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Abstract
We introduce a simple zero-range process with constant rates and one fast rate for a particular
occupation number, which diverges with the system size. Surprisingly, this minor modifi-
cation induces a condensation transition in the thermodynamic limit, where the structure of
the condensed phase depends on the scaling of the fast rate. We study this transition and its
dependence on system parameters in detail on a rigorous level using size-biased sampling.
This approach generalizes to any particle system with stationary product measures, and the
techniques used in this paper provide a foundation for a more systematic understanding of
condensing models with a non-trivial condensed phase.

Keywords Interacting particle systems · Condensation · Structure of the condensate ·
Size-biased sampling

1 Introduction

Condensation in interacting particle systems has been a topic of continued research interest
in recent years. When the particle density exceeds a critical value, the system phase separates
into a homogeneous background or bulk phase and a condensate, where a non-zero fraction
of the mass concentrates on a vanishing volume fraction. Building on the first few results for
zero-range processes [1–5], condensation has been observed in various models and scaling
limits, including inclusion processes [6] and non-linear extensions thereof [7]. In addition
to stationary results, the formation of the condensate from homogeneous initial conditions
has attracted attention [8–11] as well as stationary dynamics in the context of metastability.
In all of these examples, the condensate consists asymptotically only of a single cluster
site, the location of which exhibits metastable dynamics on a slow time scale. This has
been established for zero-range [12–15] and inclusion processes [16–18], see also [19, 20]
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and references therein. For the inclusion process, condensation only occurs when the rate of
independent particle diffusion vanishes with the system size [6]. Models with size-dependent
parameters have also been studied for zero-range processes [21, 22]. Another important topic
has been the role of spatial inhomogeneities (see [23] and references therein), which we do
not consider in this paper.

A particular question of recurring interest has been to identify spatially homogeneous
models where the condensed phase exhibits a more interesting structure. This has for exam-
ple been observed in variants of the zero-range process with cut-off [24] or systems with
pair-factorized stationary measures [25, 26]. More recently, the condensed phase of the
inclusion processes with a moderately small diffusion rate has been shown to consist of a
diverging number of independent cluster sites or exhibit an interesting hierarchical structure
in a particular scaling [27], given by the Poisson-Dirichlet distribution of mass partitions.
The latter has been observed in various contexts including population genetic models and
random partitions, see [28] for a general overview. The dynamics of the inclusion process in
these scaling limits on complete graphs has recently been studied in [29] and extensions of
stationary Poisson-Dirichlet statistics to other spatially homogeneous models in [30].

The aim of this paper is to study a new example of a condensing particle system that
exhibits a non-trivial condensate, which is interesting primarily due to its simplicity. Consider
a spatially homogeneous zero-range process with a constant jump rate equal to 1, except if
the occupation number of a site takes a particular value A > 1. A site that contains A particles
loses one of themwith a large rate θL � 1 that diverges with the system size. This introduces
a weak form of an exclusion interaction, where occupation numbers or cluster sizes of size A
are unstable and all other occupation numbers are stable. It is surprising that these dynamics
do not only diminish the stationary probability of observing occupation numbers of size A
but lead to a condensation transition in the system, where the condensate exhibits clusters on
a scale depending on the scaling of θL . In fact, we can keep the jump rates for occupation
numbers smaller than A general, which only affect the bulk distribution. The structure of the
condensate depends crucially on jump rates for occupation numbers larger than A, which we
discuss in detail for several examples.

The paper is structured as follows: In Sect. 2 we introduce the model and its stationary
distributions and give a first heuristic argument for the condensation phenomenon. In Sect. 3
we formulate rigorous results on the condensation transition in the thermodynamic scaling
limit and present the proofs based on size-biased sampling. For completeness, we also include
results on a scaling limit with fixed volume and diverging density. We discuss the robustness
of our results and the relevance of the size-biased approach for more general systems in Sect.
4.

2 Mathematical Setting

2.1 The Zero-Range Process and Its Stationary Distributions

We consider a zero-range process (ZRP) on a finite set of sites � with size L = |�|, called
lattice in the following, with an infinitesimal generator of the form

L f (η) =
∑

x,y∈�

p(x, y)g(ηx )
[
f (ηxy) − f (η)

]
. (1)

Here η ∈ EL,N = {
η ∈ N

L
0 : ∑

x∈� ηx = N
}
, where ηx ∈ N0 denotes the number of

particles on site x and f ∈ Cb(EL,N ) is a continuous test function. Single particles jump
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from site x to y, changing the configuration from η to ηxy with η
xy
z = ηz − δz,x + δz,y

provided that ηz > 0. This jump occurs with rate p(x, y)g(ηx ), where we assume that the
spatial factor is irreducible and doubly stochastic, i.e.,

∑

y∈�

(
p(x, y) − p(y, x)

) = 0 for all x ∈ � .

