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Abstract
Biomolecules, such as proteins and nucleic acids, can phase separate in the cytoplasm of cells to
form biomolecular condensates. Such condensates are often liquid-like droplets that can wet
biological surfaces such as membranes. Many molecules that participate in phase separation can
also reversibly bind to membrane surfaces. When a droplet wets a surface, molecules can diffuse
inside and outside of the droplet or in the bound state on the surface. How the interplay between
surface binding, diffusion in surface and bulk affects the wetting kinetics is not well understood.
Here, we derive the governing equations using non-equilibrium thermodynamics by relating the
thermodynamic fluxes and forces at the surface coupled to the bulk. We study the spreading
dynamics in the presence of surface binding and find that binding speeds up wetting by nucleating
a droplet inside the surface. Our results suggest that the wetting dynamics of droplets can be
regulated by two-dimensional surface droplets in the surface-bound layer through changing the
binding affinity to the surfaces. These findings are relevant both to engineering life-like systems
with condensates and vesicles, and biomolecular condensates in living cells.

1. Introduction

Living cells organize their chemical reactions in space by forming various compartments. These
compartments provide different chemical environments for distinct biochemical processes. Some
compartments are bounded by a membrane surface composed of lipids and proteins. Examples are the
nucleus [1], endoplasmic reticulum, golgi apparatus, mitochondria [2], plastids, lysosomes [3] and
endosomes. However, many compartments in cells have no membrane as boundaries. Examples include the
nucleolus [4], centrosomes [5], Cajal bodies [6], P granules [7, 8], and stress granules [9, 10]. These
membrane-less organelles, termed biomolecular condensates, often behave as liquid-like droplets formed in
a process similar to liquid–liquid phase separation [4, 7, 8].

Biomolecular condensates can attach to biological surfaces such as membranes. This process is referred to
as wetting. Examples are P granules wetting on the surface of the nucleus [7], or TIS granules wetting the
endoplasmic reticulum [11]. Furthermore, many biological molecules that phase separate can also bind to
biological surfaces, leading to a two-dimensional molecular layer on the surface. The molecules in such
surface layers can give rise to rich spatio-temporal patterns. For example, the PAR proteins bind and unbind
to the surface periodically, leading to asymmetrical localization during the asymmetric cell division [12, 13].
The Escherichia-coliMinCDE system is another example of pattern formation in the surface layer of bound
molecule layer [14]. Molecules bound to surfaces can also nucleate the formation of biomolecular
condensates in the bulk. An example is Sec bodies induced by amino-acid starvation in Drosophila cells
where small condensate nuclei form at the endoplasmic reticulum’s exit sites (ERESs) [15].
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The relevance of surface binding and clustering for surface phase transitions such as surface phase
separation and prewetting was studied at thermodynamic equilibrium [16–18]. A key finding is that the
prewetting transition can occur far below the equilibrium concentration and is accessible for a larger range of
thermodynamic parameters as compared to the case without surface binding. Zhao et al [16] also showed
that the interplay between surface-bound molecules and free diffusive molecules in the bulk can also lead to
multiple pre-wetted states. Interestingly, binding also shifts the wetting transition line and affects the contact
angle. These phenomena rely on surface binding, effectively modifying the properties of the surface for
prewetting and wetting. The idea of modifying surface properties to affect wetting was also explored in
systems undergoing reactive [19, 20] or adaptive wetting [21].

The droplet dynamics of wetting have been described using a fluid dynamical model based on viscous
dissipation and a transition state model describing the contact line motion as adsorption and desorption
kinetics [22, 23]. The dynamics toward a completely wetted state are governed by Tanner’s law [23, 24],
where the contact angle exhibits a power-law relaxation in time t toward thermodynamic equilibrium,
θ ∝ t−3/10. This law implies very slow spreading dynamics of the droplet contact area proportional to t1/5.
Tanner’s law and the dynamics of the contact area require a nm-thick precursor film on which the droplet
spreads [25–28]. The film extends from the droplet further out and grows with the wetting droplet. In
biological systems, such a film of molecular thickness could form via the binding of molecules from the
liquid bulk domains to the adjacent biological surfaces. Despite the significance of wetting and molecular
binding in biological systems [18, 29], the exploration of the dynamics of wetting in conjunction with surface
binding, remains largely unexplored.

To bridge this gap, we have derived the governing dynamic equations of a bulk droplet wetting a surface
where droplet molecules can bind. To this end, we use irreversible thermodynamics. Moreover, we developed
a two-dimensional numerical solver to explore the effects of surface binding on the dynamics of wetting. We
show that surface binding speeds up the dynamics of droplet spreading by orders in magnitude depending on
the binding rate coefficient. Our findings indicate that surface binding can act as a switch to control the
wetting of droplets in living cells.

This paper is structured as follows: In section 2, we derive the model for phase separation in bulk and
surface coupled by surface binding using irreversible thermodynamics. Section 3 is devoted to an application
of the developed dynamic model: We discuss spreading to a completely wetted state and spreading toward a
partially wetted state. Finally, in section 4, we present our conclusions and outline potential future directions
based on our findings.

2. Non-equilibrium thermodynamics of wetting with surface binding

We consider a binary mixture in a three-dimensional domain V that we refer to as the bulk in the following.
The bulk is coupled to a two-dimensional surface S. We describe the system using a canonical ensemble
where temperature T, the size of the volume |V| and surface area |S|, as well as the total particle number N in
bulk and surface are fixed. For simplicity, the bulk is a cubic volume |V|= L3, where L is the side length. The
molecules in the bulk can bind to the lower surface S of the cubic volume, which we refer to as the binding
surface. The remaining non-binding and non-interacting surfaces of the cubic volume are denoted by ∂V;
see figure 1(a) for a sketch. The molecules in the bulk domain V diffuse, bind to, and unbind from the
surface S, leading to a layer of bound molecules. Molecules in this layer can only diffuse on the surface. We
consider an incompressible system in bulk and surface, respectively. Thus, we can describe the wetting
dynamics depicted in figures 1(b) and (c) using bulk volume fraction ϕ(x, t) of the molecules and their area
fraction bound to the surface, ϕs(x∥, t). Here, x= (x,y,z) is the bulk position and x∥ = (x,y) the position in
the surface. The surface is located at z= 0.

2.1. Conservation laws
The dynamics of the bulk volume fraction ϕ and the area fraction ϕs are governed by conservation laws
expressed for surface and bulk:

∂tϕ =−∇ · j , x ∈ V , (1a)

∂tϕs =−∇∥ · js + r , x ∈ S , (1b)

where j and js are the diffusive fluxes in bulk and surface. Moreover, r denotes the binding flux. Particle
conservation relates the binding flux r to the normal component of the diffusive flux j at the surface
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Figure 1. Schematics of wetting dynamics on binding surfaces. (a) A binary mixture in bulk and surface is shown to be coupled by
interactions and surface binding. The bulk mixture can phase separate and give rise to a bulk droplet. Binding builds up a
molecular layer of bound molecules that can phase-separate, leading to a surface droplet. We consider a planar binding surface S
and a cubic bulk domain V. The non-interacting and non-binding surfaces are denoted as ∂V. Wetting of the bulk droplet on the
surface is characterized by the contact angle θ. (b) and (c) Schematic of the spreading dynamics of a bulk droplet towards a
completely wetted or partially wetted thermodynamic equilibrium state.

(derivation see appendix A):

n · j= r
ν

νs
, x ∈ S , (1c)

where ν and νs denote the molecular volume and molecular area, and n denotes the surface normal pointing
outward of the volume domain V ; see figure 1. As molecules cannot bind or interact with the remaining
boundaries ∂V, the flux normal to the surface vanishes:

n · j= 0 , x ∈ ∂V . (1d)

Alternatively, for the ∂V boundaries that are not opposite to the binding surface S, periodic boundaries
could be considered. We also have to impose the conditions at the one-dimensional boundary lines of the
binding surface S, which we denote as ∂S. To conserve volume, periodic boundary conditions could be
imposed or t · js = 0, where t is the normal to the one-dimensional boundary ∂S; see figure 1. The dynamic
equations and boundary conditions above conserve the total particle number N in bulk and in the surface,

N=
|V|
ν

ϕ̄+
|S|
νs

ϕ̄s , (2)

where

ϕ̄(t) = |V|−1

ˆ
V
dVϕ(x, t) (3)

is the average bulk volume fraction and

ϕ̄s (t) = |S|−1

ˆ
S
dSϕs

(
x∥, t

)
(4)

is the average area fraction. Moreover, |V| is the volume of the bulk, and |S| is the surface area of the surface
to which the molecules bind.

