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Abstract

This thesis delves into the realm of speech representation and deep learning tech-
niques to extract breathing patterns from speech signals. Breathing patterns—the
signals generated during respiration—are intricately connected to speech produc-
tion. The respiratory organs contribute to the production of speech signals as well,
and hence both breathing patterns and speech have an impact on each other. In
this thesis, time-domain speech representation, coupled with phase-domain decom-
posed speech components, is investigated as a carrier of respiratory information.
This feature set and a novel long-short-term-memory (LSTM)-based deep architec-
ture are introduced to extract the breathing patterns from the speech signals. The
speech-breathing data from 100 healthy college going students, while they read a
phonetically balanced text is collected to build this model. The thesis also explores
the impact of breathing pattern categories on the performance of the deep model as
well as the variability of model performance observed across the 100 speakers. Fur-
thermore, the pre-trained model is utilised to extract breathing patterns from speech
data labelled with respiratory disorders and human-confidence levels. The resulting
speech-derived breathing patterns serve as a pioneering feature set for detecting res-
piratory disorders and gauging human-confidence levels. Expanding on the potential
applications of this representation technique, the thesis suggests exploring its use in
the domains of physiology and psychology. Specifically, it highlights the opportunity
for early diagnosis of a spectrum of respiratory disorders and the assessment of psy-
chological states and traits. This research opens doors to leveraging speech-derived
breathing patterns for advancing diagnostic capabilities in respiratory health and
understanding psychological aspects.
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1

Introduction

1.1 Motivation

Analysing breathing patterns remains important for a wide variety of problems as-
sociated with human health. Several studies are reviewed in [1] and [2] on breathing
pattern analysis for the detection of respiratory disorders, including COVID-19.
Around four decades ago, Tobin et al. studied the breathing patterns among 47
young and 18 old healthy [3] individuals using respiratory inductive plethysmog-
raphy. They report that age impacts rythmicity but does not have an impact on
breathing pattern components such as inspiratory and expiratory time in healthy
individuals. Around the same time, the authors studied the breathing patterns of
individuals with diseases such as asthma, chronic obstructive pulmonary disease
(COPD), restrictive lung disease, primary pulmonary hypertension, and chronic
anxiety using respiratory inductive plethysmography. Parameters such as number
of breaths taken in a specific time interval, the time taken for inhalation and exha-
lation, and many more are reported as indicators of underlying disease conditions.
They also concluded that analysis of breathing patterns provides diagnostic discrim-
ination among normal subjects and disease states.

Likewise, in the domain of behaviour sciences, breathing practises have helped
pregnant women gain confidence while experiencing labour pain [4]. Similarly, in
[5], individuals with high self-rated apprehension are found to have more pauses,
longer breath groups, and more interjections in their speech.

This explains the importance of analysing breathing patterns to understand the
physiological and psychological aspects of human health.

1.2 Problem Statement

The existing techniques to measure breathing patterns include 1) visual inspec-
tion, 2) using a spirometer, 3) impedance pneumography, 4) mercury-in-silastic

4



1.2. Problem Statement

Breathing Pattern 
Analysis

Physiological
Respiratory/Pulmonary 
Ailments

Psychological
Stress/Depression/
Confidence

Figure 1.1: Breathing pattern analysis holds significant importance across two dis-
tinct domains: physiology and psychology. In this thesis, particular emphasis is
placed on exploring the applications of speech-derived breathing patterns within
the domains of physiology and psychology.

strain gauges, 5) using magnetometers, and 6) respiratory inductive plethysmogra-
phy (RIP). Visual inspection is the simplest of all, but it is prone to errors. All other
techniques except visual inspection require a measurement instrument connected to
the individual under observation. For example, in RIP, a transducer is connected
over the chest area to convert the changes in lung volume into digital breathing
patterns. The acquisition of such patterns to enable further analysis of the signals
requires an instrument called a respiratory belt along with a data acquisition unit.
Conventional transducers used for capturing respiration-related information are in-
trusive and rely on expensive instruments. However, the invasive nature of these
mechanisms can impede the accurate analysis of breathing patterns affected by psy-
chological states. Similarly, for investigating physiological disorders associated with
the respiratory process, infected individuals are required to visit specialised lab se-
tups equipped with sensor-based instruments to analyse their breathing patterns.
As an individual needs to visit a clinic for an inspection of the breathing pattern,
this is usually done only after the difficulty in breathing becomes severe.

5



1. Introduction

1.3 Objectives

The intrusive and expensive mechanisms of capturing breathing patterns present the
need for a non-intrusive modality that provides breathing information to individuals
even outside of a clinical or lab setup. Hence the objectives of this thesis are as below:

1. To identify effective speech representation and deep learning techniques for
the extraction of breathing patterns from speech signals.

2. To study the breathing pattern categories and their impact on the deep model’s
performance.

3. Analyse speaker’s characteristics to evaluate the effectiveness and generalisa-
tion capability of the model.

4. To discuss the effectiveness of inferences drawn using a pre-trained speech-
breathing model in the physiology and psychology domains.

1.4 Contributions

The main contributions of this thesis are as follows:

1. Corpus of speech-breathing data from 100 healthy college-going students.

2. Deep network SBreathNet, trained with the data from 100 speakers, extracts
breathing patterns from speech.

3. The analysis is presented to provide information on the generalisability and ro-
bustness of the model across 100 speakers. To achieve this, a leave-one-speaker-
out (LOSO) analysis is performed, employing two key metrics: the Pearson’s
correlation coefficient (r-value) and breaths-per-minute-error (BPME).

4. Enhancing the understanding of the speech-breathing pattern categories.

5. Discussing the applications of speech-derived breathing patterns (SDBPs) us-
ing SBreathNet in the domains of physiology and psychology.

1.5 Outline

The thesis is structured as follows:

Chapter 2 explains the fundamental principles of speech representation and
predictive modelling techniques. This covers the classic machine learning and
deep learning principles of building predictive models.

6



1.5. Outline

Chapter 3 describes the basic understanding of breathing patterns, their
relevance in phonation domain, and their interactions with speech signals.

Chapter 4 talks about the state-of-the-art techniques explored for extract-
ing breathing patterns, detecting respiratory disorders, and detecting human-
confidence levels from speech signals.

Chapter 5 gives an overview of the datasets used in this thesis.

Chapter 6 introduces the time-domain-difference features used in multiple
experiments discussed in this thesis.

Chapter 7 discusses the approach of designing encoder-decoder architectures
for solving sequence-to-sequence encoding problems.

Chapter 8 explains the data partitioning approaches and metrics employed
to evaluate the models introduced in this thesis.

Chapter 9 introduces the breathing categories observed while the speakers
read a phonetically balanced passage and while they speak spontaneously.

Chapter 10 presents an evaluation of the performance of proposed feature
representation and deep architectures for extracting breathing patterns from
speech signals.

Chapter 11 discusses the analyses of the impact of using speech-derived
breathing patterns from the detection of respiratory disorders.

Chapter 12 presents an evaluation of the importance of speech-derived
breathing patterns for the detection of human-confidence levels from speech
signals.

Chapter 13 concludes the thesis, discusses the limitations and challenges in
extracting breathing patterns from speech signals and applying it in use cases,
and suggests future work.
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2

Representation Learning for
Building Models

Speech representation techniques encompass the transformation of raw speech wave-
forms into a structured format that is suitable for computational algorithms to pro-
cess and analyse. There are several ways of representing speech signals that depend
on the specific application and the processing objectives. Two broad categories are
hand-crafted features and deep representational learning. This chapter starts by
explaining the speech representation techniques. Followed by the implementation
of an appropriate representation technique, machine learning models are trained for
predictive tasks. Before describing in details the machine learning techniques used
in this thesis, the fundamental concepts regarding predictive modelling is explained
in this chapter.

2.1 Hand-crafted Features

The process of manually extracting the measurements or descriptors from the raw
data is called ”hand-crafted feature engineering”. The computation for the extrac-
tion of features is dependent on the data and its applications. Two perspectives of
manually extracting features from speech signals are presented. The first perspec-
tive is to analyse the time and frequency dependent properties of the speech signal.
The second one described here is to consider the speech production mechanism and
understand the underlying components of speech signals.

2.1.1 Time-Frequency Analysis

Speech signals are analysed in the time and frequency domains to extract relevant
features. In time-domain analysis, the changes in the speech amplitude values are
presented over a time axis. These features provide information about the temporal

10



2.1. Hand-crafted Features

characteristics of the speech signal. Some of the important time-domain features
are:

1. Zero Crossing Rate (ZCR): This is the rate at which the speech signal changes
sign, indicating how many times the waveform crosses the zero axis in a given
time interval. ZCR is often used as a measure of the temporal variation of the
speech signal.

2. Total Energy: This is the total amount of energy in the speech signal (E),
calculated as the sum of the squared amplitudes of the waveform. Energy can
be used as a measure of the overall loudness or intensity of the speech signal.
Below equation shows the total energy calculated, where x[n] is the amplitude
of the speech signal at a given sample point n.

E = Σ(x[n]2) (2.1)

3. Root mean square energy: This is the square root of the average of the squared
amplitudes of the waveform, which provides a measure of the average power or
energy per sample in the speech signal. Below equation shows the root mean
square energy calculation where E is the energy of speech samples of length
N.

Erms =
√
E/N (2.2)

4. Peak amplitude: This is the maximum amplitude of the waveform, which
provides a measure of the maximum loudness or intensity of the speech signal.

5. Time-domain auto-correlation: This is the correlation between the signal and
a delayed version of itself. Auto-correlation is commonly used to measure the
periodicity of a speech signal. It can also be used to analyse the rhythmic or
temporal structure of speech by detecting repeating patterns or rhythms in
the signal.

6. Skewness: Skewness refers to a statistical measure that characterises the asym-
metry of a probability distribution. It provides information about the shape
of the distribution and the location of its peak relative to its tails. A positive
skewness indicates a longer tail on the right side of the distribution, while
a negative skewness indicates a longer tail on the left side. To compute the
skewness of a signal, one typically calculates the third standardised moment
with a commonly used formula:

Skewness = (1/n) ∗
∑

((x− µ)3/σ3) (2.3)

where n is the number of samples, x represents individual samples of the signal,
µ is the mean of the signal, and σ is the standard deviation of the signal.

11



2. Representation Learning for Building Models

7. Kurtosis: Kurtosis measures the relative concentration of data around the
mean compared to a normal distribution. It tells us whether the distribution
has heavier or lighter tails than a normal distribution. A higher kurtosis value
indicates heavier tails and a sharper peak, while a lower kurtosis value indicates
lighter tails and a flatter peak. A commonly used formula based on the fourth
standardised moment is:

Kurtosis = (1/n) ∗
∑

((x− µ)4/σ4) − 3 (2.4)

In frequency domain, a spectrogram is a visual representation of the speech signal
that shows changes in signal energy for varying frequency components over time. A
spectrogram conveys information about the pitch, intensity, and spectral content of
the speech signal. Spectrograms are calculated by applying the Fourier transform
to a segment of a speech signal. The Fourier transform decomposes the signal into
its constituent frequency components, which can be plotted as a function of time to
create a spectrogram. The horizontal axis of a spectrogram represents time, typically
in seconds (s) or milliseconds (ms), while the vertical axis represents frequency,
usually in hertz (Hz). The intensity or colour of each point in the spectrogram
represents the amplitude or power of the corresponding frequency component at
that time. Another frequency domain parameter is spectral slope, which refers to
the change in intensity of a signal or spectrum with respect to frequency. The
spectral slope is typically measured by fitting a line to the logarithm of the power
spectrum or magnitude spectrum of a signal over a certain frequency range. The
slope of this line represents the spectral slope and indicates the rate of change of
the signal’s intensity. A positive spectral slope indicates that the signal’s power or
amplitude increases as the frequency increases. This is often observed in signals
with a rising or ascending trend, such as audio signals with higher energy at higher
frequencies. Conversely, a negative spectral slope indicates that the signal’s power
or amplitude decreases as the frequency increases. This can be observed in signals
with a falling or descending trend, such as in certain types of noise or interference.