The rate g : N0 → [0,∞) fulfills the usual irreducibility condition g(n) = 0 if and only
if n = 0. Under these conditions, the generator L defines an irreducible continuous-time
Markov chain on the finite state space EL,N , and it is well known [31] that its unique
stationary measure is spatially homogeneous and of product form

πL,N [dη] = 1

ZL,N

∏

x∈�

w(ηx )dη , η ∈ EL,N , (2)

with stationary weights

w(n) =
n∏

k=1

1

g(k)
, n ≥ 0 and normalization ZL,N =

∑

η∈EL,N

∏

x∈�

w(ηx ) . (3)

We will be interested in a ZRP with size-dependent rates of the form

gL(n) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if n = 0 ,

g(n) > 0 if n = 1, . . . , A − 1 ,

θL if n = A ,

1 if n > A ,

(4)

where A ≥ 2 and θL → ∞ for L → ∞. This leads to stationary weights

wL(n) =
n∏

k=1

1

gL(k)
=

{
w(n) if n < A ,
w(A−1)

θL
= 1

θL
if n ≥ A ,

(5)

with w(n), n ≤ A − 1 as in (3). For simplicity of notation, we want to absorb the factor
w(A − 1) for n ≥ A in the definition of θL in the following.

While all results in the paper apply for general g(n) and w(n) as defined in (4) and (5),
as a particularly simple example we can think of gL(n) = 1 for n �= 0, A and g(A) = θL , so
that wL(n) = w(n) = 1 for n < A and wL(n) = θ−1

L for n ≥ A.

2.2 Grand-Canonical Distributions and a First Heuristic

In addition to the canonical measures πL,N with a fixed number of particles, the ZRP also
has a family of grand-canonical product measures [31, 32]

νL
φ [dη] =

∏

x∈�

1

zL(φ)
wL(ηx )φ

ηx dη , η ∈ N
L
0 , (6)

with single-site normalization

zL(φ) =
∑

n≥0

φnwL(n) =
A−1∑

n=0

φnw(n) + 1

θL

(
φA

1 − φ

)
. (7)
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Fig. 1 The density RL (φ) (8) (dashed coloured lines) converges pointwise for all φ < 1 to R(φ) (black
line) for L → ∞ (9) (left). The canonical current (15) (dotted lines) compares well with the grand-canonical
prediction 	L (ρ) (11) (dashed lines). For L → ∞ both converge to the same limit 	(ρ) (black line), which
is the inverse of R(φ) (9). Parameters are A = 2, w(n) = 1 for n = 0, 1 and θL = 1/L (Color figure online)

The fugacity parameter φ ≥ 0 regulates the expectation of the (random) number of particles
in the system and the measures (6) are defined for all φ ∈ [0, 1). The particle density per site
is given by

RL(φ) =
∑

n≥1

n
wL(n)φn

zL(φ)
= φ

z′L(φ)

zL(φ)

= 1

zL(φ)

(
A−1∑

n=0

nφnw(n) + 1

θL

(
φA(A(1 − φ) + φ)

(1 − φ)2

))
(8)

and for L → ∞ we have for all φ ∈ [0, 1)

zL(φ) → z(φ) :=
A−1∑

n=0

φnw(n) and RL(φ) → R(φ) := 1

z(φ)

A−1∑

n=1

nφnw(n) . (9)

The limiting expressions can be extended to φ ↗ 1 and we get

z(φ) → z(1) =
A−1∑

n=0

w(n) < ∞ , R(φ) → R(1) = ρc := 1

z(1)

A−1∑

n=1

nw(n) < ∞ . (10)

This convergence is illustrated in Fig. 1. Note that the limits L → ∞ and φ ↗ 1 do not
commute since zL(φ) and RL(φ) diverge for φ ↗ 1. In analogy to zero-range models with
size-dependent parameters studied in [32], this corresponds to the following condensation
transition. In the thermodynamic limit L, N → ∞ with N/L → ρ ≥ 0, when the particle
density ρ exceeds the critical density ρc, the system separates into a homogeneous bulk or
background phase with density ρc and the excess mass N −ρcL concentrates on a vanishing
volume fraction (the condensate or condensed phase). While the condensate in most systems
studied so far consists only of a single site, it exhibits an interesting non-trivial structure in
the present model depending on the scaling of the parameter θL . Before this is established
rigorously in the next section, we give a first heuristic on the scale of cluster sizes in the
condensed phase based on the grand-canonical measures.
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We see in Fig. 1 (left) that for fixed L we can find 	L(ρ) = 1 − �L < 1 such that
RL(1 − �L) = ρ for any ρ ≥ 0, including ρ > ρc. With (8) this leads to

RL(1 − �L) = ρc + O(�L ) + (1 − A�L)((A − 1)�L + 1)

θL zL(1 − �L)�2
L

= ρ ,

and with zL(1 − �L) = z(1) + O(�L) + O(1/(θL�L)) we get to leading order

ρ − ρc = 1

z(1)θL�2
L

(
1 + O(�L)

)
.

This implies that for ρ > ρc to leading order

�L � 1√
(ρ − ρc)z(1)θL

so that 	L(ρ) � 1 − 1√
(ρ − ρc)z(1)θL

, (11)

where we use the notation aL � bL for sequences with aL/bL → 1, L → ∞. Together with
(6) and (7) we get to leading order

νL
	L (ρ)[ηx = k|ηx ≥ A] = (1 − �L )k−A

θL

/ 1

θL�L
= �L (1 − �L )k−A , k ≥ A , (12)

i.e. cluster sites with occupation numbers≥ A are geometrically distributed with expectation

CL := 1/�L = √
(ρ − ρc)z(1)θL (scale of cluster sizes) . (13)

Scaling k = kL such that kL/CL = kL�L → u ≥ 0 we get an exponential distribution for
the asymptotic cluster size on scale CL , i.e.

