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Abstract
In this article, forHamiltonian systemswith twodegrees of freedom,we studydoubly symmet-
ric periodic orbits, i.e., those which are symmetric with respect to two (distinct) commuting
antisymplectic involutions. These are ubiquitous in several problems of interest in mechan-
ics. We show that, in dimension four, doubly symmetric periodic orbits cannot be negative
hyperbolic. This has a number of consequences: (1) All covers of doubly symmetric orbits
are good, in the sense of Symplectic Field Theory (Eliashberg et al. Geom Funct Anal Spe-
cial Volume Part II:560–673, 2000); (2) a non-degenerate doubly symmetric orbit is stable
if and only if its CZ-index is odd; (3) a doubly symmetric orbit does not undergo period
doubling bifurcation; and (4) there is always a stable orbit in any collection of doubly sym-
metric periodic orbits with negative SFT-Euler characteristic (as coined in Frauenfelder et
al. in Symplectic methods in the numerical search of orbits in real-life planetary systems.
Preprint arXiv:2206.00627). The above results follow from: (5) A symmetric orbit is negative
hyperbolic if and only its two B-signs (introduced in Frauenfelder and Moreno 2021) differ.

Keywords Hamiltonian dynamics · Symplectic geometry · Periodic orbits · Celestial
mechanics · Symmetries

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Examples of doubly symmetric periodic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 The direct and retrograde periodic orbit in Hill’s lunar problem . . . . . . . . . . . . . . . . . . 6
2.2 The Levi-Civita regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Langmuir’s periodic orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Symmetric frozen planets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Real couples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

B Agustin Moreno
agustin.moreno2191@gmail.com

Urs Frauenfelder
urs.frauenfelder@math.uni-augsburg.de

1 Augsburg Universität, Augsburg, Germany

2 Institute for Advanced Study, Princeton, NJ, USA

3 Heidelberg Universität, Heidelberg, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10569-023-10135-6&domain=pdf
http://arxiv.org/abs/2206.00627


20 Page 2 of 18 U. Frauenfelder, A. Moreno

4 Doubly symmetric periodic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 The reduced monodromy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction

This article deals with the study of doubly symmetric periodic orbits in dimension four, i.e.,
for Hamiltonian systems with two degrees of freedom. These are ubiquitous in problems of
interest inmechanics; we give several examples in Sect. 2. Let us introduce the basic concepts.

Symmetric orbits. Consider a symplectic manifold (M, ω) endowed with an antisym-
plectic involution ρ : M → M (i.e., ρ2 = id , ρ∗ = ω = −ω), also referred to as a
real structure. Its fixed point set L = Fix(ρ) is a Lagrangian submanifold of M . Given
a Hamiltonian H : M → R, we say that ρ is a symmetry of the Hamiltonian system
induced by H , if H ◦ ρ = H . In this situation, a symmetric periodic orbit is a periodic orbit
v : S1 = R/τR → M satisfying ρ(v(−t)) = v(t) for all t . A symmetric periodic orbit can
also be thought of as a chord starting and ending in L , where the endpoints coincide with
v(0), v(τ/2) (the symmetric points), see Fig. 1.

Now, suppose we have two distinct antisymplectic involutions ρ1 and ρ2 which commute
with each other. In this case, we have two Lagrangian submanifolds L1 = Fix(ρ1) and
L2 = Fix(ρ2). Given a chord from L1 to L2, we can apply ρ2 to it to get a chord from L1

to itself. Now, apply ρ1 to this chord. The resulting periodic orbit is then doubly symmetric,
as it is symmetric with respect to both ρ1, ρ2, see again Fig. 1. We provide a more formal
definition of the notion of a doubly symmetric periodic orbits in Sect. 4.

Reduced monodromy. Suppose that (M, ω) is a four-dimensional symplectic manifold,
H : M → R is a smooth Hamiltonian, and v is a non-constant periodic orbit of the Hamilto-
nian vector field XH of H of period τ . By preservation of energy H is constant along v, i.e.,
v lies for all times on a level set � = H−1(c) for some c ∈ R. The differential of the flow
φt
H induces a map on the two-dimensional quotient vector space

Mv := dφτ
H (v(0)) : Tv(0)�/〈XH (v(0))〉 → Tv(0)�/〈XH (v(0))〉,

referred to as the reduced monodromy. The reduced monodromy is a two-dimensional sym-
plectic transformation, i.e., det Mv = 1. Depending on the trace of its reduced monodromy,
periodic orbits on a four-dimensional symplectic manifold are now partitioned into three
classes.

Fig. 1 Left: a symmetric orbit. Right: a doubly symmetric orbit
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Positive hyperbolic: tr(Mv) > 2, in which case the reduced monodromy has two posi-
tive, real eigenvalues inverse to each other.

Negative hyperbolic: tr(Mv) < 2, in which case the reduced monodromy has two nega-
tive, real eigenvalues inverse to each other.