2.1.2 Speech Decomposition

For speech data, the process of producing speech impacts the feature engineering
mechanisms. For the production of vowels and voiced consonants, the quasi-periodic
glottal pulses are the source of excitation, whereas, for cough, it is high-velocity ex-
piration from the lungs [6]. The unvoiced consonants and breathing sounds also
originate from the lungs. There are two components to the speech production
mechanism: 1) the source of excitation that generates the high-frequency signal
components (HFCs), which are modulated by 2) the filtering properties of the vocal
tract, hence inducing low-frequency components (LFCs). To decompose a speech
signal into its source and filter components, it is converted into a domain where
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they add up. Fourier transform converts the time-domain speech signals into fre-
quency domain using the discrete Fourier transform algorithm (DFT). Likewise,
Z-transform converts a discrete-time signal, which is a sequence of values defined
at specific time instances, into a complex-valued function of a complex variable,
denoted as Z. The Z-transform can be seen as a generalisation of the DFT since it
allows for the analysis of signals with complex exponential components, as well as
other types of sequences.

More than a decade ago, the authors of [7] explained a method to separate the
source and filter components of speech using zeros of the Z-transformed (ZZT) sig-
nal: They used a DFT calculated from the zeros inside the unit circle for getting a
vocal tract filter-dominated spectrum and from the zeros outside the unit circle for
obtaining the glottal source-dominated spectrum. As explained by the authors of
[7], this method is highly sensitive to the glottal closure instance (GCI) synchronous
windowing step. Also, as mentioned by the authors of [8], the method of decompo-
sition using ZZT is functionally equivalent to the one exhibited by cepstrum-based
decomposition, where the latter is preferred for its high computation speed.

In the cepstral domain (CD), 40 Mel filters convert the signal onto the Mel scale,
where a filter bank is calculated as per Equation 2.5. As shown in Equation 2.6,
a discrete cosine transform is performed to de-correlate the components obtained
through the Mel filters. The 40 coefficients obtained with this process are called
mel-frequency cepstral coefficients (MFCCs). The initial 12–13 out of 40 coefficients
thus obtained contain the LFCs, reflecting the influence of the vocal tract filter
properties. The later coefficients are HFCs reflecting the influence of the source of
excitation.

Mel(f) = 2595 ∗ log(1 + (f/700)) (2.5)

C(i) =
√

2/N
N∑
j=1

M j cos ((π ∗ i)/N ∗ (j − 0.5)) (2.6)

The authors of [9] propose phase domain (PD) separation of source and filter-
based properties of a speech signal by passing the Hilbert transformed cepstral signal
through a low-pass filter. Further, the group delay functions of the LFCs and HFCs
yield the filter and source components, respectively. In this study, the authors have
mentioned that CD separation leads to a loss of vocal tract information, whereas
PD separation performs better. The authors have improved the PD separation
performance as explained in [10] by using a modified Hilbert transform where the
log function is replaced by a generalised logarithmic function and a modified group
delay function where the sample difference operation is replaced by a regression
filter.

As seen in Figure 2.1, the two methods of speech signal decomposition, CD and
PD yields source and filter components of speech signal. These speech-decomposed
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Figure 2.1: The original speech signal gets decomposed into its source and filter
components using cepstral and phase domain decomposition techniques. The filter
components represent slow variations and source components represent fast varia-
tions of speech signal.

components are deployed as feature sets in multiple applications. The speech ’source
component’ analysis is used in numerous applications, such as in [11] for enhancing
the quality of speech from multiple microphones; in [12] for speaker localisation; in
[13] for detecting the number of distinct speakers; in [14] for detecting the perceived
loudness of speech; in [15] for audio clip classification; and in [16], [17] for emotion
recognition, using the excitation source information from Linear Prediction (LP)
residuals. The LP residual is the minimum error signal, calculated as the difference
between the speech sample and its predicted value obtained from linear prediction
analysis. Similarly, the vocal tract parameters are used for classifying the speech
into low, medium, and high cognitive loads in [18] and for improving the speech
recognition performance in [19].

2.2 Deep Representation Learning

Deep representation learning comprises techniques for training artificial neural net-
works with multiple layers to automatically learn hierarchical representations of the
input data. It is called ”deep” because these neural networks have many layers, al-
lowing them to learn and represent complex patterns and relationships in the data.
During the training process, the network adjusts its internal parameters through the
back-propagation process, where the error between the predicted output and the ac-
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tual output is used to update the weights of the network. This iterative optimisation
process allows the network to learn increasingly sophisticated representations of the
data. Autoencoder is an example of deep representation models discussed below
which aids in understanding the methods adopted in this thesis.

2.2.1 Autoencoders

Autoencoders are neural networks that consist of an encoder that maps the input
to a latent space representation and a decoder that reconstructs the input from the
latent representation. The encoder converts the input vector into hidden represen-
tation which is normally of lower dimensionality. Autoencoders are trained in an
unsupervised manner where the inputs are reproduced by the output layer. Hence
the training goal is to minimise the difference between the received input and the
reconstructed input. The loss function employed plays a crucial role in training au-
toencoders. The widely used loss functions are ’Mean Square Error’ (MSE), mean
absolute error (MAE), and root mean square error (RMSE). When the loss value
is lower, it signifies that the autoencoder has effectively acquired a well-learned
representation within its hidden layer.

MAE = 1/N
N∑
i=1

|yi− ŷ| (2.7)

MSE = 1/N
N∑
i=1

(yi− ŷ)2 (2.8)

RMSE =

√√√√1/N
N∑
i=1

(yi− ŷ)2 (2.9)

2.3 Predictive Model Building

The process of training machine learning or deep learning models to make predic-
tions or forecasts based on the input data is called predictive model building. The
model learns the patterns and relationships of the input data to make predictions
on new, unseen data. Classification, regression, and clustering are fundamental ma-
chine learning techniques where classification and regression are supervised learning
techniques. Classification involves assigning categorical labels or classes to input
data based on their features. The output of a classification model is discrete and
represents the predicted class or category. Regression is used to predict continuous
numerical values. It aims to model the relationship between input features and a
continuous target variable. The output of a regression model is a numeric value or a
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Bagging Boosting

Parallel Processing
Sequential Processing

Figure 2.2: Bagging (Bootstrap Aggregation) and Boosting are two ensemble tech-
niques. Bagging involves a parallel ensemble processing and Boosting involves se-
quential processing.

range of values, rather than discrete classes. Clustering is an unsupervised technique
where the model is unaware of the input data labels.

In supervised machine learning, an ensemble technique refers to the combination
of multiple individual models to improve the overall predictive performance and gen-
eralisation ability. Instead of relying on a single model, ensemble methods leverage
the diversity and collective wisdom of multiple models to make more accurate predic-
tions. Figure 2.2 shows two ensemble methods, Bagging (Bootstrap Aggregating)
and Boosting. Bagging involves creating multiple subsets of the original training
data through bootstrapping (random sampling with replacement). Each subset is
then used to train a separate model, such as decision trees, and their predictions are
combined through averaging or voting to make the final prediction. Boosting is an
iterative ensemble technique where multiple weak models, typically decision trees,
are sequentially trained. Each subsequent model is trained to focus on the samples
that were mis-classified by previous models, thus gradually improving the overall
prediction performance. Two ensemble techniques are discussed in the subsequent
sections: 1) RandomForest, which is an extension of bagging that uses decision trees
as base models. However, in addition to random sampling of data, it also performs
random feature selection at each node of the trees. 2) Extreme gradient boosting,
which is an implementation of gradient boosting framework.

2.3.1 RandomForest

An ensemble method that combines multiple decision trees to make predictions. It
is used for both classification and regression. The functionality of the algorithm is
as described in Figure 2.3. The algorithm works by creating a random subset of
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Dataset

Prediction 1 Prediction 2 Prediction 3 Prediction N

Majority Voting

Final Prediction
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Figure 2.3: RandomForest algorithm is used for both classification and regression
problems. For classification a discrete class is predicted and for regression tasks, a
probabilistic value is predicted by the model.

the training data and a random subset of the input features for each decision tree.
Each tree is trained independently on these subsets using a process called boot-
strap aggregating or ”bagging.” During training, each tree makes decisions based
on the selected features and the majority vote of the trees is used for the final pre-
diction. RandomForest has multiple parameters to fine-tune the training process.
The number of decision trees to be included in the random forest is decided by
the ’n estimator’ parameter. Increasing the number of estimators can improve the
model’s performance, but it also increases computational complexity. Parameter
’max features’ specifies the maximum number of features to consider when look-
ing for the best split at each tree node. A higher value means more features are
considered, which can increase the model’s complexity. The parameter ’max depth’
controls the maximum depth of each decision tree in the random forest. Setting a
higher value can make the trees deeper and more complex, potentially leading to
over-fitting. Bootstrap determines whether to use bootstrap samples when building
individual decision trees. Setting it to ’True’ means that each tree is trained on a
random subset of the training data with replacement.

2.3.2 Extreme Gradient Boost

Extreme Gradient Boost (XGBoost) is an ensemble of weak prediction models (typ-
ically decision trees) in a sequential manner, where each new model is trained to
correct the errors made by the previous models. It is known for its efficiency, speed,
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and high performance in a wide range of machine learning tasks. Similar to Ran-
domForest, XGBoost also has ’n estimator’ and ’max depth’ parameters to fine-tune
the algorithms. Apart from these, the step size at each boosting iteration can be
controlled using ’learning rate’ parameter. A lower learning rate makes the model
more conservative by taking smaller steps, but it may require more iterations to
converge. XGBoost has a provision control the complexity and reduce over-fitting
by using regularisation parameters. They add penalty to the loss function.

2.3.3 Deep Learning Techniques

Classification using deep neural networks involves training a deep learning model to
learn and classify input data into different classes or categories. Regression using
deep neural networks involves training a deep learning model to predict continuous
numerical values based on input features. While deep networks can be used for
both classification and regression tasks, the differences lie in the network architec-
ture, the activation function in the output layer, and the choice of the loss function
and evaluation metrics based on the type of problem. In classification tasks, the
activation function in the output layer typically uses the softmax activation func-
tion to transform the output of the network into a probability distribution over
the classes, where the predicted class is the one with the highest probability. In
regression tasks, the output layer typically uses a linear, hyperbolic tangent (tanh),
or sigmoid activation function, which produces continuous numerical predictions
without constraining them to a specific range.

For classification tasks, the cross-entropy loss function is commonly used. It
measures the dissimilarity between the predicted class probabilities and the true
class labels. Binary cross-entropy is used for binary classification, while categorical
cross-entropy is used for multi-class classification. For regression tasks, various loss
functions can be used, depending on the nature of the problem. MSE is a popular
choice, which calculates the average squared difference between the predicted values
and the true target values. Other loss functions like MAE or Huber loss can also be
used based on the requirements of the problem.

For classification tasks, evaluation metrics such as accuracy, precision, recall,
and F1 score are commonly used to assess the performance of the model. For
regression tasks, evaluation metrics like MSE, MAE, RMSE. r-value, or R-squared
are commonly used to measure the prediction accuracy of the model.

2.3.4 Time-Series Analysis

Time series analysis using deep neural networks involves leveraging the power of
deep learning models to analyse and make predictions on sequential data points
over time. Recurrent Neural Networks (RNNs) and their variants, such as LSTM
or Gated Recurrent Unit (GRU), are commonly used for time series analysis. These

18



2.3. Predictive Model Building

Next CellPrevious Cell

LSTM Cell
Forget Gate

Input Gate
Output
Gate

X

X
X

+

σ σ σtanh

tanh

Current input

Hidden statePrevious hidden state

Cell state or memory

Figure 2.4: LSTM Cell describing the three gates: forget gate, input gate, output
gate.

models are designed to capture temporal dependencies and enduring patterns in
the sequential data. LSTMs are designed to handle long-term dependencies and
capture information over extended sequences. They were introduced to address
the vanishing gradient problem faced by traditional RNNs when training on long
sequences. LSTM layers have a more complex structure compared to standard RNN
layers and incorporate memory cells, which allow them to remember information over
long periods of time.

2.3.4.1 LSTM

At the core of an LSTM are memory cells, which enable the network to retain and
selectively forget information over time. Figure 2.4 depicts the functioning of a
single LSTM cell. Each cell consists of three main components: an input gate, a
forget gate, and an output gate. The input gate determines the relevance of the
incoming information. It takes the current input and the previous hidden state as
inputs, and applies a sigmoid activation function to generate a value between 0 and
1 for each element in the memory cell. This gate controls which parts of the input
are significant and should be stored in the memory cell.

The forget gate decides what information to discard from the memory cell. It
takes the current input and the previous hidden state as inputs, and applies a
sigmoid activation function. The resulting values (between 0 and 1) are multiplied
element-wise with the current memory cell state. This gate allows the LSTM to
forget irrelevant or outdated information.