νL
	L (ρ)[ηx ≥ kL |ηx ≥ A] �

(
1 − 1

CL

)uCL → e−u as L → ∞ . (14)

The geometric distribution in (12) is consistent with effective birth-death dynamics of cluster
sites with exit rate 1 and entrance rate 	L(ρ). The latter is well known (see e.g. [4, 5]) to
be the stationary current or activity in the ZRP in the grand-canonical ensemble at density
ρ, and is illustrated as the inverse of RL(φ) in Fig. 1 (right). The grand-canonical current
	L(ρ) is compared with the canonical current under the distribution πL,N . Using (3) this is
in general given by

〈g〉L,N :=
N∑

n=1

g(n)πL,N [ηx = n] = ZL,N−1

ZL,N
, (15)

which can be computed recursively via ZL,N = ∑N
n=0 ZL/2,n ZL/2,N−n (cf. e.g. [33]).

This heuristic is confirmed in Fig. 2. We simulate the process to stationarity and show
integrated density profiles from single realizations for different parameter values of A and
� = limL→∞ θL/L for the simple ZRP with

gL(n) =

⎧
⎪⎨

⎪⎩

1 , n = 1, . . ., A−1

θL , n = A

1 , n > A

, wL(n) =
{
1 , n < A

1/θL , n ≥ A
, ρc = A − 1

2
. (16)

Here z(1) = A and we have a uniform distribution in the bulk.
The equivalence of ensembles between grand-canonical and canonical distributions has

been established in the bulk phase for many condensing particle systems [4, 7, 21, 34–36].
In the next section, we will show that this extends also to the condensed phase in our model
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Fig. 2 Integrated stationary density profiles Sx (η) = ∑x
k=1 ηx for a system with parameters (16) and several

values for � = θL/L confirm condensation with bulk density ρc (10) (indicated by grey lines). We have
A = 2, L = 8192, ρ = 1 with ρc = 1/2 (left) and A = 5, L = 1024, ρ = 3 and 4 with ρc = 2, as well
as subcritical ρ = 1 (right). The size of clusters is increasing with � in accordance with the scale CL (13)
(Color figure online)

so that the above prediction on the asymptotic cluster size distribution is correct, and that
furthermore, cluster sites are also asymptotically independent.

3 Rigorous Results on Condensation

3.1 Main Results

In this section, we give a precise version of the above heuristics of the condensation transition
in the thermodynamic limit

L, N , θL → ∞ such that
N

L
→ ρ > 0 ,

θL

Lγ
→ � > 0 with γ > 0 . (17)

Our results describe the limiting stationary behaviour under the canonical distributions πL,N

(2), which are uniquely determined by the weights (5) so that the explicit dynamics of the
ZRP can be ignored from now on.

Theorem 1 The ZRP with stationary weights (5) exhibits a condensation transition in the
thermodynamic limit (17) with critical density (10)

ρc =
A−1∑

n=1

nw(n)/

A−1∑

n=1

w(n) . (18)

This means that for any distinct (fixed) lattice sites x1, . . . , xm ∈ � (for L large enough)
ηx1 , . . . , ηxm converge in distribution under πL,N to iid random variables on {0, . . . , A− 1}
with marginal distribution [see (9)]

νφ[ηxi = k] = w(k)φk

z(φ)
, for R(φ) = ρ ≤ ρc ,

ν1[ηxi = k] = w(k)

w(0) + . . . + w(A − 1)
, for ρ ≥ ρc .

The proof is given in the next subsection, and this is a direct consequence of a classical
equivalence of ensembles resulting from condensing particle systems. So in any finite test
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volume, we will only observe the bulk phase in the limit. In order to capture the distribution
of the condensed phase it is convenient to work with a size-biased reordering η̃ of the particle
configurations η (see e.g. [27, 30] for more details on this). For a given configuration η ∈
EL,N , we pick the first site randomly according to its mass fraction, i.e.

η̃1 = ηx with probability
ηx

N
, x ∈ � .

Alternatively, we can think of picking a particle uniformly at random, which has location x
with probability ηx/N . Keeping track of the chosen site indices x1, . . . xk we repeat recur-
sively as

η̃k+1 = ηx with probability
ηx

N − (ηx1 + . . . + ηxk )
, x ∈ � \ {x1, . . . , xk} .

to produce a size-biased (random) reordering η̃ of η where all empty sites are stacked at the
end. This has the advantage, that cluster sites have a non-zero probability to be observed
in η̃, since the total mass fraction in the condensate is (ρ − ρc)/ρ > 0 while its volume
fraction vanishes. Of course, any spatial information from η is lost in η̃, but since we only
consider spatially homogeneous systems with stationary product measures (2) this is not
a restriction. If a condensed configuration consists for instance of a single condensate site
and a homogeneous background at density ρc, then η̃1 corresponds to the condensate with
asymptotic probability (ρ − ρc)/ρ or to a bulk site with probability ρc/ρ. Both are of order
1, since bulk and condensate both have a non-zero fraction of the total mass, as opposed to
the vanishing volume fraction of the condensate.