The fluxes j, js, and r are driven by the conjugate thermodynamic forces. These relationships are derived
in section 2.4 using irreversible thermodynamics. Since the thermodynamic forces are non-linear in the field
ϕ(x, t) and ϕs(x, t), we employ numerical methods to solve the non-linear dynamic equations.
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2.2. Free energy
The free energy governs interactions among components in bulk and surface. The total Helmholtz free
energy F[ϕ,ϕs] depends on the two independent thermodynamic fields ϕ(x, t) and ϕs(x∥, t) and their spatial
derivatives. It can be decomposed into four parts: the bulk free energy density f(ϕ), the surface free energy
density fs(ϕs), the coupling free energy density between bulk and surface J(ϕ|z=0,ϕs), and free energy costs
for gradients of the bulk volume fraction parallel to the surface:

F [ϕ,ϕs] =

ˆ
V
dV

[
f(ϕ)+

1

2
κ(∇ϕ)2

]
(5)

+

ˆ
S
dS

[
fs (ϕs)+

1

2
κs

(
∇∥ϕs

)2
+ J(ϕs,ϕ|z=0)+

1

2
κ0

(
∇∥ϕ|z=0

)2]
,

where ϕ(x∥, t)|z=0 = ϕ(x,y,z, t)|z=0 is the bulk volume fraction at the surface, and dV= dxdydz and
dS= dxdy are the volume and surface elements for the considered cubic system. The free energy costs due to
gradients in volume fraction in bulk and at the surface are characterized by the coefficients κ, κ0,
respectively, while in the bound layer, the correspondingly parameter is κs. Moreover,∇∥ = (∂x,∂y) denotes
the gradient vector in the x–y surface plane.

Before we derive the diffusive fluxes j and js and the binding flux r using irreversible thermodynamics in
section (2.4), we determine the conditions for thermodynamic equilibrium as a reference in the next section.

2.3. Thermodynamic equilibrium
At thermodynamic equilibrium and for a T-V-N ensemble, the total Helmholtz free energy F is minimal
with the binding constraint of the total molecule number N (equation (2)) being conserved:

0= δ

(
F [ϕ,ϕs]−λ

[ˆ
V
dVϕ/ν+

ˆ
S
dSϕs/νs−N

])
, (6)

where δ denotes a variation and λ is the Lagrange multiplier fixing N. Using equation (5), the variation of the
total Helmholtz free energy is given as:

δF=

ˆ
V
dV
(
f ′ (ϕ)−κ∇2ϕ

)
δϕ

+

ˆ
S
dS

[(
f ′s (ϕs)−κs∇2

∥ϕs +
∂J

∂ϕs

)
δϕs +

(
∂J

∂ϕ|z=0
−κ0∇2

∥ϕ|z=0 + n ·κ (∇ϕ) |z=0

)
δϕ|z=0

]
+

ˆ
∂V

dS (n ·κ (∇ϕ))δϕ|∂V +
ˆ
∂S
dl
(
t ·κs∇∥ϕs

)
δϕs , (7)

where ∂S is the one-dimensional boundary of the surface S and t is the normal vector to this boundary.
We identify five thermodynamic forces related to deviations of the independent fields ϕ and ϕs in the

respective spatial domains. Following equation (7), we define the exchange chemical potentials for the bulk,
µ, exchange chemical potentials for the binding to the surface, µs, and the chemical potential for the surface
of the bulk boundary, µ0:

µ = ν
δF

δϕ
= ν

(
f ′ (ϕ)−κ∇2ϕ

)
(8a)

µs = νs
δF

δϕs
= νs

(
f ′s (ϕs)−κs∇2

∥ϕs +
∂J

∂ϕs

)
, (8b)

µ0 = νs
δF

δϕ|z=0
= νs

(
∂J

∂ϕ|z=0
−κ0∇2

∥ϕ|z=0 + n ·κ (∇ϕ) |z=0

)
, (8c)

where the prime denotes a derivative, e.g. f ′(ϕ) = df/dϕ. The bulk chemical potential µ is related to
variations of the volume fraction in the bulk, δϕ, the surface chemical potential µs to variations of the area
fraction of bound molecules, δϕs, and µ0 to variations of the bulk volume fraction at z= 0 at the binding
surface S, δϕ|z=0. Similarly, n ·κ (∇ϕ) |z=0 is the thermodynamic force associated with deviations of bulk
volume fraction at the non-interacting and non-binding surface ∂V, δϕ|∂V. Finally, t ·κs∇∥ϕs is a
thermodynamic force when perturbing ϕs at the boundary of S, denoted as ∂S. We note that the bulk
chemical potential evaluated at z= 0 is different from the chemical potential for the surface of the bulk
boundary µ0 (µ|z=0 ̸= µ0).

All five thermodynamic forces characterize the work performed when varying one of the concentration
fields in a specific spatial domain. When changing this field away from its equilibrium value, dissipation

4



New J. Phys. 26 (2024) 103025 X Zhao et al

occurs and entropy is produced, which we discuss in detail in the next section on irreversible
thermodynamics 2.4.

The entire system composed of surface and bulk is at thermodynamic equilibrium if condition (6) is
satisfied. This condition implies that the surface and bulk exchange chemical potentials are constant and
equal to the Lagrange multiplier,

λ= µs = µ . (9a)

Moreover,

µ0 = 0 , (9b)

and at the surface S and the other non-binding and non-interacting surfaces ∂V of the volume V, the
following boundary conditions are fulfilled:

κn · (∇ϕ) |∂V = 0 , x ∈ ∂V , (9c)

κs t ·∇∥ϕs = 0 , x ∈ ∂S . (9d)

Note the ∂V boundaries are termed ‘non-interacting’ since the coupling free energy density J vanishes at
such boundaries. They are also called ‘non-binding’ because either the flux normal to ∂V vanishes
(equation (1d)) or periodic conditions are considered at ∂V.

The boundary conditions equations (9b)–(9d) are related to the contact angle θ which is defined in the
limit of a sharp interface [30]. In this limit, the width of the interface profile ℓ is short compared to the size of
the droplet. Local equilibrium implies that the volume fractions at the interface in the molecule-rich (I) and
poor (II) phase take the equilibrium values ϕI and ϕII, respectively. In the limit of a sharp interface, the
gradient of the volume fraction is aligned with the normal to the interface, and we can write
cos(θ) = (n ·∇ϕ)ℓ/(ϕI−ϕII), with the interface width ℓ. The decay of ϕ around the interface is
characterized by the length scale w=

√
κν/((χ− 2)kbT) [31] and we approximate the interface width as

ℓ= 3w, such that it is consistent with the law of Young–Dupré. Using equation (9b), we get a relationship
between the contact angle θ and the coupling free energy J:

cos(θ) =− ℓ

κ(ϕI−ϕII)

∂J

∂ϕ
. (10)

Accordingly, J= 0 corresponds to a contact angle of π/2, in accordance with the law of Young–Dupré, which
gives cos(θ) = 0 if the surface tensions between the substrate and the molecule-poor or rich phase are
identical [16, 32–34]. Thus, the bulk droplet makes a contact angle π/2 at the non-interacting and
non-binding surface ∂V (equation (9c)). Analogously, inside the surface, the boundary condition (9d)
implies that surface droplets have a zero contact angle at the surface boundary ∂S.