Elliptic: −2 ≤ tr(Mv) ≤ 2. If the trace is precisely two, the reduced mon-
odromy has one as an eigenvalue with algebraic multiplicity two.
If the trace is precisely minus two, it has minus one as an eigen-
valuewith algebraicmultiplicity two. Otherwise it has two non-real
eigenvalues on the unit circle conjugated to each other.

In the language of Symplectic Field Theory, an even cover of a negative hyperbolic orbit is
called bad; otherwise, a periodic orbit is called good. Here, we prove the following:

Theorem A For a Hamiltonian system with two degrees of freedom, a doubly symmetric
periodic orbit cannot be negative hyperbolic.

In particular, it follows from TheoremA that all covers of a doubly symmetric periodic
orbit are good periodic orbits.

Stability While elliptic periodic orbits are stable, hyperbolic ones are unstable. On the
other hand, elliptic and negative hyperbolic orbits have odd Conley–Zehnder index, while
positive hyperbolic ones have even Conley–Zehnder index. For the second statement, it is
better to exclude the degenerate case where the trace of the reduced monodromy is two,
since in this case there are different conventions on how to define the Conley–Zehnder index.
We see from this that if we can exclude negative hyperbolic orbits, the question of stability
of a periodic orbit can be answered in terms of the parity of its Conley–Zehnder index. In
particular, we have the following corollary of TheoremA:

Corollary B Suppose that v is a non-degenerate doubly symmetric periodic orbit of a Hamil-
tonian system with two degrees of freedom. Then, it is stable if and only if its Conley–Zehnder
index is odd.

Overviewof proof of TheoremAThe proof of TheoremAuses a real version ofKrein theory
for the reduced monodromy of a symmetric periodic orbit. Given a symmetric orbit v, the
differential of the antisymplectic involution at v(0) ∈ L = Fix(ρ) induces an antisymplectic
involution

R : Tv(0)�/〈XH (v(0))〉 → Tv(0)�/〈XH (v(0))〉,
i.e., an orientation reversing involution on the two-dimensional vector space Tv(0)�/〈XH

(v(0)). The involution R conjugates the reduced monodromy with its inverse, i.e.,

RMvR = M−1
v . (1)

We choose a symplectic basis on Tv(0)�/〈XH (v(0)) such that the involution R gets identified
with the matrix

R =
(
1 0
0 −1

)

and the reduced monodromy is given by a matrix

Mv =
(
a b
c d

)
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satisfying the determinant condition ad − bc = 1. It follows from (1) that a = d so that

Mv =
(
a b
c a

)
, a2 − bc = 1.

In particular, the question to which class the periodic orbit belongs is completely answered
by the entry a of the reduced monodromy matrix. For fixed a, if an off-diagonal entry is not
zero, then it completely determines the other one in view of the determinant condition. On
the other hand, the off-diagonal entries depend on the choice of the symplectic basis used
to identify the reduced monodromy with a matrix. Since the symplectic basis vectors are
required to be eigenvectors of the antisymplectic involution R, such a symplectic basis is
determined up to a scaling factor, so that the identification of the reduced monodromy with
a matrix is unique up to conjugation by a matrix of the form

(
μ 0
0 1

μ

)
, μ ∈ R \ {0}.

In particular, while the value of b is not an invariant, its sign is an invariant. Following
(Frauenfelder andMoreno 2021),we refer to sign(b) as theB-sign of the reducedmonodromy,
see also (Zhou 2022). In the case elliptic case, by (Frauenfelder andMoreno 2021, Appendix
B), the B-sign gives the same information as the Krein type of the eigenvalues of the reduced
monodromy (as introduced in (Krein 1950, 1951a, b, c; Moser 1958)). In the hyperbolic
case, the eigenvalues have no Krein type. Therefore, the B-sign in the hyperbolic case is an
additional invariant of the real structure ρ.

A symmetric periodic orbit intersects the Lagrangian L = Fix(ρ) in its two symmetric
points. From the reduced monodromies of each symmetric point, we obtain a B-sign, so that
a symmetric periodic orbit is actually endowed with two B-signs. The main observation to
prove TheoremA is the following:

Theorem C A symmetric periodic orbit of a Hamiltonian system with two degrees of freedom
is negative hyperbolic if and only if its two B-signs are different.

If the symmetric periodic orbit is elliptic, it is actually clear that the two B-signs have
to agree. Indeed, as already mentioned, in the elliptic case the B-sign is just determined
by the Krein sign of the eigenvalues. Since reduced monodromy matrices of a periodic
orbit for different starting points are all conjugated to each other, TheoremC follows in the
elliptic case. What remains to be examined is the hyperbolic case, namely that in the positive
hyperbolic case the two B-signs agree, while in the negative hyperbolic case they disagree.
To address this, in Sect. 3 we introduce the notion of real couples, so that TheoremC becomes
a consequence of Proposition 3.2.