The marginal distributions of size-biased configurations are given in terms of size-biased
weights (2)

πL,N [η̃1 = n] = L

N
n wL(n)

ZL−1,N−n

ZL,N
, n ∈ {1, . . . , N } (19)

which is normalized since the particle density under πL,N is fixed to N/L . Due to the product
structure of πL,N we get recursively from the definition of η̃

πL,N [η̃1 = n1, . . . , η̃m = nm] = L(L − 1) · · · (L − m + 1)

N (N − n1) · · · (N − (n1 + . . . + nm))

n1wL(n1) · · · nmw(nm)
ZL−m,N−(n1+...+nm )

ZL,N
, (20)

for any fixed m ∈ N, ni ≥ 1 so that n1 + . . . + nm ≤ N . This can also be written as

πL,N [η̃1 = n1, . . . , η̃m = nm] =πL,N [η̃1 = n1]πL−1,N−n1 [η̃2 = n2]
· · · πL−m+1,N−(n1+...+nm−1)[η̃m = nm] . (21)

This product form of the marginal distributions enables us to prove the following result by
analyzing the scaling behaviour of ZL,N given in the next subsection.

Theorem 2 Consider the ZRP with stationary weights (5) in the thermodynamic limit (17)
with density ρ > ρc (18) and γ ∈ (0, 2). Then we get on the scale CL = √

(ρ − ρc)z(1)θL
(13)

η̃1

CL

d−→
{
0 , with probability ρc/ρ

Z , with probability (ρ − ρc)/ρ
,

where Z ∼ �2,1 is a Gamma-distributed random variable with P[Z ≤ u] = ∫ u
0 se−sds.
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Fig. 3 (Left) The tail of the size-biased empirical distribution Fsb(u) := 1
N

∑
x∈� ηx1{ηx > uCL } on scale

CL (13) for various values of � (coloured lines) compared to the theoretical prediction of Theorem 2 (dashed
black line) with A = 5, ρ = 3 or A = 2, ρ = 1. (Right) The corresponding tail of the conditioned empirical
distribution of cluster sites Fc(u) := ∑

x∈� 1{ηx > uCL }/∑
x∈� 1{ηx ≥ A} on scale CL (13) shows

exponential decay (dashed black line). Other parameters are L = 8192 with 10 realizations for A = 2 and
L = 4096 with 100 realizations for A = 5 (Color figure online)

For any fixed m ∈ N, η̃1, . . . , η̃m converge in distribution to iid random variables with the
above marginal distribution.

Note that �2,1 is the size-biased distribution for an exponential random variable with mean
1, which is therefore the asymptotic distribution of cluster sites consistent with (14). This is
illustrated in Fig. 3 for the simple example (16) with A = 2. The scales of the cluster sites
covered by our result in the limit (17) are of order

CL ∝ √
θL ∝ Lγ /2 � L for γ ∈ (0, 2) .

Since the condensate contains amass of order (ρ−ρc)L ,wehave adivergingnumber of cluster
sites of order L1−γ /2 so that any finite collection of them is asymptotically independent.

If γ = 2, clusters contain a non-zero fraction of the total mass and can no longer be
independent in size. This borderline case is difficult to analyse exactly and we will get back
to it in the discussion Sect. 4. For γ > 2, we can show that all the mass in the condensate
concentrates on a single cluster site.

Theorem 3 Consider the ZRP with stationary weights (5) in the thermodynamic limit (17)
with density ρ > ρc (18) and γ > 2. Then

η̃1

(ρ − ρc)L
d−→

{
0 , with probability ρc/ρ

1 , with probability (ρ − ρc)/ρ
.

Furthermore, there is only a single cluster site in the limit,

∑

x∈�

1{ηx ≥ A} d−→ 1 as L → ∞ .

The first statement is written in analogy to Theorem 2 and implies that there is only one
macroscopic cluster with mass on scale L . The second statement is stronger, stating that all
but one site have occupation numbers smaller than A.
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3.2 Proof of theMain Results

Proof of Theorem 1

In the limit (17), we have in particular that the weights wL (5) converge uniformly to w :
N0 → [0,∞) with w(0), w(1) > 0 and show a sub-exponential decay, i.e.

1

L
logwL(aL) � − 1

L
log(θL) → 0 as L → ∞ for all a > 0 .

Therefore we are in the situation of Appendix A in [30], where Proposition A.1 implies the
equivalence of ensembles, i.e. for any finite marginal supported on M ⊂ � with |M | = m

πM
L,N →

{
νmφ , for R(φ) = ρ < ρc

νm1 , for ρ ≥ ρc
. (22)

Here πL,N are the canonical measures (2) and the marginals of the limit measures νφ derived
from (6) are

νφ[ηx = k] = 1

z(φ)
φkw(k) , k ∈ {0, . . . , A − 1} for any fixed A ≥ 1 ,

with z(φ) as in (9). For ρ > ρc and φ = 1, this immediately implies Theorem 1.

Proof of Theorem 2

We can use an analogous approach to Appendix A in [30] to derive the asymptotic behaviour
of the partition function ZL,N .