If the exchange chemical potentials between bulk and surface are not balanced, and/or one of the
boundary conditions above is not fulfilled (equations (9)), there will be diffusive fluxes in bulk and surface, j
and js, and a non-zero binding flux r. In this case, the system is out of equilibrium. If the system is not
maintained away from equilibrium [31], it relaxes toward thermodynamic equilibrium. During this
relaxation, entropy is produced until thermodynamic equilibrium is established. In the following section, we
will consider the production of entropy to derive the relationships between the generalized fluxes and their
conjugate thermodynamic forces using Onsager linear response.

2.4. Irreversible thermodynamics
In an isothermal system, the rate of change of the system entropy S is proportional to the negative change in
the total Helmholtz free energy, TṠ=−Ḟ [35], where the dot indicates a total time derivative. This change in
total free energy can be expressed in terms of the free energy densities by using equation (5):

TṠ=−
ˆ
V
dV∂t

[
f(ϕ)+

1

2
κ(∇ϕ)2

]
(11)

−
ˆ
S
dS∂t

[
fs (ϕs)+

1

2
κs

(
∇∥ϕs

)2
+ J(ϕs,ϕ|z=0)+

1

2
κ0

(
∇∥ϕ|z=0

)2]
−
ˆ
∂V

dSn · jr1−
ˆ
∂S
dl t · jr2 ,

5
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where the non-dissipative free energy fluxes through the boundaries of bulk and surface are jr1 = jµ/ν and
jr2 = jsµs/νs, respectively.

The entropy production rate can be rewritten using the conservation laws and the boundary conditions
(equations (1)) together with the chemical potentials defined in equations (8):

TṠ=−
ˆ
V
dV (∇µ · j/ν) (12)

−
ˆ
S
dS
[
∇∥µs · js/νs +(µs−µ|z=0) r/νs

]
−
ˆ
S
dS [µ0 ∂tϕ|z=0/νs]

−
ˆ
∂V

dS [(n ·κ (∇ϕ))∂tϕ|∂V]−
ˆ
∂S
dl
(
t ·κs∇∥ϕs

)
∂tϕs−

ˆ
∂S
dl
(
t ·κ0∇∥ϕ|z=0

)
∂tϕ|z=0 .

Using irreversible thermodynamics [36, 37], we identify the following pairs of conjugate thermodynamic
fluxes and forces:

j←→−∇µ , x ∈ V , (13a)

js←→−∇∥µs , x ∈ S , (13b)

r←→−(µs−µ|z=0) , x ∈ S , (13c)

∂tϕ|z=0←→−µ0 , x ∈ S , (13d)

∂tϕ|∂V←→−(n ·κ∇ϕ) , x ∈ ∂V , (13e)

∂tϕs←→−
(
t ·κs∇∥ϕs

)
, x ∈ ∂S . (13f )

Here, the quantities in the left column (e.g. j, js, r, ∂tϕ|z=0) represent thermodynamic fluxes, whereas
those in the right column (e.g.−∇µ,−∇∥µs,−(µs−µ|z=0),−µ0) denote the corresponding
thermodynamic forces, as introduced in section 2.3. The fluxes in the bulk and surface, j and js, are driven by
the respective chemical potential gradients in bulk and surface,∇µ and∇µs (equations (13a) and (13b)).
The binding rate r results from the chemical potential difference between the surface and bulk chemical
potential at to the surface, (µs−µ|z=0) (equation (13c)). Similarly, changes in the bulk volume at the surface,
∂tϕ|z=0, arise due to a mismatch of the chemical potential contributions related to the coupling free energy,
∂J/∂ϕ|z=0, and the respective gradient free energy contributions characterized by the parameters κ0 and κ.
At the non-interacting and non-binding surfaces ∂V, the dynamics relaxes toward a neutral boundary with
n ·κ∇ϕ = 0. Similarly, at the line boundary of the binding surface, ∂S, the surface-bound fraction relaxes to
t ·κs∇∥ϕs = 0.

To linear order, we obtain the following relationships between thermodynamic fluxes and forces:

j=−Λ∇µ , x ∈ V , (14a)

js =−Λs∇∥µs , x ∈ S , (14b)

r=−Λr (µs−µ|z=0) −Λrκµ0 , x ∈ S , (14c)

∂tϕ|z=0 =−Λrκ (µs−µ|z=0)−Λκµ0 , x ∈ S , (14d)

∂tϕ|∂V =−Λκ (n ·κ∇ϕ) , x ∈ ∂V , (14e)

∂tϕs =−Λκs

(
t ·κs∇∥ϕs

)
, x ∈ ∂S . (14f )

All the fluxes above ensure that the entropy of the system increases when the system approaches
thermodynamic equilibrium. In other words, linear relationship above are consistent with the second law of
thermodynamics. Here, Λ> 0 and Λα > 0 (α= r, rκ,κ,κs) denote positive kinetic coefficients,
i.e. mobilities or rate coefficients. Specifically, Λ and Λs are the diffusive Onsager mobilities for bulk and
surface, and Λr is the Onsager coefficient for surface binding. Moreover, Λκ and Λκs are Onsager coefficients
that govern the relaxation time toward the equilibrium boundary conditions (9b)–(9d). Due to Onsager’s
reciprocal relationship and when considering linear irreversible thermodynamics, there is only one Onsager
cross-coupling denoted as Λrκ.

2.5. Dynamic equations
In summary, full dynamic equations for the bulk V and the binding surfaces S are:

∂tϕ =∇· (Λ∇µ) , x ∈ V , (15a)

∂tϕs =∇∥ ·
(
Λs∇∥µs

)
+ r , x ∈ S , (15b)

6
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with binding flux given as

r=−Λr (µs−µ|z=0) −Λrκµ0 . (15c)

The chemical potentials depend on the two fields ϕ(x, t) and ϕs(x∥, t) (and gradients thereof) and are given
in equations (8). Equations (15a) and (15b) are partial differential equations of 4th order requiring two
conditions at each boundary domain, i.e. at the binding surface S and the non-binding and non-interacting
∂V, respectively, and at ∂S:

∂tϕ|z=0 =−Λrκ (µs−µ|z=0)−Λκµ0 , x ∈ S , (15d)

−n · (Λ∇µ) = r
ν

νs
, x ∈ S , (15e)

∂tϕ|∂V =−Λκ (n ·κ∇ϕ) , x ∈ ∂V , (15f )

−n · (Λ∇µ) = 0 , x ∈ ∂V , (15g)

∂tϕs =−Λκs

(
t ·κs∇∥ϕs

)
, x ∈ ∂S , (15h)

with the second boundary condition at ∂S either being periodic or t ·∇µs = 0. The total number of
molecules N is conserved during the binding dynamics between the bulk domain V and S which is ensured
by the boundary conditions (15e). Please note that the right hand sides of equations (15d), (15f ) and (15h)
are not sink or source terms; they describe the relaxation toward equilibrium and cause the accumulation of
molecules at the respective domain boundary.

At binding equilibrium µs = µ|z=0 and when decoupling the surface and bulk components (i.e. Λrκ = 0
and χ0s = 0), the equations above simplify to the classical Cahn–Hilliard equation (equation (15a)) with
dynamic boundary conditions (equations (15d) and (15g)), as described in [38–40].

The bulk chemical potential in bulk µ and the surface chemical potential µs contain the derivatives of the
bulk free energy densities f ′(ϕ) and surface free energy densities f ′s (ϕs) (equations (8)), respectively, which
correspond (except the multiplication with the molecular volume or molecular area) to the chemical
potentials in spatially homogeneous systems. Such homogeneous chemical potentials can in general be
expressed as follows:

f ′ (ϕ) ν = µ0 + kBT ln

(
γ (ϕ)

ϕ1/n

1−ϕ

)
, (16a)

f ′s (ϕs) νs = µs,0 + kBT ln

(
γs (ϕs)

ϕ
1/ns
s

1−ϕs

)
, (16b)

where µ0 and µs,0 are reference chemical potentials, and kB denotes the Boltzmann constant. Moreover, γ(ϕ)
and γs(ϕs) are the volume and area fraction-dependent activity coefficients containing the components’
interactions.

