack the time to watch several
full episodes of the agent to get a good understanding of its strategy. Instead,
viewing only the state-action pairs in the summary should be sufficient to convey
the agent’s global strategy to the user.
Several methods have been proposed for selecting the set of state-action pairs

to present in a summary. Some methods use ideas from machine teaching, where
a trained RL agent “teaches” its strategy to an untrained agent. The intuition
is that examples that help transfer knowledge from the trained RL agent to
another agent will also help users understand the agent’s strategy. Huang et al.
[2019] create summaries containing states that would help other agents infer the
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original agent’s reward function. Similarly, Lage et al. [2019] select the state-
action pairs that would help other agents imitate the original agent’s actions on
arbitrary states. An alternative strategy summarization approach uses heuris-
tics to identify “interesting” situations based on the distribution of the agent’s
output values – in our case, the Q-values. The HIGHLIGHTS algorithm [Amir
and Amir, 2018], which is used in the experiments in this dissertation and will
be discussed in more detail in the following paragraph, falls into this category.
Huang et al. [2018] developed a similar approach in parallel. Finally, Sequeira
and Gervasio [2020] add other criteria, such as the frequency of occurrence of a
situation, in addition to the distribution of Q-values.
Strategy summarization methods are mostly based on the output of the agent.

In addition, they are straightforward to display, as they simply show the state-
action pairs within the summary. Therefore, they are applicable to a wide
range of DRL agents, including agents with high-dimensional visual state spaces.
Their simple presentation also makes them accessible to a wide range of users.
However, a notable limitation of strategy summaries is that they rely on the
user to interpret the displayed state-action pairs. This limitation is made worse
by the fact that they do not provide any local information about the agents’
reasoning in each state. To address this issue, this thesis proposes a combined
approach in Chapter 8 that integrates comprehensive strategy summaries with
local explanations (see Chapter 4.1), shedding light on agents’ reasoning pro-
cesses in specific situations.
To this end, the subsequent paragraph delves into HIGHLIGHTS, the specific

summarization algorithm used in this dissertation.

HIGHLIGHTS. This paragraph introduces the HIGHLIGHTS-DIV variant of
the HIGHLIGHTS algorithm proposed by Amir and Amir [2018]. Since this
dissertation exclusively uses HIGHLIGHTS-DIV, we will refer to it as HIGH-
LIGHTS for simplicity. The HIGHLIGHTS algorithm [Amir and Amir, 2018]
selects state-action pairs for the summary by defining an importance metric:

I(s) := max
a

Qπ(s, a)−min
a

Qπ(s, a) (4.1)

The intuition behind this metric is that a state is considered important by the
agent if the agent expects high profits from the best action (Figure 4.6 (b))
or fears disastrous consequences from the worst action (Figure 4.6 (c)). If the
agent is indifferent to the choice of action, all Q-values are in a similar range,
and I(s) is low (Figure 4.6 (a)).
The importance metric I(s) was originally proposed by Torrey and Taylor

[2013] to identify the most suitable teaching opportunities for a trained RL agent
to impart knowledge to an untrained agent. Similar to strategy summarization,
they assume that the teacher agent has only a limited budget k of situations to
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(a) Unimportant:
Any Action Acceptable

(b) Important:
Potential High Profit

(c) Important:
Potential Disaster

Figure 4.6.: Examples of the HIGHLIGHTS state selection. (a) shows a state
that would not be included in a HIGHLIGHTS summary since it is unimpor-
tant to the agent. Pacman cannot move up or down because walls block its
path. Moving right or left does not change its future reward much. (b) and
(c) show states that are suitable for a HIGHLIGHTS summary, as they could
be interesting to the strategy of a Pacman agent. (b) shows a promising state
for the agent. If Pacman moves to the right, it will receive a high reward for
eating the blue ghost. If Pacman moves left or up, it will miss this reward.
(c) shows a state where the wrong action has fatal consequences. If Pacman
moves left, it will be eaten by the ghost and lose one life. Appendix D.4 con-
tains additional examples of HIGHLIGHTS for five different agents.

demonstrate to the student agent. Amir and Amir [2018] transfer the idea of
Torrey and Taylor [2013] to the problem of explaining the strategy of a black-box
agent to a human user.
To this end, Amir and Amir [2018] propose an algorithm that generates a

set T = {t1, ..., tk} of trajectories that summarize the agent’s strategy, where
each trajectory tj consists of a sequence of l state-action pairs tj = ⟨(si, ai),
. . . , (si+l−1, ai+l−1)⟩. They use trajectories instead of individual state-action
pairs to provide context for the important state-action pairs. For example,
consider a situation where Pacman is in front of a ghost similar to Figure 4.6
(c). If we do not know what action the agent takes after this frame, we do not
know whether Pacman successfully avoids the ghost.
Algorithm 1 shows the pseudocode for the HIGHLIGHTS algorithm proposed

by Amir and Amir [2018] without the HIGHLIGHTS-DIV variant. The algo-
rithm can be executed online while the agent interacts with the environment.
The algorithm runs for the number of episodes given by numSimulations

(lines 1, 5-7, and 24). At each time step, the agent π chooses an action a for
the state s (line 8), and the importance I(s) is calculated (line 14). The current
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Algorithm 1: The HIGHLIGHTS algorithm. Replicated from Amir
and Amir [2018].

Input: π, k, l, numSimulations, intervalSize, statesAfter
Output: T

1 runs = 0
2 T ← PriorityQueue(k, importanceComparator)
3 t← empty list
4 c = 0
5 while (runs < numSimulations) do
6 sim = InitializeSimulation()
7 while (!sim.ended()) do
8 (s, a)← sim.advanceState(π)
9 if (|t| == l) then

10 t.remove()

11 t.add((s, a))
12 if (c > 0) then
13 c = c− 1

14 Is ← computeImportance(π, s)
15 if (intervalSize− c == statesAfter) then
16 lastSummaryTrajectory.setTrajectory(t)

17 if ((|T | < k) or (Is > minImportance(T ))) and (c == 0)) then
18 if |T | == k then
19 T.pop()

20 st← new summaryTrajectory(Is)
21 T.add(st)
22 lastSummaryTrajectory ← st
23 c = intervalSize

24 runs = runs+1
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trajectory of the last l state-action pairs is constantly stored and updated in
the list t (lines 3 and 9-11). The algorithm stores the current summary as a
priority queue T sorted by the importance I(s) (line 2). The intervalSize spec-
ifies the minimum number of states between two trajectories in the summary.
This is implemented with the parameter c in lines 4, 12-13, 17, and 23. If the
summary T is not yet full or the importance I(s) of the current state is higher
than the lowest importance in the summary, the current trajectory is added
to the summary (lines 17-22). Here, the algorithm uses a summarTrajectory
object that stores the trajectory along with the importance I(s) to compare
against future importance values. Finally, the last trajectory added to the
summary (lastSummaryTrajectory) is extended by statesAfter states to in-
clude the context after the important state-action pair for which it was added
to the summary (lines 15-16). The algorithm depends on five hyperparameters,
which Amir and Amir [2018] chose as follows: k=5, l=40, numSimulations=50,
intervalSize=50, statesAfter=10
HIGHLIGHTS-DIV changes the algorithm at lines 17-20. HIGHLIGHTS-

DIV does not compare the current state’s importance I(s) with the lowest im-
portance of the summary T . Instead, it searches for the state s′ in the summary
T that is most similar to s. Then it compares I(s) with I(s′) and replaces the
trajectory around s′ with the trajectory around s if I(s′) < I(s). This adjust-
ment allows less interesting states to remain in the summary if they are different
enough from other states. Thus, HIGHLIGHTS-DIV increases the diversity of
the summary and conveys more information within the same budget. However,
HIGHLIGHTS-DIV assumes we can define a similarity metric on the state space
S. The Euclidean distance is a natural candidate for such a metric for visual
input.

4.3. Conclusion

This chapter reviewed relevant related work on the development of explanation
methods for DRL. We uncovered several gaps and challenges that this disserta-
tion will address.

Before this thesis, the development of saliency maps tailored to DRL has
primarily focused on perturbation-based variants. Although useful, these
approaches are often computationally inefficient, which limits their ap-
plication in real-time scenarios. Alternatively, Gradient-based and LRP
saliency maps have been applied to DRL directly without specific adjust-
ments to the challenges of XRL. To fill this gap, Chapter 6 will introduce
a DRL-specific variant of LRP.

Due to their model-agnostic nature, perturbation-based saliency maps are
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advantageous when the agent’s internal model is inaccessible. However,
their reliance on hyper-parameters can lead to saliency maps that do
not accurately reflect the agent’s internal reasoning. In Chapter 9, this
thesis will demonstrate a methodology to tune the hyper-parameters of
perturbation-based saliency maps for DRL.

Prior to this thesis, there was only a single method for creating coun-
terfactual explanations for DRL agents with visual input. This approach
requires extensive access to the agent’s internal model and only implicitly
accounts for the agent’s actions. Thus, its applicability to diverse DRL
agents is limited, and it often results in counterfactuals that inadequately
represent the agent’s actions. To overcome these limitations, Chapter 7
will introduce a model-agnostic counterfactual explanation approach that
directly incorporates the agent’s actions.

A substantial portion of the related work on global explanations for DRL
focuses on creating intrinsically explainable agents – either by training
them from scratch with RL or by distilling trained black-box agents into
explainable models. However, such approaches are not feasible for high-
dimensional state spaces, such as those involving visual inputs. In con-
trast, example-based global explanations are feasible for visual domains
but do not provide any explanations about local decisions. Chapter 8
bridges this gap by presenting a combination of global example-based
strategy summaries with local explanations. Thereby, it offers a compre-
hensive explanation framework suitable for complex visual environments.
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5. Evaluation of Explanation
Methods for RL Agents

This chapter discusses related works on evaluating XRL. It extends text from
our publications:

Tobias Huber, Katharina Weitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy sum-
maries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi: 10.

1016/j.artint.2021.103571

and

Tobias Huber, Benedikt Limmer, and Elisabeth André [2022]. “Bench-
marking Perturbation-Based Saliency Maps for Explaining Atari Agents”.
In: Frontiers in Artificial Intelligence 5. issn: 2624-8212. doi: 10.3389/

frai.2022.903875

As with the evaluation of general XAI methods in Section 3.3, this chap-
ter divides the evaluation of XRL into human user studies and computational
metrics.

5.1. Human User Studies

So far, DRL agents have primarily been evaluated with user studies. As men-
tioned in Section 1.1, DRL agents are particularly challenging for users to under-
stand compared to classifier models. DRL agents may learn strategies that are
unexpected for the user but still optimal for the reward function. In addition,
users need to understand the temporal interactions between different actions.
This section provides an overview of XRL user studies sorted by their evaluation
metrics. See Section 3.3.2 for a definition of the metrics.

Mental Models. A common method to get insights into the participants’ men-
tal model of RL agents are prediction tasks, similar to the ones for image clas-
sifiers by Alqaraawi et al. [2020] and Selvaraju et al. [2020] (see Section 3.3.2).
Iyer et al. [2018] used an action prediction task to evaluate the effect of saliency
maps (Section 4.1.1) on the participants’ mental model of the agents but found
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no clear benefit of saliency maps. Huang et al. [2019] and Lage et al. [2019] asked
participants to predict what actions an agent would take based on strategy sum-
maries optimized for policy reconstructions (Section 4.2.3). Their results show
that summary methods that better match people’s computational models lead
to improved action prediction but that people may use different models in differ-
ent contexts. Madumal et al. [2020] showed that their intrinsically explainable
RL method significantly helped participants in a prediction task.
Other studies used debugging tasks aimed at machine learning practitioners

to see if the participants’ mental models are good enough to identify faulty
agents. Greydanus et al. [2018] showed that their perturbation-based saliency
maps (Section 3.2.1.2) helped participants to identify overfit policies. Similarly,
Olson et al. [2021] demonstrated that their counterfactual explanations (Section
4.1.2) helped participants to identify a faulty agent that did not observe the
input correctly.
Finally, some studies used agent understanding tasks to get a more nuanced

view into the participants’ mental model of the agent. Anderson et al. [2019]
asked their participants to describe the strategy of an RL agent textually. Based
on these descriptions, they used summative content analysis [Hsieh and Shan-
non, 2005] to assess the participants’ mental models of the agent. They com-
pared saliency maps, reward decomposition (Section 4.1.3.1), and a combination
of both methods. Their results show significant positive effects for reward de-
composition and the combined approach and a marginally significant (p = 0.086)
effect in favor of saliency maps. However, they only used a single agent in their
evaluation. Sequeira and Gervasio [2020] extended this method by using custom
observation spaces that can be manipulated to train several agents with quali-
tatively different policies. They showed that strategy summaries generated by
a variety of interestingness criteria improved people’s ability to identify regions
of the state space in which each agent spends more time and regions of the state
space in which each agent requires additional training [Sequeira and Gervasio,
2020]. However, a drawback of their evaluation is that the custom observation
spaces require profound modifications to the RL agents’ architecture and en-
vironment. The studies in this thesis improve on this by solely changing the
reward function to obtain agents with qualitatively different policies. Sequeira
and Gervasio also adjust the reward, but only for one of their agents.

Appropriate Trust. Importance-based strategy summaries (e.g., HIGH-
LIGHTS) were shown to improve people’s ability to identify the better-performing
agent in an agent comparison task [Amir and Amir, 2018] and their ability to
decide whether to trust an agent in specific world states [Huang et al., 2018].
Both of these studies create different agents by varying the training duration.
While the resulting agents differ in their final scores, they all follow similar
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strategies. Sequeira and Gervasio [2020] took this further by showing that
their interestingness-based strategy summaries help participants to appropri-
ately trust agents with qualitatively distinct policies (see previous paragraph).
However, Sequeira and Gervasio only measured the participants’ perceived trust
by asking them to rate their trust in each agent. They did not provide an in-
centive for a greater allocation of trust to superior agents. The studies in this
thesis address this limitation by measuring demonstrated trust through an agent
comparison task. Participants have to choose an agent to play on their behalf,
and if they choose the better agent, they receive a bonus payment.

Performance. Puri et al. [2020] showed that their SARFA saliency maps (see
Section 3.2.1.2) can help participants solve chess puzzles by highlighting which
pieces were relevant for an agent’s solution for these puzzles. Similarly, Tabrez et
al. [2022] demonstrated that saliency map explanations can support participants
in an AR-based minesweeper environment.

Explanation Satisfaction. Madumal et al. [2020] showed that their intrin-
sically explainable RL agents significantly improved explanation satisfaction,
which they measured through the scale proposed by Hoffman et al. [2018] (see
Section 3.3.2 for the full scale). Tabrez et al. [2022] found promising results
for saliency maps in their subjective questions, which were sampled from dif-
ferent established questionnaires, including the explanation satisfaction scale
[Hoffman et al., 2018]. Both Madumal et al. and Tabrez et al. also measure the
participants’ subjectively perceived trust in the agents with Tabrez et al. finding
positive results for their explanations. However, neither study measures appro-
priate trust as they do not compare the participants’ trust with the performance
of the RL agents.

5.2. Computational Metrics

Exclusively relying on user studies might only measure how convincing the ex-
planations are but not how much they reflect the agent’s internal reasoning.
Therefore, it is important to additionally evaluate explanations through compu-
tational measurements [Mohseni et al., 2021b]. Such measurements also provide
an easy way to collect preliminary data before recruiting users for a user study.
In Section 3.3.1, we already looked at computational evaluation for general

XAI. However, XRL presents additional challenges related to the long-term
decision-making of DRL agents. Each action of a DRL agent is potentially
influenced by delayed rewards that the agent expects in the future. Therefore,
evaluating explanations for these actions must take into account how the actions
fit into the agent’s overall strategy. For example, value-based DRL agents learn
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both the value of each action and the value of the state in the current strategy
(Section 2.1.3). A computational evaluation of XRL must account for both of
these value estimates.
Despite this additional challenge, there is very little work on computation-

ally evaluating the fidelity of post-hoc explanation methods, such as saliency
maps, for DRL agents. Puri et al. [2020] recorded which chess pieces human
experts identified as important in a set of chess puzzles. This allows them to
computationally compare these pieces to the pieces that saliency maps identify
as relevant for an agent. However, this does not measure the saliency maps’
fidelity to the agent’s reasoning – it only measures whether the saliency maps
coincide with human reasoning. Atrey et al. [2020] conduct experiments to ver-
ify hypotheses that are generated from observing saliency maps. However, both
the formulation of hypotheses as well as their verification rely on manual in-
spection of the saliency maps. Therefore, this method requires extensive human
effort. Moreover, it is not certain whether an erroneous hypothesis has been
formulated because the saliency maps are faulty and do not reflect the agent’s
reasoning, or because the human observers misinterpreted the saliency maps.

5.3. Conclusion

To summarize, this dissertation extends existing work on evaluating explana-
tions for DRL in three ways:

Regarding user studies, this dissertation presents the first user studies
that evaluate the combined and individual benefits of global and local
explanations for DRL. While Anderson et al. [2019] also investigated a
combined explanation approach, they integrated two local explanation
methods.

Additionally, before this dissertation, no user study for XRL encompassed
a holistic evaluation of appropriate trust, agent understanding, and sub-
jective explanation satisfaction. Madumal et al. [2020] and Sequeira and
Gervasio [2020] used similar metrics, but Sequeira and Gervasio did not as-
sess subjective explanation satisfaction and Madumal et al. only measured
perceived trust and not appropriate trust.

Prior to this dissertation, there was no fully automated computational
saliency map evaluation that specifically targeted XRL. The sanity check
in Chapter 6 and the thorough computational evaluation in Chapter 9
can be seen as the first computational evaluation to benchmark different
saliency map approaches for DRL agents.
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Part III.

Approaches for Explaining DRL
Agents
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6. LRP-Argmax: Selective Saliency
Maps for DRL Agents

As we have seen in Section 4.1.1, the generation of saliency maps, which highlight
the areas in the input that were relevant for the agents’ decision-making pro-
cess, is a common approach to explaining the actions of DRL agents. While such
saliency map algorithms are already well established and were even used to un-
derstand and improve how we transfer knowledge from one classification model
to another [Schiller et al., 2019; Schiller et al., 2020; Prajod et al., 2021], they
are usually developed with experienced machine learning practitioners in mind.
This can make the generated explanations difficult to interpret for beginners or
users who are unrelated to the field of machine learning. Weitz et al. [2019a], for
example, found that traditional saliency maps are too fine-granular for humans
to easily detect relevant features for the classification. In a recent meta-study,
Miller [2019] explored the explanation process between humans to derive new
design paradigms for explainable artificial intelligence algorithms that can help
to make such methods more accessible to non-expert users. One major finding
of this study was that people usually prefer selected explanations that focus on
specific evidence instead of showing every possible cause of a decision. Based on
this insight, this chapter adjusts an existing saliency map approach to be more
focused on the parts of the input that are most relevant for the decision-making
process of a system. The chapter is based on the publication:

Tobias Huber, Dominik Schiller, and Elisabeth André [2019]. “Enhancing
Explainability of Deep Reinforcement Learning Through Selective Layer-
Wise Relevance Propagation”. In: KI 2019: Advances in Artificial Intelli-
gence. Springer International Publishing, pp. 188–202

With some additions from:

Tobias Huber, Katharina Weitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy sum-
maries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi: 10.

1016/j.artint.2021.103571

We base our approach on LRP, which we discussed in detail in Section 3.2.1.3.
In contrast to most other approaches, LRP offers the benefit of conserving the
confidence value of the prediction throughout its process [Montavon et al., 2018].
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Thus, the intensity of the saliency maps reflects the agent’s confidence, which
can help to decide whether to trust the agent. Furthermore, there is a natural
way of excluding negative relevance values with LRP [Montavon et al., 2018].
In some use cases, such contradictory evidence can be confusing for users. For
example, when the saliency maps are shown as a video, the user does not have
time to compare positive and negative relevance values.
Our adjustment uses an argmax function to follow only the most contributing

neurons of each convolutional layer, which enables us to filter out the most rele-
vant information. Therefore, we can create selective and more focused saliency
maps while maintaining the advantageous properties of LRP mentioned above.
Modern DQN variants, like the rainbow algorithm [Hessel et al., 2018], employ

dueling DQN systems that use two separate estimators to measure the value of
the current state and the advantage of each action the agent can take in that
state. Since the dueling DQN approach considerably alters the neural network
architecture of the original DQN (see Section 2.2), it requires its own LRP
variant. To test our approach with state-of-the-art dueling DQN algorithms,
we introduce a slightly adapted version of LRP that can handle the dueling
DQN architecture without losing its advantageous properties. Since no other
improvement of the DQN algorithm considerably changes the underlying neural
network architecture, this extension allows us to use LRP on any DQN-based
DRL algorithm without any further adjustments.
We test our approach on three Atari 2600 games (see Section 2.1.2) of varying

complexity using the OpenAi gym and baselines libraries [Brockman et al., 2016;
Dhariwal et al., 2017].

6.1. An argmax approach to LRP

In this section, we introduce our adjustment to the LRP variant called z+-rule,
which is described in Section 3.2.1.3. Recent work indicates that DRL agents
focus on certain objects within the visual input [Iyer et al., 2018; Goel et al.,
2018]. With our approach, we aim to generate saliency maps that reflect this
property by focusing on the most relevant parts of the input instead of giving
too many details. For this purpose, we propose to use an argmax function to
find the most contributing neurons in each convolutional layer.
This idea is inspired by Mopuri et al. [2019], who generated saliency maps

for neural networks solely based on the positions of neurons that provide evi-
dence in favor of the prediction. During this process, they follow only the most
contributing neurons in each convolutional layer. Our method adds relevance
values to the positions of those neurons and, therefore, expands the approach of
Mopuri et al. by an additional dimension of information. Since those relevance
values follow the LRP concept, they also possess the advantageous properties
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Figure 6.1.: A visualization of how our argmax approach differs from the z+

Rule.

of the LRP concept, like the conservation of the prediction value.
As we have seen in the background Section 3.2.1.3, an LRP method is defined

by its messages Rl,l+1
j←k which propagate the relevance from a layer l + 1 to the

preceding layer l. If l + 1 is a fully connected layer fci of the DQN (see Section
2.2.1 for our notation of the DQN architecture), we use the same messages that
are used in the z+-rule. In the case that l and l + 1 are convolutional layers
convi−1 and convi, we propose new messages based on the argmax function. To
define those messages, we analyze how the activation of a neuron convi(x)k was
calculated during the forward pass. Let W and A denote the weight kernel and
part of convi−1(x) respectively that were used to calculate convi(x)k during the
forward pass. If we write W and A in an appropriate vector form, we get

convi(x)k = σ(
∑
j

wjaj + b),

where σ denotes the activation function of convi and b the bias corresponding to
W . Analogously to the z+-rule, we assume that the activation function and the
bias can be neglected when determining the relevance values of the inputs ai.
We propose to use an argmax function to find the most relevant input neurons
by defining the messages in the following way

Rl,l+1
j←k :=

{
Rl+1

k if j = argmax{wjaj}
0 if not.
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This definition satisfies the LRP condition given by Equation 3.8 because the
only non-vanishing summand of the sum∑

j∈{j is input for neuron k}

Rl,l+1
j←k

is Rl+1
k .

If we use the same argmax approach to propagate relevance values from conv1
to the input, which we denote with conv0, then we get very sparse saliency maps
where only a few neurons are highlighted. If we highlight the entire areas of
the input conv0 that were used to calculate relevant neurons of conv1, then we
lose information about the relevance values inside those areas. Therefore, we
draw inspiration from the guided Grad-CAM approach introduced by [Selvaraju
et al., 2020]. Guided Grad-CAM uses one thorough relevance analysis for the
neurons of the last convolutional layer to get relevant areas for the specific
prediction and another thorough relevance calculation for the input pixels to
get fine granular relevance values inside those areas. We already did a thorough
analysis of the neurons of the last convolutional layer by using the z+-rule on
the fully connected layers. By following the most relevant neurons through the
convolutional layers, we keep track of the input areas that contributed the most
to those values. Mimicking the second thorough analysis of the Guided Grad-
CAM approach, we propose to use the z+-rule to propagate relevance values
from conv1 to conv0. This generates fine granular relevance values inside the
areas identified by following the most contributing neurons and ascertains that
those relevance values follow the LRP concept.
Figure 6.1 visualizes the differences between our argmax approach and the

z+-rule. An open-source implementation of our algorithm that builds upon
the iNNvestigate framework [Alber et al., 2019] can be found here: https:

//github.com/HuTobias/LRP_argmax.

6.2. LRP on Dueling Q-Networks

The dueling Q-network is a neural network architecture first introduced byWang
et al. [2016b] as an improvement of the neural network architecture used in the
DQN algorithm (see Section 2.2). Because it is only changing the architecture
of the neural network, it is independent of the training algorithm. Therefore, it
can easily be combined with other improvements to the DQN algorithm. This
can be seen in the rainbow algorithm, the current state-of-the-art version of
the DQN [Hessel et al., 2018], which combines many different improvements of
the DQN algorithm. We chose Dueling DQN because the LRP concept only
depends on the neural network architecture. Therefore, applying LRP to the
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Dueling DQN architecture suffices to apply LRP on all currently used versions
of the DQN algorithm.
Instead of using a single fully connected network after the convolutional part

of the DQN, the Dueling DQN architecture uses two fully connected networks
A and S, both of which use the output of the last convolutional layer as input.
These two fully connected networks share the same architecture apart from their
output layer. For an input state s, the state value network S has only one single
output neuron S(s) that measures the value of the state s. The network A has
an output neuron A(s, a) for each action a, describing the advantage of choosing
the action a in the state s. The Q-value (the prediction of the whole model) for
an input state s and an action a is then calculated by

Q(s, a) = S(s) + A(s, a)− 1

N

N∑
i=1

A(s, ai), (6.1)

where N denotes the number of available actions ai.
One way of using LRP on this architecture would be to use LRP methods on

each of the networks S and A separately, but then we would lose the conservation
property because the relevance values would not add up to Q(s, a). Therefore,
we have to define a way to propagate the relevance value of the output Q(s, a)
to S(s) and A(s, a). Because Equation 6.1 is already a linear decomposition, the
main question is how we handle the summand − 1

N

∑N
i=1 A(s, ai). For this we

follow the original thought process of Wang et al. [2016b], who treat (A(s, a)−
1
N

∑N
i=1A(s, ai)) as the modified contribution of A(s, a) to Q(s, a). Analogously

to the z+-rule, we only propagate those values if they are positive since we want
to exclusively highlight evidence in favor of the chosen action a. That is, we set

S(s)+ := max(0, S(s)) (6.2)

A(s, a)+ := max
(
0, A(s, a)− 1

N

N∑
i=1

A(s, ai)
)
. (6.3)

If we would use these values as LRP messages, then the LRP Equation 3.8
would not hold if either of S(s) or A(s, a) are negative. Therefore we set the
LRP messages analogously to the z+-rule as:

RS(s)←Q(s,a) :=
S(s)+

S(s)+ + A(s, a)+
Q(s, a) (6.4)

RA(s,a)←Q(s,a) :=
A(s, a)+

S(s)+ + A(s, a)+
Q(s, a). (6.5)

If both S(s) and A(s, a) are negative, then there is no evidence in favor of the
prediction. Consequently, it is justified that we do not propagate any relevance
values in this case.
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(a) screen (b) z+-rule (c) argmax

Figure 6.2.: A comparison of action advantage analysis: The left image (a)
shows a screen from the Atari game Enduro with additional descriptions. The
red area was identified as relevant by gradient-based saliency maps in [Wang
et al., 2016b]. While the z+-rule (b) highlights the cars and the edge of the
road, even though it is not important in this situation, our argmax approach
(c) selects only the relevant cars.