Lemma 4 In the thermodynamic limit (17) with ρ > ρc and γ ∈ (0, 2)

ZL,N = (z(1))L DL (ρ)eL/
√

θL f (ρ)
(
1 + o(1)

)
, (23)

where f (ρ) = 2
√

(ρ − ρc)/z(1) and DL(ρ) is sub-exponential, such that

DL(ρ)

DL−1(ρ − o(1))
→ 1 as L → ∞ . (24)

Proof Tilting the stationary weights wL (5) by 	L(ρ) as in (11) we can write with (3)

ZL,N = νL
	L (ρ)

[
∑

x∈�

ηx = N

]
	L(ρ)−N zL

(
	L(ρ)

)L
. (25)

Here νL
	L (ρ) is the grand-canonical product measure (6) with fugacity chosen such that

the density (8) equals ρ > ρc. Naturally, DL(ρ) = νL
	L (ρ)

[∑
x∈� ηx = N

]
decays with

increasing system size L , in general exponentially fast. But with N/L → ρ the event∑
x∈� ηx = N is typical under the measure νL

	L (ρ), i.e. the probability decays significantly
slower than exponential in analogy to the standard central limit theorem, where it decays
like 1/

√
L . In our case, the distribution ν	L (ρ) of a single term ηx in the sum depends on

the number of summands L . Still the above heuristic holds and is made precise in a local
limit theorem for so-called triangular arrays (see e.g. Lemma A.3 in [30] and Theorem 1.2
in [37]), so that DL(ρ) decays only sub-exponentially with L and in particular (24) holds.
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Using 	L(ρ) = 1 − 1/CL with CL = √
(ρ − ρc)z(1)θL (13), a straightforward asymptotic

analysis of (7) and (11) yields

	L(ρ)−N =
(
1 − N

N CL

)−N � eN/CL = exp

(
L√
θL

ρ√
(ρ − ρc)z(1)

)

zL
(
	L(ρ)

)L � z(1)L
(
1 − ρc

CL
+ CL

θL z(1)

)L � exp

(
L√
θL

ρ − 2ρc√
(ρ − ρc)z(1)

)

which implies (23). ��

Proposition 5 On the scale CL = √
(ρ − ρc)θL z(1) (13), we get

πL,N
[
η̃1 ≤ CLu

] → ρc

ρ
+ ρ − ρc

ρ

∫ u

0
se−s ds , (26)

for all u > 0 in the thermodynamic limit (17) with ρ > ρc and γ ∈ (0, 2).

Proof With (19), we get for any u > 0

πL,N
[
η̃1 ≤ CLu

] =
∑

n≤CLu

L

N
nwL(n)

ZL−1,N−n

ZL,N

� 1

ρ

A−1∑

n=0

nw(n)
ZL−1,N−n

ZL,N
+ 1

ρ

CLu∑

n=A

n
1

θL

ZL−1,N−n

ZL,N
.

With Lemma 4, we get for n = O(1), ZL−1,N−n
ZL,N

� 1
z(1) , and for n = CLs, s > 0

ZL−1,N−n

ZL,N
� 1

z(1)
eL/

√
θL ( f (ρ−n/L)− f (ρ)) � 1

z(1)
e−L/

√
θL f ′(ρ)CLs/L � 1

z(1)
e−s

since f ′(ρ) = 1/
√

(ρ − ρc)z(1) = √
θL/CL . Therefore

πL,N
[
η̃1 ≤ CLu

] � ρc

ρ
+ 1

ρ

C2
L

θL z(1)

∫ u

0
se−sds → ρc

ρ
+ ρ − ρc

ρ

∫ u

0
se−s ds ,

as L → ∞, finishing the proof. ��

Using the factorization (21) of the joint distribution, we get

πL,N

[
η̃1 ≤ CLu1, . . . , η̃m ≤ CLum

]
=

∑

n1≤CLu1

. . .
∑

nm≤CLum

πL,N [η̃1 = n1, . . . , η̃m = nm]

=
∑

n1≤CLu1

πL,N [η̃1 = n1]
∑

n2≤CLu2

πL−1,N−n1 [η̃2 = n2]

· · ·
∑

nm≤CLum

πL−m+1,N−(n1+..+nm−1)[η̃m = nm]

→
(

ρc

ρ
+ ρ − ρc

ρ

∫ u1

0
se−s ds

)
· · ·

(
ρc

ρ
+ ρ − ρc

ρ

∫ um

0
se−s ds

)
,

since m is finite and CL(u1 + . . . + um) � N in the limit (17) with γ ∈ (0, 2), so we can
apply Proposition 5 repeatedly in the iterated sum. This concludes the proof of Theorem 2.
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Proof of Theorem 3

For γ > 2, we can get the following elementary estimate on the partition function.

Lemma 6 In the thermodynamic limit (17) with ρ > ρc and γ > 2

ZL,N = z(1)L−1 L

θL

(
1 + o(1)

)
.