The strategy to prove TheoremA is now rather obvious. One shows that the additional
real structure for a doubly symmetric periodic orbit forces the two B-signs to agree, so that,
in view of TheoremC, a doubly periodic orbit cannot be negative hyperbolic. This is carried
out in Sect. 5 where TheoremA is referred to as Corollary 5.1.

Period doubling bifurcation. When considered in families, periodic orbits may undergo
bifurcation, by which a non-degenerate orbit becomes degenerate (i.e., 1 becomes an eigen-
value of its monodromy), and new orbits may appear. Generic bifurcations in dimension
four are well understood, see, e.g., (Abraham andMarsden 1978, p. 599). However, the pres-
ence of symmetry, and in particular the presence of doubly symmetric orbits, is non-generic,
and hence, one expects new phenomena. And indeed, what follows aligns well with this
expectation.
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As a particular case of bifurcations, the transition from an elliptic periodic orbit to a
negative hyperbolic orbit leads to a period doubling bifurcation, bywhich a neworbit appears,
whose period is close to double the period of the original orbit. In the case, where the negative
hyperbolic orbit is symmetric, its two different B-signs can actually be useful to figure out
where the new periodic orbit of double period bifurcates, see (Frauenfelder et al. 2022).
Namely, bifurcation happens near the symmetric point where the B-sign does not jump.
Moreover, a consequence of TheoremA is the following, which emphasizes the non-generic
nature of symmetry:

Corollary D In dimension four, doubly symmetric periodic orbits do not undergo period
doubling bifurcation.

Indeed, as in period doubling bifurcation the orbit itself does not bifurcate (its double cover
does), the orbit after such a bifurcation would have to be doubly symmetric if the orbit before
bifurcation is, thus contradicting TheoremA. We remark that CorollaryD fails in dimension
six, i.e., for systems with three degrees of freedom. Indeed, see, e.g., (Frauenfelder et al.
2022, Section 6) for a numerical example of a planar-to-spatial period doubling bifurcation
of doubly symmetric orbits.

SFT-Euler characteristic. In order to address the situationofmore general bifurcations than
period doubling bifurcation (in the presence of symmetry), we consider a Floer numerical
invariant. Namely, following (Frauenfelder and Moreno 2021), the SFT-Euler characteristic
of a periodic orbit v is by definition the Euler characteristic of its local Floer homology, given
by

χSFT (v) = #{good positive hyperbolic} − #{elliptic, negative hyperbolic}.
Here, one counts each type of orbit that appears after a generic perturbation of the orbit v,
so that it bifurcates into a collection of non-degenerate orbits. We remark that bad orbits do
not contribute to this number. Note also that this number is ±1 in the case where v is itself
non-degenerate, depending on its type. The remarkable fact, which follows fromFloer theory,
is that χSFT (v) is independent of the perturbation, and so in particular it remains invariant
under bifurcations of v. It is therefore very useful in order to study non-generic bifurcations.

Moreover, given a collection of periodic orbits (which may not necessarily arise from a
bifurcation, but, e.g., as critical points of an action functional, with a priori fixed homotopy
class) one can also consider the same number computed via the above formula. Its invariance
under arbitrary homotopies will of course not be guaranteed and will depend on the particular
situation. An example of interest, for which a suitable homotopy invariance holds, is frozen
planets. These are periodic orbits for the Helium problem which we discuss in more detail in
Sect. 2. Due to the interaction between the two electrons in Helium, frozen planets cannot be
approached by perturbative methods but instead one can replace the instantaneous interaction
of the two electrons by amean interaction. If one interpolates betweenmean and instantaneous
interaction, one obtains a homotopy of a frozen planet problem forwhich one has compactness
in the symmetric case (Frauenfelder 2020). This allows one to define a version of the Euler
characteristic for frozenplanetswhich is invariant under this homotopy (Cieliebak et al. 2022),
and which agrees with the SFT-Euler characteristic χSFT for the instantaneous interaction.
The Euler characteristic for this problem is −1, see the remark after CorollaryB in Cieliebak
et al. (2022). For each negative energy, this implies the existence of a symmetric frozen planet
orbit for the instantaneous interaction, see Corollary C in Cieliebak et al. (2022). This follows
by homotopy invariance of the Euler characteristic, and the existence (proved analytically in
Frauenfelder 2021) of a unique non-degenerate symmetric orbit for the mean interaction.

With these motivations in mind, the following is again a consequence of TheoremA:

123



20 Page 6 of 18 U. Frauenfelder, A. Moreno

Corollary E In dimension four, suppose that a collection of doubly symmetric periodic orbits
has negative SFT-Euler characteristic. Then, a stable periodic orbit exists.

Indeed, TheoremA and the formula defining χSFT imply the existence of an elliptic orbit,
and one needs to recall that elliptic orbits are precisely the stable orbits for a Hamiltonian
system in dimension four.