6.3. Illustration of the Selectivity of the
argmax-rule

In order to verify that our argmax approach, described in Section 6.1, creates
more selective saliency maps than the r+-rule (see Section 3.2.1.3), we tested
our approach on three different Atari 2600 games and present the results of
those experiments in this section. For all games, we trained an agent using
the DQN implementation of the OpenAi baselines framework [Dhariwal et al.,
2017]. Since this implementation utilizes the Dueling DQN architecture [Wang
et al., 2016b], we used the approach described in Section 6.2 to apply LRP to
this architecture.
We keep track of which relevance values correspond to the state value and

the action advantage values and differentiate them by coloring them red and
green, respectively. This allows us to compare our saliency maps with the ones
generated by gradient-based methods in [Wang et al., 2016b] for a Duelling
DQN agent trained on the Atari game Enduro. In this simple driving game,
the Player controls a car and has to avoid hitting other cars while overtaking
as many of them as possible. The left image of Figure 6.2 shows a screen from
this game in the preprocessed form that the agent received. The area that was
identified as relevant for the action advantage value in similar game-states by
the gradient-based saliency maps in [Wang et al., 2016b] is marked in red. To
facilitate readability, we added descriptions of the important game objects and
cut off the lower part of the screen, which only contains the score. The middle
and right images show saliency maps generated by the z+-rule and our argmax
approach, respectively, for the game state shown in the left image. All three
saliency maps identified the area in front of the player’s car as the most relevant
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(a) screen (b) z+-rule (c) argmax

Figure 6.3.: The first image (a) shows a screen of the Atari game Space Invaders
with additional descriptions. The saliency map created for this game-state by
the z+-rule (b) highlights most of the aliens and all the obstacles, while our
argmax approach (c) focuses on the first row of aliens which the agent can
actually hit.

area. The gradient-based saliency map in [Wang et al., 2016b] focused strongly
on this region but was not fine-grained enough to select individual cars. The
z+-rule, on the other hand, emphasizes all the relevant cars but does not focus
on the area in front of the agent. Instead, it also highlights the general course
of the road, which is not particularly important in this situation. Our argmax
approach is the most selective and only highlights the relevant cars inside the
area that was also identified by the gradient-based approach.
The second game we trained our agent on is called Space Invaders. In this

game, the agent controls a cannon, which can move horizontally along the bot-
tom of the screen, and has to destroy descending waves of aliens. Additionally,
the player needs to evade incoming projectiles fired from the aliens or take cover
behind three floating obstacles. In contrast to purely reactive games like En-
duro, Space Invaders requires the agent to develop long-term strategies, as it
has to determine an order in which it destroys the aliens in each wave and also
has to decide when to hide behind obstacles. While this does not necessarily
imply that the game is harder for an agent to learn, analyzing the trained model
might lead to a better understanding of an optimal strategy to solve this game.
Figure 6.3 shows a comparison of the two different saliency map approaches for
a specific game state of space invaders. Both the z+-rule, as well as the argmax
approach, show that the agent mostly considers the aliens positioned on the out-
line of the grid as relevant. However, the argmax approach does so more clearly
by only highlighting aliens on the outline of the grid. This selection makes sense
since the other enemies cannot be hit by the agent. Our selective argmax-rule
further shows that the agent is not paying attention to the obstacles. Given a
certain performance level of our model, this suggests that they might not be a
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(a) screen (b) z+-rule (c) argmax

Figure 6.4.: The left image (a) shows a screen of Pacman. The player (green
circle) has to collect pellets (blue area) while avoiding ghosts (red circles). The
saliency map created for this game state by the z+-rule (b) highlights a huge
area as relevant, while our argmax approach (c) focuses on the vicinity of the
player.

necessary component of an optimal strategy for Space Invaders. In this way,
our selective saliency maps enable us not only to find errors in our model but
also to pass on the learned knowledge to human players.
The last game we used to verify our approach is Pacman, where the player

has to navigate through a maze and collect pellets while avoiding enemy ghosts
(see Section 2.1.2.1 for a more detailed description). Because this game contains
many important objects and gives the agent a huge variety of possible strategies,
DQN agents struggle in this environment and perform worse than the average
human player (see [Mnih et al., 2015]). Explainable AI methods are especially
desirable in environments like this, where the agent is struggling, because they
help us understand where the agent has difficulties. The saliency maps created
by the z+-rule (Figure 6.4 (b)) reflect the complexity of Pacman by showing
that the agent tries to look at nearly all of the objects in the game. This
information might be helpful to optimize the DRL agent, but it also distracts
from the areas that influenced the agents’ decision the most. Figure 6.4 (c)
shows that the saliency map created by the argmax approach is more focused
on the vicinity of the agent and makes it clearer what the agent is focusing on
the most. Figure 6.4 further illustrates that a fine-granular saliency map in the
vicinity of the agent is necessary to see that the agent will most likely decide on
moving to the right as his next action.
For the sake of completeness, we want to mention that a similar selective effect

can be obtained by using the z+-rule and implementing some kind of threshold,
for example, only showing the highest 1% of all relevance values. However, this
approach comes with its own set of challenges. While a threshold might be
suited for one environment, it might be too high or low for other environments,
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(a) Space Invaders (b) Pacman

Figure 6.5.: Only showing the top 42 relevance values created by the z+-rule
produces a saliency map (a) which is similar to the one created by our argmax-
approach for Space Invaders in Figure 6.3(c). Using the same threshold for
Pacman (b), we lose some relevant information since, in contrast to 6.4(c), the
position of the player is no longer highlighted.

presenting too much or too little information (see, for example, Figure 6.5).
Our proposed approach is independent of the environment, which eliminates
the need to empirically determine a specific threshold for each new problem.
Furthermore, the conservation property of LRP is lost by simply removing rel-
evance values. Therefore, the generated saliency maps are not proportional to
the prediction, which makes it harder to compare different saliency maps.
In total, our experiments have shown that our approach can be used on three

games, each of which presents a different challenge, and that it generates infor-
mative saliency maps that are more selective than the ones generated by the
z+-rule.

6.4. Sanity Checks

As we have seen in Section 3.3.1, it is not yet possible to verify whether a
saliency map algorithm perfectly reflects what a model learned. However, a basic
prerequisite for this is that the saliency maps depend on the weights learned
by the model. To verify this, Adebayo et al. [2018] proposed sanity checks
that cascadingly randomize each layer of the network, starting with the output
layer. If the saliency maps depend on the learned weights, then this will lead to
increasingly different visualizations. Sixt et al. [2020] applied the sanity checks
to several LRP variants, but they have never been used on our argmax-rule.
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original fc2 fc1 conv3 conv2 conv1

Figure 6.6.: Example for how the LRP-argmax saliency maps change when the
network’s layers are randomized cascadingly, beginning with output layer fc2.

Figure 6.7.: The average similarities between saliency maps for the fully trained
agent and agents where the layers have been randomized cascadingly, starting
with the last layer fc2. The values are based on a stream of 1000 actions in
the Atari 2600 Pacman game.

Therefore, we implemented the sanity checks1 for our argmax-rule and test it
on the regular Pacman agents described in Section 10.1. An example of these
tests for a single state is shown in Figure 6.6.
To measure how similar two saliency maps are, we use three different met-

rics proposed by Adebayo et al. [2018]: Spearman rank correlation, structural
similarity (SSIM), and Pearson correlation of the histogram of oriented gradi-
ents. To account for a possible change of sign in the saliency maps, we adopt
an approach by Sixt et al. [2020] and use the maximum similarity of the orig-
inal and the inverted saliency map. That means that for two saliency maps
S, S

′ ∈ Rm×n×c and a similarity measurement sim : Rm×n×c × Rm×n×c → R we
calculate the actual similarity with

max(sim(S, S
′
), sim(1− S, S

′
)) (6.6)

where 1 ∈ Rm×n×c is filled with 1s. Figure 6.7 shows the average similarities
per randomized layer for a gameplay stream of 1000 states.
The relatively high values for the structural similarity (SSIM) can be ex-

plained by the high amount of intersecting zeros in all saliency maps. Apart from
that, we see the same trends already observed by Sixt et al. [2020] and Adebayo

1The code we used for the sanity checks can be found here: https://github.com/HuTobias/
HIGHLIGHTS-LRP/tree/master/sanity_checks
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et al. [2018]: The saliency maps do analyze the learned weights, but the fully
connected layers are not sufficiently analyzed. As a consequence, the saliency
maps are not class discriminatory. However, class discriminatory saliency maps
often come with other drawbacks like being noisy [Sixt et al., 2020] or not ana-
lyzing all layers [Selvaraju et al., 2020].

6.5. Conclusion

In this chapter, we presented two adjustments to the LRP concept that enable
compatibility with state-of-the-art deep reinforcement learning approaches and
increase the selectivity of the generated saliency maps while maintaining all
desired properties of the original algorithm. For one, we have shown a way
to use LRP on the Dueling DQN architecture, which makes it possible to use
LRP on all current versions of the DQN algorithm. Secondly, we introduced
an adjustment to an existing LRP variant, which generates saliency maps that
focus more on the important objects inside the input image.
We tested our approach on three different Atari 2600 games and verified that

the saliency maps generated by our system are more selective than the ones
created by existing LRP methods while still including the information expected
from visual explanations. Since this selectiveness is an important property of
inter-human explanations, we argue that our approach might prove beneficial
when it comes to explaining the actions of a trained agent to people without a
machine-learning background.
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7. GANterfactul-RL:
Counterfactual Explanations for
RL Agents with Visual Input

Counterfactual explanations are a common tool to explain artificial intelligence
models (see Section 3.2.2). For Reinforcement Learning (RL) agents, they an-
swer “Why not?” or “What if?” questions by illustrating what minimal change
to a state is needed such that an agent chooses a different action. In other ma-
chine learning domains, such as image classification, counterfactual explanations
are already frequently used (see Section 3.2.2).
However, generating counterfactual explanations for RL agents with visual

input is especially challenging. Because of the large visual state spaces, coun-
terfactual generation approaches that utilize optimization at runtime are often
too slow, and because DRL agent actions are part of an overarching policy, the
counterfactuals must account for the long-term consequences of the changes to
the original state. Furthermore, for RL agents, there is no direct counterpart to
the training datasets used by supervised models. Therefore, counterfactual ex-
planation approaches for supervised models that utilize the training data cannot
be applied to RL agents without adjustment [Wells and Bednarz, 2021].
Due to the difficulties mentioned above, there is only one approach that fo-

cuses on creating counterfactual explanations for deep RL agents with visual
input (see Section 4.1.2). This Counterfactual State Explanation (CSE) ap-
proach by Olson et al. [2021] utilizes a complex combination of models where
the final generator is only indirectly trained to change the action.
This chapter proposes a novel method for generating counterfactual explana-

tions for RL agents with visual input. It is based on our publication:

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Olson,
and Elisabeth André [2023]. “GANterfactual-RL: Understanding Reinforce-
ment Learning Agents’ Strategies through Visual Counterfactual Explana-
tions”. In: Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages
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We formulate the counterfactual generation problem as a domain transfer
problem where the domains are represented by sets of states that lead the agent
to different actions. Our approach is fully model-agnostic, easier to train than
the CSE approach presented by Olson et al., and includes the counterfactual
actions more directly into the training routine by solving an action-to-action
domain transfer problem. We evaluate our approach with computational metrics
(e.g., how often do the counterfactuals change the agent’s decision) using the
ALE (Section 2.1.2). We also conducted a user study that will be described in
Chapter 12.
As such, the contributions of this chapter are as follows:

We formulate a novel, model-agnostic approach for generating counterfac-
tual explanations for RL agents.

We demonstrate that our approach outperforms the previous method in
several computational metrics.

7.1. Approach

7.1.1. The GANterfactual-RL Approach

As we have seen in Section 2.1.1, RL agents are usually employed in an MDP
which consists of states s ∈ S, actions a ∈ A, and rewards r. Given a state s,
the goal of an RL agent π : S → A is to choose an action π(s) that maximizes
its cumulative future rewards. To explain such an agent, the objective of a
counterfactual explanation approach for RL agents is defined as follows (for
more details, see Section 3.2.2): Given an original state s and a counterfactual
action a′, we want a counterfactual state s′ that makes the agent choose the
counterfactual action π(s′) = a′. Hereby, the original state s should be altered as
little as possible. On an abstract level, the action π(s) that the agent chooses for
a state s can be seen as a top-level feature that describes a combination of several
underlying features that the agent considers to be relevant for its decision. Thus,
the counterfactual state s′ should only change the features that are relevant to
the agent’s decision while maintaining all other features not relevant to the
decision. This is similar to image-to-image translation, where features that are
relevant for a certain image domain should be transformed into features leading
to another image domain, while all other features have to be maintained (e.g.,
the background should remain constant when transforming horses to zebras).
Taken together, we can formulate the generation of counterfactual states for RL
agents as a domain transfer problem similar to image-to-image translation: The
agent’s action space A defines the different domains Ai = {s ∈ S|π(s) = ai},
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Figure 7.1.: Schematic of our counterfactual generation approach. We formu-
late the problem as domain transfer, where each domain represents an action.
States are assigned to domains based on the action that the agent chooses for
them.

where each state belongs to the domain that corresponds to the action that the
agent chooses for this state (see Figure 7.1).
To solve the reformulated domain transfer problem, we base our system on the

StarGAN architecture [Choi et al., 2018] since RL agents usually use more than
two actions. The StarGAN architecture incorporates multiple loss components
that can be reformulated to be applicable to the RL domain. The first compo-
nent, the so-called adversarial loss, leads the network to produce highly realistic
states that look like states from the original environment. Reformulated for the
task of generating RL states, we define it as follows (following Choi et al. [2018]
we use a Wasserstein objective with gradient penalty):

Ladv = Es [Dsrc(s)]− Es,a′ [Dsrc(G(s, a′))]

− λgpEŝ

[
(||∇ŝDsrc(ŝ)||2 − 1)2

]
,

where Dsrc is the StarGAN’s discriminator network and G its generator net-
work. The second loss component, which is specific to the StarGAN architecture,
guides the generator network to produce states that lead to the desired counter-
factual actions. It consists of two sub-objectives, one that is applied while the
network is fed with original (real) states from the training set (Equation 7.1),
and the other while the network is generating counterfactual states (Equation
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7.2):
La

cls = Es,a[− logDcls(a|s)], (7.1)

La′

cls = Es,a′ [− logDcls(a
′|G(s, a′))], (7.2)

where Dcls refers to the StarGAN discriminator’s classification output, which
learns to approximate the action that the agent is performing in a particular
state. Further, as counterfactual states should be as close to the original states
as possible, a Reconstruction Loss is used. This loss forces the network to only
change features that are relevant to the agent’s choice of action:

Lrec = Es,a,a′ [||s−G(G(s, a′), a)||1]

Taken together, the whole loss of the StarGAN architecture, reformulated for
RL counterfactual explanations, is defined as follows:

LD = −Ladv + λcls La
cls

LG = Ladv + λcls La′

cls + λrec Lrec

where λcls and λrec are weights controlling the corresponding loss component’s
relevance. Since our approach utilizes a GAN architecture to generate counter-
factuals for RL agents, we refer to it as GANterfactual-RL.

7.1.2. Dataset Generation

As described above, our GANterfactual-RL approach relies on training data in
the form of state-action pairs. Olson et al. [2021] train their CSE approach on
state-action pairs generated by concurrently running an MDP with a trained
agent (see Section 4.1.2). This strategy is simple but allows for little control
over the training data, which can lead to the following complications:

Frames extracted from a running MDP contain a temporal pattern since
consecutive states typically have a high correlation. Such correlations and
patterns can lead to bias and sub-optimal convergence during training.

For episodic MDPs, there is a high probability of reaching the same state
throughout several episodes. This is amplified by the fact that RL agents
often learn to execute only a few optimal trajectories. This results in
duplicate samples that are effectively over-sampled during training.

RL agents generally do not execute each action equally frequently since
most environments contain actions that are useful more often than others.
This leads to an imbalanced amount of training samples per domain.
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To mitigate the aforementioned issues, we propose to generate datasets as
follows: Data is gathered by running a trained agent in an MDP. Each state
corresponds to one dataset sample and is labeled with the action that the agent
chooses to execute in this state. An ϵ-greedy policy (ϵ=0.2 in our case) is used to
increase the diversity of states reached over multiple episodes. State-action pairs
with an explored (randomly chosen) action are not added to the dataset. After
the data is gathered, duplicates are removed. Then, a class balancing technique
(under-sampling in our case) is used to account for over- or underrepresented
actions. Finally, the dataset is split into a training set, a test set, and potentially
a validation set.
Most of these techniques are commonly used in other application domains of

machine learning. However, to the best of our knowledge, this is the first work
to generate and preprocess datasets for generating counterfactual explanations
for RL agents.

7.1.3. Application to the Atari Domain

Environment. The environments we use for our experiments are the Atari
2600 games Pacman and Space Invaders, included in the ALE (see Section
2.1.2). However, we crop the raw input frames so that only the actual playing
field remains. This removes components such as the score and life indicators
that would allow participants of the user study, which will be described in
Chapter 12, to easily see which agent receives higher scores. After that, we
use the same preprocessing as described in Section 2.1.2. Two steps from this
preprocessing are particularly important for us. First, the frames are gray-
scaled and downsized. Second, in addition to the current frame, the agent
receives the last three preprocessed frames as input. This allows the agent
to detect temporal relations. The ALE actions normally correspond to the
meaningful actions achieved with an Atari 2600 controller (e.g., six actions for
Space Invaders). Since we wanted to use our Pacman agents in a user study
(see Chapter 12), we removed four redundant actions (e.g., Up & Right) whose
effect differs between situations and is therefore hard to convey to participants.
This left us with five actions for Pacman (Do nothing, Up, Down, Left, Right).

Agent Training. To evaluate participants’ ability to differentiate between al-
ternative agents and analyze their strategies, we modified the reward function
of three Pacman agents. This is a more natural method of obtaining differ-
ent agents compared to withholding information from the agent as Olson et al.
[2021] did. Furthermore, it results in agents that behave qualitatively differently.
Therefore, participants in the user study, which will be described in Section 12,
have to actually analyze the agents’ strategies instead of simply looking for
objects that the agents ignore.
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Blue-Ghost Agent : This agent was trained using the default reward
function of the ALE, where blue ghosts get the highest reward.

Power Pill Agent : This agent only received positive rewards for eating
power pills.

Fear-Ghost Agent : This agent got a small positive reward of 1 for every
step in which it did not die to ghosts.

For training the first two Pacman agents, we use the DQN algorithm (see Sec-
tion 2.2). Each agent was trained for 5 Million steps. The fear-ghosts agent
was trained using the ACER algorithm [Wang et al., 2016a] for 10M steps. At
the end of the training period, the best-performing policy is restored. For all
three agents, we build upon the OpenAI baselines [Dhariwal et al., 2017] reposi-
tory. For Space Invaders, we used the two Asynchronous Advantage Actor-Critic
(A3C) agents trained by Olson et al. [2021]. For the training details, we refer
to their paper. One agent is trained normally, while the other agent is flawed
and does not see the laser cannon at the bottom of the screen.

GANterfactual-RL on Atari. To generate human-understandable counterfac-
tual explanations for our Atari agents, the generated counterfactual states should
represent the frames that humans see during gameplay. That means we can-
not train our GANterfactual-RL model on the preprocessed and stacked frames
that the Atari agents use. Instead, we train it on the cropped RGB frames
before preprocessing. The only preprocessing we still use on those frames is the
countermeasure against flickering objects in Atari games, which was proposed
by Mnih et al. [2015] and is described in Section 2.1.2. While generating the
dataset, we only save the most recent of the four stacked frames for each state
s. This frame generally influences the agent’s decision the most. For feeding
the counterfactual frame back into the agent (e.g., to evaluate the approach),
we stack it four times and then apply preprocessing.
Our implementation details can be found in Appendix D.1. The full code is

available online.1

7.2. Computational Evaluation

7.2.1. Used Metrics

We evaluate our approach using the metrics validity (or success rate), proximity
(or cost), sparsity, and generation time. We consider these metrics to be the

1https://github.com/hcmlab/GANterfactual-RL
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most suitable and widely used metrics for image-based counterfactual explana-
tions [Chen et al., 2021; Pawelczyk et al., 2021; Keane et al., 2021; Mothilal
et al., 2020].
Validity captures the rate of CounterFactuals (CFs) that actually evoke the

targeted action when fed to the agent. With NT being true CFs (correctly
changing the agent’s action), NF being false CFs, and N the total amount of
evaluated CFs, this metric is defined as:

V alidity =
NT

NT +NF

=
NT

N

Proximity measures the similarity between an original state image and its
CF via the L1-norm. We normalize the metric to measure the proximity in the
range [0, 1].

Proximity(s,G) = 1− 1

255 · S
||s−G(s, a)||1

where s is the original state image, G(s, a) is the generated CF for an arbitrary
target action domain a and S is the domain of color values of s (S = 3 ·Width ·
Height for RGB-encoded images). The normalization with 255 · S assumes an
8-bit color encoding with color values in range [0, 255]. High proximity values
are desirable since they indicate small adjustments to the original state.
Sparsity quantifies the number of unmodified pixel values between an original

state image and its CF via the L0-norm (a pseudo-norm that counts the number
of non-zero entries of a vector/matrix). The sparsity is normalized to the range
[0, 1] as well.

Sparsity(s,G) = 1− 1

S
||s−G(s, a)||0

A completely altered image has a sparsity of 0, and an unmodified image has a
sparsity of 1. High sparsity values are thus desirable.
Generation time determines the time it takes to generate one CF with a

trained generator, not including pre- or post-processing.

7.2.2. Computational Results

The computational results for the three Pacman agents are shown in Table
7.1 and the results for the two Space Invaders agents in Table 7.2. Appendix
D.1 describes the training details for the GANterfactual-RL and CSE models
used in the evaluation. To create evaluation test sets for the Pacman agents,
we took the fully cleaned training datasets (section 7.1.2) and reserved 10% of
each action for the test sets. To show the contribution of our proposed dataset
generation, we additionally trained a GANterfactual-RL model for the blue-
ghost agent without the steps proposed in Section 7.1.2 and evaluated it on the
test set from the clean dataset. This dropped the validity to 0.45 and sparsity
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Table 7.1.: Computational evaluation results for the Pacman agents. Proxim-
ity, sparsity and generation time are specified by mean ± standard deviation.

Approach Validity (↑) Proximity (↑) Sparsity (↑) Gen. Time [s] (↓)

Blue-Ghost Agent
Ours 0.59 0.997 ± 0.001 0.73 ± 0.02 0.011 ± 0.012
CSE 0.28 0.992 ± 0.002 0.33 ± 0.03 0.085 ± 0.021
Power-Pill Agent
Ours 0.49 0.997 ± 0.001 0.70 ± 0.02 0.011 ± 0.008
CSE 0.20 0.993 ± 0.002 0.32 ± 0.02 0.566 ± 0.731
Fear-Ghost Agent
Ours 0.46 0.995 ± 0.001 0.45 ± 0.01 0.013 ± 0.014
CSE 0.20 0.992 ± 0.002 0.32 ± 0.04 0.020 ± 0.017

Table 7.2.: Computational evaluation results for the Space Invaders agents.
Proximity, sparsity and generation time are specified by mean ± standard
deviation.

Approach Validity (↑) Proximity (↑) Sparsity (↑) Gen. Time [s] (↓)

Normal Agent
Ours 0.70 0.998 ± 0.002 0.97 ± 0.02 0.011 ± 0.013
CSE 0.18 0.995 ± 0.003 0.89 ± 0.05 6.180 ± 9.727
Flawed Agent
Ours 0.53 0.998 ± 0.002 0.96 ± 0.01 0.011 ± 0.015
CSE 0.17 0.995 ± 0.004 0.94 ± 0.01 0.020 ± 0.035

to 0.50±0.01 while the other values stayed comparable. To be more comparable
to the results by Olson et al. [2021], we do not remove duplicates from the Space
Invaders datasets and do not apply class balancing. Here, we create the test
set by sampling 500 states for each action and removing all duplicates of these
states from the training set. Our GANterfactual-RL approach outperforms the
CSE counterfactuals in every single metric.
Figure 7.2 shows example counterfactuals generated for the Pacman fear-

ghosts agent and the two Space Invaders agents. Additional examples for all
our agents can be seen in Appendix D.4.
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Agent:

Original Action:

Pacman
Fear Ghosts
Move Down

Space Invader
Flawed
Right & Fire

Space Invader
Normal
Right & Fire

Original State:

Target Action: Move Up Move Left Move Left

CSE Counterfac-
tual State:

GANterfactual-
RL Counterfactual
State:

Figure 7.2.: Example counterfactual states. Our approach does not change
the Laser Cannon (marked in blue) for the flawed agent, who does not see it,
but changes it for the normal agent.

7.3. Discussion

Our computational evaluation shows that our proposed approach is correctly
changing the agents’ actions in 46% to 70% of the cases, depending on the agent.
While this is not perfect, one has to consider that this is not a binary task but
that the agents have five or six different actions. Furthermore, CSE [Olson et
al., 2021], the only previous method that focuses on generating counterfactual
explanations for RL agents, only successfully changed the agent’s decision in
17% to 28% of the cases. We can think of two reasons for the low validity values
for the CSE approach. First, they only incorporate the agent’s action in their
loss functions related to the latent space. The generation of the final pixels did
not include constraints to faithfully ensure that a specific action was taken by
the agent. Second, their loss functions for the latent space focus on creating
action-invariant states. Olson et al. [2021] showed that their CSE approach
was useful for differentiating between a normal agent and a flawed agent. We
think this is due to the fact that CSE is good at generating action-invariant
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states. This can help to identify the object that the flawed agent did not see
since irrelevant objects are not changed for action-invariant states. We found
that our approach also does not change the irrelevant object for the flawed agent
(illustrated in Figure 7.2). This demonstrates that the counterfactuals generated
by our approach are similarly effective for identifying the flawed agent. Looking
at the distance between the original and the counterfactual states in pixel-space,
we see that counterfactual states generated by our GANterfactual-RL approach,
on average, have less distance to the original states and change fewer pixel
values compared to the counterfactuals generated by the previous CSE method
by Olson et al. [2021]. This indicates that our GANterfactual-RL method is
better at achieving the goal of finding the smallest possible modification of the
original state to change the agent’s decision. Since our method only requires
a single forward pass to generate a counterfactual state, it is faster than the
CSE method, which relies on potentially time-consuming gradient descent for
the counterfactual generation.

7.4. Conclusion

In this chapter, we formulated a novel method for generating counterfactual
explanations for RL agents. This GANterfactual-RL method is fully model-
agnostic, which we demonstrate by applying it to three RL algorithms, two
actor-critic methods, and one deep Q-learning method. Using computational
metrics, we show that our proposed method is better at correctly changing the
agent’s decision while modifying less of the original input and taking less time
than the only previous method that focuses on generating visual counterfactuals
for RL.
While there is still room for improvement, we can confidently say that our

approach was the state-of-the-art for counterfactual explanations for RL agents
with visual input at the time of its publication.
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8. Combining Local and Global
Explanations for Agent Behavior

Explainable reinforcement learning methods can roughly be divided into local
explanations that analyze specific decisions of the agents (see Section 4.1) and
global explanations that convey the general strategy of the agents (Section 4.2).
In this chapter, we explore the combination of global and local explanations
describing RL agent policies. Parts of this chapter build upon three of our
previous publications:

Tobias Huber, Katharina Weitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy sum-
maries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi: 10.

1016/j.artint.2021.103571

Yael Septon, Tobias Huber, Elisabeth André, and Ofra Amir [2023]. “In-
tegrating Policy Summaries with Reward Decomposition for Explaining Re-
inforcement Learning Agents”. In: Advances in Practical Applications of
Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Col-
lection - 21st International Conference. Vol. 13955. Lecture Notes in Com-
puter Science. Springer, pp. 320–332. doi: 10.1007/978-3-031-37616-

0_27

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Olson,
and Elisabeth André [2023]. “GANterfactual-RL: Understanding Reinforce-
ment Learning Agents’ Strategies through Visual Counterfactual Explana-
tions”. In: Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages

The motivation for integrating the two approaches is their complementary
nature: while local explanations can help users understand what information
the agent attends to in specific situations, they do not provide any informa-
tion about its behavior in different contexts. This is reinforced by a previous
study conducted by Alqaraawi et al. [2020], who evaluated local explanations
and came to the conclusion that sole instance-level explanations are not suffi-
cient and should be augmented with global information. Conversely, for global
explanations, we have seen in Section 4.2 that showing users representative ex-
amples of the agent’s actions provides them with a sense of the overall strategy

113

https://doi.org/10.1016/j.artint.2021.103571
https://doi.org/10.1016/j.artint.2021.103571
https://doi.org/10.1007/978-3-031-37616-0_27
https://doi.org/10.1007/978-3-031-37616-0_27


of the agent. However, this approach does not provide any explanations as to
what information the agent considered when choosing how to act in a certain
situation.
Zahavy et al. [2016] proposed a combination of example-based t-SNE explana-

tions and saliency maps to address this problem. However, they focused on the
global information obtained through t-SNE and did not evaluate the combined
and individual benefits of the two approaches. Furthermore, as we have seen
in Section 4.2.3, t-SNE visualizations are best suited for users with a machine
learning background.
In this dissertation, we combine the complementary benefits of local and

global explanations by integrating local explanations with global strategy sum-
maries. Specifically, we adapt the HIGHLIGHTS algorithm for generating strat-
egy summaries (Section 4.2.3.1) such that it can be applied to deep learning set-
tings, and integrate it with several local explanation methods. To demonstrate
that our method is easily adaptable to a variety of local explanation algorithms,
we use three different local explanation methods. In particular, we use the post-
hoc saliency map and counterfactual explanation methods described in chapters
6 and 7, and the intrinsic reward decomposition approach described in Section
4.1.3.1. We combine these approaches with HIGHLIHGTS by adding the local
explanations, which provide information about the agent’s reasoning in specific
states, to the summary generated by HIGHLIHGTS.
As such, this chapter makes the following two contributions:

It proposes a joint local and global explanation approach for RL agents
by integrating local explanations and HIGHLIGHTS summaries.

It demonstrates that the HIGHLIGHTS algorithm, which was so far only
used on classic reinforcement learning, can be applied to deep reinforce-
ment learning agents with slight adjustments.

The remainder of this chapter is structured as follows: first, we will describe
the combination of saliency maps and HIGHLIGHTS in the form of videos.
Then, we will look into combining reward decomposition and counterfactual
explanations, respectively, with HIGHLIGHTS in an interactive image-based
interface since these local methods are not suitable for videos.

8.1. Combining Saliency Maps and HIGHLIGHTS
as Video

As the first local explanation method, we opted to combine HIGHLIGHTS with
saliency maps since this integration seemed the most natural to us. Saliency
maps are typically displayed as heatmaps that are overlaid on the original state.
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This makes it straightforward to add the saliency maps to the videos generated
by HIGHGLIGHTS. The approaches are also similar in nature, as saliency maps
reveal which pixels were important locally, while HIGHLIGHTS shows what
states were important globally.
Regarding the choice of a specific saliency map method, we chose the LRP-

argmax approach described in Chapter 6. This choice was based on two main
reasons. First, LRP-argmax is designed to selectively identify the most crucial
information, an essential feature for video presentations where each frame only
appears for a short duration. Second, LRP offers beneficial properties, such as
preserving the agent’s confidence levels (in our case, Q-values), as described in
Section 3.2.1.3.

Generating Gameplay Streams and Saliency Maps. To test our approach,
we use DQN agents (see Section 2.2) that are trained to play the game Pacman
(see Section 2.1.2.1).
Deep neural networks increase the time that the agent needs for each pre-

diction compared to the traditional Q-learning agents used by Amir and Amir
[2018]. Furthermore, the LRP analysis of the agent’s decision requires additional
computation time. Therefore, we do not create the HIGHLIGHTS summaries
online. Instead, we record a stream of 10, 000 steps for each agent and use them
to create our summaries. These streams also increase the reproducibility of our
experiments1.
Since the Atari 2600 version of Pacman does not respond to input for the first

250 frames (empirically tested) after the game starts, we exclude those frames
from the streams. Furthermore, we force the agent to repeat the do nothing
action for a random amount of steps between 0 and 30 until it is allowed to
choose actions based on its policy. This method introduces randomness into
the deterministic Pacman game and is also used during training by the DQN
algorithm (see Section 2.1.2).
The saliency maps are created using the LRP-argmax algorithm described in

Section 6.1 and saved separately. They will be added to the states in a later
step.