The output gate determines the relevance of the current hidden state. It takes
the current input and the previous hidden state as inputs, applies a sigmoid activa-
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Figure 2.5: LSTM layer comprise of a series of LSTM cells. Bi-directional LSTM
comprise of forward and backward computations.

tion function, and also applies a hyperbolic tangent (tanh) function to the current
memory cell state. The resulting values are multiplied together to produce the cur-
rent hidden state, which is the output of the LSTM cell. This gate controls the
amount of information to be outputted based on the current input and memory cell
state. By utilising these gates, LSTMs can effectively learn long-range dependencies
in sequences. The input gate allows relevant information to be stored, the forget
gate helps in discarding irrelevant information, and the output gate determines the
useful output based on the current context. This capability makes LSTMs capable
of capturing and utilising information from distant past or future time steps.

2.3.4.2 Bidirectional-LSTM

A Bidirectional Long Short-Term Memory (Bi-LSTM) is an extension of the LSTM
architecture that incorporates information from both past and future context in a
sequence. As shown in Figure 2.5, it consists of two separate LSTM layers, one
processing the sequence in the forward direction (from the beginning to the end)
and the other processing it in the backward direction (from the end to the begin-
ning). This allows the Bi-LSTM to capture dependencies from both past and future
contexts simultaneously. The forward LSTM layer takes the input sequence and
generates a hidden state sequence by processing the elements in a forward manner.
Each hidden state represents the information at a particular time step, considering
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the past context. Similarly, the backward LSTM layer processes the input sequence
in the reverse order, generating a separate hidden state sequence that represents the
future context for each time step. At each time step, the hidden states from both
the forward and backward LSTM layers are concatenated. This combined hidden
state contains information from both past and future context for the corresponding
time step. This concatenation enables the Bi-LSTM to capture dependencies that
are present in both directions of the sequence. The output of the Bi-LSTM can be
obtained by further processing the concatenated hidden states. It can be used for
various tasks, such as sequence classification, sequence labelling, or sequence gener-
ation. By incorporating information from both past and future contexts, Bi-LSTMs
are particularly effective in tasks where the current element in the sequence depends
on both preceding and succeeding elements. For example, in natural language pro-
cessing, the meaning of a word in a sentence often depends on the words that come
before and after it. Bi-LSTMs can capture such contextual dependencies and make
more informed predictions or decisions. Overall, Bi-LSTMs extend the capabilities
of traditional LSTMs by considering both past and future context in a sequence.
This bidirectional processing allows them to capture a wider range of dependencies
and enhance the understanding and modelling of sequential data.
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3

Speech-Breathing Patterns

In this chapter, an exploration of normal breathing patterns is provided, along with
an examination of the key parameters relevant to their analysis. Additionally, the
chapter delves into the analysis of breathing patterns within the phonation domain.
Furthermore, a description is presented regarding the interplay and connection be-
tween speech signals and breathing patterns.

3.1 Normal Breathing & Breath Parameters

As explained in [20], the breathing patterns are an outcome of balancing the active
forces generated by the respiratory muscles with the passive recoil forces generated
by the lung-thorax unit. Figure 3.1 shows a normal breath cycle comprising a rising
curve reaching a peak value called inhalation, followed by an optional inspiratory
pause where the breath values remain almost at the peak value. The downward
slope reaching the minima indicates the exhalation phase followed by an optional
expiratory pause, where the breath values remain around the minimum value.

In [21], an analysis of breathing patterns is presented. The most important pa-
rameter of analysis is the breathing rate measured in breaths per minute (BPM),
followed by the depth or shallowness of breath. Other parameters of interest include
tidal volume, total breath cycle time, inhalation time, and exhalation time. Further
derived parameters such as fractional inspiratory and expiratory times (the fraction
of the total breath duration that the inspiratory and expiratory phases, respectively,
occupies) and mean inspiratory and expiratory times (average duration of the inspi-
ratory and expiratory phases, respectively, over a specific period) are also used in
certain analyses. These parameters are analysed during various types of breathing,
such as quiet, deep, speech (while the individuals speak), and breathing during an
unhealthy condition.
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InT InP ExT ExP

One Breath Cycle

Figure 3.1: A normal breathing cycle comprising of InT: Inhale Duration; InP:
Inspiration Pause; ExT: Exhale Duration and ExP: Expiration Pause.

3.2 Phonation Breathing

In 1958, Paul Moore and Hans Von Laden in [22] discussed the occurrence of phona-
tion during inspiration (inspiratory phonation) and expiration (expiratory phona-
tion). Later, Robert Eklund, in [23] describes the speech during inspiration as
ingressive speech. The physiology and acoustics of phonation are discussed in [24]
and the authors mention that neither the two voicing modes can be differentiated by
blind listening nor the jitter values, damping ratios, or central formant frequencies
differ. They define several physiological distinguishing parameters such as: (1) an
inversion of the mucosal wave; (2) a smaller closed quotient in inspiratory phonation
(IP); (3) a larger opening/closing quotient in IP with the additional difference that
the quotient is larger than 1 (opening slower than closing), whereas it is less than
1 in expiratory mode (opening faster than closing); (4) a larger vocal-fold excursion
in IP; (5) higher values of adaptive normalised noise energy in IP; and (6) a steeper
slope of harmonic peaks in IP. Jenny Iwarsson, in [25] conducted five experiments
to study phonation and breathing and found that phonation at high lung volume
(inhalation) is associated with a higher sub-glottal pressure as compared to that
at low lung volume (exhalation). Sub-glottal pressure is one of the most influen-
tial physiological parameters controlling voice quality and is inversely proportional
to the steepness of the spectrum slope1. Anikin and Reby in [26] talk about the
presence of ingressive phonation conveying higher arousal through the non-verbal
vocalisations, highlighting the importance of studying breathing pattern categories
to understand affective states.

1https://unedvoicelab.com/subglottal-pressure/
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3.3 Speech Signals & Breathing Patterns

The processes of speech production and respiration co-occur and hence impact each
other. While an individual speaks, the process of inhalation and exhalation continues
subconsciously. The studies to understand the association between breathing events
and speech provided some prominent observations, such as:

• Winkworth et al. observed consistency in the speech-locations of inhalations
which are found to be correlated with the loudness and paragraph boundaries
in [27]. The study investigated the impact of speech intensity and linguistic
factors on a group of six healthy young women over a span of seven to ten
sessions, utilising respiratory inductive plethysmography. Notably, the partic-
ipants consistently took breaths at grammatically appropriate points within
the texts, such as paragraph, sentence, clause, and phrase boundaries. The
authors also discuss how distinct neural mechanisms in the brainstem govern
the normal respiratory rhythm and the coordination of respiratory and laryn-
geal muscle activity during vocalisation. Moreover, the study highlights that
the stimulation of ventilation by carbon dioxide, a key driver for breathing,
is significantly reduced during speech (reading) [28]. Overall, the research
conducted by the authors demonstrates that the neural pattern generator for
speech breathing is influenced by various linguistic and prosodic factors. The
volume of air inhaled and the amount of air remaining in the lungs are strongly
influenced by the length and loudness of the intended utterance, while the du-
ration of expiration is primarily determined by the linguistic intent. In other
words, speakers typically refrain from taking a new breath until the completion
of a clause or sentence.

• Whalen et al. found positive correlation between the depth of inhalation and
duration of the following utterance in [29]. In this study, the authors worked
with three subjects and instructed them to speak individual sentences of vary-
ing lengths, ranging from 5 to 82 syllables (with an average of 27). Prior to
uttering each sentence, the participants were required to take a full breath
and exhale to a predetermined level. Notably, a positive correlation between
the length of the sentence and the duration of inspiration was observed, re-
gardless of whether inspiration was measured physiologically or acoustically.
Additionally, the two subjects who exhibited higher correlations in articula-
tory measures also displayed faster air expenditure during shorter sentences
compared to longer ones. Conversely, the remaining subject did not show any
correlation between exhalation rate and sentence length.

• McFarland found inhalation time parameter to discriminate between quiet
breathing and speech breathing in [30]. In this study, the author examined a
group of 20 subjects who participated in 10 conversations, with two subjects
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engaging in dyadic conversation. The study recorded respiratory movements
during various activities, including quiet breathing, reading aloud, sponta-
neous monologue, scripted dialogue, and spontaneous conversation. Timing
measures, specifically inspiratory duration, expiratory duration, and total cy-
cle duration, were employed to compare respiratory function across these dif-
ferent activities.

• Autesserre et al. found breath regulating mechanism is independent of phona-
tion and pausing of speech in [31]. The authors suggest a breakdown of the
total dialogue duration into specific components: 25 % inhalation, 25 % phona-
tion, and 50 % pausing, although the absolute duration may vary among sub-
jects. Their observations are based on a study involving only two subjects
engaged in conversation. They note that inhalation typically lasts less than a
second, while exhalation spans approximately four seconds.

• W lodarczak and Heldner discuss about a two-way relationship that exists be-
tween both speech and respiratory signals impacting each other in [32]. The
authors find that while speech is strongly tied to the exhalation onset, short
verbal feedback expressions are distributed much more uniformly throughout
the exhalation and are often produced on residual air. These findings are de-
rived from eight three-party conversations that are recorded in a sound-treated
studio located in the Phonetics Laboratory at Stockholm University. On av-
erage, these conversations lasted for approximately 23 minutes, and the total
duration of all eight recordings amounted to 3 hours and 5 minutes. The study
included a total of 24 participants, consisting of 12 males and 12 females. The
median age of the participants is 25 years, with an interquartile range of 23 to
27 years. All participants are native speakers of Swedish.

• Orlikoff et al. observed that higher airflow rate, fundamental frequency (F0)
and electroglottographic amplitude perturbation during inspiratory phona-
tion in [33]. The study examined vocal measures in 16 individuals during
alternations between inspiratory and expiratory voices. Inspiratory voice seg-
ments showed increased F0 and a symmetrical pattern of vocal fold contact.
Short-term F0 variability and electroglottographic amplitude perturbations
are higher during inspiration. Stroboscopic examination revealed larynx dis-
placement and lengthened vocal folds. Inspiratory phonation has significantly
greater airflow and demonstrates control over vibratory patterns.
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State of the Art Techniques

4.1 Extracting Breathing Patterns & Their Ap-

plications

This chapter explains the state-of-the-art techniques used for the extraction of
breathing patterns from speech. The metric used for the performance evaluation of
a predictive model is the r-value between the predicted and true breathing patterns.
The breathing parameters, such as BPM and tidal volume, are sometimes compared
between the predicted and true breathing patterns.

The speech features used for extraction of breathing patterns from speech include
MFCCs, RMSE, ZCR, and spectral slope in [34], cepstrograms in [35], and log
mel-spectrograms in [36, 37, 38, 39]. The authors of [38] have also explored the use
of the raw speech waveform fed to a deep network.

Ruinskiy and Lavner collected the breathing and speech data of 24 minutes with
around 300 breathing events from 14 singers in [34]. They define a breathing
event as a segment present between two consecutive speech segments. The authors
adopted the template matching algorithm for the detection of a breathing event,
followed by an edge detection algorithm for the identification of the breathing peak.
Here, they have assumed the breathing signals have static, pre-defined templates.
Similarly, in [35], after Support Vector Machine (SVM)-based classification of
breath events, the breath events are appropriately grouped together and validated
against the manual observations through listening to audio and viewing thermal
videos.

In [36], simultaneous breathing and speech (spontaneous conversation and reading
a phonetically balanced paragraph) are collected from 20 healthy subjects. Normal
breathing, sustained vowel sounds, and reading after exercise is also collected in this
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study. Convolutional neural network (CNN) and Long-short term memory (LSTM)
networks are used with Pearson correlation as the metric and mean square error
(MSE) as the loss function. A maximum r-value of 0.47 is achieved with LSTM
networks for a segment duration of 4 seconds (s). Further breathing parameters
such as breathing rate and tidal volume are also calculated with an error rate of
4.3 % and 1.8 %, respectively.

In [37], 40 healthy subjects’ data is analysed for the detection of breathing rate using
LSTM models. The authors have compared MSE with BerHu as the regression loss
function. They present the hypothesis that the breathing patterns have sudden
peaks of inhalation followed by a gradually descending curve of exhalation, which
can be modelled using a BerHu loss function. They also present the results, showing
BerHu loss optimises the model better than MSE, giving an r-value of 0.42. With
the same approach, the authors of [38] have performed cross-corpus analysis and
have achieved an r-value of 0.39 when training using Philips-Database and testing
on the UCL-SBM database [40] and an r-value of 0.36 with the reversed datasets.
The Computational Paralinguistics Challenge (ComParE) organised at Interspeech
2020 [40] had a baseline Pearson correlation of r = 0.507 on the development, and r
= 0.731 on the test data set. The winners of this challenge [41], reported r = 0.763
between the speech signal and the corresponding breathing values of the test set.