2 Examples of doubly symmetric periodic orbits

2.1 The direct and retrograde periodic orbit in Hill’s lunar problem

Hill’s lunar Hamiltonian goes back to Hill’s groundbreaking work on the orbit of our Moon
(Hill 1878), describing its motion around the Earth and the Sun. The Earth lies in the center of
the frame of reference, while the Sun, assumed to be infinitely much heavier than the Earth,
lies at infinity. The Hamiltonian reads

H : T ∗(R2 \ {0}) → R, (q, p) 	→ 1

2

(
(p1 + q2)

2 + (p2 − q1)
2) − 1

|q| − 3

2
q21 .

It is invariant under the two commuting antisymplectic involutions

ρ1, ρ2 : T ∗
R
2 → T ∗

R
2

given, for (q, p) ∈ T ∗
R
2, by

ρ1(q1, q2, p1, p2) = (q1,−q2,−p1, p2), ρ2(q1, q2, p1, p2) = (−q1, q2, p1,−p2).

The fixed point sets of the two antisymplectic involutions are the conormal bundles of the
x-axis and the y-axis, respectively. If one studies a doubly symmetric periodic orbit in con-
figuration spaceR2 \{0}, this means that it starts perpendicularly at the x-axis, after a quarter
period hits the y-axis perpendicularly, then gets reflected at the y-axis for the next quarter
period, and finally gets reflected at the x-axis for the second half of the period. Such periodic
orbits can be found by a shooting argument where one shoots perpendicularly from the x-axis
for a varying starting point at the x-axis, until one hits the y-axis perpendicularly. Birkhoff
used in Birkhoff (1915) this shooting argument to prove the existence of the retrograde peri-
odic orbit for all energies below the first critical value, see also (Frauenfelder and van Koert
2018, Chapter 8.3.2). Although the retrograde periodic orbit looks simpler than the direct
one (Hénon 1969), astronomers are actually often more interested in the direct one, since our
Moon and actually most moons in our solar system are direct. However, there are prominent
counterexamples. Triton, the largest moon of the planet Neptune, is, for example, retrograde.

2.2 The Levi-Civita regularization

Hill’s lunar problem arises as a limit case of the restricted three-body problem, see, for
instance, (Frauenfelder and van Koert 2018, Chapter 5.8.2). In the restricted three-body
problem, the masses of the Sun and the Earth are comparable and their distance is finite.
Different from the Hill’s lunar problem, the restricted three-body problem is only invariant
under the antisymplectic involution

ρ : T ∗
R
2 → T ∗

R
2, (q1, q2, p1, p2) 	→ (q1,−q2,−p1, p2)
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obtained from reflection at the x-axis, but not anymore under the antisymplectic involution
corresponding to reflection at the y-axis.

We identifyR2 with the complex planeC and denote byC∗ := C \ {0} the complex plane
pointed at the origin. We consider the squaring map

� : C∗ → C
∗, z 	→ z2.

Note that the squaring map is a two-to-one covering. The contragradient (or symplectic lift)
of the squaring map is the symplectic map

L : T ∗
C

∗ → T ∗
C

∗, (z, w) 	→
(
z2,

w

2z̄

)
,

where z̄ is the complex conjugate of z. This map was used by Levi-Civita to regularize two-
body collisions (Levi-Civita 1920), and therefore, it is known under the name of Levi-Civita
regularization. On T ∗

C, we have the two commuting antisymplectic involutions

σ1, σ2 : T ∗
C → T ∗

C

which are given, for (z, w) ∈ C × C = T ∗
C, by

σ1(z, w) = (z̄,−w̄), σ2(z, w) = (−z̄, w̄).

The Levi-Civita regularization lifts the restriction of the antisymplectic involution ρ to T ∗
C

∗
to the restriction of σ1 and σ2 to T ∗

C
∗, so that we have

L ◦ σ1
∣∣
T ∗C∗ = ρ

∣∣
T ∗C∗ ◦ L, L ◦ σ2

∣∣
T ∗C∗ = ρ

∣∣
T ∗C∗ ◦ L.

Now, suppose that v = (q, p) is a periodic orbit in T ∗
C

∗ which is symmetric with respect to
ρ, and such that it has odd winding number around the origin. Then, v lifts under the Levi-
Civita regularization to a periodic orbit on T ∗

C
∗ which is doubly symmetric with respect to

σ1 and σ2.
On the other hand, retrograde and direct orbits exist as well in the restricted three-body

problem. Different from Hill’s lunar problem, they are just symmetric, but not doubly sym-
metric. However, the lifts under the Levi-Civita regularization are doubly symmetric, as the
retrograde and direct periodic orbit have winding number one around the origin.

2.3 Langmuir’s periodic orbit

Langmuir’s periodic orbit is a periodic orbit for the Helium problem. It was first discovered
by Langmuir (1921) numerically as a candidate for the ground state of the Helium atom.
For an analytic existence proof, we refer to Cieliebak et al. (2022), and for its role in the
semiclassical treatment of Helium, to Tanner et al. (2000).