Adjustments to HIGHLIGHTS. For the summaries, we make several adjust-
ments to the HIGHLIGHTS algorithm described in Section 4.2.3.1 to adapt it
to the DQN settings. First, we change the way importance is calculated. In-
stead of using Equation 4.1, which calculates the importance by comparing the
highest with the lowest Q-value, we use the difference between the highest and
second-highest Q-values. Let second-highest be the operation that finds the

1Since the streams are fairly big, we did not upload them. They are available upon request
from the author.
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second-highest value in a set, then this can be written as:

I(s) = max
a

Qπ
(s,a) − second-highest

a
Qπ

(s,a) (8.1)

While examining the gap between the best and worst actions worked well in a
simpler Pacman environment in which there were only four possible actions, it
did not generalize well to the Atari environment, where there is a larger number
of actions. One possible explanation for this is that some of the nine actions
of the Pacman environment overlap. For example, left and up-left can be used
interchangeably in many states. Therefore, the agent might ignore some of
the actions completely. To verify this, we examined the frequency of choosing
each action and found that two of the three agents we trained were clearly
biased against certain actions.2 Therefore, some Q-values are largely uninformed
by exploration and might have arbitrarily low values, making the worst Q-
value non-informative. For the diversity computation in HIGHLIGHTS, we use
Euclidean distance over the 84× 84× 4 input states.
Since we pre-generate a stream of 10, 000 states, we implement an offline ver-

sion of HIGHLIGHTS that selects the states for the summary retrospectively
from the generated stream. The procedure begins by sorting the states based
on their importance scores (Equation 8.1) and adding them to the summary
according to this ordering. To reduce the number of overlapping trajectories,
we compare each new state with all states in the current summary and corre-
sponding context states (this is equivalent to the HIGHLIGHTS-DIV part of
HIGHLIGHTS described in Section 4.2.3.1). To find a suitable threshold that
determines when a state is too similar to the states that were already selected
for the summary, we randomly pick a subset of 1, 000 random states from the
recorded stream and calculate the similarity between each pair of states in this
set. Then, we set the threshold to be a percentile of the distribution of those
similarity values. We empirically found (by manually examining a sample of
states) that using a threshold of 3% led to no obvious duplicate trajectories for
any of the agents.

Video Generation. The videos we generate from the states chosen by the
summary show 30 frames per second. To emphasize that demonstrations show
different trajectories, they are separated by a black screen that appears for 1
second (inspired by the fade-out effect used in [Sequeira and Gervasio, 2020]).
To prevent participants in our user study (Chapter 10) from using the in-game
score to gauge how good an agent is, we mask the bottom half of the screen
with black pixels. In pilot studies, participants complained that the videos were

2The results can be seen in https://github.com/HuTobias/HIGHLIGHTS-LRP/tree/

master/action_checks
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Figure 8.1.: An example frame from the videos that combine HIGHLIGHTS
and saliency maps. The Pacman screens selected by HIGHLIGHTS are over-
laid with green saliency maps that show the most relevant pixels for the agent.
During our user study in Chapter 10, the bottom of the screen is masked with
black pixels to prevent participants from assessing the agents’ capabilities
based on their score or remaining lives.

flickering too much. One of the reasons for this is that the Atari 2600 implemen-
tation of Pacman does not show every object in every frame to save computing
power. Since we showed all frames consecutively, these objects appeared to be
blinking and distracted the viewers. To combat this problem, we do not display
the current frame fi. Instead we display max(fi, fi−1), the maximum of each
pixel over the current frame fi and the preceding frame fi−1. This is similar to
what Mnih et al. [2015] do during their preprocessing (see Section 2.1.2). While
this procedure introduces some artifacts (e.g., red pellets showing through blue
ghosts), it considerably reduces the flickering.
Another measure we take against this flickering is to interpolate between the

different saliency maps instead of showing a completely different saliency map
for each frame. Let f1 to f4 be the four stacked frames of an input state (see
Section 2.1.2) and let s1 to s4 be the saliency maps for each of these frames that
analyze the agent’s decision in this state. For i < 4, the action that Pacman
will take after frame fi is not related to the saliency map si since the agent only
decides on a new action every four frames and is still repeating the action that
he decided on based on the last state (composed of the four frames before f1).
Therefore, we show the saliency map s4 over the frame f4, and for the other
frames (i < 4) we interpolate between the last shown saliency map and s4.
Before this interpolation, we normalize the saliency maps to have a maximum

of 1 and a minimum of 0. We do this across all four frames of the states
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s1, ..., s4 to avoid losing information that might be transported in the magnitude
of relevance values between the frames.
Finally, we add the interpolated saliency maps to the green channel of the orig-

inal screen frame. Figure 8.1 shows an example frame. Our complete implemen-
tation can be found here: https://github.com/HuTobias/HIGHLIGHTS-LRP

8.2. Combining HIGHLIGHTS and Local
Explanations as Interactive Images

While saliency maps are one of the most common and successful explanation
methods for neural-network-based DRL agents, they also have drawbacks. For
example, saliency maps only show what information was important and not why
that information was important.
Therefore, we want to extend our combined local and global explanation ap-

proach to other local explanation methods that might alleviate some of the
drawbacks of saliency maps. In a user study by Mertes et al. [2022a], for ex-
ample, counterfactual explanations were better than saliency maps at showing
users why certain regions were relevant to a classifier.
However, many local explanation methods, such as counterfactuals, cannot

be easily integrated into HIGHLIGHTS videos since they require more time for
user interpretation (e.g., users have to comprehend what has changed between
the original and the counterfactual state). To accommodate such local explana-
tions, we propose an interactive summary based on HIGHLIGHTS states. To
this end, we show only the most important states according to HIGHLIGHTS
without adding their context states. Apart from that, we use HIGHLIGHTS
based on streams exactly as described in the previous Section 8.1. Depending
on the length k of the summary, this gives us k states that we can display indi-
vidually, e.g., as images. While this removes the context information from the
HIGHLIGHTS summaries, it reduces the cognitive load and allows more free-
dom in designing the presentation of the local explanations. To mimic videos
where users can switch between different scenes, we design the summaries in-
teractively by allowing the user to freely switch between the individual states
(shown by the buttons in Figure 8.3).
In the following two subsections, we will see how such an interactive summary

can look like with local counterfactual explanations and reward decomposition.
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Figure 8.2.: Example for the presentation of counterfactual explanations for
an individual HIGHLIGHTS state. As the slider beneath the state is moved,
a smooth transition occurs, linearly interpolating from the original state (on
the left) to the counterfactual state. The image to the right demonstrates
the state being approximately 90% transitioned towards the counterfactual
scenario.

8.2.1. Integrating Counterfactual Explanations and
HIGHLIGHTS

As a first step towards interactive summaries that accommodate complex local
explanations, we start by describing the integration of HIGHILGHTS-DIV with
counterfactual explanations, such as the ones generated by the GANterfactual-
RL approach presented in the previous Chapter 7. The presentation of the coun-
terfactual explanations is designed as follows. For each HIGHLIGHTS state, we
generate a single counterfactual state. We were concerned that too many coun-
terfactual states would cause too much cognitive load. To generate meaningful
counterfactual instances, we limited the counterfactual action to turning around
in a corridor and randomly selecting a new direction at an intersection (do not
turn around). This was done because of the way that the MsPacman version of
Pacman is implemented: actions that do nothing or move directly into a wall
are ignored.
Inspired by Mertes et al. [2022a], the generated counterfactual states are pre-

sented by a slider under each state. Moving the slider from left to right linearly
interpolates the original state to the counterfactual state (per-pixel interpola-
tion). The original and counterfactual actions are written above the state.
Figure 8.2 shows an example of the presentation of counterfactual explanations
for a single HIGHLIGHTS state.
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Figure 8.3.: A screenshot of the combination of strategy summaries with re-
ward decomposition on the game Pacman. The upper part of the image shows
a specific state extracted from an agent’s behavior. The bottom part shows
the reward bars corresponding to the state shown above. The x-axis displays
the chosen action, and the y-axis shows the Q-value. In this case, it can be
observed that “eating normal pill” is the largest reward component affecting
the behavior of this agent in this state. Users can switch to different states by
selecting a scenario from the list. The states (scenarios) are chosen based on
the strategy summary method (e.g., HIGHLIGHTS).

8.2.2. Integrating Reward Decomposition and HIGHLIGHTS

Both saliency maps and counterfactual explanations are post-hoc explanations
that aim to explain a black-box agent. For our final combination, we want
to explore an intrinsic explanation method that increases the explainability of
DRL agents. To this end, we augment HIGHLIGHTS with reward decompo-
sition (Section 4.1.3.1). We chose to combine these two types of explanations
because we believe they complement each other. Reward decomposition reflects
the intentions of an agent, while HIGHLIGHTS gives a broader perspective on
the agent’s decisions. For each state that was chosen by the HIGHLIGHTS
algorithm, we create reward decomposition bars that depict the decomposed Q-
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values for actions in the chosen state (see Figure 8.3). Similar to counterfactuals,
the reward decomposition bars vary for each state and need to be interpreted by
the user. Therefore, when integrating the two methods, we used HIGHLIGHTS
to extract the important states but displayed them using static images rather
than videos. As described at the beginning of this section, the users can freely
switch between different states.
Understanding an agent’s strategy requires users to consider several states

and their corresponding reward decomposition bars simultaneously. Therefore,
to reduce the cognitive load, we only present the reward decomposition bar for
the action that the agent chose in this state.

8.3. Discussion and Conclusion

This chapter is a first step toward the development of combined explanation
methods for reinforcement learning (RL) agents that provide users with both
global information regarding the agent’s strategy as well as local information
regarding its decision-making in specific world-states. To this end, we presented
a joint global and local explanation method, building on strategy summaries
(HIGHLIGHTS) and different local explanation methods. We show that this
method is easily adaptable to various local explanation algorithms by apply-
ing it to two post-hoc explanation methods (LRP-argmax saliency maps and
GANterfactual-RL counterfactuals) and one intrinsic explanation method (re-
ward decomposition). A user study evaluation of our combined explanation
approach, together with a thorough discussion of how users interact with our
proposed approach, will follow in Part V.
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Part IV.

Computational Evaluation of XRL
Approaches
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9. Benchmarking
Perturbation-Based Saliency
Maps for DRL Agents

Enhancing the explainability of DRL agents necessitates a dual focus on both
developing and evaluating explanation methods, as discussed in Section 3.3
and Chapter 5. The previous three chapters presented novel explanation tech-
niques for DRL agents. This chapter shifts focus to the computational eval-
uation of such explanation techniques. In particular, it benchmarks different
perturbation-based saliency maps (see Section 3.2.1.2). As we have seen in
Section 4.1.1, perturbation-based saliency maps are one of the most prevalent
explanation methods for DRL agents. The major advantage of perturbation-
based approaches is their model agnosticism – they can be applied to any kind
of RL agent since they only use the in- and outputs of the agent.
If saliency maps are used to analyze DRL agents in high-risk applications, it

is crucial that we can rely on the information provided by the saliency map.
That is, the most relevant pixels, according to the saliency map, should ac-
tually be the most relevant pixels for the agent’s strategy. This is what we
defined as the fidelity of a saliency map method in Section 3.3. The need for
evaluating the fidelity of saliency maps was further demonstrated by Adebayo
et al. [2018]. They proposed sanity checks that showed that for some saliency
map approaches, there is no strong dependence between the learned parameters
of image classifiers and the saliency maps that analyze their underlying neural
network. Surprisingly, there are no computational evaluations that assess and
compare the fidelity of different saliency maps for DRL agents. This is despite
the fact that DRL agents are more challenging to analyze than classification
models [Heuillet et al., 2021]. As mentioned in Section 1.1, the decisions of a
DRL agent are not isolated but are part of an overarching policy and might
be influenced by delayed rewards, which may not be discernible in the current
state. This makes it even more challenging to verify whether a saliency map
matches the internal reasoning behind a DRL agent’s action selection. In the
prominent family of value-based DRL algorithms (Section 2.1.3), for example,
the output values do not only describe the expected future reward after choosing
each action. They also encode the estimated value of the input state for the
current policy. This ambiguity is often ignored when saliency maps are applied
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to analyze the decisions of value-based DRL agents.
To address this research gap, this chapter presents our previous work:

Tobias Huber, Benedikt Limmer, and Elisabeth André [2022]. “Bench-
marking Perturbation-Based Saliency Maps for Explaining Atari Agents”.
In: Frontiers in Artificial Intelligence 5. issn: 2624-8212. doi: 10.3389/

frai.2022.903875

To the best of our knowledge, this work conducted the first computational
fidelity evaluation of different saliency maps for DRL agents. In particular,
it makes the following contributions. By focusing on five perturbation-based
saliency map approaches, the work gives an overview of which approaches should
be used by practitioners who do not have full access to their DRL agent’s model.
One drawback of perturbation-based saliency maps is that they depend on a
choice of parameters for the saliency map approaches. To ensure that all of the
algorithms tested in this chapter perform reasonably well, we present a novel
methodology to fine-tune the parameters of perturbation-based saliency maps
for DRL agents. Furthermore, we propose a way to separately measure how
well a saliency map captures an agent’s respective action and state value es-
timation. We demonstrate that the performance of saliency map approaches
differs considerably when measuring state values compared to action values.
As test-bed for our evaluation, we use the Atari 2600 environment (Section

2.1.2). As metrics, we use the sanity checks proposed by Adebayo et al. [2018]
and an insertion metric that measures if the most relevant pixels, according to
the saliency map, actually affect the agent’s decision (see Section 3.3.1.1). As
far as we know, this is the first time that sanity checks are done for different
perturbation-based saliency maps for any kind of model.

9.1. Test-bed

The test-bed in our computational evaluation is the Atari Learning Environment
(see Section 2.1.2). Four DRL agents were trained on the games Pacman (see
Section 2.1.2.1 for details), Space Invaders, Frostbite, and Breakout. As training
algorithm, we used the OpenAI Baselines [Dhariwal et al., 2017] implementation
of the Deep Q-Network (DQN) (Section 2.2). We chose the DQN because it is
the most basic DRL architecture, which many other DRL agents build upon.
The games were selected because the DQN performs very well on Breakout and
Space Invaders but performs badly on Frostbite and Pacman. This choice allows
us to investigate scenarios in which the DRL agents achieve optimal performance
and situations in which they are prone to errors. All experiments were done on
the same machine with an Nvidia GeForce GTX TITAN X GPU to ensure
comparability of the results. Our code is available online.1

1https://github.com/belimmer/PerturbationSaliencyEvaluation
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9.2. Evaluated Saliency Map Approaches

As saliency map approaches, we chose Occlusion Sensitivity [Zeiler and Fergus,
2014] since it is the first and most basic perturbation-based saliency map ap-
proach. Furthermore, we use LIME [Ribeiro et al., 2016] and RISE [Petsiuk et
al., 2018], which are two of the most popular perturbation-based saliency maps
in general. Finally, we chose two approaches that were specifically proposed for
DRL: Noise Sensitivity [Greydanus et al., 2018] and SARFA [Puri et al., 2020].
Details about those five algorithms can be found in Section 3.2.1.2.

9.3. Metrics

We evaluate the generated saliency maps using two different computational
metrics: Sanity checks and an insertion metric (see Section 3.3.1.1).

9.3.1. Sanity Checks

The sanity checks proposed by Adebayo et al. [2018] measure the dependence
between the saliency maps and the parameters learned by the neural network
of the agent. To this end, the parameters of each layer in the network are ran-
domized in a cascading manner, starting with the output layer. Every time a
new layer is randomized, a saliency map for this version of the agent is created.
The resulting saliency maps are then compared to the saliency map for the
original network, using three different similarity metrics (Spearman rank corre-
lation, Structural Similarity (SSIM), and Pearson correlation of the Histogram
of Oriented Gradients (HOGs)). If the saliency maps depend on the learned pa-
rameters of the agent, then the saliency maps for the randomized models should
vastly differ from the ones of the original model. Following Sixt et al. [2020],
we account for saliency maps that differ only in sign by additionally computing
the similarity metrics between the original saliency map and a version of each
saliency map for the randomized models that was multiplied by −1. For each
randomized model, we use the maximum of the similarity values with and with-
out the −1 multiplication. For our tests, we calculate the sanity checks for 1000
states of each game.
Analogous to Adebayo et al. [2018], we calibrate the similarity metrics (Spear-

man rank correlation, SSIM, and Pearson correlation of the HOGs) such that
high similarity values actually indicate similar saliency maps. Following Ade-
bayo et al. [2018], we do this by calculating the similarity of 100 pairs of ran-
domly generated saliency maps (Uniform and Gaussian). Since randomly sam-
pled saliency maps should be very different on average, the mean of these simi-
larities should be low. Using an SSIM window size of 7 and a HOG function with

125



Figure 9.1.: A schematic representation of the insertion metric curve.

(3, 3) pixels per cell, two randomly sampled saliency maps with uniform distribu-
tion had mean similarity values (0.0087, 0.0136, 0.0096) and two random saliency
maps with Gaussian distribution had mean similarity (0.0093, 0.0374, 0.0087).

9.3.2. Insertion Metric

If a saliency map is faithful to the agent, then the most relevant pixels should
have the highest impact on the agent’s decision. To test this property, we use
an insertion metric similar to Petsiuk et al. [2018]. We do not use a deletion
metric since we feel that it is too similar to the way that perturbation-based
saliency maps are created. The insertion metric starts with a fully perturbed
state. How this perturbation is done will be discussed in Section 9.3.2.1. In
each step, 84 perturbed pixels (approx. 1.2% of the full state) are uncovered,
starting with the most relevant pixels according to the saliency map. For LIME,
the superpixels are sorted by their relevance, but the order of pixels within
superpixels is randomized. The partly uncovered state is then fed to the agent,
and its output for the action that the saliency map analyzes is measured. If the
saliency map correctly highlights the most important pixels for this action, then
the agent’s output corresponding to this action should increase quickly for each
partly uncovered image. Plotting the agent’s output in each step of the insertion
metric results in an insertion metric curve (Figure 9.1). If the output increases
quickly, then the area under the insertion curve is high. Therefore, the Area
Under the insertion metric Curve (AUC) is used to represent the result of the
insertion metric for a single state. Before we can apply the insertion metric to
our DRL agents, we have to decide how to perturb the input and which output
value we measure in each step.

9.3.2.1. How to Perturb the Input

Tomsett et al. [2020] found that the choice of perturbation during the insertion
metric has a high impact on the result of the metric. To be more robust against
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this influence, we use two different perturbations: black occlusion and uniform
random perturbation in the range [0, 1]. Black is similar to the background color
in most Atari games and, therefore, acts as “deleting” features from the state.
Uniform random perturbation performed well for Tomsett et al. [2020].

9.3.2.2. Which Output to Measure

Next, we have to decide which output we want to measure during the insertion
metric. This comes with two further challenges.
First, the output Q-values of value-based reinforcement learning algorithms

like the DQN do not directly describe the agent’s confidence in particular ac-
tions. Instead, they approximate the value of the current state in combination
with each action (see Section 2.1.3). To disentangle this ambiguity, we propose
to use two different sub-metrics. One measures how well the saliency map iden-
tifies features relevant to the state value, and the other measures the same for
the action value. For the state value, we suggest using the Q-value Q(s, a) of
the action that the saliency map is analyzing. For the action value, we propose
an estimation of the advantage as used by Wang et al. [2016b]:

A(s, a) = Q(s, a)−
∑

a∈AQ(s, a)

|A|
(9.1)

The second challenge is that a reliable metric should not be distorted by
outliers. For our Pacman agent, for example, we observed states with Q-values
around 1 and other states with Q-values around 50. To reduce the effect of
outlier states, we tested different methods of normalizing the agent’s output
during the insertion metric. The first normalization method we tested was
inspired by Sixt et al. [2020] and forces each insertion curve to start at 0 and
finish at 1. This is achieved by applying f(x) = x−b

t−b to each insertion step
result, where b is the output of the fully perturbed state and t is the output of
the original state. As the second method, we only divided each insertion step
by the output of the original state t. In this way, all insertion curves finish at
the value of 1.
To identify which normalization method works best, we used 28 different

variants of Occlusion Sensitivity saliency maps. The variants were obtained by
varying the occlusion patch size between 4 and 10, using gray or black occlu-
sion, and using the raw Q-values or adding a softmax layer for the relevance
calculation (Eq. 3.1). 2 For each variant, we calculated differently normalized
insertion metrics over 1000 states of the Pacman environment for each of our
two insertion metric perturbation methods. Tomsett et al. [2020] suggest using

2To see how these variants performed in our final insertion metric tests, refer to Section
9.4.3.
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Table 9.1.: The minimum and maximum SD when evaluating 28 different pa-
rameter combinations of Occlusion Sensitivity saliency maps with an insertion
metric using different normalization functions.

Normalization Function Minimum SD Maximum SD

Measuring Q-values
No Normalization 5.16 10.17
f(x) = x

t
1.14 2.06

f(x) = x−b
t−b 10.33 48.56

Measuring Advantage
No Normalization 0.84 1.42
f(x) = x

t
1.99 3.78

f(x) = x−b
t−b 9.45 165.20

a low Standard Deviation (SD) as an early indicator for reliable saliency map
metrics. Therefore, we chose the normalization method that resulted in the
lowest SD of the area under the insertion curve across the 1000 states and both
perturbation methods3. For each normalization method, Table 9.1 shows the
highest and lowest SD among the 28 different Occlusion Sensitivity variants.
Interestingly, the full normalization to curves between 0 and 1 resulted in the

highest SD. We think that this comes from the fact that our agents sometimes
assign higher values to the fully perturbed state than to the original state. In
these cases, t− b is negative, and applying f(x) inverts the insertion curve. For
the advantage, we obtained the lowest SD if we did not use any normalization.
The Q-values got the lowest SD when we divided each insertion metric step by
the result of the original state.

9.3.2.3. Final Setting

For our final evaluation of the different saliency map methods, we use 1000
states of each of the four Atari games. For each of those states, we calculated the
insertion metric in four different variants: measuring the advantage of the chosen
action with random and black perturbation, and measuring the normalized Q-
value with random and black perturbation.

3Let µ be the mean of the 2000 resulting AUC values xi then the SD is given by

√∑
i(xi−µ)2

2000 .
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9.4. Parameter Tuning

One of the biggest drawbacks of perturbation-based saliency map approaches is
that they depend on a choice of parameters as can be seen in Section 3.2.1.2.
Before we can run our final experiments, we have to find suitable parameters.
Section 9.4.3 will list the specific parameters that we tuned for each saliency map
approach. This tuning is often done by manually adjusting the parameters until
the resulting saliency maps look reasonable. However, tuning the parameters in
this way does not guarantee that the saliency maps match the agent’s internal
reasoning. To obtain a fidelity benchmark for saliency maps, we computationally
tune the parameters to perform well in the insertion metric. We do not tune the
parameters for the sanity checks since sanity checks do not measure how well
a saliency map approach performs. Instead, they identify which approaches do
not work at all. To tune the parameters for our final tests, we need to decide on
two things: how we combine the results from the four different insertion metric
variants and which states we test the parameters on.

9.4.1. Combining Insertion Metric Results

To combine the results of the random and black insertion metric variants (see
Section 9.3.2.1), we measure the mean of the area under the insertion curve over
both the black and the random perturbation insertion metric. For our evalu-
ation, we would also like to find parameters that are able to analyze both the
agent’s action value and state value estimation. To this end, we standardize the
mean AUC results of the aforementioned tests for the advantage and Q-values
measurements respectively4. The sum of these standardized values is then used
as a single value that measures the performance of the parameters. Parameters
such as patch size have a strong influence on the run-time of the saliency map
approaches. Therefore, to ensure comparability between approaches and to run
our final experiment in a reasonable time, we do not select the top parameters.
Instead, we use the best parameters that take up to three seconds to compute
a single saliency map.

9.4.2. Choosing a Test Set

As a test set for our parameter tuning, it is not feasible to use the full stream of
1000 states that we want to use in our final evaluation of the different saliency
maps. LIME and RISE, in particular, have long computation times and a large
number of possible parameter combinations (We will provide more information
on the run-time of each saliency map approach in Section 9.5.3). This would

4 Let µ and σ be the mean and standard deviation of the mean AUC results xi then the
standardized results zi are given by zi =

xi−µ
σ .

129



make the run-time of the parameter test explode. Therefore, we need to find a
suitable subset of states that represent as many states as possible. Since there
are no test- or validation-sets in reinforcement learning, we have to choose these
subsets from the full stream of gameplay.
As potential candidates, we tested 22 different subsets consisting of 10 states

each. Ten of these subsets were randomly selected. The other 12 subsets were
selected by different variants of the HIGHLIGHTS algorithm. HIGHLIHGTS
selects a diverse set of states that give a good overview of the agent’s policy
(Section 4.2.3.1). Hereby, it utilizes a diversity threshold that makes sure that
the selected states are not too similar to each other. For this diversity threshold,
we tested the 10, 20, 25, 28, 30, 32, 33, 35, and 40 percentile of the similarity
values of the full 1000 states stream5. To get even more diverse sets of states,
we additionally tested two novel variations of HIGHLIGHTS: one variant where
we used 5 of the most important and 5 of the least important states for the
agents’ strategy and one variant where we sorted all 1000 states by importance
and chose every 100th state to obtain states of all importance levels.
To compare how well these subsets represent the full stream of gameplay,

we calculated the combined insertion metric results, as described above, for
the full 1000 states of Pacman using 28 different parameter combinations of
Occlusion Sensitivity. The particular parameters were chosen since they are
fast to compute. Based on these results, we obtained a “ground truth” for how
those 28 parameters for Occlusion Sensitivity should be ranked. Now, a subset
of states is suited for searching parameters if the parameter ranking obtained by
the subset is similar to the ranking obtained by the full 1000 states. To calculate
the similarity of different rankings, we used both Spearman’s and Kendall rank
correlation coefficients. While this does not give conclusive evidence, it gives a
good estimation of which states do and do not work. The highest correlation
to the ranking obtained by the full stream was achieved by the 30 percentile
HIGHLIGHTS variant. For the action value, the Spearman’s rank correlation
was 0.96, and the Kendall rank correlation was 0.85. For the state value, the
Spearman’s rank correlation was 0.95, and the Kendall rank correlation was
0.81. The correlations for the other subsets can be seen in our repository. 6 It is
important to note that HIGHLIGHTS only performed well when the diversity
threshold was very high. When the threshold was low, the HIGHLIGHTS states
performed worse than the random ones. We got the best results when the
threshold was so high that increasing the threshold resulted in subsets with less
than ten states since the algorithm could not find any more states that could
be added to the subset.

5Here the n percentile is the value n
100 of the way from the minimum of the similarity values

to the maximum.
6https://github.com/belimmer/PerturbationSaliencyEvaluation

130

https://github.com/belimmer/PerturbationSaliencyEvaluation


Table 9.2.: Best parameters for Occlusion Sensitivity. The final parameters
are marked in bold.

AUC Patch Size Color Softmax Time

6.76 1 Black No 10.94
3.44 1 Gray No 11.09
3.42 1 Black Yes 11.51
3.03 1 Gray Yes 11.50
2.33 2 Black No 2.80
0.93 2 Black Yes 2.88
0.32 3 Black No 1.26
0.26 2 Gray No 2.83
0,04 2 Gray Yes 2.87
-0.06 4 Black No 0.69

9.4.3. Used Saliency Map Parameters

Using the combined insertion metric results and the test set described above,
we tested a total of 4918 parameter combinations across all five saliency map
methods. The full results of our tests for each method can be viewed in our
repository. 7

Occlusion Sensitivity. For Occlusion Sensitivity, we tested patches of size 1
to 10, black and gray occlusion color, and whether applying a softmax layer to
the output Q-values before creating the saliency map improves results. The top
ten results are shown in Table 9.2.

Noise Sensitivity and SARFA. For Noise Sensitivity, we tested circles with a
radius of 1 to 10. The top ten parameters are shown in Table 9.3 (a). SARFA
was not introduced with a specific perturbation method. Analogous to Puri
et al., we test blurred circles of radius 1 to 10 as used in Noise Sensitivity.
Additionally, we also use circles that are occluded with black color. The top ten
results are shown in Table 9.3 (b).

RISE. For RISE we tested 500, 1000,...,3000 masks of size 4 to 24. The proba-
bility p with which each pixel is occluded varied between 0.1 and 0.9 in steps of
0.1. Analogous to Occlusion Sensitivity, we also investigated whether it makes
sense to add a softmax layer after the output during the saliency map creation.
The top five results are shown in Table 9.4.

7https://github.com/belimmer/PerturbationSaliencyEvaluation
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Table 9.3.: Best parameters for Noise Sensitivity (a) and SARFA (b). The
final parameters are marked in bold.

(a)

AUC Radius Time

3.08 2 5.79
2.21 1 22.84
0.94 3 2.62
0.68 9 0.38
0.48 10 0.31
-0.05 4 1.48
-0.49 8 0.44
-0.84 5 0.99
-2.07 6 0.68
-3.94 7 0.51

(b)

AUC Radius Perturbation Time

7.03 1 Black 12.05
1.46 2 Black 3.00
1.09 1 Blur 23.70
0.57 8 Blur 0.46
0.55 2 Blur 6.12
0.49 9 Blur 0.39
0.40 10 Blur 0.32
0.27 3 Black 1.40
0.08 3 Blur 2.77
0.01 5 Blur 1.06

Table 9.4.: Best parameters for RISE. The final parameters are marked in bold.

AUC p Mask
Size

Masks Softmax Time

3.21 0.8 11 3000 Yes 5.09
3.04 0.7 13 3000 No 4.76
2.99 0.9 24 2500 Yes 3.98
2.94 0.8 4 3000 No 4.66
...

Skipping 9 parameters that took more then
3 seconds.

2.66 0.5 8 1000 No 1.54
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Table 9.5.: Best parameters for LIME with Felzenszwalb segmentation. The
final parameters are marked in bold.

AUC Scale Sigma Minimum
Size

Num
Samples

Time

4.35 21 0.5 0 3000 10.73
3.58 21 0.75 2 3000 7.38
3.53 1 1.0 0 2000 22,03
3.29 21 0.5 0 2500 8.95
...

Skipping 14 parameters that took more then
3 seconds.

2.55 21 0.5 4 1000 1.71

Table 9.6.: Best parameters for LIME with SLIC segmentation. The final
parameters are marked in bold.

AUC Num
Segments

Compactness Sigma Num
Samples

Time

3.99 200 10.0 1.0 3000 3.13
3.86 200 10.0 0.25 2000 2.08
3.48 200 10.0 0.0 3000 3.11
3.46 200 0.001 0.25 3000 2.36
3.44 200 10.0 0.5 1000 1.06

LIME. For LIME, we tested the three most common Segmentation techniques
SLIC, Quickshift, and Felzenszwalb and varied the number of samples on which
the local interpretable model is trained. For the number of samples, we took the
default number of samples (1000) and increased it in steps of 500 up to 3000.
To determine which parameter ranges we should explore for each segmentation
algorithm, we performed preliminary tests where we visually checked which pa-
rameters resulted in different segmentation. For Felzenszwalb segmentation we
used a scale factor of 1,21,...,101, a minimum component size from 1 to 8 and
Gaussian smoothing kernels with width σ of 0,0.25,...,1. The top results are
shown in Table 9.5. For SLIC we tested 40,60 to 240 segments, a compact-
ness factor of 0.001,0.01,...,10 and Gaussian smoothing kernels with width σ of
0,0.25,...,1. The top five parameter combinations can be seen in Table 9.6. Fi-
nally, we tested Quickshift with a color ratio of 0.0,0.33,0.66, and 0.99, a kernel
size from 1 to 6 and a max distance of kernelsize ∗ i, where i goes from 1 to 4.
The top results are shown in Table 9.7.
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Table 9.7.: Best parameters for LIME with Quickshift segmentation. The final
parameters are marked in bold.