Proof Let K denote the number of cluster sites with occupation ηx ≥ A and M the total
mass in the condensed phase, then we can write the partition function in a phase separated
form

ZL,N =
N∑

M=0

L∑

K=0

(
L

K

)
Zb
L−K ,N−M Zc

K ,M ,

where Zb
L−K ,N−M and Zc

K ,M will be defined and explained below. Here,
(L
K

)
is the number of

ways to choose K condensed sites within the total volume |�| = L and there are no “interface
contributions” since the stationary weights (5) are of product form. For the condensed part
Zc
K ,M , we have constant weights 1/θL for each site with ηx ≥ A leading to a uniform

distribution of mass. Thus,

Zc
K ,M = 1

θK
L

(
M − AK + K − 1

K − 1

)
for M ≥ AK

where the combinatorial factor counts the number of possible configurations. From the equiv-
alence of ensembles (22) and Theorem 1, we know that in the limit (17) with ρ > ρc, the
sum over M is dominated by terms with M = (ρ − ρc)L , K ≥ 1 and that the bulk part is
asymptotically to leading order

Zb
L−K ,ρc L � z(1)L−K

with grand-canonical partition function as given in (9). Together we get

ZL,N � z(1)L−1 L

θL
+

L∑

K=2

z(1)L−K

θK
L

RL(K ) (27)

with remainder terms

RL(K ) =
(
L

K

)(
N − ρcL − AK + K − 1

K − 1

)
≤ LK

K !
(ρ − ρc)

K−1LK−1

(K − 1)! . (28)

Therefore with L2 � θL

1

θL

L∑

K=2

z(1)L−K RL(K ) ≤ z(1)L−1 L

θL

L2

θL

ρ − ρc

z(1)︸ ︷︷ ︸
→0

∞∑

K=0

(
L2(ρ − ρc)

θL z(1)

)K 1

K !
︸ ︷︷ ︸

=e
L2(ρ−ρc)

θL z(1) →1

,

which implies ZL,N � z(1)L−1 L
θL

as required. ��
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Therefore ZL,N is asymptotically dominated by configurations with a single cluster site,
so that

πL,N

[
∑

x∈�

1{ηx ≥ A} = 1

]
= 1

ZL,N

∑

η∈EL,N

∏

x∈�

wL(ηx )1

{
∑

x∈�

1{ηx ≥ A} = 1

}
→ 1

in the limit (17) with ρ > ρc and γ > 2. This proves the second statement of Theorem 3 and
implies in particular also the first statement.

3.3 Fixed Lattice Size

Condensation in particle systems has also been studied in a different limit, where the lattice
size L remains fixed and only the number of particles N tends to infinity for zero-range
processes [38], inclusion processes [6] and other more general models (see e.g. [39]). This
is also the scaling for most dynamical results on metastability [12, 16] and on equilibration
dynamics [8, 11]. In the present model, this scaling regime also leads to condensation when
θ = θN is scaled with the number of particles. Since the density N/L diverges in this regime,
the nature of the transition changes and we can have only a single condensate site on scale
N as seen below. So the structure of the condensed phase is less interesting than in the
thermodynamic limit, but we include a brief outline of this case for completeness.

For a given configuration η, we let

MN = max(ηx : x ∈ �) ∈ N and XN = {x : ηx = MN } ⊂ �

be the size and location(s) of the maximum. In the following, the system parameter θN
replaces θL and scales with the diverging number of particles N since L remains fixed.

Theorem 7 We consider the zero-range process with stationary weights (5) in the scaling
limit

L ≥ 2 fixed , N , θN → ∞ such that
θN

N γ
→ � > 0 for some γ > 0 . (29)

Then, for γ > 1, we have condensation of the full mass fraction on a single uniformly chosen
site

1

N
MN

d−→ 1 and XN
d−→ {X}, X ∈ � uniform ,

and the bulk sites converge to iid variables with distribution (cf. Theorem 1)

πL,N [ηx = nx : x ∈ � \ XN ] → 1

z(1)L−1

∏

x∈�\XN

w(nx ) for all nx ∈ {0, . . . , A − 1} ,

where as before z(1) = w(0) + . . . + w(A − 1).

For γ < 1, all occupation numbers diverge on the scale N with

ηx

N
d−→ Zx ∈ [0, 1] with P[Zx ≤ u] = 1 − (1 − u)L−1 . (30)

We have
∑

x∈� Zx = 1, so the limits are not independent.

Note that for γ = 1 we cannot obtain a rigorous result and this case is discussed below in the
penultimate paragraph of this subsection. To prove this result, we first find the asymptotic
behaviour of ZL,N (23) by direct computation and explicit estimates.
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Lemma 8 In the scaling limit (29) for any fixed L ≥ 2 the partition function (23) is asymp-
totically given by

ZL,N �
{ 1

θN
L z(1)L−1 , θN � N (i.e. γ > 1)

NL−1

θ L
N

1
(L−1)! , θN � N (i.e. γ < 1)

as N → ∞ .

Proof For N large enough, there has to be at least one cluster site with ηx ≥ A and we have
in analogy to (27) and (28)

ZL,N = z(1)L
L∑

K=1

1

(z(1)θN )K

(
L

K

)
NK−1

(K − 1)! (31)

where L is now fixed. It is clear that for θN � N the first term dominates the sum since

ZL,N � z(1)L−1

θN

(
L +

L−1∑

K=1

( N

θN

)K
(

L

K + 1

)
1

z(1)K K !

)
.

For θN � N the last term dominates with

ZL,N � NL−1

θ L
N

(
1

(L − 1)! +
L−1∑

K=1

(θN

N

)K
(

L

L − K

)
1

z(1)K (L − K − 1)!