In the Helium atom, there is a nucleus of positive charge plus two at the origin, i.e., there
are two protons. It attracts two electrons of charge minus one according to Coulomb’s law,
which looks formally the same as Newton’s law. Moreover, the two electrons repel each
other, again according to Coulomb’s law. We abbreviate by


 := {
(q, q) : q ∈ C

∗} ⊂ C
∗ × C

∗

the diagonal. The Hamiltonian for the planar Helium problem is then a smooth function

H : T ∗(
C

∗ × C
∗ \ 


) → R
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Fig. 2 Langmuir’s doubly symmetric orbit and its symmetric version

given by

H(q1, q2, p1, p2) = 1

2
|p1|2 + 1

2
|p2|2 − 2

|q1| − 2

|q2| + 1

|q1 − q2| .

The Hamiltonian is invariant under the symplectic involution

σ : T ∗(
C

∗ × C
∗ \ 


) → T ∗(
C

∗ × C
∗ \ 


)
given by

σ(q1, q2, p1, p2) = (q̄2, q̄1, p̄2, p̄1),

consisting of the combination of particle interchange and reflection at the x-axis. The Lang-
muir Hamiltonian is the restriction of H to the fixed point set of σ

Hσ := H
∣∣
Fix(σ )

: Fix(σ ) → R.

The fixed points set consists of points (q1, q2, p1, p2) ∈ T ∗(C∗ × C
∗\
) which satisfy

q1 = q̄2 =: q, p1 = p̄2 =: p.
It therefore suffices to consider the Langmuir Hamiltonian on the cotangent bundle of the
upper half plane

H = {
q = q1 + iq2 ∈ C : q2 > 0

}
where it is given by

Hσ (q, p) = |p|2 − 4

|q| + 1

2q2
.

On the cotangent bundle of the upper half plane, we have the two antisymplectic involutions

ρ1, ρ2 : T ∗
H → T ∗

H

given by

ρ1(q, p) = (−q̄, p̄), ρ2(q, p) = (q,−p),

123
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Fig. 3 A frozen planet configuration

under both of which Hσ is invariant. The fixed point set of ρ1 is the conormal bundle of the
positive imaginary axis, while the fixed point set of ρ2 consists of brake points, i.e., at which
the velocity is zero. The Langmuir orbit for the first electron e−

1 starts perpendicularly at
the imaginary axis and brakes at a quarter of the period and is therefore a doubly symmetric
periodic orbit with respect to ρ1 and ρ2. The second electron e

−
2 similarly has an associated

Langmuir orbit, obtained by conjugation of that of e−
1 , see Fig. 2.

2.4 Symmetric frozen planets

Other examples of periodic orbits for the Helium problem are frozen planet orbits. In this
examples, both electrons lie on a line on the same side of the nucleus. The inner electron
makes consecutive collisions with the nucleus. The outer electron, the actual “frozen planet,”
which is attracted by the nucleus but repelled by the inner electron, stays almost stationary
but liberates slightly. Frozen planet orbits were discovered by physicists (Tanner et al. 2000;
Wintgen et al. 1993) in the context of semiclassics. They recently attracted the interest of
mathematicians (Cieliebak et al. 2022; Zhao 2023). A frozen planet orbit is called symmetric
if the two electrons brake at the same time, and at the time, the inner electron collides
with the nucleus the outer electron brakes again, see Fig. 3. If one applies the Levi–Civita
regularization to a symmetric frozen planet, one obtains a doubly symmetric periodic orbit.

3 Real couples

A real symplectic vector space is a triple (V , ω, R) consisting of a symplectic vector space
(V , ω) and a linear antisymplectic involution R : V → V , i.e., R2 = I d, R∗ω = −ω.

Definition 3.1 Assume that (V1, ω1, R1) and (V2, ω2, R2) are real symplectic vector spaces.
A real couple (�,�) is a tuple of linear symplectic maps

� : (V1, ω1) → (V2, ω2), � : (V2, ω2) → (V1, ω1)

which are related by

R2�R1 = �−1. (2)

Note that if (�,�) is a real couple, then (�,�) is one as well, since it follows from (2) that

R1�R2 = R1R
−1
1 �−1R−1

2 R2 = �−1.

If (�,�) is a real couple, then its composition

�� : (V1, ω1) → (V1, ω1)

is a linear symplectic map from the fixed symplectic vector space (V1, ω1) into itself which
has the special property that it is conjugated to its inverse via the antisymplectic involution

123



20 Page 10 of 18 U. Frauenfelder, A. Moreno

R1. Indeed,

R1��R1 = R1�R2R2�R1 = �−1�−1 = (��)−1. (3)

We now consider more closely the two-dimensional case. Note that every two-dimensional
real symplectic vector space is conjugated to R

2, endowed with its standard symplectic
structure and antisymplectic involution

R =
(
1 0
0 −1

)
.

After such conjugation, a real couple then consists of a pair of matrices

(A, B) ∈ SL(2;R) × SL(2;R)

such that

RAR = B−1. (4)

Writing

A =
(
a b
c d

)
, ad − bc = 1

we have

RAR =
(
1 0
0 −1

) (
a b
c d

)(
1 0
0 −1

)

=
(
1 0
0 −1

) (
a −b
c −d

)

=
(

a −b
−c d

)

and therefore

B = (RAR)−1 =
(
d b
c a

)
.