AUC Kernel
Size

Max
Distance

Ratio Num
Samples

Time

6.24 1 1 0.0 3000 11.38
4.97 1 1 0.0 2500 9.57
4.80 1 2 0.0 2500 4.46
4.50 1 2 0.0 3000 5.39
4.23 1 2 0.0 1500 2.75

9.5. Results

Figure 9.2 shows example saliency maps for all four games used in our exper-
iments. To prevent cherry-picking of particularly convincing states, the states
are chosen by the HIGHLIGHTS algorithm (see Section 4.2.3.1).

9.5.1. Sanity Checks

The combined results of the sanity checks test are shown in Figure 9.3. The
results for each individual game can be seen in Figure 9.4. The lower the
scores, the higher the dependence on the agents’ learned parameters. Notably,
LIME has a very high Pearson correlation of HOGs. Furthermore, the original
Noise Sensitivity has a low dependence on the parameters of the output layer
compared to Occlusion Sensitivity. Since those two approaches are very similar
in theory, we implemented two modifications of Noise Sensitivity to investigate
the reason for this difference in parameter dependence. First, Noise Sensitivity
Black occludes the circles in the Noise Sensitivity approach with black color
instead of blurring them. Second, Noise Sensitivity Chosen Action changes the
way that the relevance of each pixel is calculated from the original equation
(Eq. 3.2), which takes all actions into account, to the one used by Occlusion
Sensitivity (Eq. 3.1), which focuses on the chosen action. We did not test a
combination of black circles and the Occlusion Sensitivity relevance calculation
since that would be equivalent to Occlusion Sensitivity with circles instead of
squares. While the black occlusion did not really change the sanity check results,
the change in the relevance calculation immensely increased the dependence on
the learned parameters.
An example of the different saliency maps during a single run of the sanity

check can be seen in Figure 9.5.
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Figure 9.2.: Example saliency maps for the games we tested. From top to bot-
tom: Pacman, Breakout, Space Invaders, and Frostbite. For better visibility,
the saliency maps are displayed in green color over a simplified version of the
states. The higher the intensity of the green color, the higher the relevance of
the corresponding pixel for the agent’s decision.

Figure 9.3.: Results of the sanity checks for the different saliency map ap-
proaches (NS is noise Sensitivity). Measured for 1000 states of each of the
four tested games. Starting from the left, each mark represents an additional
randomized layer starting with the output layer. The y-axis shows the average
similarity values (Spearman rank correlation, SSIM, Pearson correlation of the
HOGs). High values indicate a low parameter dependence. The translucent
error bands show the 99% CI but are barely visible due to low variance in the
results.
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Figure 9.4.: Results of the sanity checks for each individual game for the
different saliency map approaches (NS is noise Sensitivity). Measured for
1000 states of each of the four tested games. Starting from the left, each
mark represents an additional randomized layer starting with the output layer.
The y-axis shows the average similarity values (Spearman rank correlation,
SSIM, Pearson correlation of the HOGs). High values indicate a low parameter
dependence. The translucent error bands show the 99% CI.
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Figure 9.5.: Example saliency maps for the parameter randomization sanity
check. From top to bottom, each row after the first is generated for agents
with cascadingly randomized layers, starting with the output layer.
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9.5.2. Insertion Metric

Tables 9.8 and 9.9 report the sample mean and SD of the insertion metric
results for 1000 states of each game and each saliency map approach.8 To get
a baseline performance, we also calculated the insertion metric with uniformly
sampled random saliency maps. For some games and sub-metrics, the mean
area under the insertion curve is negative. This is due to the fact that some
agents assign high negative Q-values and advantages to the fully perturbed
state. For most games, RISE has the best results for measuring the raw Q-
values on random perturbation. However, the results for measuring advantage
with random perturbation are poor for all approaches. For Frostbite and Space
Invaders, and measuring the advantage with random perturbation, the random
saliency maps even performed better than all other approaches. For the other
two games, RISE has the highest values. When using black color perturbation
during the insertion metric, Occlusion Sensitivity obtained very good results for
measuring the state value, and SARFA worked best for the advantage. However,
their results for random perturbation were very poor. From our parameter
tuning, we knew that this depended on the color of perturbation used during the
saliency map generation. Therefore, we additionally tested Occlusion Sensitivity
with gray color and SARFA with noise perturbation as used by Noise Sensitivity.
The other parameters remained unchanged. Table 9.10 shows the results of
those additional tests. Notably, Occlusion Sensitivity got the highest Q-value
random insertion results in Pacman, Frostbite, and Space Invaders. SARFA got
the best advantage results for random insertion for Pacman and Frostbite, only
slightly losing to Occlusion Sensitivity with gray color in Space Invaders. The
performance of both approaches on black perturbation fell to a level similar to
the random baseline. The exception to most observations described above is
Breakout. Here, the LIME variants performed the best across most metrics.
SLIC segmentation, in particular, achieves at least the second-highest score in
each metric. It is worth noting that this game also has the highest SD values.

8For each game and metric the sample mean of the 1000 insertion metric results xi is calcu-

lated by µ =
∑

i xi

1000 and the SD by

√∑
i(xi−µ)2

1000 .
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Table 9.8.: Part 1 of the sample mean and SD of the insertion metric curve for
1000 states of each game, see Table 9.9 for part 2. Q-val and Adv measure the
change of the normalized Q-value and advantage respectively. Rand and black
use random and black perturbation, respectively, during the insertion metric.

Metric Occlusion Noise SARFA RISE Baseline

Pacman:
Q-val rand 0.54±1.3 0.75±0.7 0.76±1.2 1.1±2.0 0.85±1.5
Adv rand -0.52±1.2 -0.03±0.8 -0.74±1.3 -0.01±1.1 -0.22±1.0
Q-val black 3.08±3.2 0.66±0.8 0.83±1.8 1.01±1.8 0.53±0.8
Adv black 1.23±1.6 0.15±0.3 1.7±0.8 0.21±0.4 0.06±0.3
Breakout:
Q-val rand -0.72±2.5 -1.01±3.0 -3.19±3.9 -0.97±2.7 -2.21±2.9
Adv rand -0.42±4.7 -1.52±8.4 -0.92±8.4 0.85±6.1 -0.76±5.8
Q-val black 3.16±4.2 3.04±4.2 1.97±2.0 3.39±4.2 2.13±3.1
Adv black 0.02±0.5 0.19±0.6 0.53±1.1 0.29±0.6 0.07±0.2
Frostbite:
Q-val rand 0.56±1.0 0.83±1.0 0.73±1.0 0.92±1.1 0.88±1.1
Adv rand 0.31±1.1 0.38±1.2 0.2±1.2 0.35±0.9 0.4±1.2
Q-val black 5.65±3.1 0.58±0.2 1.53±1.6 2.4±1.7 0.51±0.4
Adv black 0.59±0.9 0.2±0.2 1.22±0.9 0.25±0.3 0.16±0.2
Space
Invaders:
Q-val rand -0.7±0.6 -0.6±0.6 -0.8±0.6 -0.39±0.4 -1.1±0.8
Adv rand 0.76±3.5 0.83±3.4 0.79±3.7 0.66±2.8 0.89±4.2
Q-val black 1.01±0.2 0.73±0.1 0.74±0.2 0.89±0.1 0.56±0.1
Adv black 0.28±0.4 0.26±0.3 0.59±0.4 0.21±0.2 0.13±0.2
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Table 9.9.: Part 2 of the sample mean and SD of the insertion metric curve for
1000 states of each game, see Table 9.8 for part 1. Q-val and Adv measure the
change of the normalized Q-value and advantage respectively. Rand and black
use random and black perturbation, respectively, during the insertion metric.

Metric LIME Felz. LIME Quick. LIME SLIC Baseline

Pacman:
Q-val rand 0.46±0.7 0.67±1.1 0.62±1.1 0.85±1.5
Adv rand -0.43±1.2 -0.44±1.0 -0.36±1.1 -0.22±1.0
Q-val black 2.83±5.3 2.49±4.7 2.47±4.4 0.53±0.8
Adv black 0.64±0.7 0.94±0.5 0.67±0.5 0.06±0.3
Breakout:
Q-val rand -0.98±2.7 -0.48±4.1 -0.53±3.2 -2.21±2.9
Adv rand -0.7±6.5 -0.54±5.4 -0.05±4.8 -0.76±5.8
Q-val black 7.48±9.6 5.8±8.7 6.12±9.7 2.13±3.1
Adv black 0.24±0.6 0.24±0.4 0.71±1.4 0.07±0.2
Frostbite:
Q-val rand 0.75±0.9 0.37±1.0 0.36±1.0 0.88±1.1
Adv rand 0.2±0.9 0.24±1.3 0.23±1.3 0.4±1.2
Q-val black 2.71±2.4 5.12±4.1 3.25±2.5 0.51±0.4
Adv black 0.26±0.3 0.28±0.4 0.26±0.3 0.16±0.2
Space
Invaders:
Q-val rand -1.12±0.9 -0.81±0.7 -0.88±0.7 -1.1±0.8
Adv rand 0.87±4.3 0.76±3.7 0.87±3.6 0.89±4.2
Q-val black 1.02±0.2 1.08±0.2 1.11±0.3 0.56±0.1
Adv black 0.24±0.2 0.25±0.2 0.29±0.2 0.13±0.2
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Table 9.10.: The sample mean and SD of the insertion metric curve for our
additional experiments with different perturbations for Occlusion Sensitivity
and SARFA. Q-val and Adv measure the change of the normalized Q-value and
advantage, respectively. Rand and black use random and black perturbation,
respectively, during the insertion metric. The bold values beat the highest
values for the respective metric in our original experiment.

Metric Occlusion gray SARFA blur

Pacman:
Q-val rand 2.98±3.5 1.0±2.2
Adv rand 0.44±1.8 1.12±1.0
Q-val black 0.32±0.2 0.62±1.3
Adv black -0.13±0.3 0.23±0.4
Breakout:
Q-val rand -0.83±2.6 -0.8±3.4
Adv rand 0.4±5.3 -0.4±5.8
Q-val black 1.99±2.5 3.0±3.9
Adv black 0.11±0.5 0.21±0.7
Frostbite:
Q-val rand 3.54±2.3 1.13±1.2
Adv rand 0.66±1.1 0.73±1.2
Q-val black 0.5±0.5 0.58±0.3
Adv black 0.16±0.2 0.3±0.3
Space Invaders:
Q-val rand 0.07±0.7 -0.75±0.7
Adv rand 1.04±3.5 1.02±3.7
Q-val black 0.48±0.2 0.66±0.2
Adv black 0.12±0.3 0.44±0.4
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9.5.3. Run-time Analysis

The run-time of an algorithm can be an important aspect when choosing be-
tween different approaches. We computed the mean time it took each algorithm
to create a single saliency map using the timeit python library. To get a feeling
of how this is affected by different parameters of the saliency map approaches,
we measured the time during our parameter tuning process where each param-
eter combination was used on 10 different states (see Section 9.4 for the full
results).
The fastest approach was Occlusion Sensitivity, which uses simple color oc-

clusions followed by the more complex blur perturbation of SARFA and Noise
Sensitivity. However, this was strongly dependent on the size of the perturba-
tion patches and circles respectively. Using a patch size or radius of 1, these
approaches were among the slowest, with a mean run-time of around 22s for
the blur perturbation and approximately 11s for the black occlusion variant.
However, increasing the patch size and radius to 2 already drastically reduced
the run-time. For RISE, the run-time mainly depends on the number of masks.
With 3000 masks, the run-time was always close to 5s per saliency map. How-
ever, compared to the aforementioned saliency map approaches, the run-time
only decreased slowly when the number of masks decreased. Thus, the aver-
age and the fastest run-time were much slower for RISE than for SARFA, and
Occlusion and Noise Sensitivity. The slowest approach we tested was LIME.
However, this was strongly influenced by the number of segments that the seg-
mentation functions generated and the number of learning steps for the locally
interpretable classifier. For SLIC, which creates relatively big segments, LIME
was quite fast, with a maximum run-time of 3.87s with the slowest parame-
ters. In contrast, the run-time for Felzenswalb easily exploded and reached a
maximum of 33.64s per saliency map. Quickshift was in the middle of those
two approaches with a maximum run-time of 12.50s, which did not decrease as
quickly as the run-time of Occlusion and Noise Sensitivity, and SARFA.

9.6. Discussion

9.6.1. Sanity Checks

The results of our sanity checks show that most of the perturbation-based
saliency map approaches tested in this chapter are dependent on the learned
parameters of the agent’s neural network. Their dependence on the learned pa-
rameters is generally comparable to the best gradient-based approaches tested
by Adebayo et al. [2018] and the best modified propagation approaches tested in
Sixt et al. [2020]. The only exceptions to this are Noise Sensitivity and LIME.
Noise Sensitivity showed little dependence on the parameters of the output
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layer (Figure 9.3). Since the output layer has the highest impact on the actual
decision of a network, it is crucial that a faithful saliency map depends on the
weights learned in this layer. Our results empirically show that replacing the
original equation of Noise Sensitivity to calculate the relevance of each pixel
with the equation used by Occlusion Sensitivity greatly increases the parameter
dependence. We think that this is due to the fact that the original equation takes
all actions into account and, therefore, measures a general increase in entropy
within the activations of the output layer. In contrast, Occlusion Sensitivity
only measures the action that is actually analyzed and, therefore, captures a
more specific change in the output layer activation. Recently, Puri et al. [2020]
also criticized that the saliency maps by Greydanus et al. [2018] take all actions
into account. The results of our sanity checks provide the first computational
evidence for this critique.
LIME performed well in the sanity check measurements using SSIM and

Spearman correlation. Only the Pearson correlation of the HOGs was very high
between LIME saliency maps for the trained and randomized agents. However,
the reason for this is not necessarily a low dependence on the agent’s learned
weights. More likely, it is due to the fact that all LIME saliency maps for a given
state work with the same superpixels. Since every pixel inside a superpixel has
the same value, there are hard edges between the superpixels. These edges are
captured by the HOGs and result in high values of the Pearson correlation of
the HOGs.

9.6.2. Insertion Metric

During our parameter tuning, we tried our best to find parameters that result in
saliency maps that work for both black and random perturbation and capture
both the agent’s action value as well as state value estimation. Despite these
efforts, no saliency map approach performed well across all sub-metrics. The
best results for measuring the state value were obtained by Occlusion Sensitiv-
ity, and the best results for the action value were obtained by SARFA. This
distinction is illustrated by the fact that no SARFA saliency map for Pacman,
which we looked at, identified the in-game score as relevant (e.g., Figure 9.2).
The score is a good indicator of the value of the current state and is frequently
highlighted by all other approaches we tested. However, based on the rules of
the game, it is not necessary to know the score to choose the correct action in
a given Pacman state.
Additionally, the saliency maps’ fidelity depended on the type of perturba-

tion. The area under the insertion curve with black perturbation was the highest
when the saliency map approaches used black occlusion. To mitigate this effect,
some saliency map approaches utilize blurring during their perturbation. Sur-
prisingly, this was also sensitive to the perturbation type of the insertion metric
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in our tests. Similar to gray occlusion, blurring performed best for the random
perturbation insertion metric and did not do well on black perturbation. The
closest thing to a saliency map approach that fits all sub-metrics was RISE.
However, the results here were considerably worse than the results for Occlu-
sion Sensitivity and SARFA with parameters that fit the respective sub-metric,
especially when analyzing the action value estimation.
These results do not necessarily mean that the evaluated saliency map meth-

ods are not suited to explain DRL agents. However, they demonstrate that none
of the approaches answers the general question: “What was the most relevant
input region for the agent’s decision?”. Instead, they answer more specific ques-
tions depending on the type of perturbation and whether the state or action
value is analyzed. For example, SARFA with black perturbation for Pacman
is suited to answer the question: “The presence of which objects was relevant
for the agent’s choice of action”. Since the black background color of Pacman
acts as deleting objects, and SARFA measures the action advantage. In con-
trast, Occlusion Sensitivity with black color would answer the same question
with regard to the agent’s evaluation of the current state. Based on this, we ad-
vise future researchers to clearly define what question they want to investigate.
Depending on that question, a fitting saliency map method can be chosen.
Our parameter tuning experiments also showed that the fitting saliency map

method can strongly depend on single parameters of the saliency map methods.
Therefore, we encourage future researchers to conduct systematic parameter
searches fitting their questions similar to the one described in this chapter.
Manually adjusting the parameters until the resulting saliency maps look rea-
sonable might lead to saliency maps that look convincing but do not match the
agent’s internal reasoning.

9.6.3. Limitations

We used four different variants of the insertion metric to get a good estimate
of saliency map approaches’ fidelity in different situations. Between those vari-
ants, we already found distinct differences. This fact reinforces the findings
by Tomsett et al. [2020] that current fidelity metrics for saliency maps can be
very sensitive to the specifics of their implementation. For value-based RL in
particular, we extend the results of Tomsett et al. by demonstrating that there
are also considerable differences between metrics that measure the action value
and metrics that measure the state value. However, it can not be ruled out that
other fidelity metric variants might result in even more insights. To ease future
evaluations and parameter searches, a great challenge for XAI research will be
the development of more general fidelity metrics for saliency maps.
Another potential limitation of our results is that recent work indicates that

simply displaying saliency maps to end-users might not be suited as a final
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explanation (see Chapter 10 and [Danesh et al., 2021]). However, saliency maps
are still often used as primary components of more sophisticated explanation
frameworks (e.g., [Danesh et al., 2021]). We argue that it is even more crucial
to evaluate the fidelity of saliency maps in situations where their information is
used as an integral component of more complex explanation mechanisms.
We only used DRL agents with visual input in our evaluation since this is

the most common application for saliency maps. It is possible to apply saliency
map methods to DRL agents with other input domains as used in 3D locomo-
tion tasks [Todorov et al., 2012], queueing network controls [Dai and Gluzman,
2022], and recommendation systems [Zhao et al., 2021]. In this context, the
saliency map methods are often referred to as Feature Attribution methods.
This raises the question of whether our results extend to Feature Attribution
methods in non-visual domains. Since visual image manipulations (e.g., im-
age segmentation and Gaussian noise) do not make sense in non-visual input
domains, Feature Attribution methods use different input perturbations in non-
visual domains. Apart from that, the saliency map methods discussed in this
work can be directly applied to any agent with discrete action space. Contin-
uous action spaces require further adjustments. Therefore, our findings that
are not related to the input perturbation should still apply to DRL agents with
discrete action spaces in non-visual domains. This includes the difference be-
tween analyzing the agent’s action value and state value estimation, as well as
the parameter independence of relevance calculation of Noise Sensitivity.

9.7. Conclusion

This chapter compared five different perturbation-based saliency map approaches,
measuring their dependence on the agent’s parameters and their fidelity to the
agent’s reasoning. Our main findings are:

Most of the approaches tested in this work do depend on the agent’s
learned parameters. Only Noise Sensitivity showed less dependence on
the learned parameters of the output layer. We empirically show that
this is due to Noise Sensitivity’s original relevance calculation. Replacing
this calculation with a calculation that only takes the analyzed action
into account drastically increases the dependence on the parameters of
the output layer.

For value-based DRL agents, there are considerable differences between
analyzing the agent’s action value and state value estimation. While this
distinction is hidden within the agent’s output Q-values, future practi-
tioners should be aware of which of the two they want to analyze and
choose their saliency maps accordingly. To investigate how well saliency
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maps for value-based DRL agents capture this distinction, we proposed an
adjustment to existing input degradation metrics for image classifiers. In
our tests, SARFA worked best to capture the action value while Occlusion
Sensitivity and RISE were more suited for the state value.

Depending on which perturbation method the approaches use, the result-
ing saliency maps only analyze how sensitive the agent is with regard to
specific types of perturbation. While this seems obvious, it was true even
for perturbation methods that utilized blurring specifically to reduce their
dependence on a choice of occlusion color. In contrast to the action and
statue value distinction, this is not an inherent property of the DRL agents
but might be seen as a flaw of current perturbation-based saliency map
approaches. Our results demonstrate that there is still a need to further
develop perturbation-based saliency map approaches. For now, researchers
have to decide which types of perturbation are meaningful and interesting
for their application. Based on this, they can choose an appropriate per-
turbation method – for example, by performing a parameter search similar
to the one conducted in this work.
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Part V.

User Studies Evaluating the Effect
of Local and Global XRL

Approaches
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As Chapter 8 laid out, there are benefits to combining local and global explana-
tions. While local explanations provide detailed information about individual
decisions of an agent, they do not provide any information about its behavior in
different contexts. Similarly, while global explanation methods provide a high-
level view of a policy, they do not provide decision-specific insights. Due to the
potential complementarity of such approaches, it is important to examine the
effectiveness of combining them rather than studying each approach in isolation.
This part is based on three consecutive user studies [Huber et al., 2021b;

Septon et al., 2023; Huber et al., 2023], in which we investigated the different
and complementary benefits of integrating one global explanation method for
DRL agents (strategy summarization) with three local explanation methods
(saliency maps, reward decomposition, and counterfactual explanations).
For all those user studies, we used the ALE as test environment. The ALE

is a common benchmark for state-of-the-art reinforcement learning algorithms
[Bellemare et al., 2013; Dhariwal et al., 2017; Mnih et al., 2015; Wang et al.,
2016b] and to test explanation methods for those algorithms [Amir and Amir,
2018; Greydanus et al., 2018; Lapuschkin et al., 2019; Weitkamp et al., 2019].
See Section 2.1.2 for details on this environment and why it is a useful bench-
mark. More specifically, we used the game Pacman (see Section 2.1.2.1 for a
detailed description) since it is not as reaction-based as some other Atari games
(e.g., Breakout or Enduro) and allows the RL agents to develop different strate-
gies. Furthermore, no additional domain knowledge is necessary to understand
Pacman, and the rules are not too complicated. This enables us to conduct
studies with a wide range of participants by simply explaining the rules at the
beginning of the study.
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10. First Study: Strategy
Summaries and Saliency Maps

In this chapter, we begin our evaluation of combined local and global expla-
nation approaches for DRL agents by investigating the combination of HIGH-
LIGHTS summaries with LRP-argmax saliency maps described in Section 8.1.
The chapter is based on the user study in our publication:

Tobias Huber, Katharina Weitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy sum-
maries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi: 10.

1016/j.artint.2021.103571

Strategy summaries (Section 4.2.3.1) show demonstrations of the agent’s be-
havior in a carefully selected set of world states. Saliency maps, in contrast, are
used to show users what information the agent is attending to (Section 3.2.1).
As outlined in Chapter 8, the combination of saliency maps and HIGH-

LIGHTS is a very natural one. Firstly, the typical presentation of saliency
maps as heatmap overlays lends itself to the typical presentation of strategy
summaries in the form of videos. Moreover, both methods highlight important
information: HIGHLIGHTS finds important states, while saliency maps identify
important pixels within each state.
For the saliency map method, we chose LRP-argmax because of its selective

nature, which is particularly important when the information is presented in
the form of videos, and because of the advantageous properties of LRP, such as
conserving the Q-value.
We evaluate the combination of global strategy summaries and LRP-argmax,

as proposed in Section 8.1, in a user study in which we explore both the benefits
of HIGHLIGHTS summaries and the benefits of adding saliency maps to strat-
egy summaries. Specifically, we compare likelihood-based summaries (which
select states for the summaries based on the likelihood of visiting them) and
HIGHLIGHTS summaries, both with and without the addition of saliency maps.
Study participants completed two types of tasks requiring the analysis of dif-
ferent agents trained to play the game of Pacman (Section 2.1.2.1): an agent
comparison task in which they compare the performance of two agents, and
an agent understanding task, in which they reflect on an agent’s strategy. We

149

https://doi.org/10.1016/j.artint.2021.103571
https://doi.org/10.1016/j.artint.2021.103571


chose those tasks to investigate whether the users trusted the right agent and
to evaluate their mental models of the agents, respectively.
Our results show that participants who were shown HIGHLIHGTS sum-

maries performed better on both tasks compared to participants who were shown
likelihood-based summaries, and were also more satisfied with HIGHLIHGTS
summaries. We find mixed results with respect to the benefits of adding saliency
maps to summaries, which improved participants’ ability to identify some as-
pects of the agents’ strategies but, in most cases, did not lead to improved
performance.
This chapter makes the following contributions:

It evaluates the combination of global strategy summaries and local saliency
maps in a user study, demonstrating the benefits of HIGHLIGHTS sum-
maries and the potential benefits and limitations of local explanations
based on saliency maps.

It provides the first user study evaluation of LRP-based saliency maps for
reinforcement learning. Despite its advantageous mathematical properties
and promising user study results in classification tasks [Alqaraawi et al.,
2020], there have been no user studies with LRP for RL agents prior to
our study.

10.1. Study Design

10.1.1. Research Question

To evaluate our hypothesis that there are benefits to combining global strategy
summaries and local saliency maps for explaining DRL agents, we conducted a
user study. In this study, participants were asked to compare different agents
and to reflect on the strategies of the agents based on the information they were
shown. Next, we describe in detail the study design, the specific hypotheses we
tested, and the metrics we used to evaluate the results.

10.1.2. Experimental Conditions

To evaluate the potential benefits of integrating global and local explanations
and their relative importance, we assigned participants to four different condi-
tions (summarized in Table 10.1). The first two conditions included only global
information, while the remaining two conditions integrated local explanations
as well.
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Table 10.1.: The four study conditions in our first user study, comparing global
strategy summaries with local saliency maps.

Likelihood-based summaries HIGHLIGHTS
No saliency maps L H
LRP saliency maps L+S H+S

Likelihood-based Summaries (L): The summaries in this condition
consisted of states that the agent was likely to encounter during game-
play. To generate these summaries, we randomly select state-action pairs
from the streams of the Pacman agents playing the game. Since each
state encountered in the game had the same probability of being chosen,
states that are encountered more frequently will be more likely to be in-
cluded. Because of the random component of these summaries, it is possi-
ble that a single summary is, by chance, particularly good or particularly
bad. Therefore, we generated ten different likelihood-based summaries
and randomly assigned them to participants in this condition.

HIGHLIGHTS Summaries (H ): In this condition, participants were
shown summaries generated by the HIGHLIHGTS algorithm (Section
4.2.3.1). The specific implementation of this algorithm and the param-
eters we used for diversity are described in Section 8.1.

Likelihood-based Summaries+Saliency (L+S): These summaries
included the same states as those shown in the L summaries, but each
image was overlayed with a saliency map generated by the LRP-argmax
algorithm (Section 6.1) as described in Section 8.1.

HIGHLIGHTS Summaries+Saliency (H+S): These summaries in-
cluded the same states as those shown in the H summaries, where each
image was overlayed with a saliency map generated by the LRP-argmax
algorithm (Section 6.1) as described in Section 8.1.

We used a budget of k = 5 for the summaries. That is, each summary included
five base states chosen either based on likelihood or by HIGHLIGHTS, where
for each state, we included a surrounding context window of ten states that
occurred right before and after the chosen state. We used an interval size of ten
states to prevent directly successive states in the summary.
The video creation and saliency map overlay process are described in detail

in Section 8.1. All video summaries used in the study are available online.1.
We note that we did not include a condition that shows only local explanations

since, by definition, a local explanation is given for a specific state, forcing

1https://github.com/HuTobias/HIGHLIGHTS-LRP/tree/master/Survey_videos
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us to make some choice about which states to show (which means making a
global decision). However, the L+S condition simulates a scenario where local
explanations are shown for states selected based on the likelihood of the agent
encountering them during gameplay.

10.1.3. Dependent Variables and Main Tasks

To evaluate participants’ ability to differentiate between alternative agents and
analyze their strategies, we trained Pacman agents that behave qualitatively
differently. To this end, we modified the reward function used for training
(similar to the approach used by Sequeira and Gervasio [2020]), resulting in
three types of agents. We based all of those reward functions on the default
ALE [Bellemare et al., 2013] reward function, which measures the increase in
the in-game score between the first and last frame of a state (see Section 2.1.2).

Regular agent : This agent was trained using the default reward function
of the ALE

Power pill agent : This agent was trained using a reward function that
only assigned positive rewards to eating power pills2.

Fear-ghosts agent : This agent used the default ALE reward function but
was given an additional negative reward of −100 when being eaten by
ghosts, causing it to more strongly fear ghosts (which is implicitly learned
by the other agents due to the lack of future rewards caused by being
eaten).

To remove unnecessary magnitude, we divided all the rewards described above
by the factor 10, such that a regular pill gives a reward of 1. Each agent was
trained for 5 Million steps with the baselines [Dhariwal et al., 2017] implementa-
tion of the DQN algorithm described in Section 2.2. At the end of this training
period, the best-performing policy is restored.

Main Tasks. We aimed to investigate three aspects related to the participants
in the study: (1) the mental model of the participant about the agent, (2)
participants’ ability to assess agents’ performance (appropriate trust), and (3)
participants’ satisfaction with respect to the explanations presented.
Task 1: Eliciting Mental Models through Retrospection. The exam-

ination of participants’ mental models (see Section 3.3.2) and their correctness

2We achieved this by only giving the agent a reward if the increase in score was between
50 and 99. The range is necessary since Pacman is forced to eat at least one regular pill
directly before it eats a power pill.
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Figure 10.1.: A sketch of the agent understanding task: participants were asked
to analyze the behavior of each agent by providing a textual description of its
strategy and identifying the objects that are most important to its decision-
making. The full task can be seen in Appendix B.4.
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helps to verify if explainable AI has been successfully applied [Rutjes et al., 2019;
Arrieta et al., 2020]. To evaluate which mental models participants have formed
about the agent’s behavior, we designed an agent understanding task. Here,
we used a task reflection method inspired by prior studies [Anderson et al.,
2019; Sequeira and Gervasio, 2020], which is recommended by Hoffman et al.
[2018]. This task involved asking the participants to analyze the behavior of
the three different AI agents: Regular agent, Power pill agent , and Fear-ghosts
agent. The ordering of the agents was randomized. Specifically, participants
were shown the video summary (according to the condition they were assigned
to) and were asked to briefly describe the strategy of the AI agent (textual)
and to select up to three objects that they thought were most important to the
strategy of the agent (the possible objects were Pacman, power pills, normal
pills, ghosts, blue ghosts, and cherries). They were also asked how confident
they were in their responses and to justify their reasoning. Figure 10.1 shows a
sketch of the agent understanding task.
Task 2: Measuring Appropriate Trust through Agent Comparison.