To highlight the role of such activity coefficients, we split up the free energies for bulk and surface,
f(ϕ) = e(ϕ)− smix(ϕ)T and fs(ϕs) = e(ϕs)− smix,s(ϕs)T, into the interaction free energy densities e(ϕ) and
es(ϕs), and the mixing entropy densities, smix =−(kB/ν)[(ϕ/n) lnϕ+(1−ϕ) ln(1−ϕ)] and
smix,s =−(kB/νs)[(ϕs/ns) lnϕs +(1−ϕs) ln(1−ϕs)] [31, 41, 42]. Here, the ratios of molecular volumes and
areas between the molecule and the solvent are abbreviated by n for the bulk and ns for the surface.
Performing a viral expansion of the interaction free energy densities, e= (kBT/ν)[ωϕ +

∑
k=2χ(k)ϕ

k] and
es = (kBT/νs)[ωsϕs +

∑
k=2χs(k)ϕk

s ], the reference chemical potentials are µ0 = kBT(ω+ n−1− 1) and
µs,0 = kBT(ωs + n−1

s − 1). Here, ω and ωs are the bulk and surface internal free energy, and χ(k) and χs(k)
are viral expansion coefficients. Using the viral expansion, the activity coefficients can be expressed as

γ (ϕ) = exp

(∑
k=2

kχ(k)ϕk−1

)
, (17)

γs (ϕs) = exp

(∑
k=2

kχs (k)ϕ
k−1
s

)
, (18)

confirming that the activity coefficients depend exclusively on the components’ interactions when
introduced via equations (16).

We have seen that the contributions ϕ1/n/(1−ϕ) and ϕ
1/ns
s /(1−ϕs) in equations (16) stem from the

respective mixing entropy. These contributions imply a scaling of the diffusive Onsager mobilities Λ and Λs

with volume and area fractions, respectively. This scaling can be understood when considering the dilute
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limits in bulk and surface (ϕ→ 0, ϕs→ 0, and ϕ→ 1, ϕs→ 1). In these limits, the activity coefficients
(defined via equations (16)) are γ= 1 and γs = 1, and the diffusion coefficients in bulk and surface,
D= kBTΛf ′ ′ and Ds = kBTΛsf ′ ′s , have to be constants, i.e. independent of volume and area fractions. Thus,
the mixing entropy implies the following scaling for the diffusive mobilities:

Λ = Λ0ϕ(1−ϕ) , (19a)

Λs = Λs,0ϕs (1−ϕs) , (19b)

where Λ0 and Λs,0 are mobility coefficients that can depend on volume and area fraction.
To tailor our model for phase separation in bulk and surface coupled via binding to a specific system, the

activity coefficients for bulk γ(ϕ) and surface γs(ϕs), have to be chosen together with the coupling free
energy density J(ϕ|z=0,ϕs). In section 3.1, we discuss a choice of such free energy densities to study the effects
of surface binding on droplet spreading.

3. Wetting dynamics with surface binding

In this section, we investigate how the dynamics of the spreading of a droplet in the bulk is affected by surface
binding and the possibility of phase separation in the surface. In this section, we consider a two-dimensional
system with a one-dimensional boundary; see appendix E and figure 9 for the results considering a
three-dimensional system with axial symmetry. using 2D numerical simulations. For such studies, we
set for simplicity Λrκ = 0 and Λκ = Λκs =∞, implying that the equilibrium boundary conditions
equations (9b)–(9d) hold during the spreading dynamics. Moreover, we consider the mobility coefficients,
Λ0 and Λs,0, in equation (19a) to be constants, and the free energy cost κ0 = 0, for simplicity.

3.1. Interaction free energies
To study spreading, we consider Flory-Huggins free energy densities for bulk and surface,

f(ϕ) =
kBT

ν

[
1

n
ϕ lnϕ +(1−ϕ) ln(1−ϕ)−χϕ2 +ωϕ

]
, (20a)

fs (ϕs) =
kBT

νs

[
1

ns
ϕs lnϕs +(1−ϕs) ln(1−ϕs)−χsϕ

2
s +ωsϕs

]
. (20b)

Using equation (16), the two free energies correspond to the activity coefficients, respectively:

γ (ϕ) = exp(−2χϕ) , (20c)

γs (ϕs) = exp(−2χsϕs) . (20d)

In other words, we consider a mean-field free energy up to the second order, with the coefficients in the viral
expansion χ(2) =−χ and χs(2) =−χs.

Interactions between the surface and the bulk are captured by the coupling free energy density [16]:

J(ϕ|z=0,ϕs) =
kBT

νs

[
ω0ϕ|z=0 +χ00ϕ|2z=0 +χ0sϕ|z=0ϕs

]
, (20e)

which encompasses all relevant terms up to the second order. Note that a term proportional to ϕ2
s already

exists in surface free energy density fs (equation (20b)). In equation (20e), the parameter ω0 represents the
internal free energy of a bulk molecule at the surface. When the surface is attractive for bulk molecules,
ω0 < 0. The coefficient χ00 quantifies the interactions among bulk molecules at the surface leading to
enrichment (χ00 < 0) or depletion (χ00 > 0) at the surface. For simplicity, we have set χ00 to zero for the
studies shown in this section. Furthermore, χ0s describes the interactions between bound and unbound
molecules at the surface. For all our studies, we have assigned a negative value to χ0s. This choice corresponds
to the case that molecules, bound or unbound, attract each other. For a comprehensive thermodynamic
study of all three parameters, we refer the reader to [16].

3.2. Non-dimensionallization of dynamic equations and dimensionless parameters
To solve the dynamics equations, we write them in a dimension-less form. We obtain non-dimensional
dynamic equations by rescaling length and time scales as follows:

x→ xν1/3 , (21a)

t→ tν2/3/(Λ0kBT) , (21b)

8



New J. Phys. 26 (2024) 103025 X Zhao et al

Ṽ=
{
x/ν1/3 |x ∈ V

}
, (21c)

S̃=
{
x∥/ν

1/3 |x∥ ∈ S
}
, (21d)

where Ṽ and S̃ are the rescaled bulk and surface. This choice leads to the following non-dimensional
parameters:

Ds =
Λs

Λ
, (22a)

kr = Λr
ν2/3

Λ0
. (22b)

Moreover, we introduce the following rescaled quantities: the rescaled bulk and surface free energy
densities, f̃(ϕ) = (ν/kBT)f(ϕ) and f̃s(ϕs) = (ν/kBT)fs(ϕs), the rescaled coupling free energy density
J̃(ϕ|z=0,ϕs) = (νs/kBT)J(ϕs,ϕ|z=0), and the rescaled coefficients characterizing the free energy costs for
gradients, κ̃= κν1/3/(kBT), and κ̃s = (νs/(kBTν2/3)κs. The dimensionless equations governing the kinetics
of the system are thus given as:

∂tϕ =∇·
[
ϕ (1−ϕ)

(̃
f ′ ′∇ϕ− κ̃∇3ϕ

)]
, x ∈ Ṽ , (23a)

∂tϕs =∇∥ ·
[
Dsϕs (1−ϕs)

(̃
f ′ ′s ∇∥ϕs +∇∥

∂ J̃

∂ϕs
− κ̃s∇3

∥ϕs

)]
+ r̃(ϕs,ϕ|z=0) , x ∈ S̃ . (23b)

The dimensionless binding flux reads:

r̃=−kr
(

µs

kBT
− µ|z=0

kBT

)
, (23c)

with the chemical potential in bulk and surface,

µs

kBT
=

∂ f̃s
∂ϕs

+
∂ J̃

∂ϕs
− κ̃s∇2

∥ϕs ,
µ

kBT
=

∂ f̃

∂ϕ
− κ̃∇2ϕ . (23d)

The boundary conditions in a dimensionless form are:

0=
∂ J̃

∂ϕ|0
+

νs
ν2/3

κ̃n · (∇ϕ) |0 , x ∈ S̃ , (23e)

0= κ̃n ·∇ϕ , x ∈ ∂Ṽ , (23f )

0= κ̃s t ·∇∥ϕs , x ∈ ∂S̃, (23g)

−ν2/3

νs
r̃= ϕ (1−ϕ) n ·∇ µ

kBT
, x ∈ S̃ , (23h)

0= ϕ (1−ϕ) n ·∇ µ

kBT
, x ∈ ∂Ṽ . (23i)

To numerically solve the dynamic equations (23), we develop a numerical solver for the corresponding
systems of partial differential equations. Specifically, we employ the finite difference method for spatial
discretization and the Crank–Nicolson scheme combined with the energy quadratization method [43–45] to
discretize time.