Hence, their products are given by the following matrices

AB =
(
a b
c d

)(
d b
c a

)
=

(
ad + bc 2ab
2cd ad + bc

)
(5)

and

BA =
(
d b
c a

) (
a b
c d

)
=

(
ad + bc 2bd
2ac ad + bc

)
. (6)

Since

BA = B(AB)B−1

, the two products are conjugated to each other in SL(2;R). Moreover, they both belong to
the subspace

SLR(2;R) :=
{
M =

(
α β

γ α

)
: α2 − βγ = 1

}
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of SL(2;R). If M ∈ SLR(2;R) satisfies tr(M) �= ±2, we define its real Krein sign as

κ(M) := sign(β).

Note that the trace condition implies thatα �= ±1 so that, in view of the determinant condition
α2 − βγ , we have that β �= 0, and so its sign is well defined. The following proposition is
now straightforward to prove.

Proposition 3.2 The real Krein signs of AB and BA differ, if and only if

tr(AB) = tr(BA) < −2, (7)

i.e., if and only if AB and therefore as well BA are negative hyperbolic.

Proof By (5) and (6), the trace condition (7) is equivalent to the inequality

ad + bc < −1.

In view of the determinant condition ad − bc = 1, this in turn is equivalent to the inequality

ad < 0,

i.e., the requirement that the signs of a and d are different. Having once more a look at (5)
and (6), we see that this happens if and only if the real Krein signs of AB and BA disagree.
This proves the proposition. �

In the following, we assume that (�,�) is a real couple between real symplectic vector
spaces (V1, ω1, R1) and (V2, ω2, R2).

Definition 3.3 The real couple (�,�) is called symmetric if there exists a linear map

S : V1 → V2

which is antisymplectic, i.e.,

S∗ω2 = −ω1

and satisfies

� = S�−1S, �−1 = S�S, R2SR1 = S. (8)

For a symmetric real couple

T := SR1 = R2S : (V1, ω1) → (V2, ω2)

is a linear symplectic map which in view of

T R1 = S = R2T

interchanges the two real structures, so that T leads to an identification of the two real
symplectic vector spaces (V1, ω1, R1) and (V2, ω2, R2). In the two-dimensional case, if we
identify this further with R

2 endowed with its standard symplectic form and standard real
structure R, then not only R1 and R2 are identified with R, but so is S. The real tuple becomes
identified with a pair (A, B) of SL(2,R)-matrices which not only satisfy (4) but due to (8)
also satisfy

RAR = A−1, RBR = B−1,
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i.e., both matrices are conjugated to their inverse via R and therefore lie in the subspace
SLR(2;R) of SL(2;R). This implies that

A = B =
(
a b
c a

)
, a2 − bc = 1

and therefore

AB = BA.

In particular, AB and BA have the same real Krein sign. Therefore, we obtain the following
corollary from Proposition 3.2.

Corollary 3.4 Suppose that (�,�) is a two-dimensional symmetric real couple. Then, neither
�� nor �� are negative hyperbolic.

4 Doubly symmetric periodic orbits

Suppose that (M, ω) is a symplectic manifold and H : M → R is a smooth Hamiltonian.
The Hamiltonian vector field XH of H is implicitly defined by the condition

dH = ω(·, XH ).

We abbreviate by S1 = R/Z the circle. A simple periodic orbit is a bijective map v : S1 → R

for which there exists τ > 0 such that v solves the ODE

∂tv(t) = τ XH (v(t)), t ∈ S1.

Since for a simple periodic orbit the map is bijective, the Hamiltonian vector field XH is
non-vanishing along v and therefore τ is uniquely determined by v. We refer to τ as the
period of the simple periodic orbit v. We abbreviate by

PH ⊂ C∞(S1, M)

the set of simple periodic orbits of the Hamiltonian vector field XH .
A real symplectic manifold is a triple (M, ω, ρ) where (M, ω) is a symplectic manifold

and ρ ∈ Diff(M) is an antisymplectic involution on M , i.e.,

ρ2 = id, ρ∗ω = −ω.

If H : M → R is a smooth function on a real symplectic manifold which is invariant under
the antisymplectic involution, i.e.,

H ◦ ρ = H ,

then its Hamiltonian vector field is anti-invariant, i.e.,

ρ∗XH = −XH .

We then obtain an involution

I : PH → PH , v 	→ ρ ◦ v−

where v− is the orbit traversed backward, i.e.,

v−(t) = v(−t), t ∈ S1.
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A simple symmetric periodic orbit is a fixed point of I , i.e., v ∈ PH satisfying

I (v) = v.