We use the term appropriate trust, based on the work of Lee and See [2004] who
present a conceptual ‘trust in automation’ framework. They define appropriate
trust as a well-calibrated trust that matches the true capabilities of a technical
system (see also Section 3.3.2). We measure the appropriate trust using an
agent comparison task. Here, the participants were shown summaries of two
of the three agents at a time and were asked to indicate which agent performs
better in the Pacman game (similar to tasks used in [Amir and Amir, 2018;
Selvaraju et al., 2020]). They thus made three comparisons (Regular agent Vs.
Power pill agent, Regular agent Vs. Fear-ghosts agentand Power pill agent
Vs. Fear-ghosts agent). We do not ask the participants directly about their
trust in the two agents shown. Instead, the participants have to choose one of
the two agents that they would like to play on their behalf (see Figure 10.2).
To objectively say which agent performed better, we computed the average in-
game score of each trained agent during the simulations used for our summaries
(Section 8.1). If the participants choose the correct agent, then they receive a
bonus payment as described in the Procedure paragraph. This implicit question
reveals which agent participants consider more reliable and qualified for the
task. As in the retrospection task, they were asked to indicate their level of
confidence and to provide a textual justification for their decision. The ordering
of the three agent comparisons was randomized.
Explanation satisfaction questions. Miller et al. [2017] argue that the

end users’ impressions about the agent should be queried and included in the
evaluations of the explainable AI methods. This would ensure that the devel-
oped explanation methods are comprehensible not only to ML experts but also
to end-users. We address this concern in our study by measuring participants’
subjective satisfaction. To this end, we used explanation satisfaction ques-
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Figure 10.2.: A sketch of the agent comparison task: participants were asked
to choose which agent they would like to play on their behalf (i.e., identify the
better-performing agent) according to the two summary videos. The full task
can be seen in Appendix B.4.
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tions adapted from the questionnaire proposed by Hoffman et al. [2018] (see
Section 3.3.2 for the original questionnaire). We did this separately for the agent
understanding task (immediately after completing the three retrospection tasks)
and for the agent comparison task (after completing the three comparisons), as
we hypothesized there may be differences in the usefulness of the summaries
for these two different types of tasks. Specifically, participants were asked the
following questions using a 5-point Likert scale:

1. From watching the videos of the AI agents, I got an idea of the agents’
strategies.

2. The videos showing the AI agents play contain sufficient detail about the
agents’ behavior.

3. The videos showing the AI agents play contain irrelevant details.

4. The videos showing the AI agents play were useful for the task. (only
shown in groups L and H )

5. The gameplay scenarios shown in the videos were useful for the task. (only
shown in groups L+S and H+S )

6. The green highlighting in the videos was useful for the task. (only shown
in groups L+S and H+S )

We substituted the task with either analyzing the agents’ behavior or choosing
the agent that performs better, depending on the task they had just completed.

Analysis. We analyze the main hypotheses using the non-parametric Mann-
Whitney test [McKnight and Najab, 2010], as our dependent variables are not
normally distributed. We report effect sizes using rank biserial correlation [Tom-
czak and Tomczak, 2014]. Additionally, we report the mean values and the 95%
confidence interval (CI) computed using the bootstrap method. In all plots, the
error bars correspond to the 95% confidence intervals.
For evaluating the retrospection task, we use a scoring system where two

of the authors involved in the training of the agents assigned a score to each
item for each agent before the study started (see Appendix B.3 for details).
For example, for the Power pill agent , which was only rewarded when it ate a
Power pill, selecting the Power pill or Pacman increased the score by 1 point, and
including any other item reduced the score by 1 point. Furthermore, selecting
more than three items resulted in a score of zero since the participants were told
to select a maximum of three items.
Inspired by Anderson et al. [2019], we use summative content analysis [Hsieh

and Shannon, 2005] to evaluate participants’ textual responses. An independent
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coder (not one of the authors) classified responses to the questions “Please
briefly describe the strategy of the AI agent shown in the video above” in the
agent understanding task, and the question “Please briefly explain how you
came to your selection” in both the agent understanding task and the agent
comparison task. Each question was asked three times (once for each agent
description or agent comparison), resulting in 402 answers per question. For
the first question, the coder identified 67 different concepts in the answers. For
example, the answer “The strategy of this Pacman agents seems to be to mainly
avoid the ghosts as it eats the normal pills on the screen. Although it can be seen
eating a power pill, the clip still does not show Pacman seeking out and eating
the ghosts” was coded to “prioritizing normal pills”, “avoiding ghosts” and “do
not care about blue ghosts”. We aggregated those concepts into 16 groups by
combining similar concepts like “eating normal pills” and “prioritizing normal
pills”.
To evaluate the correctness of participants’ answers, we implemented a simple

scoring system. For each agent and for each answer group, we decided whether
it is correct, irrelevant, or wrong, based on predefined ‘ground-truth’ answers
that two of the authors, who were involved in the training of the agents, wrote
for each agent before the study started. The exact groups and their assigned
scores can be found in Appendix B.3 and the open-sourced code.
The answers to the second question regarding participants’ justifications of

their responses were classified into six categories (the answer could be based on
the game rules, the saliency maps, the gameplay, participants’ interpretation,
and two categories for unjustified or unrelated justifications, which we grouped
into one “unjustified” category) and an additional seventh category for the agent
comparison task, that encoded that the user could not decide between the two
agents and guessed.
We note that the classifications assigned by the coder are not mutually ex-

clusive.

10.1.4. Hypotheses

Overall, we hypothesized that HIGHLIGHTS summaries will be more useful
than likelihood-based summaries in both the retrospection and agent compar-
ison tasks and that adding saliency maps will further improve participants’
performance. More specifically, we state the following hypotheses:

H1: For both tasks, participants shown summaries generated by HIGH-
LIGHTS will perform better than participants shown likelihood-based
summaries. That is, performance in H will be better than performance in
L and performance in H+S will be better than performance in L+S. We
expect HIGHLIGHTS summaries to be more useful as they demonstrate
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the agent’s behavior in more meaningful states, which should help both in
identifying which agent performs better (in line with prior findings [Amir
and Amir, 2018; Huang et al., 2018]), as well as in determining whether
an agent is capable of performing well in certain scenarios [Huang et al.,
2018]. We expect similar effects in terms of participants’ explanation sat-
isfaction in each task.

H2: For both tasks, adding saliency maps will improve participant’s per-
formance and satisfaction. That is, we expect the performance in L+S
will be better than in L and similarly, that performance in H+S will be
better than in H. Here, too, we expect similar effects in terms of partic-
ipants’ explanation satisfaction in each task. We expect this to be the
case as the saliency maps allow people to see not only what actions the
agent chooses but also what information it attends to. Previous studies
also found positive effects of saliency maps on participants’ mental mod-
els [Anderson et al., 2019; Alqaraawi et al., 2020] and on their ability to
choose the better-performing prediction model [Selvaraju et al., 2020]

H3: The effect of the summary generation method on satisfaction and
performance will be greater than that of the inclusion of saliency maps in
the agent comparison task. That is, we expect that global information will
be more crucial for identifying the better-performing agent, as it explicitly
demonstrates how the agents act.

H4: The effect of adding saliency maps on satisfaction and performance
will be stronger than that of the summary generation method in the agent
understanding task. Since saliency maps explicitly show what information
the agent attends to, we hypothesize it will contribute more to identify-
ing the agent’s strategy. However, this is complicated by the fact that
likelihood-based summaries might not include interesting scenarios, mak-
ing saliency maps less helpful in this case. Therefore, our more specific
hypotheses are:

– H4.1: Participants in the saliency conditions will be more likely to
identify Pacman, the main source of information for our agents, as
an important object.

– H4.2: Participants in the HIGHLIGHTS conditions will be more
likely to identify objects that relate to agent goals, such as power
pills and blue ghosts. Therefore, they will also more accurately de-
scribe the agents’ strategies.
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10.1.5. Procedure and Compensation

Participants were first asked to answer demographic questions (age and gen-
der) and questions regarding their experience with Pacman and their views on
AI. Then, they were shown a tutorial explaining the rules of the game Pacman
and were asked to play the game to familiarize themselves with it. To verify
that participants understood the rules, they were asked to complete a quiz and
were only allowed to proceed with the survey after answering all questions cor-
rectly. After completing the quiz, they were given information and another quiz
regarding the Pacman agent video summaries. In conditions L+S and H+S ,
this also included an explanation and a quiz about saliency maps. Then, they
proceeded to the main experimental tasks. See Appendix B.4 for the complete
questionnaire. Participants were compensated as follows: they received a $4
base payment and an additional bonus of 10 cents for each correct answer. The
study protocol was approved by the Institutional review board at the Technion.

10.1.6. Participants

We recruited participants through Amazon Mechanical Turk (N = 133). The
majority of participants were between the ages of 25 and 44, 47 females). Partic-
ipation was limited to people from the US, UK, or Canada (to ensure a sufficient
English level) with a task approval rate greater than 97%. Each participant was
randomly assigned to one of the four conditions (L:33, H :33 L+S :34, H+S :33).
Since saliency maps are not designed for color-blind people, the participants
were also asked if they were color-blind and stopped from participating if they
were.
To make sure that the participants involved in our analysis did, in fact, watch

the videos of the agents, we recorded whether they clicked play on each video in
addition to how often each video was paused. We did not force them to watch
the videos to filter out participants who would have just pressed play to avoid
the forcing mechanism. Since we saw from the raw data that some participants
only stopped watching videos after the agent understanding task, we checked
each task separately. As a heuristic to measure how attentively a user watched
the videos of a task, we took the sum of pauses of the videos in this task, where
watching a video until the end was recorded as a pause and not clicking play
was counted as −1 pause. Based on this heuristic, we removed all participants
from the agent understanding task who did not have at least three pauses (5
participants) and all participants from agent comparison task who did not have
at least six pauses (11 participants). The number of necessary pauses in each
task is equal to the number of videos in this task.
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Table 10.2.: Summary of all significance tests (calculated with Mann-Whitney
tests). The ∗ denotes statistically significant differences and † denotes a p-value
< 0.1.

Task Variable
Effect of strategy
summarization:

Effect of saliency
maps:

H > L H+S > L+S L+S > L H+S > H
agent under-
standing task

score 0.008∗ 3.3e− 05∗ 0.965 0.514
satisfaction 0.021∗ 0.035∗ 0.677 0.710
text score 0.088†

agent com-
parison task

score 0.014∗ 0.180 0.062† 0.307
satisfaction 0.147 0.235 0.627 0.833

AI and Pacman Experience. We verify that participants in different condi-
tions did not differ much in their AI experience and views and in their experience
with the game Pacman. To this end, we asked them when they played Pacman
for the last time. Across all four conditions, the majority of participants an-
swered: “I played Pacman more than 5 years ago”. After receiving a short
description of what AI is (using a formulation based on [Russell and Norvig,
2016]), 104 participants stated that they had experience with AI. The exact
kind of experience ranged from “I know AI from the media” (78 participants)
to “I do research on AI related topics” (14 participants). On average, the users
had a positive attitude towards AI (mean of 3.95 on a 5-point Likert scale).
There were no meaningful differences between the conditions (see Appendix B.1
for more details).

10.2. Results

This section reports the results of our first study. First, it assesses the main
hypotheses of that study (H1–H4) (results summarized in Table 10.2). Then,
it provides a descriptive analysis of additional variables such as participants’
confidence and analysis of mistakes.

(H1) Participants shown HIGHLIGHTS summaries performed better than
participants shown likelihood-based summaries. Participants’ correctness
rates for the agent comparison task are shown in Figure 10.3(b). These results
support H1, which states that HIGHLIGHTS summaries will lead to improved
performance in both the agent comparison task and the agent understanding
task. The exact definition of performance per task is described in more de-
tail in Section 10.1.3. Specifically, in the agent comparison task we find that
participants in condition H significantly outperformed participants in condition
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(a) Total score (summed over all three
agents) for the object selection in the
agent understanding task. The scoring

system is described in 10.1.3.

(b) Number of correct agent selections
in the agent comparison task (Out of

three selections).

Figure 10.3.: Comparison of participants’ average performance in each task,
by condition. Participants in the HIGHLIGHTS conditions H and H+S out-
performed the likelihood-based conditions L and L+S . Saliency maps only had
a slight positive effect when added to likelihood-based summaries in the agent
comparison task.

L (H : mean=2.1, 95% CI=[1.83, 2.33], L: mean= 1.63, 95% CI=[1.34, 1.91],
Mann-Whitney test U=334.5, p = 0.014, rrb=0.3)3. While participants in the
H+S condition achieved higher mean correctness rates than participants in the
L+S condition, this difference is not statistically significant (H+S : mean=0.71,
95% CI=[0.6, 0.82], L+S : mean=0.65, 95% CI=[0.54, 0.75], Mann-Whitney test
U=391, p = 0.180, rrb=0.13). Similarly, participants’ average explanation satis-
faction ratings, shown in Figure 10.4(b), indicate that participants in condition
H were more satisfied with the videos they received than the other participants.
However, this difference is not significant (see Table 10.2).
With respect to participants’ performance during the agent understanding

task, we find even stronger results (Figure 10.3(a)) than in the agent com-
parison task, further supporting H1. Here too, participants in condition H
obtained a higher score in the object selection sub-task than participants in
condition L (H : mean=2.5, 95% CI=[1.89, 3.03], L: mean=1.5, 95% CI=[0.92,
2.06], Mann-Whitney test U=346.5, p = 0.008, rrb=0.34) and participants in the
H+S condition received a higher score then participants in the L+S condition
(H+S : mean=2.55, 95% CI=[2.02, 3.06], L+S : mean=0.73, 95% CI=[0.13, 1.31],
Mann-Whitney test U=206.5, p = 0.00003, rrb=0.58). We found analogous sig-
nificant differences in participants’ explanation satisfaction during the agent un-

3Here 95% CI is the 95% confidence interval and rrb is Rank biserial correlation.
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(a) Participants’ satisfaction in the
agent understanding task averaged over
all explanations satisfaction questions.

(b) Participants’ satisfaction in the
agent comparison task averaged over all

explanation satisfaction questions.

Figure 10.4.: Comparison of participants’ average explanation satisfaction in
each task, by condition. Each participant rated their agreement with several
statements adapted from the explanation satisfaction questions proposed by
Hoffman et al. [2018] on a 5-point Likert scale (see Section 10.1.3). The par-
ticipant’s final rating was averaged over all those ratings, reversing the rating
of the negative statements. Overall, participants in the HIGHLIGHTS condi-
tions H and H+S rated the explanations highest.

derstanding task (Figure 10.4(a)). Here, participants in condition H were more
satisfied than participants in condition L (H : mean=3.63, 95% CI=[3.35, 3.88],
L: mean=3.17, 95% CI=[2.82, 3.5], Mann-Whitney test U=373.0, p = 0.021,
rrb=0.29) and participants in the H+S condition were more satisfied than par-
ticipants in the L+S condition (H+S : mean=3.52, 95% CI=[3.25, 3.78], L+S :
mean=3.12, 95% CI=[2.81, 3.43], Mann-Whitney test U=364.5, p = 0.035, rrb
0.27).

(H2) Adding saliency maps improved performance in some areas depend-
ing on the task. There were no significant differences supporting our second
hypothesis H2, which predicted that adding saliency maps would improve partic-
ipants’ performance in both tasks. Nevertheless, we report two positive effects of
saliency maps that are only marginally4 significant and which might guide future
research in this area. For the agent comparison task, we find that the saliency
maps only improved performance when added to likelihood-based summaries
(L: mean=0.54, 95% CI=[0.45, 0.64], L+S : mean=0.65, 95% CI=[0.54, 0.75],
Mann-Whitney test U=390.5, p = 0.062, rrb=0.21). Figure 10.3(a) shows that

4In accordance with convention [Vogt, 2005], we use marginally significant to describe 0.05 ≤
p < 0.1
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Figure 10.5.: Participants’ total score for their textual descriptions of the
agents’ strategies during the agent comparison task (summed over all three
agents). The scoring function is described in 10.1.3. The descriptions of par-
ticipants in the HIGHLIGHTS conditions H and H+S received a higher score
than those of participants in the likelihood-based conditions. The addition of
saliency maps (H+S ) slightly improved this effect further.

the saliency maps did not help participants identify the most important objects
in the agent understanding task. However, the summative content analysis of
participants’ textual descriptions of the agents’ strategies, shown in Figure 10.5,
indicates that saliency maps helped participants to correctly describe how the
agents use those objects. The descriptions of the agents’ strategies written by
participants in condition H+S received a higher score than the ones by partic-
ipants in condition H (H : mean=1.50, 95% CI=[0.97, 2.0], H+S : mean=2.13,
95% CI=[1.55, 2.71], Mann-Whitney test U=400, p = 0.088, rrb=0.195).

(H3 + H4) The effect of the summary generation method was greater
than that of adding saliency maps. We hypothesized that the summary gen-
eration method would affect the performance of participants more than the ad-
dition of saliency maps in the agent comparison task (H3) and that the saliency
maps will have a greater effect than the summary method in the agent under-
standing task (H4). The study results support H3: we found that participants
shown HIGHLIGHTS summaries significantly outperformed participants shown
likelihood-based summaries in the agent comparison task while adding saliency
maps only improved performance for the likelihood-based summaries, and to a
lesser extent.
For selecting the most important objects for the agent’s strategy in the agent

understanding task, the addition of saliency maps did not improve perfor-
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(a) Selections of Pacman during the object
selection per condition.

(b) Mentions of Pacman’s vicinity in the
descriptions of the agents’ strategies per

condition.

Figure 10.6.: The average number of times that participants correctly selected
Pacman during the object selection (a) or referred to its vicinity in their tex-
tual descriptions (b) of the agents’ strategies (sum over all three agents). The
results indicate that saliency maps help the participants to identify what in-
formation the agents use.

mance, while HIGHLIGHTS summaries did improve performance compared to
the likelihood-based summaries. Therefore, we reject H4, even though the re-
sults shown in Figure 10.5 indicate that saliency maps improved the textual
descriptions of the agent’s strategy written by participants in H+S compared
to H .
In line with Hypothesis H4.1, Figure 10.6 indicates that the improvement of

the descriptions of the agents’ strategies mainly stems from participants in the
saliency groups L+S and H+S identifying that the agent mostly paid attention
to the vicinity of Pacman. This effect was not as strong in the object selection
question since it did not capture the participants’ reasoning.
Sub-Hypothesis H4.2 stated that strategy summarization would help partici-

pants identify the goals of the agents. The results shown in Figure 10.7 support
this hypothesis since participants in the HIGHLIGHTS conditions H and H+S
identified the correct goals of the agent more often.

Participants with AI expertise benefited more from saliency maps. To
investigate the effect of AI expertise, we looked at participants with advanced
AI experience. In total, 19 participants stated that they completed at least one
course on AI or did research in AI (the latter being more common). These 19
participants were divided among conditions as follows: 5 per condition, except
for condition L+S , which had only 4 (see Appendix B.1 for more information).
For the agent understanding task (Figure 10.8 a)), their results were in line with
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(a) Selections of the agent’s specific goals in
the object selection, per condition.

(b) Mentions of the agent’s specific goals in
the strategy descriptions, per condition.

Figure 10.7.: The number of times that participants identified the agent’s
specific goal in the object selection (a) and strategy description (b) components
of the agent understanding task. The results are in line with Hypothesis H4.2
that strategy summarization helps to identify the agents’ goals.

the results of the general population, albeit a little bit higher in condition L. For
the agent comparison task (Figure 10.8 b)), two participants did not watch the
videos, leaving 17 participants with advanced AI experience (4 per condition
except for 5 in the H condition). Compared to the general population (Figure
10.3 b)), the participants with AI expertise performed better in conditions L+S
(mean = 2.25) and H+S ( mean = 2.5) but worse in condition H (mean=1.6).
Moreover, the participants with AI expertise actually performed better in the
saliency map conditions L+S and H+S than in the conditions without saliency
maps (L and H ). Since these observations were not part of our initial hypotheses
and we do not have a sufficient number of participants with AI expertise, we
did not investigate them further.

Participants’ Justifications. Across all groups, most participants mainly based
their justifications on the agents’ gameplay (Figure B.9). In the saliency condi-
tions, most participants did not mention the saliency maps in their justifications.
On average, less than one out of three justifications in H+S and in L+S referred
to the green highlighting during the agent understanding task. During the agent
comparison task, even fewer participants mentioned them (see Figure B.10 for
more details).
Another interesting point we found in participants’ justifications during the

agent understanding task is that participants in condition H gave more unjus-
tified explanations than any other condition (H : mean=0.66, compared to the
second-highest condition L+S : mean=0.38 ). This is just an observation and
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(a) Total score (summed over all three
agents) for the object selection in the
agent understanding task. The scoring

system is described in 10.1.3.

(b) Number of correct agent selections
in the agent comparison task (Out of

three selections).

Figure 10.8.: The average per task performance of participants with AI exper-
tise, by condition.

did not repeat in the agent comparison task, but it might be interesting to
investigate further in the future. The values for all conditions can be seen in
Figure B.11.

Participants’ Confidence and Viewing Dynamics. In addition to the main
metrics used in our study, we further measured participants’ confidence (in
particular, whether they were more confident when they answered correctly)
and their viewing dynamics of the summaries (time and number of pauses).
However, apart from a slight positive effect for the participants in condition H ,
there were no interesting differences in the three aforementioned variables (see
Figure B.6 to B.8 and Appendix B.2 for additional details).

10.3. Discussion & Future Work

With the increasing use of RL agents in high-stakes domains, there is a growing
need to develop and understand methods for describing the behavior of these
agents to their human users. In this chapter, we explored the combination of
global information describing agent behavior, in the form of strategy summaries,
with local information in the form of saliency maps. To this end, we augmented
HIGHLIGHTS summaries (Section 4.2.3.1), which select important and diverse
states (adapted to DQN agents), with saliency maps generated using the LRP-
argmax algorithm (Chapter 6).
We implemented the combined approach in the Atari Pacman environment
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and evaluated the separate and joint benefits of showing users global and local
information about the agent. We used two types of tasks: an agent understand-
ing task about the agent’s strategy and an agent comparison task.

Strategy Summarization. The results of this study reinforce prior findings
[Amir and Amir, 2018] showing that summaries generated by HIGHLIGHTS
lead to significantly improved performance of participants in the agent compar-
ison task compared to likelihood-based summaries, and show that this result
generalizes to RL agents based on neural networks. Furthermore, we show that
HIGHLIGHTS summaries were more useful for analyzing agent strategies and
were preferred by participants. Overall, in our study, the choice of states that
were shown to participants was more important than the inclusion of local ex-
planations in the form of saliency maps.

Limitations of Saliency Maps. With respect to the addition of saliency maps,
we found mixed results. In contrast to previous studies about saliency maps for
image classification tasks, which found weak positive effects for saliency maps
[Alqaraawi et al., 2020; Selvaraju et al., 2020], there were no significant dif-
ferences between the saliency and non-saliency conditions in our study. When
examining participants’ answer justifications, we observed that most partici-
pants did not mention utilizing the saliency maps, which may provide a partial
explanation for their lack of contribution to participants’ performance. Espe-
cially in the agent comparison task, participants seldom mentioned the saliency
maps even though there was a marginally significant difference between the
performance of participants in condition L and in condition L+S . Participants’
comments also reflect their dissatisfaction with saliency maps, e.g., “I do not
believe that the green highlighting was useful or relevant” and “The green high-
lights didn’t seem to help much”. This suggests that saliency maps in their
current form may not be accessible enough to the average user.
Based on the comments from the participants and in-depth feedback we re-

ceived in pilot studies, we note some possible accessibility barriers. First, when
saliency maps are shown as part of a video, it may be difficult for users to keep
track of the agent’s attention, compared to displays of static saliency maps,
as done in previous user studies [Selvaraju et al., 2020; Anderson et al., 2019]
[Alqaraawi et al., 2020]. For instance, one participant reported that “[i]t wasn’t
so easy to see the green area, it needed to be bigger or more prominent to be of
more use.” We tried to take measures against this by using a selective saliency
map generation algorithm (LRP-argmax) and interpolating between selected
saliency maps (see Section 8.1) to reduce the amount of information, as well as
allowing participants to pause the video at any time. However, this does not
seem to have been enough.
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Second, participants were not accustomed to interpreting saliency maps, which
can be non-intuitive to non-experts. One participant even commented that
“[he/she] feel[s] as though this came with somewhat of a learning curve”. In
our pilot studies, we noticed that people who were familiar with reinforcement
learning or deep learning could more easily interpret saliency maps than those
who were not. For example, some participants said that they thought the agent
was good when its attention was spread to different areas because they inferred
it considered more information, while in fact, the agent was attending to dif-
ferent regions because it did not yet learn what the important information is.
Similarly, one study participant commented: “...I don’t know if I would prefer
an AI that ‘looked’ around more at the board, or focused more in a small area to
accomplish a task”. Similar effects can be observed when examining the partici-
pants with AI expertise in our main study. Participants with AI expertise in the
saliency conditions L+S and H+S received higher scores in the agent compari-
son task than the general population, while the participants with AI expertise
in the H and L conditions received comparable or even lower scores than the
general population. Even though this is only a small group, it further indicates
that saliency maps, in the form of raw heat maps, might be better suited for
debugging purposes than for actual end-users. It is possible that prior studies,
which used raw saliency maps for interpreting image classification [Alqaraawi
et al., 2020; Selvaraju et al., 2020], did not encounter this problem due to the
more intuitive nature of the task. Interpreting a visual highlighting for image
classification only requires identifying objects that contributed to the classifi-
cation, while in RL, there is an added layer of complexity as interpretation
also requires making inferences regarding how the highlighted regions affect the
agent’s long-term sequential decision-making policy.
Finally, while the sanity checks reported in Section 6.4 showed that our

saliency maps do analyze what the network learned, they were also found to
be indifferent to specific actions. Since prior studies have shown that users find
class discriminatory explanations more useful for understanding agents’ deci-
sions [Goudet et al., 2018; Lopez-Paz et al., 2017; Byrne, 2019], the lack of
discrimination between certain actions can be detrimental to the usefulness of
saliency maps.

Potential of Saliency Maps. Regarding the potential of saliency maps, we
made encouraging observations. Even though saliency maps did not significantly
increase participants’ scores in the simple object selection part of the agent
understanding task, they did result in improved scores in the textual strategy
description. The difference between our HIGHLIGHTS conditions H+S and H
is similar to the one observed by Anderson et al. [2019] (p=0.086 compared to
our p=0.088), who also evaluated participants’ mental models for RL agents
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utilizing a strategy description task. The poor result of condition L+S can be
explained by the fact that Anderson et al. manually chose meaningful states,
which we only did with our global explanation method in the HIGHLIGHTS
conditions.
A possible reason for the difference between the object selection and the strat-

egy description sub-tasks is the higher complexity of strategy descriptions. It
requires participants to not only identify the correct objects but also to describe
how they are used. Under this assumption, the increased performance of partic-
ipants in condition H+S suggests that saliency maps were useful for putting the
objects in the correct context. For example, participants’ textual descriptions
showed that, while the non-saliency groups know that Pacman is important
(most likely based on the fact that it is important for them as players), they
did not identify it as a central source of information for the agent.
Second, we observed in the agent comparison task that saliency maps alone

improved participants’ ability to place appropriate trust into different agents
when comparing conditions L and L+S . The performance in condition L+S was
comparable to the performance of participants in the HIGHLIGHTS conditions,
H and H+S . This indicates that there is valuable information for this kind of
task within saliency maps. The lack of improvement of condition H+S compared
to H might be explained by the accessibility issues of saliency maps mentioned
earlier. When presented with strategy summaries, participants may have had
less reason to rely on the non-intuitive saliency maps.

Combination of Local and Global Explanations. It is important to note that
the positive effects of saliency maps in the agent understanding task were only
visible in the HIGHLIGHTS condition H+S , reinforcing our claim that the
choice of states is crucial for explaining RL agents. Therefore, even if the limi-
tations of saliency maps mentioned above are addressed, the potential benefits
might only be visible and likely reinforced by a combination with strategy sum-
marization techniques. We note that studies that evaluate local explanations
typically implicitly make a global decision about which states to present local
explanations for [Anderson et al., 2019; Madumal et al., 2020]. Our results
suggest that this implicit choice may have a substantial impact on participants’
understanding of agent behavior.
In the agent understanding task, we observed that local explanations in the

form of saliency maps were useful for identifying what objects the agent attends
to (see Figure 10.6), while strategy summaries were more useful for identifying
the agent’s goals (see Figure 10.7). This was reflected by participants’ utterances
such as: “The agent seemed to be paying attention to the area directly in front
of it and partly to the areas directly to each side.” and “Pacman wanted those
ghosts! His goal was to move as fast as he could towards them.” and suggests
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that the two approaches are indeed complementary. The local saliency maps
contribute to users’ understanding of the agents attention, as they reflect the
information the agent attends to, while strategy summaries contribute to users’
understanding of the agent’s intentions, as they reflect how the agent acts.
Taken together, our results suggest that there is potential for a combined

explanation framework in the future if the accessibility issues of saliency maps
are addressed.

Study Limitations. Our study has several limitations. First, we used a sin-
gle domain in our user study. However, other recent work has used strategy
summaries similar in spirit to HIGHLIGHTS in another domain [Sequeira and
Gervasio, 2020], and several works have used saliency maps in other domains
(e.g., several Atari games, including Pong and Space Invaders, were used by
Greydanus et al. [2018]).
Second, while our combined explanation approach is easily adaptable to other

global explanation methods, which choose an informative subset of states, and
local methods, which highlight relevant information in those states, our study
only explored one combination of a particular global explanation method and
a particular local explanation method. We chose the HIGHLIGHTS summary
method since strategy summary approaches that are based on policy reconstruc-
tion require making various assumptions about people’s computational models
[Lage et al., 2019]. We chose saliency maps as a local method both because it
is visual and thus can be integrated with a visual summary and also because
other methods typically require additional models or assumptions (e.g., causal
explanations [Madumal et al., 2020] require a causal graph of the domain). The
specific choice of the LRP-argmax algorithm was motivated by its selectivity,
which reduces the amount of information that participants have to process. The
accessibility problems of saliency maps we identified were mainly related to the
presentation of the information. This indicates that simply highlighting how
relevant parts of the input are for the prediction of an agent is insufficient, even
when based on other saliency map algorithms.
Finally, it is not yet possible to obtain actual ground truth about an agent’s

reasoning for the agent understanding task. To approximate this, we trained
three agents with different optimization goals (i.e., reward functions) and checked
whether the participants were able to differentiate between them, similar to [Se-
queira and Gervasio, 2020]. We note that it is possible that the agents do not
pay attention to the objects that correspond to their goals (e.g., the power pills)
within the visual input in a way a human would. In fact, our results indicate
that the agents are not paying direct attention to their goals since the saliency
maps did not help users identify the differences in the goals. Creating agent
variations in ways that do not depend on different optimization goals might be
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better suited to show the potential benefits of saliency maps.