)
,

and this implies the statement. ��

γ > 1. Since the partition function is dominated by a single cluster site we have

πL,N
[|XN | ≥ 2

] =
N∑

n=2A

1

θ2N

ZL−2,N−n

ZL,N
= 1

θ2N

⎛

⎝
N−(L−2)A∑

n=2A

+
N∑

n=N−(L−2)A+1

⎞

⎠ ZL−2,N−n

ZL,N

≤ 1

θ2N

L − 2

Lz(1)2
N + 1

θ2N
(L − 2)ACLθN ≤ CL

θN
→ 0 as N → ∞ .

Here we split the sum such that in the first part the ratio of partition functions is of
order 1 since both contain at least one cluster site, and in the second part the ratio is
bounded by a multiple of (1/θN )−1 with the above lemma. By symmetry we therefore have
πL,N [ηy = MN ] = 1

L (1 + o(1)) for any y ∈ �, and with Lemma 8 we get for all
nx ∈ {0, . . . , A − 1}

πL,N

[
ηx = nx : x ∈ � \ {y}

∣∣∣ηy = MN

]
= 1

θN

1

ZL,N

⎛

⎝
∏

x �=y

w(nx )

⎞

⎠ 1

πL,N [ηy = MN ]

� 1

LπL,N [ηy = MN ]
1

z(1)L−1

∏

x �=y

w(nx ) � 1

z(1)L−1

∏

x �=y

w(nx )

which implies the result.
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Fig. 4 For a ZRP with rates (4), A = 2 and ρc = 1/2 in the scaling regime (29) with θN = Nγ we show
the marginal tail distribution of a re-scaled occupation number Zx = ηx/N . For γ = 2 > 1 (left) the mass
condenses on a single lattice site and the distribution shows a plateau at level 1/L and a uniform distribution
for occupation numbers up to A. For γ < 1 (right) the empirical tail distributions of Zx (coloured lines) fit
well with the limiting distributions (30) (dashed black lines) for various values of L and γ , where N = 8192.
In each case 100 realizations were used (Color figure online)

γ < 1. For any u < 1 and n ≤ uN we have ZL−1,N−n
ZL,N

� θN
(N−n)L−2(L−1)!

(L−2)!NL−1 with Lemma
8, and therefore

πL,N
[
ηx ≤ uN

] �
A−1∑

n=0

w(n)
ZL−1,N−n

ZL,N
+

�uN�∑

n=A

ZL−1,N−n

θN ZL,N

� z(1)(L − 1)
θN

N
+ (L − 1)

∫ u

0
(1 − s)L−2ds → 1 − (1 − u)L−1

as N → ∞, which completes the proof of Theorem 7.

The limiting distribution of Zx := limN→∞ ηx/N corresponds essentially to a marginal
of the uniform distribution of the total mass on the simplex with Z1 + . . . + ZL = 1, with a
leading order correction z(1)(L − 1) θN

N corresponding to mass on bulk sites with occupation
numbers smaller than A. As is shown in Fig. 4 (right), for moderate size N this is well
visible in simulation results. For the condensing case γ > 1 the empirical distribution of
the same variables shows a plateau at level 1/L , corresponding to the volume fraction of the
condensate [see Fig. 4 (left)].

Simulation results for the intermediate case γ = 1 show a combination of both cases,
with a non-zero probability of observing several cluster sites in the condensed phase. Since
all terms in (31) contribute to the partition function to leading order, a conclusive analysis
is difficult and a simple asymptotic expression cannot be obtained. The condensed mass is
shared uniformly among the cluster sites, and the number of sites is random and changes in
time and between realizations. Therefore, stationary empirical tails, as shown in Fig. 4 for
γ �= 1, show a non-specific generic decay in this case, which we chose not to include. Since
it does not lead to any generic behaviour, we do not discuss the case γ = 1 any further and
rather consider the dependence of the condensate statistics on modifications of the jump rates
in the Sect. 4 below.

For γ > 1, the unique condensate location will exhibit a metastable motion on the lattice
� in analogy to previous results [12, 14] for condensing ZRPs. The time scale for this motion
will be dominated by the time it takes to create a second condensate site from bulk sites, which
happens when a site with ηx = A gains another particle and reaches the stable occupation
number A + 1. A simple argument shows that to leading order this happens after a time
of order θN . Then both condensate sites compete for particles in analogy to a symmetric
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Fig. 5 For a ZRP with rates (32), A = 2 and ρc = 1/2, the recursively computed canonical current (15)
(coloured dotted lines) and the grand-canonical current (11) (coloured dashed lines) exhibit an overshoot
compared to the asymptotic current (full black line) as seen on the left. On the right for ρ = 1 the size-biased
tail distributions Fsb(u) from recursively computed tails (dotted blue and red lines, analogous to (15)) and
empirical tails from simulations (green line) compare well with an asymptotic Beta(1, 1) distribution (black
dashed line), as is expected for Poisson-Dirichlet statistics with parameter 1 (see [28] and [30] for details)
(Color figure online)

random walk with absorbing boundary conditions, and only with probability 1/N will the
new condensate sitewin, resulting in an effectivemotion. Therefore, we expect themetastable
motion to occur on the scale NθN � N 2. The precise motion will depend on the geometry
of the lattice, and it would be an interesting question to establish this rigorously applying
results in [19, 20] or a recent approach on the �-expansion of large deviation rate functions
in [15].