We abbreviate by

P I
H := Fix(I ) ⊂ PH

the set of simple symmetric periodic orbits. We remark that the fixed point set of an antisym-
plectic involution

L := Fix(ρ)

is a Lagrangian submanifold of M . Note that if v ∈ P I
H , then

v
(
0
)
, v

( 1
2

) ∈ L

so that v[0, 12 ] can be interpreted as a chord from L to L .

A doubly real symplectic manifold is a quadruple (M, ω, ρ1, ρ2) where (M, ω) is a sym-
plectic manifold and ρ1, ρ2 ∈ Diff(M) are two distinct antisymplectic involutions which
commute with each other. Note since ρ1 and ρ2 commute their composition

σ := ρ1 ◦ ρ2 = ρ2 ◦ ρ1

is a symplectic involution on (M, ω). Suppose that (M, ω, ρ1, ρ2) is a doubly real symplectic
manifold and H : M → R is a smooth map which is invariant under both involutions ρ1 and
ρ2. We then have on the set of simple periodic orbits PH two involutions

I1 : PH → PH , v 	→ ρ1 ◦ v−, I2 : PH → PH , v 	→ ρ2 ◦ v−.

Moreover, we have two Lagrangian submanifolds of M

L1 = Fix(ρ1), L2 = Fix(ρ2).

Definition 4.1 Suppose that (M, ω, ρ1, ρ2) is a doubly real symplectic manifold and
H : M → R is a smooth function invariant under both involutions ρ1 and ρ2. A simple
symmetric periodic orbit v ∈ P I1

H of ρ1 is called doubly symmetric if

ρ2 ◦ v
(
0
) = v

( 1
2

)
. (9)

Observe that since for a symmetric periodic orbit v(1/2) lies in the fixed point set of ρ1
condition (9) is equivalent to

σ ◦ v
(
0
) = v

( 1
2

)
.

Doubly symmetric periodic orbits with respect to ρ1 are in natural one-to-one correspondence
with doubly symmetric periodic orbits with respect to ρ2. For r ∈ S1 and v ∈ PH , we denote
by

r∗v ∈ PH

the reparametrized simple periodic orbit

r∗v(t) = v(r + t), t ∈ S1.

We have the following lemma.
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Lemma 4.2 Anorbit v ∈ P I1
H is doubly symmetricwith respect toρ2 if and only if

( 1
4

)
∗v ∈ P I2

H
is doubly symmetric with respect to ρ1.

Proof Suppose that v ∈ P I1
H is doubly symmetric with respect to ρ2. After reparametrization,

a simple periodic orbit is still a simple periodic orbit so that we have
( 1
4

)
∗v ∈ PH .

Since H is invariant under ρ2, we have that

I2
(( 1

4

)
∗v

)
∈ PH .

Using (9), we compute

I2
(( 1

4

)
∗v

)( 1
4

) = ρ2 ◦
(( 1

4

)
∗v

)−( 1
4

)

= ρ2

(( 1
4

)
∗v

)( − 1
4

)
= ρ2 ◦ v

( 1
4 − 1

4

)
= ρ2 ◦ v(0)

= v
( 1
2

)
=

(( 1
4

)
∗v

)( 1
4

)
.

That means that
( 1
4

)
∗v and I2

(( 1
4

)
∗v

)
are solutions of the same first-order ODEwhich at time

1
4 go through the same point. Therefore, from the uniqueness of the initial value problem of
first-order ODEs we deduce that

I2
(( 1

4

)
∗v

)
= ( 1

4

)
∗v

and hence
( 1
4

)
∗v ∈ P I2

H .

It remains to check its double symmetry with respect to ρ1. For that, we compute

ρ1 ◦
(( 1

4

)
∗v

)
(0) = ρ1 ◦ v

( 1
4

)

= v
( − 1

4

)
= v

( 3
4

)
=

(( 1
4

)
∗v

)( 1
2

)
.

Here, we have used in the second equation that v is symmetric with respect to ρ1 and in the
third equation that it is one periodic. This shows that

( 1
4

)
∗v is doubly symmetric with respect

to ρ1.
It remains to check that if

( 1
4

)
∗v ∈ P I2

H is doubly symmetric with respect to ρ1, it follows

that v ∈ P I1
H is doubly symmetry with respect to ρ2. Interchanging in the previous discussion

the roles of ρ1 and ρ2, we obtain that
( 1
4

)
∗
( 1
4

)
∗v = ( 1

2

)
∗v ∈ P I1

H
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is doubly symmetric with respect to ρ2. The fact that
( 1
2

)
∗v is invariant under I1 implies that

I1v(t) = ρ1 ◦ v−(t)

= ρ1 ◦ v(−t)

= ρ1 ◦
(( 1

2

)
∗v

)( − t − 1
2

)

= ρ1 ◦
(( 1

2

)
∗v

)−(
t + 1

2

)

= I1
(( 1

2

)
∗v

)(
t + 1

2

)

=
(( 1

2

)
∗v

)(
t + 1

2

)
= v

(
t + 1)