3.3. Spreading kinetics towards complete wetting
We use our dynamic theory of wetting to investigate the influence of surface binding on the kinetics toward a
completely wetted state. To this end, the system is initialized with a droplet near the surface where no
molecules are initially bound (figures 1(b) and (c)). This initial droplet has local volume fractions
corresponding to the equilibrium phase diagram. Such phase diagrams are, in general, determined by the
interaction parameters χ, χs, and χ0s. For simplicity, we choose equal molecular volumes and areas between
molecule and solvent in bulk and surface, i.e. n= 1 and ns = 1. We also fix χs = χ = 2.5 and χ0s =−0.5, and
Nν/|V|= 0.17 for the forthcoming studies ensuring that droplets are thermodynamically stable in bulk and
surface; see appendix B for details. Moreover, refer to table 1 for a summary of the chosen parameter values
for our wetting studies. For the sake of simplicity, the surface internal free energy ωs has been assigned a value
of zero. To describe repulsive interactions between the surface and bulk molecules, we choose ω0 = 0.17 in
equation (20e), and we choose the interaction parameter of bulk molecules at the surface as χ00 = 0.

9
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To illustrate the qualitative behavior of the contact angle θ, we consider the wetting boundary condition
equation (10), which is valid when the triple line is at local equilibrium. For the parameter choices discussed
above, this condition gives cos(θ)∝−∂J/∂ϕ =−(kBT/νs)[ω0 +χ0sϕs]. We see that the contact angle varies
with the area fraction of bound molecules. For our choices ω0 > 0 (repulsive) and χ0s < 0 (attractive),
cos(θ)(ϕs = 0)< 0, corresponding to partial wetting with π/2< θ < π (for ω0 = 0.17), or the case of
dewetting for even larger values of ω0. When more molecules are bound to the surface (ϕs > 0), cos(θ)(ϕs)
increases linearly with a steeper slope for larger values of the surface-bulk coupling, |χ0s|. For large enough
values of |χ0s| and ϕs, the contact angle θ= 0 corresponding to complete wetting. In summary, when more
molecules are bound to the surface, the considered system tends to cross from partial wetting to complete
wetting. As we initialize the system without molecules bound to the surface, we expect such a trend in
wetting behavior upon surface binding.

For simplicity, we consider a two-dimensional domain for the bulk with a one-dimensional surface; see
green line figure 2(a). In addition to the boundary conditions given in equations (23), periodic boundary
conditions are applied along the left and right boundaries at ∂S and ∂V. An exception is the ∂V boundary
opposite to the binding surface S where we apply no flux boundaries (non-binding), as stated in
equation (1d).

3.3.1. Surface binding nucleates a surface droplet that accelerates spreading
After initializing the droplet adjacent to the surface, it develops a small bridge of molecule-rich phase with
the surface; figure 2(a). As time progresses, the droplet slowly wets on the surface; figure 2(b). The dynamics
is slow because the surface without binding is weakly repulsive (ω0 > 0). In the absence of binding, the
droplet approaches a partially wetted state with a contact angle θ > π/2. Note that without binding (ϕs = 0),
ω0 = 0 and χ00 = 0 in equation (20e) leads to J= 0 and a contact angle of θ = π/2 (equation (10)). However,
molecules additionally start accumulating in the surface by binding. This accumulation is more pronounced
right underneath the bulk droplet (figure 8(a) in appendix C). Once this local volume fraction exceeds the
saturation volume fraction, a droplet gets nucleated inside the surface (figure 2(c)). This surface droplet
grows quickly due to the influx of droplet material from the bulk droplet right above, indicated by the red
arrow in the figure. As a result, the interface in the surface and the bulk coincide and start moving together
(figure 2(d)). After that, the bulk droplet spreads quickly until it completely wets the surface (figures 2(e) and
(f)). Concomitantly, the area fraction far away from the surface droplet reaches the equilibrium value from
below (figure 8(b) in appendix C).

To characterize how the bulk droplet affects the lower dimensional surface droplet that had been
nucleated via binding, we determine the contact area of the bulk droplet A on the surface and the area of the
surface droplet As with time. As illustrated in figures 2(a)–(f), the area of the bulk droplet A first grows
slowly. Suddenly, its growth speeds up quickly, leading to a completely wetted surface (figure 3(a)). The time
at which the growth of the bulk droplet speeds up coincides with the time τn when a surface droplet is
nucleated underneath the bulk droplet. Moreover, the time of fast spreading of the bulk droplet corresponds
to the growth time τg of the surface droplet underneath, i.e. the time it takes for the surface droplet area As to
grow from zero to full surface coverage.

Increasing the binding rate kr to the surface speeds up both, nucleation and growth of surface droplets.
This is evident by the shift of A and As to smaller times (figures 3(b) and (c)). The nucleation time τn and the
growth time τg decays algebraically for smaller binding rate kr, while both saturate for very large values of kr.
The saturation of both processes results from diffusion in bulk and membrane becoming rate limiting.

3.3.2. Incompatible phase equilibrium in bulk and surface
In our studies, the surface droplet grows until the surface is homogeneously covered by bound molecules.
The absence of phase separation in the surface results from phase equilibria in bulk and surface being in
general incompatible, except for very special parameter choices. Incompatible means that the condition for
phase equilibrium in bulk (µI = µII) and surface (µI

s = µII
s ) cannot be satisfied concomitantly.

To understand such incompatible equilibria for our coupled bulk-surface system, we first take a closer
look at the free energy densities in bulk and surface, f and fs; see figure 4(a) for a schematic sketch of f. For
equal molecular volumes of molecule and solvent in the bulk (n= 1), the free energy density in the bulk f is a
symmetric double-well potential (equation (20a)), where ϕI and ϕII are the equilibrium volume fractions in
the molecule-rich and poor phase. In this case, the slope of the Maxwell construction corresponds to the bulk
chemical potential µ= 0. Though the surface free energy density fs is also symmetric for ns = 1
(equation (20b)), the total free energy density of the surface, fs + J, is not symmetric when the interaction
parameters ω0, χ00 and χ0s are non-zero in equation (20e). Since the coupling free energy density J(ϕ|I/IIz=0,ϕs)
depends on the bulk phases right above, the total free energy density of the surface ( fs + J) is different below
the molecule-rich or molecule-poor phase, respectively (figures 4(b) and (c)). Since the coupling χ0s < 0 is
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Figure 2. Bulk droplet spreading on a binding surface toward complete wetting. (a) Initially, the bulk droplet forms a bridge, and
(b) slowly spreads on the surface (green line). (c) and (d) After nucleation of a surface droplet underneath the bulk droplet, (e)
both droplet interfaces move synchronously, quickly covering the surface and finally leading to a completely wetted state (f).
θ = 0o at equilibrium. See appendix B for details. (g) and (h) show the surface-bound area fraction ϕs and boundary volume
fraction of ϕ at z= 0, i.e. ϕ|z=0, of the snapshots in plot (a)–(f). Parameters: kr = 10−4, χ0s =−0.5, t0 = ν2/3/(Λ0kBT), more
see table 1. For all the numerical simulations in this study, we use∆t= 10−1 and∆x= 1/128 as the temporal and spatial mesh
size.

attractive, the Maxwell construction for phase coexistence in the surface would require that the surface
chemical potential adjacent to the molecule-poor bulk phase, µII

s < 0. Since ϕ|Iz=0 > ϕ|IIz=0, the Maxwell’s
slope µI

s < 0 is even more negative. As thermodynamic equilibrium also requires that binding equilibrium
is satisfied (equation (9)), phase coexistence in bulk and surface is only possible if µI

s = µI = 0 and
µII
s = µII = 0. These conditions cannot be satisfied in general; the only exception is when all three interaction

parameters ω0, χ00 and χ0s vanish. If not, a bulk droplet can only coexist with a surface homogeneously
covered by bound molecules. The equilibrium surface area fraction corresponds to the global minimum in
the total surface free energy densities ( fs + J) which is the surface molecule-rich phase in figure 4(c)
(indicated by blue line).