In all these studies, fewer than 50 subjects have participated. The performance is
reported on the development and test partitions, which have a lower subject count.
Almost all these studies also assume the breathing values to follow the pattern
of a sudden peak corresponding to inhalation followed by a slope of exhalation.
Moreover, the literature on validating the efficiency of predicted breathing patterns
in further discovering the underlying physiological and psychological states of an
individual is sparse.

4.2 Detecting Physiological and Psychological

States from Speech

This chapter presents an in-depth discussion of studies focused on extracting phys-
iological and psychological states from speech. It delves into the methodologies,
techniques, and findings of these studies, shedding light on the advancements made
in understanding how speech can serve as a valuable source of information for as-
sessing physiological and psychological states.
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4.2.1 Detecting Physiological States

In-clinic and outside-clinic research studies are conducted in [42] with speech from
70 and 131 participants respectively. The authors report a classification accuracy of
75 % with a RandomForest classifier for the prediction of pulmonary disorders and
a mean absolute error of 9.8 % for the ratio of a person’s vital capacity to expire in
the first second of forced expiration to the full forced vital capacity (FEV1/FVC)
prediction task using an eight dense layered neural network. The seven most
relevant features identified by the authors are frequency of pause while speaking,
shimmer, absolute jitter, relative jitter, maximum of Fast-Fourier Transform (FFT)
of inspiratory sound in frequencies from 7.8 kHz to 8.5 kHz, mean of phonation
period to inspiratory period ratio, and average phonation time.

Lin and Lin [43] have reported an F1-score of around 90 % using MFCCs as features
for the detection of wheezing, however, have worked with only 18 subjects. Sharma
et al. [44] have identified bio-markers of asthma as lower pitch, higher standard
deviation of pitch, higher degree of voice breaks, lower intensity, a shimmer value
greater than 3.8, higher jitter, an average Harmonics to Noise Ratio (HNR) of
14.4, higher first formant (F1), and lower second formant (F2) using data from 21
speakers each in asthma and healthy case.

Yadav et al. report in [45] an accuracy of 78 % in classifying 47 asthmatics from 48
healthy individuals using Interspeech 2013 Computational Para-linguistics Challenge
baseline acoustic features [46].
Nathan et al. [47] used prosodic features for the detection of 91 asthmatics from 40
healthy individuals with an accuracy of 68 %.
Multiple studies are reviewed in [1], [48], and [2] for the detection of respiratory
disorders from the human voice.

4.2.1.1 Detecting COVID-19

The COVID-19 pandemic had a wide spectrum of effects on the population, ranging
from no symptoms to life-threatening medical conditions and to more than four
million deaths. The world health organisation (WHO)1 reports as most common
symptoms of COVID-19 fever, dry cough, loss of taste and smell, and fatigue; the
symptoms of a severe COVID-19 condition are mainly shortness of breath, loss of
appetite, confusion, persistent pain or pressure in the chest, and temperature above
38 degrees Celsius. An automated approach to detect and monitor the presence
of COVID-19 or its symptoms could be developed using Artificial Intelligence (AI)
based techniques. Although AI techniques are still in the process of reaching a
matured stage, they can be used for early detection of the symptoms, especially

1www.who.int
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Figure 4.1: Groups (given on the x-axis) that collected and analysed cough, speech,
and breathing data as indicated. Although some groups collected all three types of
data, they have reported their results based on the analysis of only one of them. The
y-axis indicates the frequencies of the healthy and COVID-19 subjects present in
the data set. Coughvid, VoiceMed and Spira have reported number of data points;
we report here number of subjects. The data sets from Cambridge, Coswara, and
Coughvid are publicly available. C & B: Cough & Breath; C, S & B: Cough, Speech
& Breath.

in the form of a self-care tool in reducing the spread, taking early care, and hence
avoiding propagation of the disease; see for overviews [1, 2, 40].

Figure 4.1 shows the number of healthy and COVID-19 positive subjects or data
points (items) collected by all the groups having data from more than 100 subjects.
Brown et al. [49] from Cambridge University2 collected data from maximum number
of speakers in a non-clinical setup. A web based interface for detecting COVID-
19 symptoms from the voice is the ”Spira Project”3. They collected data from
maximum number of speakers in a clinical setup. Other groups who collected data
in non-clinical setup include Coswara [50], CoughVid [51], Massachusetts Institute of
Technology (MIT) [52], VoiceMed4, Voca5 [53], and Coppock et al. in [54]. Among
the three modalities of speech, cough, and breathing; breathing signal based analysis
is found the most useful.

2https://www.covid-19-sounds.org/en
3https://spira.ime.usp.br/coleta
4https://voicemed-791a3.firebaseapp.com
5https://voca.ai/corona-virus
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Figure 4.2: Acoustic features’ & Machine learning techniques’ usage with the perfor-
mance reported by different groups (on x-axis) for detecting COVID-19. The first
row ‘+COVID-19 subjects’ gives the COVID-19 positive subjects’ count used by
the respective groups; sequence of groups same as in Figure 4.1. The features used
by each group are indicated by the block colour: MFCC; SG: Spectrograms; VFO:
Vocal fold Vibrations. Performance reported in the form of A: Accuracy, Se: Sensi-
tivity, Sp: Specificity, and AUC. LR: Logistic regression. ’Coswara’ and ’Coughvid’
have not done any analysis with the data set they collected, hence blank blocks are
shown for them. The results reported by ’Cambridge’ are: Combined analysis using
cough and breath, C : Cough only and B : Breath only.

As seen in Figure 4.2, MFCCs are used in more than 50 % of the total efforts [49,
50, 55, 56, 57, 53, 52, 58]. However, Alsabek et al. [59] extracted MFCCs from cough,
deep breath and speech signals from seven COVID-19 patients and seven healthy
individuals, showing that MFCCs from speech are not dependable features for this
task. Bartl-Pokorny et al. [60] studied sustained vowels produced by 11 symptomatic
COVID-19 positive and 11 COVID-19 negative German-speaking participants, to
assess the 88 eGeMAPS features [61], and report the mean voiced segment length
and the number of voiced segments per second as being most important, using a
Mann-Whitney U test.

4.2.2 Detecting Psychological States

Narayanan et al. reviewed the studies in the space of ‘Behavioral Signal Processing’
in [62]. It is observed that the expressions of the human behaviour in the signals
vary with time and remain in the same psychological state for a short duration.
Among several behavioural parameters such as emotions [63], anxiety [64], and
stress [65], human confidence has fewer studies using audio as information sources.
Automatic analysis of human behavioral parameters combining audio and vision has
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advanced a lot for its complete representation [66] for the extraction of emotions,
stress, and anxiety. Combining the analysis from audio and visual cues is found to
enhance the performance of systems mining information for these parameters.

Jiang and Pell analysed the impact of human confidence levels on the speech
acoustics in [67], [68], and [69]. In [67] and [68], the authors appointed six native
Canadian English speakers to produce the desired confidence level speech and 60
listeners to label the utterances; with 10 listeners labelling the same utterance on
a 7-point scale. Further in [69], the authors have explored additional parameters
such as duration and harmonic-to-noise-ratio using XGBoost classification algo-
rithm. Speech parameters such as fundamental frequency, amplitude, speech rate,
duration, and harmonic-to-noise-ratio are found useful in classifying the confidence
levels with an accuracy ranging between 0.62 to 0.81 for speaker-independent and
speaker-dependent analysis. However, it is important to understand the speaker
independent analysis better as it is closer to the real-world scenarios.

Joshua et al. in [70] validated the influence of vocal speed, intonation, and pitch
on the perception of confidence expressed on more than 300 students’ speech data.
Specifically, increased speech rate, falling intonation, and lowered pitch is found
to indicate high speaker confidence. In [70] and [71], the authors also discuss the
effect of para-linguistic features such as pitch on the perception of confidence and
subsequent persuasion as well. However, no empirical evidences derived from the
data are presented by them.

Sabu et al. in [72] have studied the confidence expressions among 195 children of
age group 10− 14 years while reading a paragraph. The authors report an accuracy
of 65 % for three class classification and 82 % for binary classification (high and
medium combined as high class) using acoustic features such as: pause, pitch, and
speech rate using random forest regressor. This analysis is suitable for a specific
context of evaluating the students’ comfort with the language and not for assessing
the self-efficacy of a speaker while responding spontaneously to an unknown scenario
or question.
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5

Data

In this thesis, a combination of datasets sourced from the public domain and newly
generated datasets is employed to facilitate the explorations presented. By identi-
fying gaps in existing datasets, the need for creating new datasets is established.
The data collection process adheres to a defined protocol, ensuring the production
of high-quality data with accurate labelling. This chapter gives a process overview
and the properties of the datasets used in the explorations presented in this thesis.
Table 5.1 provides an overview of the datasets utilised in the research, followed by
a brief explanation of each dataset.

Table 5.1: The experiments described in this thesis are conducted on the datasets
listed below. The dataset is either newly generated or taken from the public domain,
as specified under column ”Generate”. The ground truth labels available in each
dataset is mentioned under column ”Labels”.

Dataset Generated Labels
ComParE Challenge No Breathing Pattern
Indian Speech-Breath Yes Breathing Pattern
Coswara No Respiratory Disorders
Human-Confidence Yes Confidence Level (High & Low)

The ComParE challenge and Indian speech-breath datasets have simultaneous
speech and breathing patterns captured from 49 and 100 speakers, respectively.
They are meant to train models that can extract breathing patterns from speech
signals. The Coswara dataset has human audio signals of speech, cough, and breath-
ing with labels for respiratory disorders. The human confidence dataset is an audio-
visual dataset of 51 individuals with labels of confidence levels.
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Figure 5.1: The steps involved in generating a new dataset.

5.1 Data Collection Procedure

This procedure starts with exploring the state-of-the-art datasets available using
the modality of interest and relevant labels. For example, in the case of the speech-
breathing dataset, the ComParE challenge dataset is the one with speech as the
modality and simultaneous breathing patterns captured as ground truth. This
dataset is available to those who participated in the ComParE challenge organised
at Interspeech 2020. The dataset has 33 speakers’ data provided under the train
and validation partitions. However, the metadata of the speakers, such as their age,
respiratory problems if any, smoking habits, and so on, is not available. Hence, it
is not possible to understand the influence of these parameters. Also, the speakers
speak spontaneously during the recording of the data. There are other non-public
datasets where the speakers read a passage while recording. To understand the sim-
ilarities and differences among the breathing patterns of speakers while reading and
speaking spontaneously, the same speakers’ reading and spontaneous speaking data
are required. This poses the need for generating a new dataset with the missing
information captured.

Likewise, the other generated dataset is speech data with labels for human con-
fidence levels. There is no publicly available speech dataset with human-confidence
labels, so a new dataset is created.

As shown in Figure 5.1, the next step is to design a study for data collection.
Study parameters such as study environment, number of participants, participants’
age group, ground truth capturing mechanism, metadata to collect, and duration
are decided. In all data collection procedures, informed consent from the partici-
pants is required to collect the data for research purposes. All the data collection
studies explained in this thesis take care that the data collection happens in a quiet
environment.

After data is collected, it is important to identify the annotation mechanisms and
the annotators as well. For the speech-breathing work, the ground truth breathing
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• Physiological disorders such as Asthma/COPD and so on.
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Figure 5.2: The setup for the data collection of the Indian dataset of speech and
breathing consists of a head-mounted microphone and respiratory belt that collect
the speech and breathing signals, respectively. They are connected to the two chan-
nels of the ADInstruments Powerlab device. The right-hand side of the Figure shows
the questions asked of the subjects before collecting the data.

patterns are captured using the instrument, and hence manual annotation is not
required. For the human-confidence dataset, annotators and participants are briefed
about the method followed for giving a confidence label. This enables getting self-
annotation for the data and comparing it with labels from other annotators. The
majority voting approach is used for identifying the final label for each data sample.

5.2 Generated Datasets

This section explains the procedure followed for generating two new datasets: the
Indian dataset of speech-breathing (InDSB) and the human-confidence dataset.

5.2.1 Indian Dataset of Speech-Breathing

The InDSB is generated to record the simultaneous speech and breathing patterns
of individuals following the protocol explained in subsequent sections.