10.4. Conclusion

To evaluate the combination of global strategy summaries and local saliency
maps proposed in Chapter 8, as well as the contribution of each explanation
type, we conducted a user study. Hereby, we examined participants’ mental
models through an agent understanding task and used an agent comparison task
to investigate whether their trust was appropriate given the agents’ capabilities.
Regarding the usefulness of global strategy summaries, our results show that

HIGHLIGHTS summaries (1) help to establish appropriate trust in agents based
on neural networks (extending prior results about classic RL agents [Amir and
Amir, 2018]) and (2) improve participants’ mental models of those agents.
The evaluation of local explanations in the form of LRP saliency maps reveals

strengths as well as weaknesses. On the one hand, our analysis shows that
reinforcement learning comes with additional usability challenges not present
in previously evaluated image classification tasks. First, presenting saliency
maps on videos instead of static images [Anderson et al., 2019; Alqaraawi et al.,
2020] overwhelms users with a lot of information in a short amount of time
and increases the risk of overlooking crucial information. Second, compared
to more intuitive image classification tasks [Alqaraawi et al., 2020; Selvaraju
et al., 2020], the average user lacks the experience to correctly infer how the
highlighted regions affect the agent’s long-term sequential decision-making.
On the other hand, the results indicate that saliency maps have the potential

to (1) extend users’ mental models beyond strategy summaries by providing
insight into what information the agent used and (2) improve users’ ability to
choose the better agent even with likelihood-based summaries.
Taken together, the results support a combination of local and global expla-

nations, since participants in the combined explanation condition received the
highest scores during our survey. However, our evaluation suggests that simply
highlighting pixels that are relevant for the agent’s decision is insufficient for
RL agents and that more work is needed to increase the accessibility of saliency
maps.
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11. Second Study: Strategy
Summaries and Reward
Decomposition

This chapter evaluates the benefits of integrating reward decomposition (Sec-
tion 4.1.3.1), a local explanation method that exposes which components of
the reward function influenced a specific decision, and HIGHLIGHTS (Section
4.2.3.1), a global explanation method that shows a summary of the agent’s
behavior in decisive states. It is based on the Pacman user study in our publi-
cation:

Yael Septon, Tobias Huber, Elisabeth André, and Ofra Amir [2023]. “In-
tegrating Policy Summaries with Reward Decomposition for Explaining Re-
inforcement Learning Agents”. In: Advances in Practical Applications of
Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Col-
lection - 21st International Conference. Vol. 13955. Lecture Notes in Com-
puter Science. Springer, pp. 320–332. doi: 10.1007/978-3-031-37616-

0_27

Our first user study (Chapter 10) investigated the combination of local and
global explanation methods by integrating strategy summaries with saliency
maps. This study showed that the combination of local and global explanations
is promising. However, the saliency maps we used as local explanations were
lacking. One potential reason for this is that saliency maps are a post-hoc ex-
planation technique that is created after the RL agents are fully trained. Recent
literature by Rudin [2019] and our previous work described in Chapter 9 sug-
gest that such post-hoc explanations do not always faithfully reflect the agent’s
learned decision model. Therefore, we explore the use of reward decomposition,
an intrinsic explanation method built into the agent’s decision model, as the
local explanation method in this chapter.
We conducted a user study in which participants were randomly assigned

to one of four different conditions that vary in the combination of global and
local information: (1) being presented or not presented with a local explanation
(reward decomposition), and (2) being presented with a global explanation in
the form of a HIGHLIGHTS policy summary (Section 4.2.3.1) or being presented
with frequent states the agent encounters (a baseline for not providing global
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explanations). Similar to the first study (Chapter 10), we trained agents that
varied in their priorities by modifying the reward function. Participants were
asked to determine the priorities of these agents based on the explanations shown
in their assigned study condition.

11.1. Study Design

11.1.1. Research Question and Hypothesis

In this study, we evaluate the benefits of integrating HIGHLIGHTS (Section
4.2.3.1) with reward decomposition (Section 4.1.3.1) as well as their respec-
tive contributions to users’ understanding of agents’ behavior. To this end, we
asked participants to evaluate the preferences of different agents. We hypoth-
esized that the combined explanations would best support participants’ ability
to correctly identify agents’ preferences and that both the local and global ex-
planations would be better than the baseline information.

11.1.2. Dependent Variables and Main Task

Similar to the agent understanding task in the first study (Section 10.1), the
participant’s task was to assess the preferences of three different agents.
To this end, we trained three qualitatively different Pacman (Section 2.1.2.1)

agents using the HRA reward decomposition method described in Section 4.1.3.1.
All three agents use the DQN network architecture (Section 2.2). We imple-
mented reward decomposition by sharing the convolutional layers but training
individual fully connected layers for each reward component. 1 Based on the
rules of Pacman, we used four different reward components for the RL agent
controlling Pacman. Similar to the first user study (Chapter 10), the reward
components are based on the ALE reward function (Section 2.1.2) but divided
by 10 to remove unnecessary magnitude. The agent receives a reward of 1 for
eating normal pills (NP) and a reward of 5 for eating Power Pills (PP). Addi-
tionally, after eating a PP, the ghosts turn blue, and Pacman can eat them. The
agent receives a reward of 20, 40, 80, or 160 for each blue ghost (BG) it eats
successively. Finally, the agent receives a reward of -10 for dying. To get agents
with distinct strategies, we used different weights for the reward components
(see Table 11.1). Each agent was trained for 5 million steps. In the Pacman
environment, the values of the individual rewards do not directly correlate to
the agents’ preferences. For example, the labyrinth contains a huge amount of
normal pills compared to power pills and ghosts. Therefore, the agent with no

1Our implementation can be found online: https://github.com/hcmlab/baselines/tree/
reward_decomposition
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Table 11.1.: How each of the reward components was weighted for our reward
decomposition Pacman agents.

NP PP BG Dying
weights weights weights

Normal Pill Agent 1 1 1 1
Power Pill Agent 0.01 1 0.01 0.01
Blue Ghost Agent 0.1 0.1 10 0.01

specific reward component weights focuses very strongly on normal pills even
though the reward value for individual normal pills is the lowest. To determine
what the agents preferred, we observed the Q-values and actions of each fully
trained agent for several full games before running the experiment. In total, we
trained three different Pacman agents with the following preferences:

Normal Pill Agent - Highest preference for eating normal pills, next eating
power pills, and lastly eating blue ghosts

Power Pill Agent - Highest preference for eating power pills, next eating
normal pills and eating blue ghost has the same preference

Blue Ghost Agent - Highest preference for eating blue ghosts, next eating
normal pills, lastly eating power pills.

Participants were asked to rank which of each pair of reward components
(e.g., eating power pills vs. eating normal pills) the agent prioritizes or whether
it is indifferent between the two options. If participants have a correct mental
model of the agents’ strategy, they should be able to rank the different reward
components according to the agents’ priorities. To avoid learning effects, the
ordering of the agents was randomized.
Participants were then asked to rate their confidence in each of their answers

on a Likert scale from 1 (“not confident at all”) to 5 (“very confident”) and to
describe their reasoning in a free-text response. Lastly, participants rated their
agreement on a 7-point Likert scale with the following items adapted from the
explanation satisfaction questionnaire proposed by Hoffman et al. [2018] (see
Section 3.3.2 for the original questionnaire):

1. The videos\graphs helped me recognize agent strategies

2. The videos\graphs contain sufficient detail for recognizing agent strategies

3. The videos\graphs contain irrelevant details

4. The videos\graphs were useful for the tasks I had to do in this survey
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Table 11.2.: The four study conditions in our second user study comparing
global strategy summaries with reward decomposition.

Likelihood-based summaries HIGHLIGHTS
No Reward Decomposition L H
Reward Decomposition L+RD H+RD

5. The specific scenarios shown in the videos\images were useful for the tasks
I had to do in this survey.

11.1.3. Experimental Conditions

Extending our first study (Chapter 10), we wanted to evaluate the impact of
combining global HIGHLIGHTS summaries and local reward decomposition
explanations, as well as the effect of each method individually. To this end,
we assigned participants randomly to one of four different conditions (see Table
11.2). We used the same likelihood-based baseline condition L (but with five
instead of ten different summaries per agent) and HIGHLIGHTS condition H as
in the first study. To extract these policy summaries, we ran the trained agents
for 1,000 episodes after the training and recorded the traces. In addition to the
purely global conditions L and H, we added two new conditions:

HIGHLIHGTS Summaries + Reward Decomposition
(H+RD): In this condition, we used the interactive presentation pro-
posed in Section 8.2.2. Since interpreting reward decomposition takes
some time, we did not show videos. Instead, participants were only shown
the most “important” state of each trajectory. This means that they did
not get the context of that state as the video summaries provide. How-
ever, the chosen states were the same states that appeared in the middle
of the videos in condition H . Each chosen state was shown using an image
alongside a bar plot that represents the Q-values of the different reward
components for the agents’ chosen action (see Figure 8.3).

Likelihood-based Summaries + Reward Decomposition (L+RD):
This condition was the same as condition H+RD , but the shown states
were taken from the summaries in condition L instead of H .

For the conditions without local explanation (L and H ), the presentation was
similar to Figure 8.3, but the reward bars were omitted, and each scenario
showed a short video.
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11.1.4. Procedure

After a consent form and demographic questions, participants were given an
explanation regarding the environment (Pacman). Second, they were given
a brief explanation about reinforcement learning and, specifically, about Q-
values in layperson vocabulary. In particular, they were told that the agents
are maximizing their future total score by taking into account both immediate
points as well as points for future actions. Lastly, participants were told about
the task and, depending on the condition, were given information about the
type of explanation they will see, including an example explanation. At the end
of each instruction phase, the participants were asked to complete a quiz and
were only allowed to proceed after answering all questions correctly. After the
instructions, the participants analyzed the three different agents, as described
above, and then completed the explanation satisfaction scale. Participants were
compensated as follows: they received a $3 base payment and a 30-cent bonus
for identifying the preferences of each of the agents correctly. The full study
setup can be seen in Appendix C.1.

11.1.5. Participants

We recruited participants through Amazon Mechanical Turk (N = 164). We
excluded participants who did not answer the attention question correctly, as
well as participants who completed the survey in less than two standard devi-
ations from the mean completion time in their condition. After screening, we
had 159 participants (mean age = 36 years, 88 females, all from the US, UK, or
Canada).

11.2. Results

Wemeasured participants’ ability to assess the agents’ preferences by calculating
the mean fraction of correct reward component comparisons, i.e., their correct-
ness rate, for each condition (see Figure 11.1 (a)). We tested our hypotheses
using the non-parametric, one-sided Mann-Whitney U test. Only when com-
paring the individual explanation conditions H and L+RD we used a two-sided
test since we did not have a hypothesis as to which method would be better.
We found that reward decomposition improved the participants’

ability to assess the agents’ preferences. The combination of L+RD sig-
nificantly improved participants’ performance compared to L or H (U=1187
and U=1176 respectively, p<0.001 for both). Participants in the H+RD condi-
tion performed better compared to L and H (U=1286 and U=1332 respectively,
p<0.001 for both). Some of the participants explicitly referred to reward de-
composition as being helpful for the task, e.g., “In each of the scenarios the
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(a) Participants’ mean correctness
rate in identifying the preferences

averaged over all agents.

(b) Participants’ explanation
satisfaction.

Figure 11.1.: Main results in our second study comparing HIGHLIGHTS sum-
maries (H) and Reward Decomposition (RD). The error bars show the 95%
CI.

graph clearly shows the preference for normal pills followed by eating power
pills. Eating ghosts was a minor section on the graph.”
The HIGHLIGHTS summaries contributed to the participants’ men-

tal model of the agents. There was a significant difference between condition
H and condition L (U=935, p=0.002). In some explanations given by partici-
pants, it seemed that the HIGHLIGHTS summary displayed information that
was useful for inferring preference, e.g., one participant wrote, “the pacman
would go for a power pill, eat it and turn around” when explaining their an-
swers about the power pill agent preferences.
The combined explanation did not outperform reward decomposi-

tion alone. There were no significant differences between H+RD and L+RD
when aggregated across all agents. However, our results indicate that the com-
bination of H+RD helped assess the agent’s preferences when the difference
between the reward types was minor. For the blue-ghost agent , there was
only a small difference between the Q-values for the blue ghosts and normal
pills. Participants in conditions H (M=0.3, 95% CI=(0.2, 0.5)) and H+RD
(M=0.31, 95% CI=(0.17, 0.46)) were better at correctly identifying the blue
ghost as more important than the participants in conditions L+RD (M=0.2,
95% CI=(0.17, 0.46)) and L (M=0.12, 95% CI=(0, 0.23)). This indicates that
even though our overall results do not show that the combination of H+RD
is significantly better than L+RD, there were cases in which the addition of
HIGHLIGHTS helped.
In general, while the participants’ objective performance was better

with RD compared to video-based policy summaries, this did not
lead to an increase in subjective measures. There were no substantial
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differences in the confidence values between conditions. The satisfaction values
of participants were above neutral in general (see Figure 11.1 (b)). Here, the
explanation conditions L+RD , H+RD , and H had higher mean satisfaction
ratings (M between 5.34 and 5.39) than the baseline condition (condition L
with M=4.93). However, this was not significant.

11.3. Discussion

In the previous Chapter 10, HIGHLIGHTS summaries were integrated with
saliency maps, but the user study showed that saliency maps did not provide
much benefit to the users’ understanding of agent behavior. We hypothesized
that reward decomposition may be more beneficial for several reasons. First,
saliency maps describe what features of the state the agent pays attention to,
but it is often hard to infer how this information affects the agent’s decisions,
especially for laypeople. Reward decomposition has the benefit of explicitly
describing what values the agent expects to get in a way that reflects its pref-
erences for different reward components. Moreover, saliency maps are a post-
hoc method and may not be faithful to the underlying model (see Chapter 9
and [Rudin, 2019]) while reward decomposition values are learned through the
agent’s training and reflect its true decision-making policy. Another difference
between the integration of global and local information in this chapter and the
one used in Chapter 10 is the use of static images rather than videos. We chose
this approach based on the findings from the study in Chapter 10, which iden-
tified the use of videos as one possible limitation, as the local information is
harder to discern when looking at dynamic videos.
Our study replicated the result by Amir and Amir [2018] that HIGHLIGHTS

summaries have benefits compared to likelihood-based summaries. However, in
contrast to the results in Chapter 10, participants in the local reward decompo-
sition condition L+RD performed on a similar level as the combined condition
H+RD and better than the HIGHLIGHTS condition H . A possible explanation
for this limited contribution of HIGHLIGHTS in our study is that the experi-
mental task may have been particularly suited to reward decomposition. Since
reward decomposition was already highly effective in conveying agent prefer-
ences, the selection of states for the summary was less important.

11.4. Conclusion

This chapter evaluated the approach proposed in Section 8.2.2, which integrates
HIGHLIGHTS, a global policy summary, with local reward decomposition. We
conducted a user study to evaluate the contribution of this approach to people’s
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ability to analyze agent preferences. Our results show that reward decomposi-
tion was particularly helpful for this task and that HIGHLIGHTS also led to
improvement in participants’ performance, but only in certain situations.
The fact that the intrinsic reward decomposition method in our work out-

performs the post-hoc saliency maps used in a similar experiment in Chapter
10 empirically reaffirms the recommendation by Rudin [2019] to use intrinsic
explanation methods whenever possible. Furthermore, based on the difference
between our study and the one in Chapter 10, where we showed local saliency
maps on videos instead of static states, future combinations of local explana-
tions and global policy summaries should provide the local explanation on static
states. This allows users to discern the information within the explanation.
Another notable finding is that the use of different explanation methods did

not result in substantial differences in subjective measures like explanation satis-
faction. This finding emphasizes the importance of using objective performance
measures for XAI while also showing the need for future work on how we can
increase the usability of explanatory systems.
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12. Third Study: Counterfactual
Explanations

In the previous two chapters, we investigated the combination of global HIGH-
LIGHTS summaries with local saliency maps (Chapter 10) and reward decom-
position (Chapter 11). In both studies, the combination of local and global
explanations achieved the highest results, indicating that there is benefit to
such a combination. However, in the first study, the local saliency maps only
had a limited contribution compared to the global HIGHLIGHTS. In stark con-
trast, in the second study, the local reward decomposition had a much bigger
impact than the global HIGHLIGHTS summaries. One of the main differences
between saliency maps and reward decomposition is that the former is a post-hoc
explanation method while the latter is built into the agent intrinsically.
The drawback of intrinsic methods is that they are not always applicable.

For instance, reward decomposition only works in domains where the reward
can be decomposed into individual components. Therefore, we want to explore
the combination of HIGHLIGHTS with other promising post-hoc explanation
techniques. To this end, this chapter evaluates the combination of strategy
summaries with counterfactual explanations, which was proposed in Section
8.2.1. This chapter is based on the user study in our publication:

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Olson,
and Elisabeth André [2023]. “GANterfactual-RL: Understanding Reinforce-
ment Learning Agents’ Strategies through Visual Counterfactual Explana-
tions”. In: Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages

For the particular counterfactual explanation methods, we compare the Coun-
terfactual State Explanation (CSE , see Section 4.1.2) approach by Olson et al.
[2021] and the GANterfactual-RL approach proposed in Chapter 7.
Olson et al. [2021] showed that their CSE approach can be applied to a variety

of RL environments and helps users identify a flawed agent. With the help of
their counterfactual explanations, users were able to differentiate between a
normal RL agent for the Atari game Space Invaders and a flawed agent that
did not see a specific in-game object. For this task, it is sufficient for the
counterfactual explanation to not change the particular object at all while other
objects frequently change. This clearly communicates that the unchanged object
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is irrelevant and ignored by the agent, implying that it is not seen at all.
However, for counterfactual explanations to be employed more widely, they

also have to be useful for more complex tasks. As we have seen in Section 3.3.2,
one of the main goals of a good explanation is to refine the user’s mental model
of the agent. For RL agents, this includes understanding what strategy and
intentions an agent pursues. Another critical goal for explanations is that they
should help users to calibrate their trust in different agents. For RL agents,
this entails that users should be able to choose fitting agents for specific prob-
lems, which is more complex than simply identifying defective agents. The two
aforementioned challenges require counterfactual explanations to not only con-
vey what objects need to change but also how the objects need to be altered to
change the agents’ policy.
The study in this chapter presents participants with different kinds of coun-

terfactual explanations and investigates whether this helps them to understand
the strategies of Pacman agents. Furthermore, we investigate if the counter-
factuals help them to calibrate their trust so they can choose fitting agents for
specific tasks (surviving or receiving points).
As such, the contributions of this chapter are as follows:

It evaluates the GANterfactual-RL approach proposed in Chapter 7 and
the combination of HIGHLIGHTS and counterfactual explanations pro-
posed in Section 8.2.1 in a user study.

This user study shows, for the first time, that counterfactual explanations
can help to understand the strategies of RL agents.

The study also identifies current deficiencies of counterfactual explanations
for RL agents that point the way for future work.

12.1. Study Design

12.1.1. Research Question and Hypothesis

The research question for our study was which counterfactual explanations help
users to understand the strategies of RL agents and help them to choose fitting
agents for a specific task. We hypothesized that our GANterfactual-RL method
is more useful than the CSE method and is more useful than a presentation
of the original states without counterfactuals. Further, we thought that the
counterfactuals generated by the CSE approach might mislead participants due
to the low validity of the generated counterfactual explanations (see Section
7.2). Therefore, we hypothesized that only providing the original states is more
useful than adding CSE counterfactuals.
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12.1.2. Dependent Variables and Main Tasks

Agent Understanding Task. To measure whether participants understand the
strategies of different agents and build a correct mental model of them, we used
an agent understanding task similar to the ones used in the studies described in
the previous two chapters 10 and 11. Here, participants were presented with five
states and the actions that the agent chose in these states. This was done for
each of the three Pacman agents described in Section 7.1.3 (one agent at a time).
The states were selected by the HIGHLIGHTS algorithm (Section 4.2.3.1). To
this end, we let each trained agent play for an additional 50 games and chose the
most important states according to HIGHLIGHTS. The resulting states show
gameplay that is typical for the agent without the need to manually select states
that might be biased toward our approach. Based on these states (and additional
explanations depending on the condition), participants had to select up to two
in-game objects that were most important for the agent’s strategy from a list
of objects (Pacman, normal pills, power pills, ghosts, blue ghosts, or cherries).
As described in Section 7.1.3, each agent strongly focuses on a different single
in-game object depending on their reward function (e.g., the fear-ghosts agent
focuses on normal ghosts). If the participants select this object and none of the
other objects, they receive a point. The only exception is Pacman. Every agent
heavily relies on the position of Pacman as a source of information. Therefore,
participants receive the point whether they select Pacman or not.

Agent Comparison Task. To measure how well the participants’ trust is cali-
brated, we used an agent comparison task similar to the one used in Chapter 10
to evaluate the combination of HIGHLIGHTS and saliency maps. In this task,
we implicitly measure if the participants’ trust is appropriate by asking them,
for each possible pair of the three Pacman agents, which agent they would like
to play on their behalf to obtain certain goals. Since a single agent can be good
for one goal but bad for another, this requires a deeper analysis than the dis-
tinction between a normal and a defective agent. For each pair, the participants
are shown their own descriptions of each agent from the agent understanding
task and the same states and explanations that they saw during the agent un-
derstanding task. Then, they have to decide which agent should play on their
behalf to achieve more points and which agent should play on their behalf to
survive longer. We know the ground truth for this by measuring the agents’ av-
erage score and amount of steps for the 50 games used to find the HIGHLIGHTS
states (see Appendix D.3 for the exact numbers). The amount of steps that the
blue-ghost agent and the power pill agent survive is so close that we do not
include this specific comparison in the evaluation.
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Explanation Satisfaction. To measure the participant’s subjective satisfac-
tion, we use statements adapted from the Explanation Satisfaction Scale by
Hoffman et al. [2018]. Our specific questions can be seen in the appendix Fig-
ure D.18. Participants have to rate their agreement with each statement on
a 5-point Likert scale. Participants’ final rating was averaged over all those
ratings, reversing the rating of negative statements. We do this once after the
agent understanding task and once after the agent comparison task in case there
are satisfaction differences between the tasks.

12.1.3. Conditions and Explanation Presentation

We used three independent conditions. The first was a Control condition with-
out counterfactual explanations. Since we use HIGHLIGHTS states as the base-
line, this condition is equivalent to condition H from the previous two studies.
In addition, we used two conditions where the states during the agent under-
standing task and the agent comparison task are accompanied by counterfactual
explanations. In the CSE condition, the counterfactuals are generated by the
approach from Olson et al. [2021], and in the GANterfactual-RL condition, the
counterfactuals are generated by our proposed method (Chapter 7). Appendix
D.4 shows all states and counterfactuals used in the study, and Appendix D.1
provides training details for our CSE and GANterfactual-RL models. The CSE
and GANterfactual-RL conditions are similar to the condition H+S in Chapter
10 and H+RD in Chapter 11, as they combine global and local explanations.
For presenting the counterfactual explanations, we used the design proposed
in Section 8.2.1 – i.e., there is a slider below the HIGHLIGHTS states that
participants can use to linearly interpolate the original state to the counterfac-
tual state. Figure 12.1 shows a simplified version of the beginning of our agent
understanding task.

12.1.4. Procedure and Compensation

After completing a consent form, participants were asked to answer demographic
questions (age and gender) and questions regarding their experience with Pac-
man and their views on AI. Then, they were shown a tutorial explaining the
rules of the game Pacman and were asked to play the game to familiarize them-
selves with it. To verify that participants understood the rules, they were asked
to complete a quiz and were only allowed to proceed with the survey after
answering all questions correctly. Afterward, participants in the counterfactual
conditions received additional information and another quiz regarding the coun-
terfactual explanations. Then, they proceeded to the agent understanding task,
which was repeated three times, once for each agent. The order of the agents
was randomized. After that, participants filled out the explanation satisfaction
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Figure 12.1.: A simplified scheme of the beginning of our agent understanding
task with a single example state.

scale and continued to the agent comparison task. Again, this task was repeated
three times, once for each possible agent pair, and the order was randomized.
Finally, participants had to complete another satisfaction scale for the agent
comparison task. Participants got a compensation of 5$ for participating in the
study. As an incentive to do the tasks properly, they received a bonus payment
of 10 cents for each point they got in the agent understanding task and 5 cents
for each point in the agent comparison task. The complete questionnaire can
be seen in Appendix D.5. We preregistered our study online.1

12.1.5. Participants

We recruited participants through Amazon Mechanical Turk. Participation was
limited to Mechanical Turk Masters from the US, UK, or Canada (to ensure a
sufficient English level) with a task approval rate greater than 95% and without
color vision impairment. We conducted a power analysis with an estimated
medium effect size of 0.7 based on previous similar experiments [Mertes et al.,
2022a; Mertes et al., 2022b; Huber et al., 2021b]. This determined that we
need 28 participants per condition to achieve a power of 0.8. and a significance

1https://aspredicted.org/m9fi5.pdf

184

https://aspredicted.org/m9fi5.pdf


level of 0.05. To account for participant exclusions, we recruited 30 participants
per condition. Participants were excluded if they did not look at any of the
counterfactual explanations for any of the agents during the agent understanding
task, if their textual answers were nonsensical, or if they took considerably
less time than the average. This left us with 30 participants in the Control
condition, 28 participants in the CSE condition, and 23 in the GANterfactual-
RL condition.
The distribution of age, AI experience, and Pacman experience was similar

between the conditions (see Appendix D.2). There was a difference in the gender
distribution and the attitude towards AI between the conditions. The Control
condition had 40% female participants, the CSE condition had 32%, and the
GANterfactual-RL condition had 26%. The mean attitude towards AI was
the highest in the GANterfactual-RL condition and the lowest in the Control
condition (see Appendix D.2).

12.2. Results

The results for the participants’ scores during the main tasks can be seen in
Figure 12.2. The explanation satisfaction values are shown in Figure 12.3. In
the following, we will summarize the results of our main hypotheses, which we
analyzed using non-parametric one-tailed Mann-Whitney U tests.
Counterfactuals helped participants to understand the agents’ strate-

gies. In the agent understanding task, there was a significant difference between
the Control condition (M=0.8) and the GANterfactual-RL condition (M=1.65),
U=181, p=0.001, r=0.477.2 Contrary to our hypothesis, the Control condition
got lower scores than the CSE condition (M=0.8 vs M=1.18), p=0.953.
Our GANterfactual-RL explanations were significantly more useful

than the CSE approach for understanding the agents’ strategies. In the
agent understanding task, the CSE condition got a mean score of 1.18, while
the GANterfactual-RL condition got a mean score of 1.65 (U=232, p=0.038,
r=0.2795).
The increased understanding of the agents’ strategies did not re-

sult in a more calibrated trust. Contrary to our hypothesis, there were no
significant differences in the trust task (Control vs CSE: p=0.536, Control vs.
GANterfactual-RL: p=0.852, CSE vs GANterfactual-RL: p=0.876).
Counterfactuals did not increase explanation satisfaction. Even though

participants objectively had a better understanding of the agents’ strategies,
they did not feel more satisfied with them. Participants in the Control condi-
tion were significantly more satisfied than participants in the CSE condition in

2M is the mean and r is rank biserial correlation.
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(a) Total score (summed over all
three agents) for the agent

understanding task.

(b) Number of correct agent
selections in the agent comparison

task (Out of five).

Figure 12.2.: Comparison of the participants’ average performance in each
task, by condition. Error bars show the 95% CI.

both the agent understanding task (Control: M=3.77, CSE: M=3.20; U=249,
p=0.004, r=0.4071) and the agent comparison task (Control: M=3.75, CSE:
M=3.14; U=267, p=0.008, r=0.3643). Contrary to our expectations, the partic-
ipants in the GANterfactual-RL condition were not more satisfied than the par-
ticipants in the Control condition or the CSE condition in both the agent under-
standing task (Control vs. GANterfactual-RL: p=0.996, CSE vs GANterfactual-
RL: p=0.546) or the agent comparison task (Control vs. GANterfactual-RL:
p=0.967, CSE vs GANterfactual-RL: p=0.334).

12.3. Discussion

Our results show that counterfactual explanations help users to understand
which strategies different agents pursue. In particular, our GANterfactual-RL
method (see Chapter 7) was significantly more useful than both the CSE method
and not providing counterfactuals. Contrary to our hypothesis, even the coun-
terfactuals generated by the CSE method resulted in a better understanding of
the agents than not providing counterfactual explanations. This demonstrates
the usefulness of counterfactual explanations for RL agents even in more com-
plex tasks than identifying defective agents.
The two studies described in Chapter 10 and 11 evaluated the usefulness of

other local explanation techniques for understanding the strategies of RL agents
in a similar way to our study. Chapter 10 looked at saliency map explanations
and found that they did not help more than showing HIGHLIGHTS states with-
out saliency maps. In that study, participants achieved 37% of the maximum
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(a) Agent Understanding Task. (b) Agent Comparison Task.