3.3.3. Scaling of the nucleation time τn
The droplet phase is nucleated in the surface directly underneath the center position of the bulk droplet,
x∥|center. Due to the mirror symmetry at this center position, lateral gradients have to vanish at the center in
the bulk and surface (∇∥ϕs = 0 and∇∥ϕ = 0 at x∥|center). Consequently, the dynamic equation for the area
fraction ϕs at the center positions reads

∂tϕs

∣∣
center

= kr (µ−µs)
∣∣
center

. (24)
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Figure 3. Spreading dynamics toward a completely wetted state is accelerated by surface binding. (a) The contact area of the bulk
droplet A initially increases slowly while speeding up after the nucleation of a surface droplet around t/t0 = 3 · 103, evidenced by
the fast increase of the surface droplet area As. The time once As is non-zero corresponds to the nucleation time τn of a surface
droplet, and τg is the period for it to grow until it covers the full surface. (b) The area of the surface droplet As shows that the
nucleation time τn decreases with increasing rescaled binding rate kr. (c) The acceleration in the growth of the bulk droplet area
shifts toward earlier times for increasing values of kr. (d) The growth period τg and the nucleation time τn both scale proportional
to k−1

r for increasing rescaled binding rate kr. For large values, diffusion in bulk and surface becomes rate-limiting, leading to a
plateau. Parameters: t0 = ν2/3/(Λ0kBT), more see table 1.

Figure 4. Incompatible phase equilibria in bulk and surface (a) The bulk free energy density fs, where the Maxwell construction of
the symmetric double well potential corresponds to a bulk chemical potential µ= 0. (b) The total free energy density of the
surface adjacent to a molecule-poor bulk phase, and (c) adjacent to a molecule-rich bulk phase. The Maxwell construction gives
two different pairs of equilibrium area fractions, ϕI

s and ϕII
s . However, both cases are incompatible with phase equilibrium in the

bulk, (a). In other words, thermodynamic equilibrium is a homogeneous state corresponding to the global minimum in (c).

Nucleation in the surface induced by the bulk droplet corresponds to the scenario where µ > µs

(figures 4(a)–(c)), i.e. molecules bind to the surface and nucleate a surface droplet when the local area
fraction exceeds the equilibrium concentration (appendix B). If bulk diffusion is fast compared to binding
(kr≪ 1 in equation (22)), the bulk volume fractions inside and outside of the droplet are close to their
respective equilibrium value at all times. This corresponds to a spatially constant µ at the moment of
nucleation. This also implies that µs is spatially constant on the surface. Thus, the time to form a nucleus on

12



New J. Phys. 26 (2024) 103025 X Zhao et al

the surface right beneath the center of the bulk droplet scales, τn ∼
(
∂tϕs

∣∣
center

)−1 ≃ k−1
r . This scaling agrees

with the result obtained from numerically solving the dynamics equations (23); see figure 3(d).
For fast binding compared to bulk diffusion (kr≫ 1), nucleation of surface droplets is limited by

diffusion in surface and bulk, while the binding is at equilibrium at all times, µs ≃ µ. Thus, the nucleation
time τn becomes constant and independent of the binding rate kr, which is consistent with the results in
figure 3(d).

3.3.4. Scaling of the growth time τg for complete wetting
Now, we derive the scaling behavior of the growth time τg with the rescaled binding rate kr. To this end, we
first note that in the surface region underneath the droplet, the binding flux is negligible if the surface area
fraction attains a value that correspond to a local chemical potential µI

s = 0. A sizable binding flux is hence
limited to the surface region adjacent to the molecule-poor bulk phase, where we approximate the binding
flux as r= krµII

s . In the following, we denote the position of the interface of the surface droplet by X0. We
note that in the case of complete wetting, the position of the droplet interface coincides with X0 throughout
the late stage of the spreading process (figures 2(d)–(f)). The time evolution of the average area fraction ϕ̄s

(equation (4)) in rescaled units thus reads

dϕ̄s

dt
=−2kr

µII
s

kBT

(
1− X0

Xmax

)
, (25)

where Xmax = L/2. In addition, volume conservation inside the surface implies:
ϕ̄s = 2

(
ϕI
sX0 +ϕII

s (Xmax−X0)
)
/Xmax. Taking the time derivative gives

dϕ̄s

dt
= 2

ϕI
s−ϕII

s

Xmax

dX0

dt
. (26)

The interface speed of the surface droplet, dX0/dt, is

dX0

dt
≃−kr

µII
s

kBT
(Xmax−X0) , (27)

which implies that the growth time scales as τg ∼ k−1
r .

3.4. Spreading kinetics towards partial wetting
Now, we use our theory of wetting to investigate the influence of surface binding on the kinetics towards a
partially wetted state. To this end, the system is initialized similarly as described in section 3.3, i.e. with a
droplet near the surface at which no molecules are initially bound (figures 1(b) and (c)).

3.4.1. Surface binding controls the droplet partial wetting kinetics
To study the effects of binding on the spreading of a bulk droplet toward a partially wetted state, we reduced
the attractive coupling between the bulk and surface, χ0s, relative to the previous study towards complete
wetting. Specifically, we choose χ0s =−0.33. The other parameters and boundary conditions remained the
same as in the earlier study; see table 1.

The early dynamics is similar to spreading towards a completely wetted state (figures 5(a)–(d)): a bridge
of dense phase forms from the bulk droplet, which spreads on the surface towards contact angle θ < π/2.
This is followed by a nucleation of a droplet in the surface which quickly grows due to binding from the bulk
droplet. Due to the still attractive coupling interactive interactions χ00, the contact angle of the bulk droplet
and the surface increases.

The first difference to the case of complete wetting studied in section 3.3 occurs when the interface of the
surface droplet aligns with the interface of the bulk droplet. Owing to the less attractive bulk-surface
interaction, χ0s, the bulk droplet can only partially wet the dense phase of the surface droplet. In fact, for
time scales larger than the meeting time of both interfaces, to, the contact angle θ remains stationary and
finite (figures 5(d)–(f)). For t> τo, the interface of the surface drop overtakes the interface of the bulk
droplet. There is even a negative feedback: As the surface droplet approaches full surface coverage, the bulk
droplet shrink at approximately fixed contact angle. This feedback arises because binding to the surface
lowers the average volume fraction in the bulk. This effect vanishes when the bulk contains much more
molecules than the surface, i.e. for macroscopic systems. However, such effect could be relevant for small
system such as cellular compartments and small reaction containers used in system chemistry.

The area of the bulk droplet A and surface droplet As with time shift enable to quantitatively extract the
overtaking time τo of both interfaces, in addition to the nucleation and growth time, τn and τg (figure 6(a)).
The overtaking time τo corresponds to the intersection of A and As. For t< τn, the bulk droplet spreads
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Figure 5. Bulk droplet spreading on a binding surface towards partial wetting. (a) After bridge formation, and (b) slow spreading
on the surface (green line), (c) a surface droplet is nucleated. (d) and (e) The surface droplet grows and overtakes the interface of
the bulk droplet, which arrests a constant contact angle θ. f)While the surface droplet grows towards a state that completely
covers the surface, the bulk droplet shrinks a bit since the bulk loses molecules that bind to the surface. (g) and (h) show the
surface-bound area fraction ϕs and boundary volume fraction of ϕ at z= 0, i.e. ϕ|z=0, of the snapshots in plot (a)–(f).
Parameters: kr = 10−5, χ0s =−0.33, t0 = ν2/3/(Λ0kBT), more see table 1. For all the numerical simulations in this study, we use
∆t= 10−1 and∆x= L/128 as the temporal and spatial mesh size.

essentially on the dilute phase, while for τn < t< τo, the bulk droplet spreads on a composition of dense and
dilute phase on the surface. Finally, for τo < t< τg, the surface spreads inside the surface while the bulk
droplet increases its contact a bit followed by a decrease to its equilibrium surface area.