5.2.1.1 Data Collection Protocol

Figure 5.2 shows the details of the study conducted to collect data. ADInstruments’
respiratory belt transducer is used for recording the breathing patterns, and a con-
denser microphone is used for recording the speech signals. ADInstruments Pow-
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Figure 5.3: Speech and breathing patterns are collected for the four tasks: reading,
spontaneous speaking, vowel pronunciation, and laughing.

erLab data acquisition system’s two channels are connected to these two recording
devices to capture the time-synchronised signals. The transducer is positioned on
the chest (4 centimetres below the collarbone), and the head-mounted microphone
is placed at a distance of approximately 4 centimetres from the mouth.

A survey questionnaire is designed to capture the participants’ metadata, com-
prising personal and physiological information, along with their anxiety level using
the state and trait anxiety inventory (STAI-6) scale. Personal information includes
age group, gender, height, weight, and if they have received any formal training
in singing. The participants communicate if they currently smoke or have smoked
in the past. Physiological information includes the momentary pulse rate and the
blood pressure measured using Omron’s digital blood pressure monitoring machine.

The participants are seated in a chair and given approximately 2 minutes to
relax before starting the study. They read the phonetically balanced sentences from
the List 2, List 3, List 7, List 8, List 9 and List 10 of Harvard sentences. Harvard
sentences are phonetically balanced sentences using specific phonemes at the same
frequency as they appear in English [73]. Each participant takes around two to three
minutes to read these sentences. This activity is called the “Reading Task”.

After this, the participants speak spontaneously about any topic they like. They
are also given some pointers in the form of questions (such as ”What are your
hobbies?”, ”Which is your favourite city?”, and so on) to help them recall any
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5. Data

incident they want to narrate. A timer of one minute is set so that they speak
at least for a minute. This is called the ”Spontaneous Task”. This is followed by
the “Vowels Task”, in which they pronounce five English vowels and 12 Devnagari
vowels. At the end, each participant laughs out loudly (LoL) for around two to
three seconds. This is called the “Vowels and LoL Task”. Figure 5.3 shows sample
speech and breathing patterns of the four tasks of reading paragraph, speaking
spontaneously, vowel pronunciation, and laughing.

5.2.1.2 Participant Metadata

The study involves the participation of 100 healthy individuals within the age range
of 18 to 23 years. The group comprises 31 female participants and 69 male par-
ticipants. Importantly, all participants confirm the absence of respiratory disorders
such as COPD and asthma, ensuring that the study focuses on individuals without
these conditions. Within the participant pool, two individuals have received for-
mal training in singing. Additionally, nine participants report a history of smoking,
either currently or in the past. These details provide valuable insights into the demo-
graphic characteristics of the study population and help contextualise the findings
related to breathing patterns and speech analysis. The average height and weight
of female participants are recorded as 160 cm (149 cm – 173 cm) and 53 kg (40 kg –
75 kg), respectively. For male participants, the average height of 170 cm (155 cm –
180 cm) and weight of 65 kg (50 kg – 98 kg) are recorded. The instantaneous pulse
is found to range from 52 to 128.

Out of all the participants, a neutral emotional state was reported by 43 %.
Additionally, 22 % reported feeling happy, 2 % reported feeling sad, while 11 % each
reported feeling stressed, excited, and sleepy.

5.2.2 Human-Confidence Dataset

As per the DeGroot–Friedkin model explained by Jia et al. in [74], an individual’s
self-confidence varies in a discussion having a sequence of topics. It is not about feel-
ing superior to others. Rather, it is a quiet inner knowledge that you are capable in
specific respects. Behavior theory postulates a positive relationship between overall
confidence [75] on a topic and intention to communicate with others on that topic.
Studies are going on to measure the behavior parameters which will be indicative
of self-esteem and reliability [76] in the form of confidence. A lot of studies have
been conducted on self-confidence with the help of psychometric [77] properties and
relationships with other personality attributes. These studies have explored behav-
ioral correlation of confidence in the following pattern: People’s self-confidence is
always consistent with other’s appraisals for their confidence. The importance of
differentiating the confidence level is quite visible in this domain. Implicitly mea-
sured self-esteem [76] is said to have a weak correlation with explicitly measured
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Figure 5.4: The process of generating human confidence dataset.

self-esteem. But recent studies [78] have shown that implicit self-esteem does not
tap into the unconscious, rather people consciously over-report their levels of self-
confidence. From other studies, it is also evident that low confidence [77] makes
a person more likely to disengage themselves from their own action as they doubt
about their ability. It is also studied that even with skill and motivation, goals are
not likely to be fulfilled without confidence [77]. On the same note, professional role
confidence [75] is introduced in a study where it is mentioned as an ability of an
individual to successfully fulfil the roles, competencies and goals.

In the context of the experiments presented in this thesis, human confidence (or
self-confidence) is the confidence felt and expressed by an individual in a one-on-one
discussion with an interviewer.

5.2.2.1 Data Collection Protocol

Figure 5.4 shows the procedure followed for collection of human confidence dataset.
The human confidence dataset (HCD) consists of audio recordings of the interview
question responses given by college going students. This section presents the data
collection procedure followed to collect the speech data carrying confident and non-
confident vocal expressions of HCD. A study is designed to collect data from 51
individuals in the age group 22 − 30 years. The data collection happens over a
phone call. The candidates are briefed about the data collection procedure. Their
consent is obtained to record their responses. An interview session with a candidate
comprises of 5 questions. The questions are selected to induce varying levels of con-
fidence, such as a question to “Describe yourself” (question number 1) to capture
a confident response and a question about “What would you do in an unimagin-
able situation” (question number 4 and 5) to capture non-confident responses. An
example of question 4 is: “How will you sell ice-cream on a rainy day?”. The candi-
dates do not know the questions before they participate in the session, and hence,
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5. Data

spontaneous responses are captured from them. All the responses are labelled by
the speakers themselves and three more researchers in two categories of confidence:
confident or non-confident. The final label is calculated using a majority voting
approach; there is one label for every response.
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6

Speech Representations

This chapter focuses on the pre-processing steps applied to the data discussed in
Chapter 5. Prior to model building, the samples undergo normalisation, which is
achieved by dividing each sample by the largest number in the dataset. Furthermore,
the chapter explores various feature representation techniques in the time domain
and through the use of end-to-end deep learning networks. The performance of
these techniques is compared to identify their effectiveness in the context of the
experiments conducted in the thesis. This chapter provides a detailed explanation
of the features employed in the experiments, elucidating their characteristics and
relevance.

6.1 Time-domain Speech Representation

This section presents the methodology employed for extracting handcrafted time-
domain features. These features have demonstrated their significance in detecting
emotions from speech signals, as highlighted in [79]. Moreover, these features have
also proven valuable for extracting breathing patterns from speech signals.

Let’s consider a time-domain speech signal that is either originally sampled at
8 kHz or re-sampled to 8 kHz. In this context, we define a frame of duration 20 ms,
which corresponds to a total of 160 samples (calculated as the product of the sam-
pling rate, 8 000, and the frame duration, 20 ms). To prepare the frame for further
processing, it is multiplied by a Hamming window. For convenience, we denote this
20 ms frame as s[n], where n represents the sample number ranging from 0 to 2N.
Notably, the frame size of 2N corresponds to a total of 160 samples. To streamline
the subsequent analysis, we retain only the even samples from this frame for further
processing.

x0[n] = s[2n], 0 ≤ n < 2N (6.1)
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Working with the even samples of the time-domain signal is equivalent to focusing
on the even part of the spectrum. While it is possible to consider the odd samples
as well to avoid losing information, it has been observed that the classification
performance is better when using only the even samples.

xm[n] =
xm−1[n + 1] − xm−1[n]

2
(6.2)

Equation 6.2 describes the pre-emphasis filter applied to the even samples of
a speech signal that is sampled at 8 kHz. It is important to note that with each
iteration of applying the pre-emphasis filter, the sample size decreases by 1. Con-
sidering a 20 ms speech frame, the even samples correspond to a vector of length 80.
Through the application of the pre-emphasis filter for 70 iterations, the sample size
progressively reduces. Eventually, we obtain a vector of 10 values that represent the
time-domain-difference-feature (TDDF) vector for the 20 ms speech frame. These
10 values encapsulate the changes or differences in the time-domain characteristics
of the speech signal, providing a compact representation of the frame’s features.
The TDDF vector serves as a condensed representation that captures essential in-
formation about the speech frame, which can be utilised for further analysis or
classification purposes. The TDDF features, in conjunction with other time-domain
features, have been investigated for various applications. Specifically, in the context
of emotion detection tasks, the combination of TDDFs, RMSE, and auto-correlation
has demonstrated its effectiveness in detecting and classifying emotions in [79].

6.2 Autoencoder based representation

In this thesis, the strategy employed for representation learning involves the use of
autoencoder-based representations for two classes of labels within the dataset. The
autoencoders are trained to produce a condensed representation of the input data
through the encoder component. The decoder component reconstructs the input
data, aiming to minimise the loss between the original and reconstructed inputs.

To generate a representation capable of classifying the two classes, the autoen-
coder is trained using data from one class while treating the data from the other class
as the validation set. Throughout the training epochs, a decrease in the training
loss and an increase in the validation loss indicate that the autoencoder is learning
a distinct representation for one class while exhibiting noticeable differences for the
other class. This approach facilitates the exploration of meaningful representations
within the dataset.
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Encoder-Decoder Approach

An encoder-decoder architecture is a neural network framework consisting of two
main components: an encoder and a decoder. It is commonly used in sequence-
to-sequence tasks and sometimes for sequence-to-label tasks as well. As seen in
Figure 7.1, the encoder-decoder architecture is designed to convert an input sequence
into an output sequence of potentially different lengths and contexts. The encoder
component processes the input sequence and generates a fixed-length representation,
also known as the context vector or latent space representation. This representation
encapsulates the information from the input sequence in a condensed form. The
encoder can be built using various types of machine learning techniques, such as
RNNs or convolutional neural networks (CNNs).

Once the input sequence is transformed into a fixed-length representation, the
encoder can be utilised as a pre-trained machine learning model. This pre-trained
encoder is then capable of generating the corresponding fixed-length sequence when
provided with a different input from another context. The decoder, on the other
hand, takes the context vector and proceeds to generate the output sequence step by
step. Similar to the encoder, the decoder can be implemented using various types
of neural networks, including recurrent neural networks (RNNs) or transformers. It
is even possible to employ machine learning algorithms such as RandomForest or
XGBoost as the decoder. When trained with the sequence generated by the encoder,
these algorithms can perform higher-level analysis by employing classification or
regression techniques. In this scenario, the decoder can also generate a class label,
transforming the task into a sequence-to-label objective.

The encoder-decoder architecture is designed to achieve the ultimate objective
of classification or regression through the training of the decoder. This architec-
ture is commonly trained in a supervised manner, where pairs of input sequences
and corresponding output sequences are utilised. The input sequence is passed to
the encoder, and the decoder is trained to generate the accurate output sequence.
During training, the parameters of both the encoder and decoder are learned using
gradient-based optimisation algorithms like back-propagation and stochastic gradi-

43



7. Encoder-Decoder Approach

Input 
Data

Data from
different
context 
(CData)

Supervised Training of 
Encoder

(ML/DL Algorithm)

Pre-trained Encoder

Input data 
representation

Input Data Labels

Supervised Training of 
Decoder

(ML/DL Algorithm)

CData
Representation

CData Labels

Decoder 
Output

Figure 7.1: An approach where encoder and decoder work together.

ent descent. Alternatively, the encoder can be a pre-trained model that generates the
input for training the decoder independently. By employing this encoder-decoder
approach and supervised training, the model can effectively learn the relationship
between the input and output sequences, enabling it to perform classification or
regression tasks accurately.

The encoder-decoder architecture is powerful because it allows the model to
handle input and output sequences of different lengths and of different contexts as
well. It enables the model to learn complex mappings from one sequence domain to
another. Overall, the encoder-decoder architecture provides a flexible and effective
framework for sequence-to-sequence tasks by employing an encoder to capture the
input sequence’s information and a decoder to generate the corresponding output
sequence.
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8

Model Evaluation Techniques

In this chapter, the techniques used for evaluating the machine learning model em-
ployed in the experiments described in this thesis are discussed. Once the model is
trained, it is validated and tested on either a separate partition of the data or on a
different dataset. First, the data partition techniques are discussed, followed by the
evaluation metrics used for the classification and regression tasks.

8.1 Data Partitioning Techniques

The data is carefully partitioned to build generic and robust models. Frequently,
the basic principle used is to evaluate the models based on the data from unseen
speakers who do not participate in building the data with which the model is trained.
There are three prominent methods of partitioning a dataset: 1) train-validation-test
partition, 2) k-fold partition, and 3) speaker-based partition.