Figure 12.3.: Comparison of the participants’ average explanation satisfaction
in each task, by condition.

possible score in the agent understanding task, while the participants with our
counterfactual explanations obtained 50%. Chapter 11 investigated reward de-
composition explanations and found that they helped participants to achieve
60% of the maximum score in the agent understanding task. However, reward
decomposition is an intrinsic explanation method which the agent and the re-
ward function have to be specifically designed for. Our counterfactual explana-
tions resulted in only a 10% less average score even though they are post-hoc
explanations that can be generated for already trained black-box agents.
Our agent comparison task showed that the increased understanding of the

agent’s strategies through both counterfactual explanation methods did not help
participants choose fitting agents for specific tasks. For choosing the correct
agent for a given problem, it is not enough to identify the strategies of the
agents. It also requires enough expertise in the environment (e.g., Pacman)
to judge which strategy is better suited for the problem at hand. For exam-
ple, in Pacman, humans often assume that an agent that survives longer will
accumulate more points in the long run. However, this is not necessarily the
case since an aggressive agent can better exploit the very high rewards of eating
blue ghosts. Our results for this task are in line with the results of the agent
comparison task for saliency maps in Chapter 10.
Finally, our study showed that participants subjectively were not satisfied

with the counterfactual explanations even though they objectively helped them
to understand the agents. This might be due to the additional cognitive load
of interpreting the counterfactual explanations. The previous two studies in
Chapter 10 and 11 also did not find a significant difference in user satisfaction
for their local explanation techniques. Only the choice of states, which does
not provide additional information, influenced the explanation satisfaction in
Chapter 10. However, our study is the first to see significantly higher satisfac-

187



tion for the condition without local explanation compared to the two conditions
with local explanations. This indicates that counterfactuals are subjectively
less satisfying than saliency maps or reward decomposition. One possible ex-
planation for this is the visual quality of the counterfactuals. Some participants
from both counterfactual conditions commented that the counterfactuals had
too many artifacts. One participant from the GANterfactual-RL condition, for
example, wrote that “the counterfactuals were somewhat helpful, but they would
have worked better if there were fewer or no artifacts”. Another possible rea-
son for the low satisfaction is the presentation of the explanation. Because our
study primarily aimed at investigating the benefits and drawbacks of our spe-
cific counterfactual approach, we did not use a user-friendly explanatory system
where different types of explanations are provided according to the requests of
the explainee.

12.4. Conclusion

In this chapter, we showed that adding local counterfactual explanations to
global HIGHLIGHTS states significantly improved users’ understanding of the
strategies of different agents in a user study. We further showed that the
GANterfactual-RL method we proposed in Chapter 7 was significantly more
useful for this task than the previous state-of-the-art counterfactual explana-
tion method for DRL agents with visual input.
Our user study also identified two remaining deficiencies of counterfactual

explanations. First, participants were subjectively not satisfied with the ex-
planations, which might be due to unnatural artifacts in some counterfactuals.
Second, the counterfactuals did not help them to calibrate their trust in the
agents. Future work should try to improve counterfactual explanations in these
directions.

188



13. Conclusions From All Three
Studies

This chapter summarizes the results of Part V, which evaluated the integra-
tion of different local explanations with global strategy summaries in three user
studies.

13.1. Potential of Combining Local and Global
Explanations

Our findings show considerable potential for integrating global and local expla-
nations for DRL agents.
Across all three studies, the combination of global and local explanations

produced the best results in both the agent understanding task and the agent
comparison task. The most compelling evidence of this synergy is presented in
Chapter 12, where the combination of GANterfactual-RL and HIGHLIGHTS
significantly outperformed all other conditions in the agent understanding task.
In other cases, the combined explanation approach shared the top spot with
particular individual explanations. Specifically, in Chapter 11, the combined
approach was on par with the purely local reward decomposition explanations.
Moreover, in Chapter 10 and the agent comparison task in Chapter 12, the
exclusively global HIGHLIGHTS conditions matched the respective combined
explanation approaches. Importantly, the combined explanations consistently
matched or exceeded the performance of any individual explanation approach,
demonstrating that there were no adverse effects of integrating global and local
explanations.

13.2. Global Explanations Contributed to
Appropriate Trust and Agent Understanding

The global strategy summaries significantly enhanced the partici-
pants’ trust calibration. Appropriate trust was measured by our agent com-
parison task in Chapters 10 and 12. Here, neither the local saliency maps nor
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the local counterfactual explanations improved the participants’ performance
beyond the levels achieved with the exclusively global HIGHLIGHTS explana-
tions. The first study (Chapter 10) additionally included a baseline condition
where states were selected based on their likelihood of occurrence. Compared
to this baseline, the purely global HIGHLIGHTS condition demonstrated a sig-
nificant performance improvement during the agent comparison task.
Global strategy summaries contributed to the participants’ mental

models of the agents. The HIGHLIGHTS summaries significantly out-
performed the likelihood-based baseline during the agent understanding task
in Chapters 10 and 11. Notably, in the first study (Chapter 10), the global
explanations contributed more than the local saliency maps, which did not out-
perform the baseline. The first study also explored the nature of information
conveyed by the explanations. The global strategy summaries were particularly
effective for identifying the agent’s goals.
Only the second study (Chapter 11) found a limitation of global explanations.

Here, the exclusively local reward decomposition explanations outperformed the
exclusively global HIGHLIGHTS summaries during the agent understanding
task. We believe this result is due to the inherent utility of reward decomposition
for the agent understanding task.

13.3. Contribution of Local Explanation

13.3.1. Intrinsic Explanations Outperformed Post-Hoc
Explanations

The intrinsic reward decomposition explanations in the second user study (Chap-
ter 11) substantially helped participants understand different agents. Their use-
fulness in this task exceeded the usefulness of the post-hoc saliency maps and
post-hoc counterfactual explanations in the first and third user studies (Chap-
ters 10 and 12). To my knowledge, this provides the first empirical evidence
for XRL that intrinsically explainable agents should be preferred over
post-hoc explanations for black-box agents whenever possible. This
claim was famously formulated by Rudin [2019] for general black-box models.
The claim is also supported by the results of the computational evaluation of
saliency maps in Chapter 9, which demonstrated that some post-hoc saliency
maps failed to reflect the agents’ internal reasoning properly.
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13.3.2. Assessing Different Post-Hoc Explanations

Intrinsically explainable agents are not always feasible. For such cases, this
thesis also investigated two post-hoc explanations – saliency maps in Chapter 10
and counterfactual explanations in Chapter 12. This section provides a summary
of the findings associated with these methods.

Counterfactual Explanations Improved Agent Understanding. As with re-
ward decomposition, counterfactual explanations improved the participants’
agent understanding beyond global HIGHLIGHTS summaries. In contrast,
saliency maps did not even improve agent understanding compared to the likelihood-
based baseline. This benefit of counterfactual explanations was observed for
two distinct methods of generating counterfactuals, providing evidence that the
result generalizes to different methods of generating counterfactuals. Nonethe-
less, the choice of the counterfactual generation method still mattered. Our
proposed GANterfactual-RL approach significantly outperformed the previous
state-of-the-art counterfactual generation method.

Saliency Maps as Debugging Tool. While there were no significant differ-
ences between the saliency and non-saliency conditions in the first study (Chap-
ter 10), they still showed potential. We found two non-significant trends indicat-
ing that saliency maps improved scores in the textual strategy description task
and improved participants’ ability to place appropriate trust in different agents.
Furthermore, we exploratively observed that saliency maps helped identify what
information the agent attends to.
However, the saliency maps were held back by the participants’ difficulty in

interpreting them correctly. On the one hand, this can be attributed to the
presentation of saliency maps on videos, which made it difficult to interpret
individual saliency maps. On the other hand, it requires a certain level of
expertise about the task and the employed algorithms to interpret saliency maps
correctly. This observation is also reflected by an exploratory result from the
first study (Chapter 10) that participants with AI expertise benefited more from
saliency maps.
Thus, I argue that saliency maps have the potential to be a valuable debugging

tool for users with AI expertise.
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13.4. Interactive Explanation Presentation More
Effective than Videos

In Chapter 8, we proposed two different ways of presenting the local expla-
nations – as an overlay on the HIGHLIGHTS videos and via interactive im-
ages. The study in Chapter 10 showed that participants had difficulties parsing
the additional information while watching videos. In contrast, the interactive
presentation in Chapters 11 and 12 significantly improved participants’ agent
understanding.
Consequently, I would suggest future research to explore interactive presen-

tations for combining local and global explanations.

13.5. Subjective Explanation Satisfaction Still
Lacking

Regarding subjective explanation satisfaction, we only observed significant ad-
vantages during the agent understanding task of the first study (Chapter 10).
Here, participants were more satisfied with global HIGHLIGHTS summaries
than with the likelihood-based alternatives (with and without local saliency
maps). Interestingly, during the third study (Chapter 12), participants with-
out local explanations reported significantly higher subjective satisfaction than
participants who received counterfactual explanations. This lack of subjective
satisfaction contrasts the consistent observation across all our studies that at
least one explanation method significantly improved the participants’ objective
understanding of the agents.
One possible reason for the lack of subjective satisfaction is that we used a

between-subject design in all three studies, where participants only saw their
own condition. Because of this, participants without explanations were unaware
of the potential information they were missing, and participants with explana-
tions were able to focus on the shortcomings of the provided explanations.
In the future, it could be interesting to investigate this phenomenon more

thoroughly – for example, through a within-subject design that allows partici-
pants to experience multiple explanations and compare them directly.

13.6. Generalization of Results

Since the experiments in Part V tested three of the most common local expla-
nation methods, the results should be quite comprehensive in this direction.
However, we only tested a single global explanation method: HIGHLIGHTS

strategy summaries. Our proposed combination of local and global explanations,
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as described in Chapter 8, is easily adaptable to other example-based global
explanation methods, such as T-SNE (see Section 4.2) – as demonstrated by
Zahavy et al. [2016]. Nonetheless, it is unclear whether our results generalize to
these methods.
Finally, this thesis used only a single environment for the user studies. In

Septon et al. [2023], which is the basis for Chapter 11, we additionally conducted
a second user study in a different environment: the Highway environment. In the
Highway environment, the RL agent controls an autonomous vehicle and has to
navigate a multi-lane highway while driving alongside other vehicles. I omitted
this environment from the thesis to maintain focus and coherence. The results
in the Highway environment closely match those in the Pacman environment.
This consistency indicates that our results generalize well to other domains.
The only difference in the Highways environment results was that global

HIGHLIGHTS summaries alone did not outperform the likelihood-based base-
line. We believe this is due to the limited possible agent behaviors in the High-
way environment. This finding indicates that the usefulness of global policy
summaries may depend on the complexity of behaviors that agents can deploy
in an environment.
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Part VI.

Conclusion

194



14. Contributions

This chapter summarizes the contributions of this dissertation, dividing them
into conceptual, technical, and empirical contributions.

14.1. Conceptual Contributions

This thesis conceptually contributes to enhancing the explainability of DRL
agents in two main ways. First is the proposal of novel explanation algorithms
and approaches addressing the specific challenges of explaining DRL agents.
Second, it presents new evaluation methods tailored to XRL.

14.1.1. Novel Approaches to Explaining DRL Agents

This thesis contributed to several families of explanation approaches in XRL.
Figure 14.1 shows an overview of how the chapters of this thesis contributed to
the landscape of XRL methods as outlined in Chapter 4.

LRP-Argmax: Selective Saliency Maps for DRL Agents. Previous research
has indicated that DRL agents primarily focus on specific objects within visual
inputs. Traditional saliency map techniques, designed to highlight information
relevant to an agent’s decision-making, fail to capture this aspect, as they often
highlight all potential factors influencing a decision.
In Chapter 6, this dissertation introduces two DRL-focused adjustments to the

existing LRP framework for creating saliency maps. First, it outlines a method
for applying LRP to the Dueling DQN architecture, thereby extending LRP’s
applicability to all modern iterations of the DQN algorithm. Second, it proposes
the LRP-argmax variant, which produces saliency maps with a selective focus
on pivotal areas within the visual input while retaining all desired properties of
LRP. Through these adjustments, this dissertation facilitates the application of
the successful LRP concept to state-of-the-art DRL algorithms.

GANterfactual-RL: Counterfactual Explanations for RL Agents with Visual
Input. For XAI in the context of supervised learning, counterfactual explana-
tions play an important role. They answer ”Why not?” or ”What if?” questions
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Figure 14.1.: An overview of how the chapters of this thesis contributed to the
landscape of XRL methods as outlined in Chapter 4.

by suggesting minimal changes required for an AI model to make a different deci-
sion. However, generating these explanations for RL agents that process visual
input is particularly challenging due to the vast state spaces and the agents’
long-term decision-making policies. The vast visual state spaces make coun-
terfactual approaches that use optimization during runtime impractically slow.
Due to the agents’ long-term policies, the counterfactual explanations must
consider the extended implications of any alterations to the initial state. Addi-
tionally, RL agents don’t use training datasets in the same way as supervised
models, complicating the application of traditional counterfactual explanation
methods.
In Chapter 7, this dissertation proposed a novel method to generate counter-

factual explanations for RL agents with visual input by formulating the problem
as a domain transfer, where each domain leads the agent to a different action.
Its model-agnostic nature and ease of adaptation make our approach a versa-
tile tool for explaining RL agents. Since the initial publication of our work,
other researchers have already used our proposed method as the basis for new
algorithms. For example, Samadi et al. [2024] augment a GAN architecture sim-
ilar to ours with saliency maps to create counterfactual explanations for DRL
agents. This demonstrates the value of our approach for the XAI community.

Combining Local and Global Explanations for Agent Behavior. The central
theme of this thesis is the integration of global and local explanations for DRL
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agents. As outlined in Chapter 4, local explanations analyze specific decisions
of the agent, while global explanations convey its general strategy. Using ei-
ther approach in isolation comes with inherent drawbacks. Local explanations
provide detailed insights into particular decisions but fail to convey the agent’s
reasoning in different contexts. Global explanations, in contrast, present an
overarching view of the agent’s actions in a wide range of scenarios but lack
details about what information the agent considers in specific situations.
Chapter 8 presents a step towards the development of combined explana-

tion methods for DRL agents. It proposes a joint global and local explanation
approach based on global strategy summaries and various local explanation
methods. This approach is designed to be flexible, accommodating a range of
local explanation algorithms, including post-hoc explanation methods such as
saliency maps and counterfactuals, as well as intrinsic explanation methods like
reward decomposition. While we only investigated a single global explanation
method, Pierson et al. [2024] already extended our combined method by an ad-
ditional global explanation method. This further demonstrates the applicability
and flexibility of our approach.

14.1.2. Novel Evaluation Methods for XRL

Besides introducing new methods, this thesis also contributed conceptually to
the evaluation of XRL methods.

14.1.2.1. Advancing Computational Evaluation Methods for XRL

Methodology to Fine-Tune Perturbation-Based Saliency Maps for Bench-
marking. In some cases, there is no comprehensive access to an agent’s internal
model. Under such circumstances, it’s necessary to utilize model-agnostic expla-
nation techniques. Particularly for saliency maps, this typically involves the use
of perturbation-based methods. However, a major limitation of perturbation-
based saliency maps is their reliance on a variety of adjustable parameters. Con-
sequently, they require calibration of a wide range of parameter values before
they can be tested effectively. Chapter 9 outlines a methodology for bench-
marking perturbation-based saliency maps that includes a systematic approach
for fine-tuning their parameters. This fine-tuning methodology improves the
applicability of perturbation-based saliency maps in different contexts.

Individually Evaluating Action- and State-Values of Value-based RL Agents.
Chapter 9 introduced an adaptation of an existing computational XAI metric,
specifically tailoring it to value-based RL agents. The output of value-based RL
agents encodes both the value of the current state as well as the expected future
reward after performing each action in that state. The proposed adaptation
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Figure 14.2.: The explanation process as proposed by Hoffman et al. [2018]
and Gunning and Aha [2019]. The metrics evaluated in this dissertation are
highlighted.

allows for a separate evaluation of how well saliency maps explain the agent’s
action value and state value estimation. This makes it possible to determine
which saliency map method is best suited to analyze the reasoning behind the
agent’s evaluation of a state, and which method is best suited to explain the
agent’s preference for a particular action in that state. The proposed adapta-
tion thus facilitates a more targeted use of saliency maps for value-based DRL
agents.

14.1.2.2. Innovative User Study Design for XRL

Designing user studies to assess XRL remains challenging. The literature review
in Section 5.1 revealed that previous studies have primarily centered on isolated
elements of the explanation process, such as participants’ mental models of the
agents or their subjective explanation satisfaction. In contrast, Part V of this
dissertation introduced a holistic user study design for XRL. This design encom-
passes the evaluation of three different dimensions outlined by Hoffman et al.
[2018] for effective measurement of XAI: understanding of the agent, appropriate
trust, and subjective explanation satisfaction (see Figure 14.2).
To this end, we train agents with qualitatively distinct policies by altering

the reward function. This approach improves on previous studies that only
use a single agent, train agents with similar strategies by varying the training
duration, or utilize complex manipulations of the input states. Through these
differentiated agents, our studies probe into the participants’ mental model of
the agents by assessing their understanding of the agents’ distinct policies. Fur-
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thermore, the qualitatively different agent strategies allow the assessment of
appropriate trust through pairwise agent comparisons. Here, participants are
incentivized to pick the agent whose strategy aligns best with a given objective.
Finally, participants are asked how satisfied they were with the explanations
during each of the agent understanding task and agent comparison task.
Following the publication of our initial user study [Huber et al., 2021b], Miller

[2022] highlighted our agent comparison task as a guiding example for measur-
ing appropriate trust in the context of XAI. Subsequently, our complete study
design was not only adopted but also expanded upon by Pierson et al. [2024].
The adoption of our study design in the research community demonstrates its
contribution and impact on advancing the field of explainable reinforcement
learning.

14.2. Technical Contributions

This thesis is dedicated to enhancing the explainability of DRL agents. Along-
side the conceptual contributions mentioned above, it includes technical con-
tributions that address the inherent challenge of implementing XAI approaches
for intricate DRL algorithms. We implemented each of the conceptual explana-
tion methods and evaluation methodologies presented in the previous section.
These technical contributions also ensure the reproducibility of the experiments
and empirical contributions presented in this thesis. To this end, we have made
all our implementations accessible as open-source code. Below is a list of our
repositories and what they were used for:

For the LRP-Argmax algorithm discussed in Chapter 6, visit: https:

//github.com/HuTobias/LRP_argmax

The GANterfactual-RL method and its accompanying user study, as pre-
sented in Chapters 7 and 12, are accessible at: https://github.com/

hcmlab/GANterfactual-RL

Our computational evaluation from Chapter 9 can be found here: https:
//github.com/belimmer/PerturbationSaliencyEvaluation

The implementation for the user study detailed in Chapter 10 is provided
at: https://github.com/HuTobias/HIGHLIGHTS-LRP

Our reward decomposition implementation for the study discussed in Chap-
ter 11 is available at: https://github.com/hcmlab/baselines/tree/

reward_decomposition
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Our open-source code has already been used by the research community,
demonstrating its contribution to the field of XRL. Notably, Pierson et al. [2024]
built directly on our code from Chapter 10 for their study on integrating global
and local explanations in DRL. Additionally, our GANterfactual-RL repository
has served as a basis for developing new counterfactual generation methods in
DRL [Samadi et al., 2024].

14.3. Empirical Contributions

Finally, this thesis contributes empirical insights based on extensive computa-
tional evaluations and several user studies. These findings will inform the future
use and development of XAI methods for DRL agents.

14.3.1. Computational Evaluation of the Fidelity of Post-Hoc
Explanation Methods

If post-hoc explanations for black-box RL agents are to be used in increas-
ingly safety-critical domains, it is crucial that they reflect the agents’ internal
reasoning faithfully. To this end, this thesis contributed to the computational
evaluation of the fidelity of two post-hoc explanation methods: counterfactual
explanations and saliency maps.

Counterfactual Explanations. Chapter 12 showed that the previous state-of-
the-art counterfactual explanation method for DRL agents with visual input
did not change the agents’ decision correctly in a majority of the cases. Our
results further demonstrate that our proposed GANterfactual-RL considerably
improves this drawback, modifies less of the original input, and takes less time
than the only previous method. Based on this, our GANterfactual-RL approach
was the state-of-the-art counterfactual explanation method for DRL agents with
visual input at the time of its publication.

First computational Evaluation of the Fidelity of Saliency Maps for DRL
Agents. Prior to this dissertation, there was no computational evaluation of
the fidelity of saliency maps for DRL, as outlined in the literature review in
Section 5.2. Chapter 6 and Part IV address this gap.
In Chapter 6, we evaluated our LRP-argmax approach with regard to its

dependency on the agents’ parameters. Our results are consistent with earlier
studies on LRP-based saliency maps for image classifiers: the saliency maps do
analyze the learned weights, but the fully connected layers are not sufficiently
analyzed.
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Part 9 conducted a thorough evaluation of five perturbation-based saliency
map techniques, examining their dependency on agent parameters and align-
ment with the agent’s internal reasoning. These results offer valuable insights
for practitioners who rely on model-agnostic saliency maps to explain an agent’s
reasoning without full access to its internal architecture.

The tested approaches show high dependence on the agents’ learned pa-
rameters. Only one approach (Noise Sensitivity) lacked dependence on
the learned parameters of the output layer. However, we show that this
problem can be mitigated by a slight adjustment of the approach.

Regarding fidelity to the agents’ reasoning, there were considerable dif-
ferences between analyzing the action value and state value estimation
of value-based DRL agents. Practitioners should be aware of which of
the two they want to analyze and choose saliency maps that align with
their objectives. In our experiment, the SARFA approach worked best to
capture the action value while Occlusion Sensitivity and RISE were more
suited for the state value.

Depending on which perturbation method the approaches use, the result-
ing saliency maps only analyze how sensitive the agent is with regard to
specific types of perturbation. This was true even for perturbation meth-
ods like blurring that aim to reduce the dependence on a choice of occlu-
sion color, showing a need to further develop perturbation-based saliency
map approaches. For now, practitioners must consider which perturbation
types are relevant and meaningful for their specific applications.

14.3.2. User Studies Comparing the Complementary Benefits
of Local and Global Explanation Methods for DRL
Agents

Part V evaluated the integration of several local explanation methods with
global strategy summaries across three user studies. This section lists the key
findings from these studies, which inform the design of future combined local
and global XRL frameworks.

Our findings reveal considerable potential for the combined use of global
and local explanations for DRL agents. Apart from subjective satisfaction
in Chapter 12, the combination consistently matched or surpassed the
performance of any individual explanation approach.

Global explanations contributed significantly to fostering appropriate trust
and understanding of the agents.
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Several discoveries were made regarding local explanations:

– This thesis presents the first empirical evidence in XRL that intrin-
sically explainable agents should be preferred over post-hoc expla-
nations for black-box agents whenever possible, reinforcing similar
findings for black-box classifiers.

– Post-hoc counterfactual explanations significantly improved partic-
ipants’ agent understanding. Our proposed GANterfactual-RL ap-
proach even approached the effectiveness of intrinsically explainable
agents.

– Saliency maps showed potential but were held back by the user’s
difficulty interpreting them.

– No local explanation approach significantly improved appropriate
trust.

An interactive explanation presentation based on images was more effec-
tive than video overlays in our experiments.

Subjective explanation satisfaction was lacking despite improvements in
the objective agent understanding task, indicating a disconnect between
the objective utility of explanations and their subjective reception.

A more comprehensive discussion of the key findings listed above can be found
in Chapter 13. Collectively, the findings emphasize the potential of integrating
global and local explanations to enhance the explainability and trustworthiness
of DRL agents. They reveal the strengths and limitations of different XRL
approaches and point to areas that need further improvement.
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15. Future Work

Explainable Reinforcement Learning (XRL) is still an emerging research area
that has recently begun to carve out its niche within the broader field of XAI.
Its emergence as a distinct subfield is relatively new, with the first comprehen-
sive surveys on the topic appearing in 2020 [Heuillet et al., 2021; Alharin et
al., 2020; Puiutta and Veith, 2020]. With the continued development of DRL
algorithms, DRL agents will increasingly be deployed in critical and complex do-
mains, including healthcare, autonomous driving, and robotic navigation. This
expansion will further raise the demand for XRL in the future. To meet this de-
mand, this thesis presents several insights that inform the ongoing evolution of
XRL. This section summarizes the key opportunities for future work identified
in this dissertation.

15.1. Advancing Computational Metrics for XRL

Computationally evaluating the fidelity of saliency maps to the model’s internal
reasoning is an active challenge in the field of XAI for image classifiers. The
complex architecture of neural networks obscures the relevance of each pixel in
the decision process, leaving us without definitive ground-truth saliency maps
for comparison with the generated saliency maps. In Chapter 9, we explored this
problem for the first time for XRL by using four variants of a computational
XAI metric to assess the fidelity of saliency map methods in DRL scenarios.
We found notable differences in the results between these computational metric
variants. This observation reinforces the findings of Tomsett et al. [2020] that
current fidelity metrics for saliency maps are vulnerable to nuances in their
implementation. Moreover, our results extend these findings from general XAI
to XRL. Specifically, in the context of value-based RL, our observations reveal
substantial differences between metrics that focus on the action value and those
assessing the state value.
Our results show that there are specific requirements for computational met-

rics in the context of XRL. Based on our results, future work should explore new
computational metrics that more accurately reflect the unique aspects of DRL.
Such DRL-focused metrics will enable a deeper and more precise evaluation of
XRL methods.
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15.2. Towards a Combined Local and Global
Explanation Framework for Deep
Reinforcement Learning

Part of this dissertation’s main contributions are the insights obtained from the
user studies, which will inform the future development of XRL frameworks.
All three user studies described in Part V demonstrated the immense potential

of integrating local and global explanations. Therefore, I recommend future
researchers explore combined explanation frameworks that harness the strengths
of both local and global explanation methods.
While global HIGHLIGHTS summaries enhanced the participants’ agent un-

derstanding and fostered appropriate trust, exploring alternative global expla-
nation methods was not within the scope of this thesis. Given the substantial
influence of global information in our studies, I think that investigating other
global explanation methods is a promising future research direction.
For the local explanations, reward decomposition, which is intrinsically built

into the agent, outperformed the post-hoc explanation methods, which are ap-
plied after the agent is trained. Therefore, future combinations of global and
local explanations for DRL should aim to include and explore more intrinsic
explanation methods.
In addition to these promising research directions, this thesis also identified

three challenges for future XRL frameworks that combine global and local ex-
planations.

15.2.1. Conversational Explanation Interfaces

One obstacle we identified in all three studies is the accessibility and usability
of the combined explanation presentation.
The sequential decision-making nature of DRL requires an explanation presen-

tation that reflects the temporal dynamics of the agents’ strategies. Initially, we
tried to achieve this by presenting saliency maps as an overlay on HIGHLIGHTS
videos in Chapter 10. The temporally connected action sequences within these
videos were intended to establish a link between actions and their outcomes.
However, the participants were overwhelmed by the amount of information in
these combined videos.
The subsequent studies in Chapters 11 and 12 improved upon this by employ-

ing an interactive presentation with static images. While this aided participants
with their objective tasks, it did not increase their subjective explanation satis-
faction. Without subjective approval of the explanation framework, its adoption
is unlikely, regardless of its objective merits.
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Hence, I recommend that future research investigates more user-friendly ex-
planation interfaces for the combined global and local explanation framework
outlined in this thesis. Improving the presentation of explanations is essential
to fully leverage the objective benefits demonstrated in our studies. Aligning
the delivery of explanations more closely with user preferences and usability
standards will ensure that the valuable insights provided by these methods are
accessible and impactful.
As a starting point for an enhanced explanation interface, I suggest build-

ing on the interactive explanation presentation used in Chapters 11 and 12.
Here, the participants could switch between the most important HIGHLIGHTS
summary states, which were presented as static images with an additional local
explanation. The main goal of these chapters was to investigate the benefits and
limitations of explanation methods within a combined global and local expla-
nation framework. Consequently, to maintain comparability in our evaluation
of local explanations, we presented them alongside all images without allowing
users to select their preferred types of explanation. While systematic, this ap-
proach diverges from the conversational nature of human-human explanations,
where the explainer responds to the specific inquiries of the explainee [Madumal
et al., 2019]. Leveraging the positive results for global strategy summaries, I
suggest an explanation interface that initially presents summary states to users,
providing a basic understanding of the agent’s policy. However, to preserve the
dialog nature of human-human explanations and to reduce cognitive load, the
local explanations should not be presented by default. Instead, users should
have the flexibility to request specific types of explanations as needed, tailoring
the information flow to their curiosity and comprehension needs.

15.2.2. Addressing Low Subjective Explanation Satisfaction

In all three of our user studies, the local explanations did not increase the par-
ticipants’ subjective explanation satisfaction despite aiding in objective tasks.
In the second study, even the global explanations did not increase explanation
satisfaction significantly. The lack of explanation satisfaction could partially
stem from the usability challenges discussed in the previous subsection. How-
ever, we also identified additional factors that may have negatively impacted
explanation satisfaction. These factors provide avenues for future work.
The first factor is that we conducted our experiments in a between-subject

design where each participant experienced only a single condition. On the one
hand, this setup meant that participants without explanations were unaware of
the potential information they were missing. On the other hand, the participants
who received explanations could focus on the explanations’ deficiencies. To gain
a better understanding of the users’ subjective preferences in a combined global
and local XRL framework, future work should more thoroughly explore the dis-
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crepancy between objective utility and subjective explanation satisfaction. To
this end, I suggest conducting a within-subject design study that allows partici-
pants to experience and directly compare different combinations of explanations
or their absence.
Our second observation regarding explanation satisfaction concerns the dif-

ferent types of local explanations. We found that the local counterfactual ex-
planations seemed to be less satisfying than the local saliency map and reward
decomposition explanations. Specifically, in the third study, the two conditions
with counterfactual explanations received significantly lower satisfaction ratings
than the condition without counterfactuals. This result is in contrast to the
first two studies, where the presence of reward decomposition or saliency maps
had no significant effect on the explanation satisfaction. The comparative dis-
satisfaction with counterfactuals is particularly surprising since counterfactual
explanations were more helpful than saliency maps in the objective agent under-
standing task. A possible reason for the dissatisfaction with counterfactual ex-
planations might have been their visual quality. Some participants commented
that the counterfactuals contained too many artifacts. Therefore, I believe that
a promising direction for future research is to develop better counterfactual gen-
eration methods that create more realistic images with fewer artifacts. In our
studies, counterfactual explanations were the best method for providing local
post-hoc explanations, and they were almost as effective as the intrinsic reward
decomposition method. Hence, more satisfying counterfactual explanations will
help in situations where intrinsic explanation methods are not applicable.