Increasing the rescaled binding rate kr shifts the contact area to shorter time scales (figure 6(b)). All three
time scales, the nucleation time τn, the growth time τg and the overtaking time τo decrease algebraically
proportional to κ−1

r (figure 6(c)). For large values of κr , the three time scales are constant. Similar to the case
of complete wetting, the reason is that diffusion in surface and bulk is rate limiting.

The contact angle θ with time shows a non-monotonous decrease toward the equilibrium value
(figure 6(d)). While the contact angle decreases most times, it increases right after nucleation of the surface
droplets. This effect stems from a transient depletion of ϕs underneath the bulk droplet interface. Depletion
arises due to the diffusion of bound molecules toward the nucleated and growing surface droplet. According
to local equilibrium at the triple line (equation (10)) and following the discussion at the beginning of
section 3.3, a local decrease in ϕs underneath the bulk droplet interface increases the contact angle θ. In other
words, this transient depletion due to the nucleation of the surface droplet effectively makes the surface a bit
less attractive.
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Figure 6. Spreading dynamics toward a partially wetted state is accelerated by surface binding. (a) The contact area of the bulk
droplet A initially increases slowly until a surface droplet is nucleated at t/t0 = τn. The interface of the surface droplet takes over
the interface of the bulk droplet at time τo and then quickly covers the full surface with a total growth time τ g . In contrast, the
bulk droplet stops spreading, leading to a constant contact angle θ and a slight shrinkage in drop volume due to the loss of bulk
molecules by binding. (b) The area of the bulk droplet A shows that the spreading dynamics of the bulk droplet are more
accelerated for faster rescaled binding rate kr. (c) The growth period τg, the overtaking time τo and the nucleation time τn scale
proportional to k−1

r for increasing rescaled binding rate kr. For large values in kr, diffusion in bulk and surface becomes
rate-limiting, leading to a plateau of all three quantities. (d) The contact angle θ has an initial decrease prior to the nucleation of a
surface droplet. After its nucleation, there is significantly accelerated relaxation toward the partially wetted equilibrium state.
There is a little hump in the time trace of θ, which arises from the spatial-temporal change of the surface the bulk droplet is
wetting. Parameters: t0 = ν2/3/(Λ0kBT), more see table 1.

3.4.2. Scaling of the growth time τg for partial wetting
To derive the scaling behavior for the growth time under complete wetting conditions, we start by noting the
arguments leading to the time evolution dϕ̄s/dt in equation (26) can be applied here as well (section 3.3.4).
However, the relation between dϕ̄s/dt and the binding flux need to be adjusted. Specifically, the position of
the dense-dilute interface in the surface X0 does not coincide with the droplet interface. We therefore
introduce Xd to indicate the droplet interface position on the surface, where Xd itself is time dependent. The
change of ϕ̄s over time thus reads

dϕ̄s

dt
=−2kr

µII
s

kBT

(
1− Xd (t)

Xmax

)
. (28)

For fast binding kr≫ 1, the time evolution of Xd(t) is limited by diffusion in bulk and can be considered to
be slow compared to the spreading dynamics in the surface. These considerations lead us to the scaling
dX0/dt∼ kr and τg ∼ k−1

r for the growth period.

4. Conclusions

Our research sheds light on a relatively unexplored facet of droplet spreading in the presence of surface
binding. Using irreversible thermodynamics, we obtain the continuum equations for this wetting process
and study the spreading of a droplet on a surface on which the droplet components can bind. A key finding is
that binding controls the spreading dynamics toward a partially and a completely wetted thermodynamic
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equilibrium state. In particular, the spreading time scales with k−1
r , where kr is the binding rate to the surface.

Spreading occurring on the characteristic time k−1
r is a result of our consideration of small systems, i.e. a

droplet spreading on a finite surface. Preliminary studies indicate that the spreading on larger surfaces is
consistent with the expected power law behaviors [22, 23]. However, the verification of such slowly decaying
power laws is difficult to investigate when numerically solving continuum equations as this requires system
sizes and simulation times beyond currently available computational resources. Thus, we focus on the effects
of surface binding on the spreading dynamics in smaller systems. A striking observation of our study is that
binding creates a layer of droplet components on which spreading can be significantly accelerated.
Acceleration is more pronounced if molecules remain attractive to each other after binding to the surface.
This case leads to positive feedback on the wetting dynamics, which is more pronounced when more
molecules are bound.

Our work describes a mechanism that is capable of controlling the wetting dynamics via the binding of
molecules to surfaces. By manipulating the binding rates, we demonstrate control over the nucleation and
growth rates of a droplet on the surface, which gives rise to accelerated wetting dynamics. There are other
mechanisms that control wetting through changes of the surface properties, for example, adaptive wetting
and reactive wetting.

We present a study on the wetting dynamics of a liquid droplet on a solid substrate, focusing on how the
molecule-binding at the substrate surface increases the wettability of the substrate, thereby providing positive
feedback for the wetting process. This situation is typical for systems undergoing reactive wetting [19, 20,
46–50] and adaptive wetting [21, 51, 52]. Reactive and adaptive wetting have been studied in systems where
the substrate becomes either more or less wettable, or experiences alterations such as swelling, shrinking, or
changes in surface chemistry. Our work studies a molecular mechanism of substrate properties effectively
changing via molecular binding. This mechanism is fundamental in biological systems where proteins
specifically bind receptors, altering the surface interactions with other molecules [53–55]. Such surface
modifications are also relevant in non-biological systems, as studied in metallurgy, for example [56, 57].
Thus, our work may be a step towards a more unified description of complex wetting connecting the fields of
reactive and adaptive wetting with biophysical systems composed of surface-binding biomolecules.

Wetting controlled via binding could be relevant for biomolecular condensates wetting
membrane-bound organelles in living cells. For example, by enhancing the binding affinity of
phase-separating proteins (phosphorylation, etc), the wetting propensity of biomolecular condensates and
their spreading speed can be accelerated by nucleating a condensate of bound proteins on the organelle
surface. An exciting layer of complexity emerges because intracellular membranes can vary significantly in
their curvature. While a membrane interaction with a small droplet can always be approximated as a flat
surface, we expect membrane curvature to become more relevant with increasing droplet size. Strikingly,
condensates are expected to wet with a smaller contact angle or even completely wet the organelles if the
condensate components can bind specifically to that organelle. Such a binding-mediated control mechanism
could be crucial in regulating the communication between biomolecular condensates and membrane-bound
organelles through specific feedback loops.

Future theoretical investigations should be concerned with the role of hydrodynamics during the
spreading dynamics with surface binding [58, 59]. An interesting related question is whether the binding
layer is an example of the thin surface film preceding the wetting dynamics, often called precursor film [22,
25–28]. Future research will delve into pattern formation on surfaces in bulk-surface systems driven by
fuel-driven binding cycles [31, 60].
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Appendix A. Derivation of binding flux

In this section, we derive the relationship (equation (1c)) between the surface diffusion flux js and the binding
flux r. Taking the time derivative of the conserved particle number N (equation (2), and dN/dt= 0), we get

0=

ˆ
S
dS

(
∂ϕs

∂t

)
/νs +

ˆ
V
dV

(
∂ϕ

∂t

)
/ν . (A1)

Using the conservation laws (equations (1)) and the divergence theorem,

0=

ˆ
S
dS(r/νs− n · j/ν)−

ˆ
∂V

dSn · j/ν−
ˆ
∂S
dl t · js/νs . (A2)

This condition is fulfilled when equation (1c) is satisfied, together with equation (1d). For ∂S, we consider
periodic boundary conditions.