8.1.1 Train-(Validation)-Test Partition

In this approach, the entire dataset is split into three parts: training, validation, and
testing or sometimes two part: training and testing. To enable speaker-independent
analysis, the data samples in the these partitions are selected such that they contain
data from non-overlapping speakers.

• Training partition: The training partition is the largest subset of the data and
is used to train the model. During the training phase, the model learns pat-
terns, relationships, and features in the data, adjusting its parameters to min-
imise the error between predicted and actual outputs. The model is exposed
to the training data iteratively, updating its parameters through optimisation
algorithms like gradient descent. The goal is to enable the model to generalise
well to unseen data.
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• Validation partition: The validation partition is used to fine-tune the model
during training and evaluate its performance. It acts as a proxy for unseen
data, helping to gauge how well the model is likely to perform on new, unseen
examples. The validation data is typically used for hyper-parameter tuning,
model selection, and early stopping. By monitoring the model’s performance
on the validation data, adjustments can be made to prevent over-fitting or
under-fitting. The validation set helps in selecting the best model architecture,
regularisation techniques, and other hyper-parameters.

• Testing partition: The testing partition is used to evaluate the final perfor-
mance of the trained model. It serves as an unbiased estimate of the model’s
ability to generalise to new, unseen data. The testing data is not used during
the model development process, including hyper-parameter tuning, to prevent
any bias in the evaluation. By evaluating the model on the testing data, its
performance metrics, such as accuracy, precision, recall, or F1 score are as-
sessed. This step helps to provide an objective measure of how well the model
is expected to perform in real-world scenarios.

For the machine learning algorithms, such as RandomForest and XGBoost, val-
idation partition is not required. These models are trained using training partition
and the trained model is then tested on the test partition. The analysis presented
with explicit partitions provides transparency and facilitates reproducibility of the
results. However, this approach can encounter challenges when working with limited
data, as the model may struggle to learn effectively and grasp the complete com-
plexity of the problem. To mitigate this, it is essential to perform the partitioning
process with a rationale to avoid introducing bias and ensure that the partitions
accurately represent the entire dataset.

8.1.2 K-Fold Partition

In K-fold cross-validation, the data is divided into k equally-sized folds. The model
is trained k times, each time using k − 1 folds for training and the remaining one
fold for validation. The final performance is the average of the performance achieved
across all k iterations. This approach, also knows as k-fold cross validation, allows for
the assessment of the model’s performance without explicitly separating a dedicated
validation partition.

It efficiently utilises available data and ensures that all data points are used for
training and validation. This reduces bias and provides a more reliable evaluation
of model performance by averaging results across multiple iterations. K-fold cross-
validation analysis enables effective hyper-parameter tuning and allows for a fair
comparative analysis of different models or algorithms. It provides an estimate of
the model’s performance on unseen data and helps assess its robustness. Overall,
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k-fold cross-validation analysis enhances the reliability and generalisability of ma-
chine learning models. However, it can be computationally expensive and may not
be suitable for datasets with imbalanced class labels. To ensure the reproducibil-
ity of the results, it is important to specify the random seed value, which ensures
consistency in assigning the folds across multiple runs.

8.1.3 Speaker-based Partition

In speaker-based analysis, every speaker’s data present in the dataset is examined.
Similar to k-fold analysis, a model is trained N times, where N is the number of
speakers in the dataset. In each iteration, N − 1 speakers’ data is used for training,
and the remaining one speaker’s data is used for validation. This analysis is also
called LOSO analysis. This enables speaker-independent performance estimation
and helps identify speaker-specific challenges. This also facilitates fair model com-
parison and selection, allowing for direct comparisons of performance across diverse
speakers. It is scalable to large datasets, making it applicable in scenarios with a
significant number of speakers.

8.2 Metrics for Evaluation

The metrics used for evaluating a model depends on the nature of task the model
intends to perform. There are separate set of metrics used for classification and
regression tasks.

8.2.1 Classification Metrics

• Accuracy: Accuracy is a measure of the proportion of correct predictions out
of the total number of predictions. This metric is suitable when the number
of instances for all the classes is balanced.

Accuracy = (NumberofCorrectPredictions)/(TotalNumberofPredictions)
(8.1)

• Precision: It represents the model’s ability to correctly identify positive in-
stances.

Precision = (TruePositives)/(TruePositives + FalsePositives) (8.2)

• Recall: It measures the model’s ability to identify all positive instances.

Recall = (TruePositives)/(TruePositives + FalseNegatives) (8.3)
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• F1 Score: It is the harmonic mean of precision and recall, providing a balanced
measure of the model’s performance.

F1score = 2 ∗ (Precision ∗Recall)/(Precision + Recall) (8.4)

• Area under the Receiver Operating Curve (AUC-ROC): A performance mea-
sure that evaluates the model’s ability to discriminate between positive and
negative instances across different probability thresholds.

• Unweighted average recall (UAR): Recall, also known as sensitivity or true
positive rate, measures the ability of a model to correctly identify positive
instances from the total number of actual positive instances. In a multi-class
setting, each class has its own recall value. UAR takes the average of these
recall values without considering the class frequencies or imbalances. UAR is
particularly useful when dealing with imbalanced datasets.

8.2.2 Regression Metrics

• Mean square error (MSE): The average absolute difference between the pre-
dicted and actual values, indicating the model’s average prediction error.

• Mean absolute error (MAE): The average of the squared differences between
predicted and actual values, giving more weight to larger errors.

• Root mean square error (RMSE): The square root of the MSE, providing a
measure of the average prediction error in the original units of the target
variable.
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9

Speech-Breath Categories

It is observed that on an average, a breathing cycle duration lasts for around five
seconds while a speaker reads loudly. The ground truth breathing patterns of the two
datasets: ComParE challenge dataset (CCD) and Indian speech-breathing dataset
(InDSB) are analysed and the observations are presented in this chapter.

9.1 Speech Breathing in InDSB
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Figure 9.1: Two broad categories of the speech-breathing patterns: speech during
inhalation called ingressive and speech during exhalation called egressive speech-
breathing.

In InDSB, the breathing patterns of the read-task are captured continuously for
around 3 − 4 minutes from each speaker. It is observed that an average breathing
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Figure 9.2: Distribution of 100 speakers’ data across the five breathing pattern
clusters.

cycle duration lasts for around five seconds while a speaker reads loudly. Hence,
breathing patterns are segmented into smaller breathlets of 5 s each giving around
35 − 45 such breathlets per speaker. With each breathlet as a data point, the
elbow method indicates that five distinct clusters can be formed using a k-means
clustering algorithm. On clustering the breathlets, the cluster centres show that
four of the clusters represent four distinct locations of the inhalation peak in the
five seconds duration. These locations are: 1) within first second, 2) between 2-4 s,
3) between 4-5 s, and 4) towards the end of the 5 s. These four clusters represent
the egressive speech-breathing. The fifth cluster represents an inhalation that starts
from the first second and the inhalation-pause lasts until five seconds. Hence, this
cluster represents the ingressive speech-breathing. This observation indicates that
there are two broad categories of breathing data: ingressive and egressive as shown
in Figure 9.1. It is seen that, a speaker either has all the breathlets following an
ingressive or an egressive pattern, or a combination of the two patterns. Depending
upon the presence of majority breathlets belonging to one of the five clusters, the
speakers are categorised, accordingly. Around 80 % of the speakers in our database
are egressive speakers having a majority of egressive breathlets. The remaining
20 % speakers have more than half of their five-second breathlets following ingressive
speech-breathing pattern.

Figure 9.2 depicts the distribution of speakers across the five clusters. There
are 20 speakers in cluster 1, which is the cluster of ingressive speakers, having
varying degrees of ingressiveness. The inertia within the five clusters is analysed to
understand the deviations within the true breathing patterns. Inertia is the average
sum of the squares of distances of every sample from the cluster centre. It is seen
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Figure 9.3: Five Breathlets: a) Speech during a long exhalation period; b) Speech
during exhalation and expiratory-pause; c) Speech during inhaling and exhaling in
short duration and short amplitude; d) Speech during inhalation and inspiratory-
pause; e) Speech during inhalation, reaching inhalation peak and continuing during
exhalation.

that, one speaker from cluster 0 (egressive speaker, speaker Identity (ID): 93), and
three speakers from cluster 1 (ingressive speakers, speaker ID: 40, 73, and 76 ) have
an inertia greater than 0.1.

Further analysis is carried out to understand the breathing patterns that overlap
with the speech segments. A speech segment is defined as the speech signal starting
from a speech pause and ending at the start of next speech pause, where each pause
has a duration of at least 200 ms.

Two sub-categories for egressive cluster (together cluster 0, 2, 3, and 4) and three
sub-categories for ingressive cluster (cluster 1) is identified with the second level
clustering. The figure depicts the five second-level clustering breathlets identified
from the breathing patterns of 100 participants data; each breathlet has 250 samples
which corresponds to 5 seconds. Breathlet –a– and –b– are egressive breathlets.
Breathlet –a– represents the well known category of a breathing cycle in which the
inhalation starts during speech pause, reaches the peak in a short time and the speech
is produced during exhalation. Breathlet –b– is similar to –a– with the difference
that the speech production happens during the expiratory pause as well. Breathlet
–c–, –d–, and –e– are ingressive breathlets. Breathlet –c– represents the random
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9. Speech-Breath Categories

Table 9.1: Details of the speech-breathing cycle categories and the number of speak-
ers belonging to each category.

# Description # Speakers
1 Short inhalation, long exhalation. 39
2 Short inhalation, moderate exhalation, long

expiratory-pause.
41

3 Random inhalation and exhalation duration. 8
4 Long inhalation or inspiratory pause with

short exhalation.
9

5 Similar inhalation and exhalation time. 3

nature of a breathing curve with shorter amplitude range and longer breathing cycle.
Breathlet –d– shows that the inhalation starts during the speech pause, however, the
speech production happens during inhalation. Such Breathlets have long inhalation
durations. The speaker continues to speak during the inspiratory pause period and
has a quick exhalation. Breathlet –e– shows a similar duration for inhalation and
exhalation. Also, the speech is produced during both, inhalation and exhalation.

Table 10.1 explains each breath category with its description and provides the
number of speakers belonging to each read-speech breath category. Note that, three
of the nine participants who reported that they either smoked in the past or currently
smoke, have Breathlets –a–, the other three have Breathlets –b– and the remaining
three have one each of Breathlet –c–, –d– and –e–. This indicates that smoking
habit does not influence the different breathing patterns. Likewise, the variation
observed in blood pressure and pulse measures is evenly distributed across all five
classes. The distribution of gender among the five classes shows no correlation with
the class distribution.

9.2 Speech Breathing in CCD

The 33 speakers’ data of the training and development partitions released at the
ComParE challenge, Interspeech 2020 [40] are analysed. The Breathlet types defined
in Figure 9.3 are present in this dataset as well. Six speakers’ (’devel 00’, ’devel 08’,
’devel 13’, ’devel 15’, ’train 06’, ’train 15’) breathing patterns comprise of Breathlet
types –c–, –d–, and –e– and 27 speakers’ breathing patterns comprise of Breathlets
–a– and –b–.

In essence, the ComParE challenge dataset includes speakers exhibiting ingres-
sive speech. This observation indicates that the presence of ingressive speech is not
specific to any particular demographic group, highlighting its independence from
demographic factors. Furthermore, the analysis conducted on the InDSB dataset
focused on speech signals recorded while participants read a phonetically balanced
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9.2. Speech Breathing in CCD

paragraph. In contrast, the CCD dataset captured speech signals during spon-
taneous conversations. Remarkably, this analysis reveals that the occurrence of
ingressive speech is not influenced by the mode of speaking, underscoring its inde-
pendence from speaking style as well.
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10

Extracting Breathing Patterns
from Speech

In this chapter, the focus is on the extraction of breathing patterns from speech
signals. The research utilises two distinct datasets: the CCD and the InDSB. These
datasets consist of speech recordings accompanied by corresponding breathing pat-
terns. It is important to note that the speech data captured in these two datasets
differs in nature. The CCD dataset comprises recordings of spontaneous speech,
while the InDSB dataset primarily consists of recordings of reading speech. Al-
though spontaneous speech is also captured from the speakers in the InDSB dataset,
the analysis presented in this thesis does not make use of it. In this chapter, re-
sults from the dataset analysis are presented, encompassing overall evaluations as
well as speaker-wise and cluster-based analyses. The overall analysis provides in-
sights into the performance of the entire dataset as a whole, allowing for an un-
derstanding of its characteristics and trends. The speaker-wise analysis delves into
the variations exhibited by each individual speaker’s data and explores the poten-
tial factors contributing to these variations. This analysis provides valuable insights
into the unique characteristics and patterns present in each speaker’s breathing pat-
terns. Additionally, the cluster-based analysis focuses on understanding the impact
of breathing-pattern clusters on the performance of the deep model in extracting
breathing patterns from speech. This analysis explores how different clusters of
breathing patterns influence the model’s performance, shedding light on the effec-
tiveness and limitations of the model in different contexts. The metrics of r-value
and BPME are utilised as measures of correlation and error in the analysis of breath-
ing patterns across the CCD and InDSB datasets. These metrics provide objective
measures of the model’s performance and the accuracy of the extracted breathing
patterns.
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Figure 10.1: A regression model is trained using both speech and breathing data.
The speech representation is used to train the model, while the breathing patterns
serve as the ground truth.