= v(t),

so that v ∈ P I1
H is as well invariant under I1. Since

( 1
2

)
∗v is doubly symmetric with respect

to ρ2, we obtain further that

ρ2 ◦ v(0) = ρ2 ◦
(( 1

2

)
∗v

)( − 1
2

)

= ρ2 ◦
(( 1

2

)
∗v

)( 1
2

)

= ρ2
2 ◦

(( 1
2

)
∗v

)(
0
)

=
(( 1

2

)
∗v

)(
0
)

= v
( 1
2

)
,

so that v is doubly symmetric with respect to ρ2 as well. This finishes the proof of the lemma.
�


5 The reducedmonodromy

Suppose that (M, ω) is a symplectic manifold and H : M → R is a smooth function. We
denote by φt

H the flow of the Hamiltonian vector field of H , characterized by

φ0
H (x) = x,

d

dt
φt
H (x) = XH (φt

H (x)), x ∈ M .

If v is a simple periodic orbit of XH of period τ , we have

φτ
H (v(0)) = v(0),

i.e., v(0) is a fixed point of φτ
H . The differential of the flow

dφτ
H (v(0)) : Tv(0)M → Tv(0)M

is a linear symplectic map of the symplectic vector space (Tv(0)M, ωv(0)) into itself. This map
is referred to as the unreduced monodromy. Since H is autonomous, i.e., does not depend on
time, we have

dφτ
H (v(0))XH (v(0)) = XH (v(0)).
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Moreover, by preservation of energy the Hamiltonian H is preserved along the flow of its
Hamiltonian vector field. In particular, if c is the energy of v, i.e., the value H attains along
v, the differential of the flow maps the tangent space Tv(0)� of the energy hypersurface

� = H−1(c)

back to itself. Therefore, the unreduced monodromy induces a linear map

Mv := dφτ
H (v(0)) : Tv(0)�/〈XH (v(0))〉 → Tv(0)�/〈XH (v(0))〉

which is still symplectic for the symplectic structure on Tv(0)�/〈XH (v(0))〉 induced from
ωv(0). This map is referred to as the reduced monodromy. Instead of restricting our attention
to 0, we could consider the reduced monodromy

Mt
v := dφτ

H (v(t)) : Tv(t)�/〈XH (v(t))〉 → Tv(t)�/〈XH (v(t))〉
for any t ∈ S1. Note that for different times t the reduced monodromies are symplectically
conjugated to each other by the flow.

Suppose now in addition that ρ is a real structure on (M, ω) under which H is invariant
and v ∈ P I

H is a symmetric periodic orbit. Since both points v(0) and v
( 1
2

)
lie in the fixed

point set of ρ, the differential of ρ gives rise to linear antisymplectic involutions

dρ
(
v
(
0
)) : Tv(0)M → Tv(0)M, dρ

(
v
( 1
2

)) : Tv(1/2)M → Tv(1/2)M

which induce real structures on the quotient spaces Tv(0)�/〈XH (v(0))〉, respectively,
Tv(1/2)�/〈XH (v(1/2))〉. Since the Hamiltonian vector field is anti-invariant, the antisym-
plectic involution ρ conjugates the forward flow to the backward flow

ρφt
Hρ = φ−t

H .

In particular, differentiating this identity we have

dρ
(
v
( 1
2

)) ◦ dφ
τ/2
H

(
v
(
0
)) ◦ dρ

(
v
(
0
)) =

(
dφ

τ/2
H

(
v
( 1
2

)))−1
.

Therefore, the induced maps

� := dφ
τ/2
H

(
v
(
0
)) : Tv(0)�/〈XH (v(0))〉 → Tv(1/2)�/〈XH (v(1/2))〉

and

� := dφ
τ/2
H

(
v
( 1
2

)) : Tv(1/2)�/〈XH (v(1/2))〉 → Tv(0)�/〈XH (v(0))〉
give rise to a real couple (�,�). Note that the compositions coincide with the reduced
monodromies at times 0 and 1

2

�� = dφτ
H

(
v
(
0
))

, �� = dφτ
H

(
v
( 1
2

))
.

Now, we even assume that the symplectic manifold (M, ω) is doubly real with real structures
ρ1 and ρ2 under both of which H is invariant and v ∈ P I1

H is doubly symmetric with respect
to ρ2. The differential of ρ2 gives rise to a linear antisymplectic map

dρ2(v(0)) : Tv(0)M → Tv(1/2)M

which induces an antisymplectic map on the quotient spaces

S : Tv(0)�/〈XH (v(0))〉 → Tv(1/2)�/〈XH (v(1/2))〉.
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Since ρ1 commutes with ρ2 this map interchanges the real structures. By Lemma 4.2, we
have that

( 1
4

)
∗v ∈ P I2

H and therefore S makes the real couple (�,�) symmetric. Therefore,
we obtain, as a consequence of Corollary 3.4, the following corollary, which is TheoremA
from Introduction:

Corollary 5.1 A doubly symmetric periodic orbit on a four-dimensional symplectic manifold
cannot be negative hyperbolic.
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