Appendix B. Initialization of wetting studies and equilibrium contact angle for partial
and complete wetting

Figure 7. Parameter initialization in the numerical simulations. (a) To study the wetting dynamics, a bulk droplet is initialized
with a volume V I and volume fractions in the molecule-rich (I) and molecule-poor (II) phase corresponding to the phase
diagram without binding (ϕs = 0). For all studies, the conserved total volume fraction is Nν/|V|= 0.17, which is indicated by
the vertical dashed line. (b) The wetting dynamics approaches thermodynamic equilibrium with an equilibrium contact angle θ.
This value is determined by the interaction parameter between bulk and surface, χ0s. We consider two cases: relaxation toward a
completely wetted state (χ0s =−0.5) and a partially wetted state (χ0s =−0.33). We note that we calculate the equilibrium values
for ϕs, ϕ with respect to difference interaction parameter strength χ0s using the equilibrium conditions in an ensemble where the
chemical potential µ is fixed (see details in [16]). The contact angle θ is obtained by the law of Young–Dupré at equilibrium.

For all wetting studies, a single bulk droplet is initialized right on top of the surface where no molecules
are initially bound (ϕs(x∥, t= 0) = 0). The volume fractions inside (I) (molecule-rich phase) and outside
(II) (molecule-poor phase) are chosen to be homogeneous at t= 0 and in accordance with the equilibrium
volume fractions in the absence of surface binding, ϕI and ϕII (figure 7(a)). Moreover, at t= 0, we also use
the equilibrium value for bulk droplet volume, VI(t= 0) = (Nν−ϕII)/(ϕI−ϕII). Note that for all studies,
the conserved total volume fraction is Nν/|V|= 0.17. The position of the droplet center is chosen such that
wetting dynamics get initiated by the bridge formation of a molecule-rich phase in the absence of
fluctuations.

At large times, the wetting dynamics reaches the corresponding thermodynamic equilibrium state. In our
work, we studied the dynamics towards to completely wetted state (section 3.3) and a partially wetted state
(section 3.4). For both cases, the used parameters are given in table 1, except the interaction parameter
between bulk and surface, χ0s. The more negative this parameter, the stronger the attraction between bound
molecules and the bulk molecules adjacent to the surface. In other words, decreasing χ0s towards more
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negative values leads to a transition between a partially wetted to a completely wetted equilibrium state
(figure 7(b)). For our studies, we employ χ0s =−0.5 leading to a completely wetted state with a contact angle
θ= 0 and a homogeneous surface area fraction ϕs = 0.9717 at thermodynamic equilibrium. For χ0s =−0.33,
the bulk droplet partially wets the surface. The corresponding equilibrium contact angle θ ≃ π/4 and the
surface area fraction is slightly different underneath the molecule-rich (I) (ϕs = 0.9156) and molecule-poor
bulk phase (II) (ϕs = 0.8769). We note that we calculate the equilibrium values for ϕs with respect to
difference interaction parameter strength χ0s using the equilibrium conditions in an ensemble where the
chemical potential µ is fixed (see details in [16]). The contact angle θ is obtained by the law of Young–Dupré.

Appendix C. Nucleation of surface droplet by bulk droplet

Figure 8. Heterogeneous nucleation of a surface droplet induced by a bulk droplet situated on top of the surface. (a) The area
fraction ϕs of surface-bound molecules increases and peaks below the center of the bulk droplet due to the heterogeneous surface
binding. Once this peak area fraction exceeds the equilibrium value ϕII

s (black dash line, sketch see figure 4(c), a droplet at the
surface center is nucleated. (b) The surface-bound area fraction ϕs (blue solid line) and the bulk volume fraction at the bottom
boundary ϕ|z=0 in the dilute phase change non-linearly. Initially, the nucleation of a surface droplet at the center leads to a
decrease in the area fraction value far from the center. On longer times, the area fraction ϕs far from the surface droplet at x= 0
approaches the equilibrium area fraction ϕII

s (dashed line in plot (a)) from below. The bulk volume fraction at the surface
ϕ|z=0(x= 0, t) shows a similar as the area fraction of the bound molecules ϕs(x= 0, t) but with less magnitude variation due to
the attractive coupling between ϕs(x= 0, t) and ϕ|z=0(x= 0, t). We note that when the interface of the surface droplet reaches
the system size, there is a sudden increase in the area fraction to the thermodynamic equilibrium value (dense phase, not shown).
For both figures, χ0s =−0.33. Further parameter values are listed in table 1.

After bridge formation on the slightly repulsive surface (ω0 > 0), the binding of molecules from the bulk
to the surface enhances the wetting propensity of the bulk droplet. Binding makes the surface effectively
more attractive through the interactions between bound molecules and bulk molecules adjacent to the
surface (χ0s < 0). Interestingly, the increase of bound molecules is more pronounced underneath the center
of the bulk droplet (figure 8(a)). Once the local area fraction ϕs exceeds the equilibrium area fraction
ϕII
s = 0.1415 (sketch see figure 4(c), a surface droplet gets nucleated. Note that only the position centered

underneath the bulk droplet crosses the equilibrium value ϕII
s , while the surface domain far away and closer

to the boundaries remains undersaturated. The corresponding area fractions far away from the surface
droplet approach ϕII

s from below (figure 8(b)). This study shows that the bulk droplet indeed nucleates the
formation of a droplet on the surface.

Appendix D. Parameters used for wetting studies

In our wetting studies, we consider two values of the interaction parameter between bulk and surface
χ0s = {−0.5,−0.33}, corresponding to the cases where the system approaches complete or partial wetting at
thermodynamic equilibrium. We also vary the dimensionless binding rate kr (definition see equation (22)).
The remaining parameters are kept fixed for all presented studies. Such parameters are summarized in table 1.
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Table 1.Model parameters and their dimensionless values considered for the studies on wetting dynamics.

Parameter name Symbol rescaled value

Interaction coefficient at the surface χs 2.5
Interaction coefficient in bulk χ 2.5
Binding energy per unit area ω0 0.17
Internal free energy coefficient of molecule in the bulk ω 2.5
Internal free energy coefficient of molecules at the surface ωs 2.5
Interaction coefficient accumulating at the surface χ00 0
Diffusion coefficient in the membrane Ds 1
Gradient coefficient of molecule in the membrane κs 1
Gradient coefficient of molecule in the bulk κ 1
Domain size of the bulk Lx × Ly 100×30

Appendix E. Numerical study in three-dimensional cylindrical coordinates with axial
symmetry

Figure 9. Spreading dynamics towards a partially wetted state in three-dimensional cylindrical coordinates with rotational
symmetry (axial symmetric case). In all the plots presented here, solid lines denote the results in three-dimensional (3D)
cylindrical coordinates and dashed lines the referenced results in two-dimensional (2D) Cartesian coordinates (see figure 6). (a)
and (b) compare the contact area of the bulk droplet and the area of the surface droplet between 2D and 3D, illustrating how
dimensionality affects the spreading behavior. (c) 2D and 3D studies give almost the same spreading time scales (τg, τo, τn). (d)
We find a similar dynamic behavior between 2D and 3D but different equilibrium profiles in contact angle θ.

To explore whether the qualitative results for the planar setting are still valid in three dimensions (3D),
we consider a rotational symmetric problem in cylindrical coordinates. The Laplace operator in cylindrical
coordinates for a axial symmetric system reads:

∆= d2/dr2 +(1/r)d/dr+ d2/dz2. (E1)

We repeat the numerical calculations with the parameter values in section 3.4.1, and compare the results with
the ones in two dimensional (2D) Cartesian coordinates (see figure 9 for details). We found that 2D and 3D
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studies share almost same spreading time scales (τg, τo, τn; see figure 9(c) and similar dynamic behavior in
contact angle θ, but with notable differences in the equilibrium profiles (figure 9(d)), as well as in the bulk
droplet contact area A at equilibrium (figures 9(a) and (b)). Still, these results indicate that qualitative results
for the spreading dynamics with surface binding are robust between two and three-dimensional domains.
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