10.1 Analysis with Indian Dataset of Speech-

Breathing

10.1.1 Data and Procedure

The InDSB dataset, consisting of speech data and corresponding breathing pat-
terns, serves as the training data for the breathing-pattern extraction model. The
breathing patterns from the InDSB dataset are utilised as continuous scale labels,
providing a reference for the desired output. To prepare the input data for the model,
hand-crafted features are extracted from the speech signals. Once the handcrafted
features are extracted, they are then used as input to the model. The model is de-
signed to learn the underlying patterns and relationships between the input features
and the corresponding breathing patterns. By training on the InDSB dataset, the
model aims to capture the mapping between the speech features and the breathing
patterns, enabling it to predict the breathing patterns from unseen speech signals.

The InDSB has the data of 100 Indian college-going students. The design of
the study conducted for capturing data and the details of the metadata captured
are described in Section 5.2.1.1 and Section 5.2.1.2. The approach of training the
regression model using the InDSB data is as shown is Figure 10.1.

10.1.1.1 Representation Learning

The time-domain, MFCCs, and phase domain decomposed filter components
(PDDFC) are explored to extract the breathing patterns from the speech signals.
It is observed that the combination of time-domain features with PDDFC performs
the best. The time-domain feature vectors of length 16 comprise ZCR, RMSE, auto-
correlation, kurtosis, and 10 TDDFs. ZCR, RMSE, auto-correlation, and kurtosis
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Network Architecture
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Figure 10.2: SBreathNet: LSTM-based deep architecture to extract breathing pat-
terns from the speech signals.

are as described in Section 2.1. The 10 TDDFs are calculated as explained in Sec-
tion 6.1. Both the features are calculated for every speech frame of 20 milliseconds
(ms).

10.1.1.2 SBreathNet: Model Architecture

This section provides a detailed description of the deep LSTM-based model used for
extracting breathing patterns from speech signals. The model is designed to capture
temporal dependencies in sequential data.

As shown in the Figure 10.2, the network architecture is trained using time
domain features and PDDFC of speech signal as input. The network is trained with
a batch length of 250 corresponding to a duration of 5 s (A sample for every 20 ms
is calculated, hence 250 samples = 250X20 ms = 5000 ms). Both the inputs are
passed separately to corresponding LSTM blocks comprising of two LSTMs and a
dense layer. The outputs of these two LSTM blocks are concatenated and fed to
two consecutive dense layers. This forms the output of the encoder network. The
loss function calculates the concordance correlation coefficient (CCC) loss between
true and predicted values. The network learns with a learning rate of 0.001 and
with an Adam optimiser. The activation function of the last dense layer is the tanh
function. This causes the prediction values to range between −1to1. Figure 10.2
shows the number of nodes of each network layer in brackets.
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Figure 10.3: Number of speakers belonging to seven bins of r-value performance
using CCC, Huber, and MSE loss functions.

10.1.2 Observations

10.1.2.1 Overall Performance

An average r-value of 0.61, 0.55, and 0.55 is achieved across the 100 speakers with
the loss functions CCC, Huber and MSE respectively. Varying batch length values
(the time-step value for the LSTM layer) of the network ranging from 1 s to 60 s are
experimented to understand the impact of the time-series-encoding on the perfor-
mance. The batch length of 5 s achieved the best overall performance. The BPME
count for every speaker is calculated on the predictions obtained with the three loss
functions and compared with that of the true breathing pattern. The peak detection
algorithm from scipy [80] is used for the detection of peaks keeping a distance as
100 points and a height as 0.2. Using the peak count, further, BPME is calculated
for each speaker. An average BPME obtained is 2.50, 2.95, and 2.65 for the CCC,
Huber, and MSE loss functions, respectively. From the overall performance, CCC
outperforms among the three loss functions.

10.1.2.2 Speaker-Based Analysis

As seen in Figure 10.3, the number of speakers having an r-value above 0.50 is 80, 73,
and 76 using the CCC, Huber and MSE loss functions, respectively. Similarly, 90 %
speakers have BMPE less than 4. SBreathNet can extract breathing patterns with an
r-value above 0.50 for 80 % speakers and a BPME below 4 for 90 % speakers. Further
comparing the three loss functions, once again, CCC outperforms its competitors
in the speaker-based analysis. Similarly, with the CCC loss function, 90 % of the
speakers have BPME below 4.

Figure 10.4 (a) shows the LOSO performance of the SBreathNet architecture
trained with CCC, Huber, and MSE loss functions. As seen in the Figure, three
speaker IDs: 40, 73, and 76 consistently have a negative r-value. As described before,
varying batch-lengths from 1 s to 60 s are explored; also regularisation techniques
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Figure 10.4: (a) Above: Leave-one-speaker-out performance using SBreathNet. The
red-dotted lines are put against ingressive speakers. (b) Below: Breaths-per-minute
error for each of the 100 speakers.

are explored, however, the performance for these three speakers remains unchanged.
Figure 10.4 (b) visualises the speaker-wise BPME for the 100 speakers for the pre-
dictions obtained using SBreathNet trained with a CCC loss. The BPME ranges
between 0.3 to 7.5. Also, the change in BPME across the speakers is not synchro-
nised with the r-value exhibited by them. Speakers with a negative r-value of −0.40
and −0.21 have the BPME 3 and 2.1, respectively. This shows that SBreathNet
captures the breathing event equally well for speakers with low r-value.

10.1.2.3 Cluster-Based Analysis

Table 10.1: Number of speakers belonging to each breathing pattern cluster and their
corresponding performances. The performance is reported using r-value, BPME, and
Centroid-R between the true and the predicted values.

Cluster Speakers R BPME Centroid-R
0 24 0.60 3.6 0.80
1 20 0.37 1.8 −0.30
2 16 0.68 2.4 0.74
3 26 0.66 2.2 0.68
4 14 0.65 2.6 0.90

As discussed in Section 9.1, five clusters are identified using the true breathing
patterns of 5 s duration. The red dotted lines are put against the speaker IDs that
belong to cluster 1 and hence are ingressive speakers. It is observed that, the 14
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Figure 10.5: Breathing predictions for speaker identity 76 (a) and 73 (b). 76 and 73
are ingressive speakers having an r-value of −0.40 and −0.21 respectively.

out of 20 (70 %) of the speakers exhibiting r-value below 0.50 (low-performers) are
ingressives. This contributes to 70 % of the total ingressive speakers. These results
suggest that, ingressiveness has a considerable impact on the model performance.

Table 10.1 explains the average r-value (R) for the five clusters showing the least
performance from ingressive cluster; cluster 1. As discussed in Section 9.1, one
speaker from cluster 1 and three speakers from cluster 0 have higher inertia. This is
reflected in the cluster performance as well. Hence, inertia in true breathing patterns
is also a factor along with ingressiveness that impacts the model performance. The
BPME for the five clusters is as given in Table 10.1. Once again, the BPME is not
synchronised with the r-values across the cluster. The lowest performing cluster 1
has the lowest average BPME of 1.8. Table 10.1 also provides an r-value between
the mean 5 s breathlet of the five predicted clusters with the corresponding true
ones (Centroid-R). For the four egreesive clusters, the mean breathlets have a good
overlap with the true ones.

10.1.2.4 Ingressives and Egressives

The average r-value of egressive speaker clusters (1, 3, 4, and 5) is 0.65 and that
of ingressive speaker cluster is 0.37 using SBreathNet predictions. From the pre-
dicted breathing patterns of SBreathNet, it is observed that the ingressive pattern
is apparent in four of the lowest performing ingressive speakers with the speaker
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Figure 10.6: Breathing predictions for speaker identity 93, an egressive speaker
having an r-value of 0.21.

IDs 40, 73, 76, and 96. Figure 10.5 (a) shows the 10 s prediction for speaker 76. As
seen in the Figure, the breathing events are correctly identified resulting in predict-
ing the BPME of only 1.2. However, the breathing pattern is inverted such that
the inhalation and inhalation pause exhibited by true breathing patterns are not
captured by the predictions. Instead, the predictions show an expiration for the
corresponding time slot. This explains the absence of synchronisation between the
r-value and the BPME across the speakers. Likewise, in the case of speaker 73, the
anticipated breathing events, indicated by the peak values, align with the actual
breathing patterns. However, the gradual inhalation is not accurately captured, as
an exhalatory slope is detected instead. As mentioned before in Section 9.1, the
speakers of cluster 1 have varying degrees of ingressiveness, hence, some of them are
found to have r-value higher than 0.50.

With the proposed model, 6 egressive speakers have a low performance such as
speaker ID 93, who has an r-value of 0.21. As seen in Figure 10.6 (a), for the 20 s
predictions of speaker 93, the peaks are correctly matched as well as the shape.
However, the valleys are not matching between the predicted and true values. This
is seen when the speakers exhale breath to a large extent resulting in deep valleys.
Since the sound of such exhalation activity is not captured in speech or voice, it
becomes difficult to trace them.

10.1.3 Conclusion

It is observed from the results that extracting breathing patterns for ingressive
speech is difficult. To collect more data belonging to ingressive class, it is required
to understand such speaker characteristics. Further questions were asked to the
ingressive speakers such as about their involvement in sports, yoga, swimming, if
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they were infected by COVID-19, about respiratory disorder in their family, the sleep
quality, and their metabolic, physical and mental health. It was discussed if they
find themselves introvert, if they have stage fear and hence practise talking. None
of these conditions are uniform across all the speakers. For all of them, neither they
nor anyone in their family have any respiratory disorders. 9 out of 19 reported that
they are actively involved in sports activities related to athletics. 3 of them were
infected by mild COVID-19 and were asymptomatic. The three ingressive speakers
whose r-value is found negative reported that they are introverts and had stage fear.
They have practised speaking skills. This observation matches with the case study
performed in [81]. The authors have found that a subject has used inspiratory speech
for 6 years as a means of overcoming the communication problems of long-standing
adductor spastic dysphonia. These observations show that not only physiological,
but behavioural parameters also impact the breathing patterns of an individual.

10.2 Extracting Breathing Patterns using CCD

10.2.1 Data and Procedure

The CCD is a subset of the UCL Speech Breath Monitoring (UCL-SBM) database
[40]. It is specifically curated for the participants of the ComParE challenge held
at Interspeech 2020. The dataset consists of 49 speakers, comprising 29 females
and 20 males, who have English as their primary language. The age range of the
participants spans from 18 to around 55 years, with a mean age of 24 years and a
standard deviation of 10 years. During the data collection, each participant wears
a piezoelectric respiratory belt placed approximately four centimetres below the
collarbone. This belt, specifically the MLT1132 transducer from ADInstruments,
converts thoracic circumference changes associated with respiration into a linear
voltage reading. The participants engage in spontaneous speech for a duration of
five minutes in a quiet office space. Their speech is recorded using a head-mounted
condenser microphone positioned approximately three centimetres from the mouth.
The recorded audio is subsequently edited, selecting a four-second segment that
corresponds to 6 000 breathing values for further analysis. The signals in the study
are sampled at a rate of 40 kHz. To ensure consistency, the speech signals are down-
sampled to 16 kHz, while the breathing patterns captured by the belt are down-
sampled to 25 Hz. Furthermore, to facilitate standardised analysis, the breath signal
is normalised by dividing each value by the maximum recorded value observed across
the entire dataset. This normalisation process ensures comparability and enables
accurate examination of the breathing patterns across different participants and
conditions. To ensure a robust evaluation of the model’s performance, the CCD is
divided into three partitions: train, development, and test. These partitions consist
of data from different speakers. Specifically, the train partition includes data from
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Figure 10.7: Feature representation for the training encoder.