4 Discussion

We have shown that the condensed phase in zero-range processes of the form (4) with a fast
rate θL → ∞ exhibit a condensation transition (Theorem 1). As long as the fast rate scales
like Lγ with γ ∈ (0, 2), the condensed phase consists of a diverging number of independent,
exponentially distributed clusters on the scale CL ∝ √

θL (13) as shown in Theorem 2. For
γ > 2 this scale CL � L would exceed the scale of the total mass in the system N = ρL ,
and the condensate consists only of a single cluster site (Theorem 3).

Our main result Theorem 2 relies on the representation (25) of the canonical partition

function, where νL
	L (ρ)

[∑
x∈� ηx = N

]
is the probability of a typical event. For γ < 2

each term in the sum
∑

x∈� ηx is asymptotically negligible so that the Lindeberg condition
is fulfilled and the local limit theorem implies that the above probability is proportional to
the inverse standard deviation of the sum. For γ ≥ 2 cluster sites are of size O(N ) and make
a non-vanishing contribution to the sum, so this argument no longer applies. For γ > 2 we
can use elementary estimates to see that asymptotically there is only a single cluster site
(Theorem 3). For the boundary case γ = 2 the condensed phase consists of several clusters
of macroscopic size O(N ) which can be confirmed by simulations, but a rigorous analysis
is difficult since neither of the above methods applies.

Our results do not depend on the bulk dynamics of the system and hold for general
stationary weights w(n) for n = 0, . . . , A − 1. The fast rate creates an effective (soft)
exclusion interaction for the unstable cluster size A, and it takes on the order of θL time
for a bulk site to turn into a condensed site with ηx ≥ A. Condensed sites are then free to
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grow arbitrarily large since they lose particles only at rate 1, and at stationarity a balance
of currents between bulk and cluster sites is established. The number of condensed clusters
(and thus their stationary size) clearly depends on θL , the slower θL grows with L the easier
it is to create a new condensed site. The balance of currents depends on the density ρ, as is
discussed in detail in the heuristic Sect. 2.2. Note that condensation in this model is driven
by particles being expelled from the bulk filled beyond its capacity ρc, rather than particles
attracting each other as previously studied in ZRPs with decreasing jump rates [1–5].

It is also not crucial that fast rates occur only for a single occupation number, and our
analysis generalizes directly tomore occupation numberswith a resulting effective scale given
by the inverse product of those rates in analogy to (5).More precisely, if we consider diverging
rates θ

(1)
L , . . . , θ

(k)
L for occupation numbers A1 < . . . < Ak then the stationary weights

wL(n) of condensed clusters with n ≥ Ak scale like
(∏k

i=1 θ
(i)
L

)−1. The same heuristic as
above for condensation applies and our rigorous results can be generalized directly, albeit
with significantly more complicated notation. In a well-established mapping [40], where
occupation numbers in the ZRP describe distances between particles in an exclusion model,
the diverging rates can be interpreted as a finite-range interventionmechanism: If the distance
between particles in the exclusion model gets large (≥ A1) the distance decreases again with
a high rate. If in spite of intervention by rare fluctuation the distance gets too large (>Ak)
then the mechanism now longer applies (“the next particle is out of sight”). Condensation in
the ZRP then corresponds to large separations between particles in the exclusion model.

On the other hand, the structure of the condensed phase depends rather strongly on the
jump rates for occupation numbers above A (or Ak), and here a systematic understanding is
still lacking and a very interesting open question resulting from this work. For example, in
[30, Section 5], a zero-range process with rates of the form

gL(n) =

⎧
⎪⎨

⎪⎩

1 if n = 1, . . . , A − 1 ,

θL if n = A ,

n/(n − 1) if n > A ,

(32)

has been considered, which leads to stationary weights with wL(n) = 1
θLn

for n ≥ A such
that their size-biased version nwL(n) is uniform. This system is then in a general class of
models that exhibits macroscopic clusters with Poisson-Dirichlet statistics in the scaling
θL/L → � ≥ 0 (see [30] for details), whereas in the present model we would see iid
clusters on the scale O(

√
L). Thus, the rather innocent change in the jump rates (we still

have gL(n) → 1 for n → ∞) leads to a strong change in the statistics of the condensed
phase. In terms of the birth-death heuristics for cluster sites (cf. Sect. 2.2) this is even counter-
intuitive, since in a ZRPwith rates (32) cluster sites lose particleswith rates gL(n) = n

n−1 > 1
but still grow to a larger macroscopic scale. This is the result of an overshoot effect in the
stationary current of the system for supercritical densities as is illustrated in Fig. 5, so that
the rate of incoming particles into cluster sites is also increased. This overshoot is rather
common and has been observed in many other condensing zero-range models [33, 39, 41]. In
the above system, this leads indeed to Poisson-Dirichlet statistics for the cluster sites which
is consistent with an asymptotic Beta distribution for the empirical measure of cluster sites
(see [28] for details).

In general, relations (20) and (21) hold for any interacting particle system with stationary
product measures. They constitute a microscopic version of a stick-breaking process for
residual allocation models (see e.g. [42] and references therein), which have so far mostly
been used in statistics and population genetics [28]. Together with the general representation
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(25), this is a promising starting point to establish a systematic understanding of the structure
of the condensed phase in condensing particle systems with stationary product measures.
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