15.2.3. Developing Local Explanations that Foster
Appropriate Trust

The last challenge we identified for future XRL frameworks is the development
of local explanation methods that foster appropriate trust. In the first and
third user studies, we used an agent comparison task to measure how well the
participants’ trust is calibrated. The results revealed that only the global HIGH-
LIGHTS summaries fostered appropriate trust. Adding local explanations did
not improve the participants’ performance in the agent comparison task beyond
the level of HIGHLIGHTS.
However, the first study showed an encouraging trend, indicating that saliency

maps fostered appropriate trust compared to the baseline condition without any
explanations. This trend suggests that saliency maps have the potential to pro-
mote appropriate trust but have been hindered by the usability issues described
in the previous two subsections. Therefore, I suggest addressing the aforemen-
tioned usability issues of saliency maps as a promising research direction for
developing local explanations that foster appropriate trust.
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15.3. Explanations for Multi-Agent Reinforcement
Learning

The ALE games used as test-beds within this dissertation were exclusively
single-agent environments. However, real-world scenarios often involve mul-
tiple agents interacting within the same environment, necessitating the use of
multi-agent reinforcement learning [Albrecht et al., 2024]. For example, several
robots may need to collaborate within a warehouse.
The proposed methods and insights gained about explainable reinforcement

learning for single-agent environments in this thesis provide a basis for develop-
ing XAI systems in multi-agent contexts. However, multi-agent teams introduce
additional challenges. For instance, it is crucial to understand how agents dis-
tribute tasks among themselves and coordinate their actions efficiently. Future
work should explore how the methods developed in this thesis can be extended
to multi-agent settings.
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Montavon Grégoire, Wojciech Samek, and Klaus-Robert Müller [2018]. “Meth-
ods for interpreting and understanding deep neural networks”. In: Digital
Signal Processing 73, pp. 1–15. doi: 10.1016/j.dsp.2017.10.011.

Mopuri Konda Reddy, Utsav Garg, and R Venkatesh Babu [2019]. “CNN fixa-
tions: an unraveling approach to visualize the discriminative image regions”.
In: IEEE Transactions on Image Processing 28.5, pp. 2116–2125.

Mothilal Ramaravind Kommiya, Amit Sharma, and Chenhao Tan [2020]. “Ex-
plaining machine learning classifiers through diverse counterfactual expla-
nations”. In: FAT* ’20: Conference on Fairness, Accountability, and Trans-
parency, pp. 607–617. doi: 10.1145/3351095.3372850.

Nemirovsky Daniel, Nicolas Thiebaut, Ye Xu, and Abhishek Gupta [2022].
“CounteRGAN: Generating counterfactuals for real-time recourse and inter-
pretability using residual GANs”. In: Uncertainty in Artificial Intelligence,
Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial
Intelligence, UAI 2022, pp. 1488–1497. url: https://proceedings.mlr.
press/v180/nemirovsky22a.html.

Norman Donald A [2014]. “Some observations on mental models”. In: Mental
models, pp. 15–22. doi: 10.4324/978131580272.

Olson Matthew L., Roli Khanna, Lawrence Neal, Fuxin Li, and Weng-Keen
Wong [2021]. “Counterfactual state explanations for reinforcement learning
agents via generative deep learning”. In: Artif. Intell. 295, p. 103455. doi:
10.1016/j.artint.2021.103455.

Pawelczyk Martin, Sascha Bielawski, Johannes van den Heuvel, Tobias Richter,
and Gjergji Kasneci [2021]. “CARLA: A Python Library to Benchmark Al-
gorithmic Recourse and Counterfactual Explanation Algorithms”. In: Pro-
ceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1, NeurIPS Datasets and Benchmarks.

Petsiuk Vitali, Abir Das, and Kate Saenko [2018]. “RISE: Randomized Input
Sampling for Explanation of Black-box Models”. In: British Machine Vision
Conference 2018, p. 151. url: http://bmvc2018.org/contents/papers/
1064.pdf.

Pierson Britt Davis, Dustin Arendt, John Miller, and Matthew E. Taylor [2024].
“Comparing Explanations in RL”. In: Neural Computing and Applications
36.1, pp. 505–516. issn: 1433-3058. doi: 10.1007/s00521-023-08696-6.

Pinkus Allan [1999]. “Approximation theory of the MLP model in neural net-
works”. In: Acta numerica 8, pp. 143–195.

Prajod Pooja, Tobias Huber, and Elisabeth André [2022]. “Using Explain-
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hancing Explainability of Deep Reinforcement Learning Through Selective
Layer-Wise Relevance Propagation”. In: KI 2019: Advances in Artificial
Intelligence. Springer International Publishing, pp. 188–202

My Contribution: I conceived and implemented the proposed algo-
rithm, conducted the experiments, and wrote major parts of the paper.

Tobias Huber, KatharinaWeitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy
summaries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi:
10.1016/j.artint.2021.103571

My Contribution: Together with Ofra Amir, I conceived the proposed
combined explanation method. I designed major parts of the user study,
conducted the study, and wrote major parts of the code and paper.

Tobias Huber, Benedikt Limmer, and Elisabeth André [2022]. “Bench-
marking Perturbation-Based Saliency Maps for Explaining Atari Agents”.
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frai.2022.903875

My Contribution: I supervised Benedikt Limmer’s bachelor thesis, which
was the starting point for this paper. Building on this thesis, I wrote major
parts of the paper and code.

Yael Septon, Tobias Huber, Elisabeth André, and Ofra Amir [2023].
“Integrating Policy Summaries with Reward Decomposition for Explaining
Reinforcement Learning Agents”. In: Advances in Practical Applications
of Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS
Collection - 21st International Conference. Vol. 13955. Lecture Notes in
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Computer Science. Springer, pp. 320–332. doi: 10.1007/978-3-031-
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My Contribution: I supervised the student projects by Julian Stock-
mann and Simone Pompe that implemented reward decomposition for the
Atari game Pacman. Based on this, I trained the final Pacman agents for
the user study. I helped design the study and wrote major parts of the
paper.

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Ol-
son, and Elisabeth André [2023]. “GANterfactual-RL: Understanding Re-
inforcement Learning Agents’ Strategies through Visual Counterfactual
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tonomous Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages
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Tobias Huber, Silvan Mertes, Stanislava Rangelova, Simon Flutura, and
Elisabeth André [2021a]. “Dynamic Difficulty Adjustment in Virtual Re-
ality Exergames through Experience-driven Procedural Content Genera-
tion”. In: IEEE Symposium Series on Computational Intelligence, SSCI,
pp. 1–8. doi: 10.1109/SSCI50451.2021.9660086

Silvan Mertes, Tobias Huber, Katharina Weitz, Alexander Heimerl, and
Elisabeth André [2022a]. “GANterfactual - Counterfactual Explanations
for Medical Non-experts Using Generative Adversarial Learning”. In:
Frontiers Artif. Intell. 5, p. 825565. doi: 10.3389/frai.2022.825565

Silvan Mertes, Christina Karle, Tobias Huber, Katharina Weitz, Ruben
Schlagowski, and Elisabeth André [2022b]. “Alterfactual Explanations
- The Relevance of Irrelevance for Explaining AI Systems”. In: CoRR
abs/2207.09374. arXiv: 2207.09374
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Silvan Mertes, Tobias Huber, Christina Karle, Katharina Weitz, Ruben
Schlagowski, Cristina Conati, and Elisabeth André [2024]. “Relevant Irrel-
evance: Generating Alterfactual Explanations for Image Classifiers”. In:
Proceedings of the Thirty-Third International Joint Conference on Artifi-
cial Intelligence, IJCAI-24. International Joint Conferences on Artificial
Intelligence Organization, pp. 467–475. doi: 10.24963/ijcai.2024/52

Pooja Prajod, Dominik Schiller, Tobias Huber, and Elisabeth André
[2021]. “Do Deep Neural Networks Forget Facial Action Units? - Ex-
ploring the Effects of Transfer Learning in Health Related Facial Expres-
sion Recognition”. In: International Workshop on Health Intelligence.
Springer, pp. 217–233

Pooja Prajod, Tobias Huber, and Elisabeth André [2022]. “Using Ex-
plainable AI to Identify Differences Between Clinical and Experimental
Pain Detection Models Based on Facial Expressions”. In: MultiMedia
Modeling - 28th International Conference, MMM, Proceedings, Part I,
pp. 311–322. doi: 10.1007/978-3-030-98358-1_25

Stanislava Rangelova, Simon Flutura, Tobias Huber, Daniel Motus, and
Elisabeth André [2019]. “Exploration of Physiological Signals Using Dif-
ferent Locomotion Techniques in a VR Adventure Game”. In: Universal
Access in Human-Computer Interaction. Theory, Methods and Tools -
13th International Conference, UAHCI 2019, Held as Part of the 21st
HCI International Conference, HCII 2019, Proceedings, Part I. ed. by
Margherita Antona and Constantine Stephanidis. Vol. 11572. Lecture
Notes in Computer Science. Springer, pp. 601–616. doi: 10.1007/978-
3-030-23560-4_44

Dominik Schiller, Tobias Huber, Florian Lingenfelser, Michael Dietz,
Andreas Seiderer, and Elisabeth André [2019]. “Relevance-Based Fea-
ture Masking: Improving Neural Network Based Whale Classification
Through Explainable Artificial Intelligence”. In: Interspeech 2019, 20th
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Dominik Schiller, Tobias Huber, Michael Dietz, and Elisabeth André
[2020]. “Relevance-Based Data Masking: A Model-Agnostic Transfer
Learning Approach for Facial Expression Recognition”. In: Frontiers in
Computer Science 2. doi: 10.3389/fcomp.2020.00006

Ruben Schlagowski, Frederick Herget, Niklas Heimerl, Maximilian Ham-
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Behavior, Engagement, and Experience in a Serious Social Simulation
Game”. In: Proceedings of the 19th International Conference on the Foun-
dations of Digital Games. FDG ’24. New York, NY, USA: Association for
Computing Machinery. isbn: 9798400709555. doi: 10.1145/3649921.
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tems with Small Datasets”. In: Proceedings of the 16th International
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3636876

Klaus Weber, Lukas Tinnes, Tobias Huber, Alexander Heimerl, Marc-
Leon Reinecker, Eva Pohlen, and Elisabeth André [2020]. “Towards De-
mystifying Subliminal Persuasiveness: Using XAI-Techniques to Highlight
Persuasive Markers of Public Speeches”. In: Explainable, Transparent
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B. Appendix to the First User
Study

This chapter provides additional details for the study described in Chapter 10.
It is based on the appendix in our paper:

Tobias Huber, Katharina Weitz, Elisabeth André, and Ofra Amir [2021b].
“Local and global explanations of agent behavior: Integrating strategy sum-
maries with saliency maps”. In: Artif. Intell. 301, p. 103571. doi: 10.

1016/j.artint.2021.103571

B.1. Participants Demographics

In this section, we provide more details regarding participants’ demographics.
As Figure B.1 shows, most participants were between 18 and 34 years old.

Figure B.1.: The number of participants in each age group per condition. The
bars show from left to right: “18-24”, “25-34”,“35-44”, “ 45-54”, “55-64” and
“65 or older”. The categories “17 or younger” and “do not want to specify”
were never selected.
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Figure B.2.: Percentage of female
participants per condition.

Figure B.3.: The average attitude
towards AI, rated on a 5-point
Likert scale.

There were no major differences in gender distribution between the four con-
ditions (Figure B.2).
We verified that participants in different conditions did not differ much in

their AI experience and views and in their Pacman experience. To this end, we
asked them when they played Pacman for the last time (1=“never”, 2=“more
than 5 years ago”, 3=“less than 5 years ago”, 4=“less than 1 year ago”). Across
all four conditions, the median group was 2:“I played Pacman more than 5 years
ago”. A comparison is shown in Figure B.4.
For the AI experience, we adapted a description of AI from Zhang and Dafoe

[2019] and Russell and Norvig [2016] to “The following questions ask about Ar-
tificial Intelligence (AI). Colloquially, the term ‘artificial intelligence’ is often
used to describe machines (or computers) that mimic ‘cognitive’ functions that
humans associate with the human mind, such as ‘learning’ and ‘problem solv-
ing’. AI agents are already able to perform some complex tasks better than the
median human (today). Examples for such intelligent agents are search engines,
chatbots, chess bots, and voice assistants.”
After that, every participant who stated to have AI experience (104 across all

conditions) had to select one or more of the following items:

1: I know AI from the media.

2: I use AI technology in my private life.

3: I use AI technology in my work.

4: I took at least one AI related course.

5: I do research on AI related topics.

Other:
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Figure B.4.: The Pacman experience across all conditions. The bars depict
when the participants played Pacman the last time. From left to right, the
bars represent: “never”, “more than 5 years ago”, “less than 5 years ago” and
“less than 1 year ago“.

The last free form option was used exactly once, and it read “work on MTurk”.
The distribution of the other items for each condition is shown in Figure B.5.

To measure the participants’ attitude towards AI, we adapted a question from
Zhang and Dafoe [2019] and asked them to rate their answer to the question
“Suppose that AI agents would achieve high-level performance in more areas one
day. How positive or negative do you expect the overall impact of such AI agents
to be on humanity in the long run?” on a 5-point Likert scale from “Extremely
negative” to “Extremely positive”. The results are shown in Figure B.3.
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Figure B.5.: Distribution of the chosen AI experience items for each condition.
The x-axis depicts the items described above.
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(a) agent understanding task (b) agent comparison task

Figure B.6.: The average confidence that participants in each condition had
in their answers during each task.

B.2. Supplementary Results

In this section, we present additional information about the results of the study
that goes beyond the main hypotheses we explored and described in the paper.

Confidence, Time and Pauses. To investigate whether participants were con-
fident in their decisions , they had to rate their confidence in each of their se-
lections (item selection in the agent understanding task and agent selection in
the agent comparison task) on a 7-point Likert scale. The results across each
task are shown in Figure B.6.
To evaluate whether participants were especially diligent or effective during

the tasks, we measured the time that each participant stayed on each page
of the survey and calculated the average time per task (each task consists of
three pages). Furthermore, we kept track of each time a video was paused, as
described in Section 10.1.3. The average completion times of participants and
the average number of pauses are shown in Figure B.7 and B.8, respectively
(shown in boxplots due to the presence of several outliers that strongly affect
the mean values).
Figure B.6 (a) shows that participants in condition H were slightly more

confident on average in their analysis of the agents. This is also reflected by
the lesser amount of time per analysis (Figure B.7 (a)) and pauses (Figure B.8
(a)). Apart from this, there are no obvious differences between the average
confidence, time, and pause values for each task (Figure B.6 to B.8).
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(a) agent understanding task (b) agent comparison task

Figure B.7.: The average time taken by participants in each condition per
agent analysis (a) and comparison of agent pairs (b).

(a) agent understanding task (b) agent comparison task

Figure B.8.: The average number of times that participants in each condition
paused the videos during each agent analysis (a) and comparison of agent pairs
(b).
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Participants’ Justifications. As described in Section 10.1.3, an independent
coder identified different concepts inside the participants’ justifications. Figures
B.9 and B.10 show the average number of mentions of gameplay and of saliency
maps in the different tasks across the different conditions. As discussed in
Section 10.2, most participants mainly based their justifications on the agents’
gameplay (Figure B.9). In the saliency conditions, participants seldom mention
the saliency maps in their justifications (see Figure B.10). Finally, Figure B.11
shows that participants in condition H gave more unjustified explanations in
the agent understanding task. However, this observation did not repeat in the
agent comparison task.

agent understanding task agent comparison task

Figure B.9.: Comparison of how often the participants referenced the agents’
gameplay in their justifications for their answers.

(a) agent understanding task (b) agent comparison task

Figure B.10.: Comparison of how often the participants referenced the green
highlighting of the LRP-argmax saliency maps in their justifications for their
answers.
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(a) agent understanding task (b) agent comparison task

Figure B.11.: Comparison of how often the participants justifications con-
tained unjustified arguments.
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Table B.1.: The specific scores that participants received for selecting each
object during the agent understanding task.

selected object Power pill agent Regular agent Fear-ghosts agent
“Pacman” 1 1 1

“normal pill” −1 −0.5 −0.5
“power pill” 1 −0.5 −0.5

“normal ghost” −1 −0.5 1
“blue ghost” −1 1 1
“cherry” −1 −0.5 −0.5

B.3. Evaluation of the Retrospection Task

As described in Section 10.1.3, we evaluated participants’ scores in the object
selection part of the retrospection task with a simple scoring function based
on predefined answers by two of the authors involved in the training of the
agents. Hereby, we assign a score of 1 to each object that is connected to the
agents’ specific goal and their source of information (Pacman’s position for all
agents),−1 for each object that was not related to the agents’ reward function
and −0.5 to objects that were related to the reward but on which the agent did
not focus. The specific scores are shown in Table B.1.
For the free form answers to the question “Please describe the strategy of

the AI agent”, an independent coder identified various not mutually exclusive
concepts contained in the participants’ answers. We aggregated these concepts
into the following 16 groups, where the coder used ’G’ for ghosts, ’PP’ for power
pills, and ’NP’ for normal pills:

1. eating power pills : “eating PP”, “eating as many PP as possible”, “eat PP
when ghosts are near”, “eat PP when ghosts are near”, “prioritizing PP”,
“prioritizing PP to eat ghosts”, “prioritizing PP , but not eat ghosts”,
“eat PP to get points”

2. ignore power pills : “do not care about PP”

3. eat normal pills : “eat NP to get points”, “eating NP”, “eating as many
NP as possible”, “prioritizing NP”, “clearing the stage”

4. ignore normal pills : “do not care about NP”, “focus on areas wihtout [sic]
NP”

5. avoid ghosts : “avoiding G”, “avoiding G strongly”, “wait for G to go
away”, “outmanoveuring G”, “hiding from G”, “mislead ghosts”, “avoids
being eaten / caught”, “avoiding to lose / staying alive”, “stays away from
danger”
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6. move towards ghosts : “being close to G”, “trying to eat G NON blue”,
“(easily) caught by G”, “easily caught by G”

7. ignore ghosts : “do not care about G”

8. making ghosts blue: “making G blue”

9. eat blue ghosts : “being close to blue G”, “eating as many G as possible”,
“eat blue G to get points”, “chasing/going for G”, “eating the blue G”,
“eating to jail many G”(jailing since the ghosts move back to jail after
being eaten), “prioritizing PP to eat ghosts”

10. avoid blue ghosts : “avoiding blue G”

11. ignore blue ghosts : “do not care about blue G”, “prioritizing PP , but not
eat ghosts”

12. eat cherry : “prioritizing cherry”, “eat cherry to get points”, “going for
cherry”, “eating cherry”

13. ignore cherry : “do not care about cherry”

14. random movement : “moving randomly”, “move all over map”, “switching
directions /back&forth”, “not moving / being stuck”, “sticking to walls /
outside”, “confused”, “without strategy /random”, “not planning ahead”,
“switching directions”

15. focus on Pacman: “focus on PM”, “focus on whats in front of/around
PM”, “stuck to itself”

16. staying in corners : “staying in corners”

These groups are used to define a simple scoring function. Depending on
the agent, each group could either be positive, neutral, or negative. Positive
groups contain concepts that are in line with the predefined descriptions of the
agents’ strategies by two of the authors involved in the training. Neutral groups
consist of correct observations, which are byproducts of the agent’s strategy,
and negative concepts go against the agent’s strategy. Each positive group
contained in an answer increased the participant’s score by 1, and each negative
group decreased the score by −1. Here, we define a group to be “contained in
an answer” if at least one concept of this group was included in the answer.
Neutral groups did not affect the score.
Power pill agent :

positive: “eat power pill”,“ignore normal pill”,“ignore ghosts”,“ignore blue
ghost”,“ignore cherry”,“focus on Pacman”, “staying in corners”
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neutral: “eat normal pill”,“making ghosts blue”

Regular agent :

positive: “ignore cherry”,“focus on Pacman”,“making ghosts blue”,“eat
blue ghost”

neutral : “eat normal pill”, “eat power pill”, “ignore ghosts”

Fear-ghosts agent :

positive: “avoid ghost”,“focus on Pacman”,“making ghosts blue”,“eat blue
ghost”,“ignore cherry”

neutral :“eat normal pill”, “eat power pill”
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B.4. Questionnaire

In this section, we provide the complete questionnaire used in the first study.
On the first page, the participants were asked to provide personal information:
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Information about Pacman:
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This quiz tests whether the participants understood the information about
Pacman. Participants were sent back to the previous page if they got an answer
wrong.
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Additional information about the provided explainable AI methods. The
information about saliency maps was only displayed if the participant was in
one of the saliency conditions.
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This quiz tests whether the participants understood the information about the
provided explainable AI methods. Participants were sent back to the previous
page if they got an answer wrong.
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This is the agent understanding task that was repeated for each of the three
agents in a randomized order:
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After all three agents, the participants were asked for their satisfaction:
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This is the agent comparison task that was repeated for each combination of
the three agents in a randomized order:
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After all three comparisons, the participants were asked for their satisfaction
again:
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C. Appendix to the Second User
Study

This chapter provides additional details for the study described in Chapter 11.
It is based on the appendix in our paper:

Yael Septon, Tobias Huber, Elisabeth André, and Ofra Amir [2023]. “In-
tegrating Policy Summaries with Reward Decomposition for Explaining Re-
inforcement Learning Agents”. In: Advances in Practical Applications of
Agents, Multi-Agent Systems, and Cognitive Mimetics. The PAAMS Col-
lection - 21st International Conference. Vol. 13955. Lecture Notes in Com-
puter Science. Springer, pp. 320–332. doi: 10.1007/978-3-031-37616-

0_27

C.1. Survey Information

The following figures are screenshots from the second user study. As an example,
we show the survey only for the HIGHLIGHTS condition and only include
one of the agents. The participants were shown multiple different agents, and
depending on their condition, they saw explanations as shown in Figure 8.3.

250

https://doi.org/10.1007/978-3-031-37616-0_27
https://doi.org/10.1007/978-3-031-37616-0_27


251



252



253



254



255



256



257



D. Appendix to the Third User
Study

This chapter provides additional details for the implementation of the approach
presented in Chapter 7 and its computational evaluation, as well as the study
described in Chapter 12. It is based on the appendix in our paper:

Tobias Huber, Maximilian Demmler, Silvan Mertes, Matthew L. Olson,
and Elisabeth André [2023]. “GANterfactual-RL: Understanding Reinforce-
ment Learning Agents’ Strategies through Visual Counterfactual Explana-
tions”. In: Proc. of the 22nd International Conference on Autonomous
Agents and Multiagent Systems, AAMAS. IFAAMAS, 10 pages

D.1. Implementation Details

In this section, we provide implementation details regarding the training of
our counterfactual generation methods. Our full implementation can be found
online.1

D.1.1. Training Data

For the size of our training data sets, we aimed for around 200000 states since
the StarGAN architecture from Choi et al. [2018] that we use in our approach
was fine-tuned for the CelebA dataset, which contains around 200000 images.
To this end, we started by sampling 400000 states for each game and each RL
agent. For the Pacman agents, after duplicate removal and under-sampling (see
Section 3.2), this leaves us with 230450 states for the blue-ghost agent , 277045
states for the power pill agent and 40580 states for the fear-ghosts agent . For
Space Invaders, the dataset size is only slightly reduced due to the removal of
training samples that are duplicates of test samples. For the normal agent, this
resulted in 382989 states, and for the flawed agent, it resulted in 376711 states.
As is custom for the Atari environment (Section 2.1.2), we use a random

amount (in the range [0, 30]) of initial Do Nothing actions for each episode to
make the games less deterministic.

1https://github.com/hcmlab/GANterfactual-RL
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D.1.2. Training GANterfactual-RL

For training the StarGAN within our GANterfactual-RL approach, we tried to
stay as close to Choi et al. [2018] as possible. We built our implementation
upon the published source code2 of Choi et al. [2018] and used their original
settings. The network architecture is the same as in Choi et al. [2018]. For
the loss functions specified in the main paper, we use λcls = 1, λrec = 10, and
λgp = 10. For training, we use an ADAM optimizer with α = 0.0001, β1 = 0.5
and β2 = 0.999. The model is trained for 200, 000 batch iterations with a
batch size of 16. The learning rate α linearly decays after half of the batch
iterations are finished. The discriminator is updated five times per generator
update during training.
One thing we change compared to Choi et al. [2018] is that we do not flip

images horizontally during training. This is an augmentation step that improves
the generalization on datasets of face images. However, it is counterproductive
for Atari frames since flipped frames would often leave the space of possible
Atari states or change the action that the agent would select.

D.1.3. Training the Counterfactual State Explanations Model

For training the counterfactual state explanation model proposed by Olson et
al. [2021], we reuse their published source code3 to ensure comparability and
reproducibility. For this reason, we also use the same Training parameters
and network architecture. The only change we had to make to the network
architecture is that the size of the latent space of our DQN Pacman agents is
256 compared to the Space Invaders agents in Olson et al. [2021] that have a
latent space size of 32.

2https://github.com/yunjey/stargan
3https://github.com/mattolson93/counterfactual-state-explanations/
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Figure D.1.: The participants’ age per condition.

D.2. User Study Demographics

In this section, we provide more details regarding the demographic of the partic-
ipants in our user study. As Figure D.1 shows, the mean age for each condition
was around 40.
We verified that participants in different conditions did not differ much in

their AI experience and views and their Pacman experience. To this end, we
asked them when they played Pacman for the last time. The results are shown
in Figure D.2.
For the AI experience, we adapted a description of AI from Zhang and Dafoe

[2019] and Russell and Norvig [2016] to “The following questions ask about
Artificial Intelligence (AI). Colloquially, the term ‘artificial intelligence’ is of-
ten used to describe machines (or computers) that mimic ‘cognitive’ functions
that humans associate with the human mind, such as ‘learning’ and ‘problem
solving’.” After this description, participants had to select one or more of the
following items:

1: I know AI from the media.

2: I use AI technology in my private life.

3: I use AI technology in my work.

4: I took at least one AI-related course.

5: I do research on AI-related topics.

Other:

The distribution of the items for each condition is shown in Figure D.3. The
option Other was never chosen.
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Figure D.2.: The Pacman experience across all conditions where the bars de-
pict when the participants played Pacman the last time. From left to right,
the bars represent: “more than 5 years ago”, “less than 5 years ago” and “less
than 1 year ago“.

Control CSE GANterfactual-RL

Figure D.3.: Distribution of the chosen AI experience items for each condition.
The x-axis depicts the items described above.

Figure D.4.: The average attitude towards AI, rated on a 5-point Likert scale.
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To measure the participants’ attitude towards AI, we adapted a question from
Zhang and Dafoe [2019] and asked them to rate their answer to the question
“Suppose that AI agents would achieve high-level performance in more areas one
day. How positive or negative do you expect the overall impact of such AI agents
to be on humanity in the long run?” on a 5-point Likert scale from “Extremely
negative” to “Extremely positive”. The results are shown in Figure D.4.
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D.3. Agent Performance

In this section, we want to report the average in-game score and survival time of
our Pacman agents since we used this as ground truth for the agent comparison
task. The blue-ghost agent got a mean score of 2035.6 and survived for 708.36
steps on average. The power pill agent got a mean score of 1488 and survived
for 696.4 steps on average. The fear-ghosts agent got a mean score of 944.4 and
survived for 6490.16 steps on average.
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Move Right

Move Down

Move Up

Move Left

Move Up

Move Down

Move Down

Move Right

Move Up

Move Right

Figure D.5.: Example counterfactual states for the blue-ghost agent . The first
row shows the original states, and the second and third rows show counter-
factual states by Olson et al. [2021] and our GANterfactual-RL approach,
respectively. The states and actions are the same states that were used during
our user study and were chosen by the HIGHLIGHTS algorithm [Amir and
Amir, 2018].

D.4. Example Counterfactuals

Figures D.5, D.6, D.7, D.8, and D.9 show example counterfactuals for both
approaches tested in the Chapters 7 and 12.
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Move Left

Move Down

Move Right

Move Down

Move Up

Move Down

Do Nothing

Move Down

Move Up

Move Right

Figure D.6.: Example counterfactual states for the power pill agent . The
first row shows the original states, and the second and third rows show coun-
terfactual states by Olson et al. [2021] and our GANterfactual-RL approach,
respectively. The states and actions are the same states that were used during
our user study and were chosen by the HIGHLIGHTS algorithm [Amir and
Amir, 2018].
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Move Right

Move Left

Move Down

Move Up

Move Down

Move Up

Move Right

Move Left

Move Right

Move Left

Figure D.7.: Example counterfactual states for the fear-ghosts agent . The
first row shows the original states, and the second and third rows show coun-
terfactual states by Olson et al. [2021] and our GANterfactual-RL approach,
respectively. The states and actions are the same states that were used during
our user study and were chosen by the HIGHLIGHTS algorithm [Amir and
Amir, 2018].
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Move Left

Right & Fire

Right & Fire

Move Left

Left & Fire

Move Right

Right & Fire

Move Left

Right & Fire

Move Left

Figure D.8.: Example counterfactual states for the flawed Space Invader agent.
The first row shows the original states, and the second and third rows show
counterfactual states by Olson et al. [2021] and our GANterfactual approach,
respectively. The states were chosen by the HIGHLIGHTS algorithm [Amir
and Amir, 2018]. The counterfactual actions were chosen to be complete
opposites of the original action. Despite this big difference in the action,
neither approach moves the laser cannon (highlighted with a blue circle in the
original frames) that the flawed agent does not see.
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Right & Fire

Move Left

Right & Fire

Move Left

Right & Fire

Move Left

Left & Fire

Move Right

Right & Fire

Move Left

Figure D.9.: Example counterfactual states for the normal Space Invader
agent. The first row shows the original states, and the second and third
rows show counterfactual states by Olson et al. [2021] and our GANterfactual
approach, respectively. The states are chosen by the HIGHLIGHTS algorithm
[Amir and Amir, 2018]. The counterfactual actions are chosen to be com-
plete opposites of the original action. In contrast to the counterfactuals for
the flawed Space Invaders agent, both approaches sometimes modify the laser
cannon.
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D.5. Full User Study

Figures D.10 to D.21 present screenshots of our user study. Exemplarily, we
show the CSE condition.
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Figure D.10.: Demographic information.
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Figure D.11.: The Pacman tutorial.
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Figure D.12.: The Pacman quiz.

272



Figure D.13.: The first part of the counterfactual tutorial, which is built upon
the tutorial by Olson et al. [2021].
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Figure D.14.: The second part of the counterfactual tutorial, which is built
upon the tutorial by Olson et al. [2021].
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Figure D.15.: The quiz about counterfactual explanations.
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Figure D.16.: The first part of the agent understanding task. This task was
repeated for all three agents. The order of the agents was randomized.
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Figure D.17.: The second part of the agent understanding task. This task was
repeated for all three agents. The order of the agents was randomized.
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Figure D.18.: Explanation Satisfaction for the agent understanding task. In
the Control condition, counterfactual images was replaced by images.
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Figure D.19.: The first part of the agent comparison task. This task was
repeated for all three agent pairs. The order of the pairs was randomized.
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Figure D.20.: The second part of the agent comparison task. This task was
repeated for all three agent pairs. The order of the pairs was randomized.
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Figure D.21.: Explanation Satisfaction for the agent comparison task. In the
Control condition, counterfactual images was replaced by images.
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