17 speakers, the development partition includes data from 16 speakers, and the test
partition includes data from the remaining 17 speakers. In the analysis presented
in this thesis, the focus is primarily on the train and development partitions.

10.2.1.1 Speech Representation

Three distinct speech representation techniques are explored for the detection of
breathing patterns from speech signals using CCD. The first approach is as shown
in Figure 10.7 where the process of extracting 27 time-domain features from the
speech signal is illustrated. Specifically, the following steps are involved in feature
extraction:

1. ZCR, skewness, and kurtosis are computed from 40 ms speech frames.

2. TDDFs, RMSE, and frame auto-correlation are extracted from every 20 ms
speech frame.

3. TDDFs from two consecutive 20 ms frames are concatenated to form a single
feature vector.

4. The average value of RMSE and auto-correlation is calculated for every 40 ms
frame.

In the second approach, in addition to the 27 feature values, the histogram
of the frame and the histogram of the Fourier transformed frame using 64 bins
are calculated. This gives a feature vector of length 155 (27 + 64 + 64) for each
40 msec frame. The third approach to speech representation for extracting breathing
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Figure 10.8: Bi-LSTM architecture for the extraction of breathing patterns from
speech data of CCD.

patterns from speech data of CCD resembles the one explained in Section 10.1.1.1
which comprises TDDFs and PDDFC.

10.2.1.2 Model Architecture

Two LSTM-based architectures are explored for the extraction of breathing patterns
from speech signals. The first architecture, referred to as the BiLSTM-Encoder, is
as described in Figure 10.8. The model uses a stacked Bi-LSTM architecture to
encode the speech signals into breathing patterns. The deep network uses a batch
size of 250, and has a skip connection after three layers. The ’tanh’ activation at the
output layer gives breathing values in the range of −1 to 1. The second architecture
is SBreathNet explained in Section 10.1.1.2.
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Table 10.2: Performance measured in r-value on development partition for three
combinations of speech-representation and network architecture using CCD.

Features Network r-value
16 time-domain BiLSTM-Encoder 0.47
155 feature vector BiLSTM-Encoder 0.56
TDDF + PDDFC SBreathNet 0.58

10.2.2 Observations

10.2.2.1 Train-Dev Analysis

During the ComPaRE challenge organised at Interspeech 2020, CCD comprising
speech data from 33 speakers is divided into two partitions: a train partition and a
validation partition. The train partition contains data from 16 speakers, while the
validation partition contains data from 17 speakers. To evaluate the performance
of different combinations of speech representation techniques and network archi-
tectures, the models are trained on the train partition and tested on the validation
partition. The evaluation metric used to assess the performance is the r-value, which
measures the correlation between the predicted breathing patterns and the actual
breathing patterns. Three different combinations of speech representation tech-
niques and network architectures are explored in this evaluation. The performance
of each combination is being assessed by calculating the r-value on the development
partition. This analysis aims to determine which combination achieves the high-
est correlation between predicted and actual breathing patterns on the validation
data. According to the results presented in Table 10.2, the maximum performance
achieved on the development partition is an r-value of 0.58. This performance is
obtained by using the SBreathNet network architecture in combination with the
TDDF and PDDFC speech representation techniques. The analysis presented in
following sections use all the three combinations for specific use-cases.

10.2.2.2 Leave One Speaker Out Analysis

The LOSO analysis presented in this section uses TDDF+PDDFC+SBreathNet
combination. As seen in Figure 10.9, the LOSO analysis of the 33 speakers reveal
that six speakers exhibit an r-value below 0.50, with only one speaker having an
r-value of 0.0. Further investigation indicate that the breathing patterns of these six
speakers follow an ingressive pattern. Specifically, their breathing values exceed the
average value for over half of the 5 s duration, as observed empirically. Figure 10.10
shows two samples of ingressive speaker breathlets where the speech is produced
during inhalation. The speaker labelled as ’devel 00’ on the left side exhibits an r-
value of 0.18, while the speaker denoted as ’devel 15’ on the right side demonstrates
an r-value of 0.22. Egressive speakers exhibit an average r-value of 0.67, while ingres-
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Figure 10.9: Leave one speaker out performance of the deep LSTM model SBreath-
Net on the ComParE dataset.
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Figure 10.10: Ingressive breathlets from two ComParE speakers (a) devel 00 (r-value
0.18) and (b) devel 15 (r-value 0.22).

sive speakers have an average r-value of 0.24 in this dataset. Interestingly, despite
the inclusion of spontaneous speech in the dataset, the influence of ingressiveness
on the model’s performance is comparable to that of speech data recorded during
reading activities.

10.2.2.3 Ingressives and Egressives

This section uses the TDDF+PDDFC+SBreathNet combination based predictions
to discuss the ingressive and egressive speakers’ results. The 27 speakers having
Breathlets –a– and –b– are egressive speakers and the six speakers’ having Breathlets
–c–, –d– and –e– are ingressive speakers. With LOSO analysis, the egressives yield
an average r-value of 0.68, ranging between 0.50 to 0.78. However, ingressives gives
an r-value of 0.00. This exhibits similar results as that of InDSB dataset. The
ingressives of CCD dataset have a negative impact on the model’s performance.
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10.2.3 Conclusion

The application of SBreathNet on the ComParE challenge dataset yields consistent
findings for both ingressive and egressive speakers. The proposed approach achieves
an r-value of 0.58 on the development partition, which is comparable to the per-
formance of state-of-the-art models discussed in [41] (r-value - 0.64). Notably, the
proposed model has a significantly lower number of parameters, with only 42, 000
parameters compared to the 1.4 million and 3.5 million parameters utilised by the
state-of-the-art models described in [41].

The performance of the proposed architecture was on par with that of state-
of-the-art models when evaluated on the (benchmark) ComParE challenge dataset.
LOSO analysis is performed to understand the r-value between the predicted and
the true breathing patterns for each speaker. The speaker-wise analysis helps in
understanding the performance variation across speakers. This also reveals the
impact of ingressiveness on the model performance. These observations are not
evident from the overall performance of the model. It is concluded that LOSO
analysis is a strong analysis technique to understand the performance better and
identify the challenges in extracting breathing patterns from the speech signals.
The impact of the ingressive speech on the model’s performance in extracting the
breathing patterns accurately is presented. Hence, in future work, the focus will be
on collecting more data and identifying ingressive speech.
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Detecting Respiratory Disorders
from Speech

11.1 COVID-19 Detection using Speech Decom-

posed Components

11.1.1 Data and Procedure

11.1.1.1 Early Coswara Dataset

Table 11.1: Number of subjects with data available in each of the seven categories of
the Coswara Database. The total (count) column indicates the number of subjects
with data belonging to the healthy and COVID-19 categories.

Audio Category # Count # Total
Healthy 1198
No respiratory illness found 97 1372
Not exposed to respiratory illness 77
Recovered 23
Asymptomatic 14
Mild positive 84 131
Moderate positive 10

Coswara is a project by the Indian Institute of Science (IISc) in Bangalore1,
India, and is at its data collection stage now. This dataset [50] is constantly grow-
ing with the crowd-sourced samples provided by individuals across the globe. In
this dataset, the participants provide audio recordings of breathing sounds, cough
sounds, sustained phonation of vowel sounds, and short speech. Each participant’s

1https://coswara.iisc.ac.in/?locale=en-US
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data consists of nine audio recordings, comprising the three vowels /a/, /e/, and
/o/, fast counting, slow counting, deep breathing, shallow breathing, deep cough,
and shallow cough.

The data collection at Coswara started with individuals having COVID-19 and
then expanded with labels for other respiratory disorders such as asthma, chronic
lung disorders and so on. Hence, the early version of the coswara dataset (EvCD)
had only COVID-19 labels. The COVID-19 infection status for each subject is given
by one of the seven labels: ‘healthy’, ‘no respiratory illness found’, ‘not exposed
to respiratory illness’, ‘recovered’, ‘asymptomatic’, ‘mild positive’, and ‘moderate
positive’. The data distribution among these categories is as shown in Table 11.1.

For the binary classification of identifying COVID-19 bio-markers, these seven
categories merge to form two classes. The three categories, ‘Healthy’, ‘No respiratory
illness found’, and ‘Not exposed to respiratory illness’ together form the “healthy”
class. All other four categories belong to the “COVID-19” class. As seen from the
Table 11.1, the two classes are highly imbalanced, with 131 subjects belonging to
COVID-19, and 1372 subjects belonging to the healthy class. Audio data augment-
ing techniques might lead to the loss of COVID-19 bio-markers, as they change the
audio signal properties. Hence, only 10 % of the healthy class (comprising all 97
subjects with the ‘No respiratory illness found’ label and 34 subjects with the ‘Not
exposed to respiratory illness’ label) is used for classification, such that the classes
are balanced.

11.1.1.2 Analysis with Speech Decomposed Features

As previously discussed, one approach to handcrafted speech feature engineering
involves decomposing the speech signals into their source and filter components. In
this section, two different approaches for separating the source and filter components
are presented using the Coswara dataset: cepstral domain separation and phase
domain separation.

As discussed in Section 2.1, in the cepstral domain separation approach, the
speech signal is transformed into the cepstral domain using techniques such as the
Mel-frequency cepstral coefficients (MFCCs). The first 20 coefficients extracted
using Mel scale filters are used as filter-component (vocal tract) features and later
20 coefficients as source-component (excitation) features. In the phase-decomposed
approach, the source and filter components’ feature vector length resembles 960. Of
these 960, the initial 120 for the source as well as the central 120 from index 480 to
600 are found to carry useful information using principal component analysis.

Figure 11.1 shows the source and filter components decomposed using the CD
and the PD for vowels, cough, and breathing audio of ”EvCD”.

These feature vectors of length 120 from the PD and 20 from the CD are fed into
a neural network for binary classification between COVID-19 and healthy subjects’
audio. The performance of the classifiers is measured in Area Under the Curve
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Figure 11.1: Mean of Source and Filter components decomposed from ‘moderate’
COVID-19 infection status using phase (top two rows) and cepstral (bottom two
rows) domain techniques. The audio categories are: A: vowel /a/, E: vowel /e/, O:
vowel /o/, CH: Cough Heavy, BD: Breathing Deep.

(AUC). COVID-19 infection has an effect on the human respiratory system, in turn
causing changes in the production of speech, cough, and breathing sound. To un-
derstand this effect, the performance of classification systems built using the source
and filter components of human produced audio signals is compared.

The neural network comprises of 1-dimensional convolution layers with 32 nodes
followed by a Long Short-Term Memory (LSTM) layer of 16 nodes. This network
has an output layer with ‘sigmoid’ activation. The network is trained using an Adam
optimiser with a learning rate of 0.00008 for 55 epochs. The loss function used is
‘binary cross-entropy’. As shown in Figure 11.2, the public Coswara database [50],
comprising nine different audio categories, is used for this comparative analysis. This
network intends to classify the samples of healthy from that of COVID-19 positive
individuals.

11.1.2 Observations

As discussed in Section 11.1.1.1, the data samples belong to one of the seven cat-
egories, which essentially maps to five distinct stages of COVID-19 infection – ‘re-
covered’, ‘asymptomatic’, ‘mild positive’, ‘moderate positive’, and ‘healthy’. The
neural network explained in Section 11.1.1.2 is trained with healthy samples as
‘COVID-19 negative samples’ and all others as ‘COVID-19 positive samples’ to de-
tect healthy subjects from the subjects belonging to other stages of COVID-19. The
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Figure 11.2: Early Version of Coswara data is available in nine different audio cate-
gories collected from COVID-19 and healthy subjects. In the present analysis, these
are decomposed into source and filter components. These components’ performance
is compared using a neural network.
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AUC for binary classification using different audio categories is as shown in Figure
11.3. While comparing the performance of source and filter components, the filter
components perform better than the source components for both MFCCs and the
PD. As seen in the Figure, MFCCs appear more suited than the PD features across
all nine audio categories, with an average improvement of around 16.6 % AUC.
The combined feature set comprising of source and filter components of MFCCs
performs better than their respective performance. However, for PD analysis, the
combined feature set does not improve over the filter components. A maximum
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Figure 11.4: Binary classification results obtained between COVID-19 healthy sub-
jects and other subjects at four different stages – MdF:Moderate Filter, MlF: Mild
Filter, AF: Asymptomatic Filter, RF: Recovered Filter, MdS: Moderate Source,
MlF: Mild Source, AS: Asymptomatic Source, RS: Recovered Source.

AUC of 88.1 % is achieved using the combined MFCC feature set for the vowel /e/,
which is 31.6 % higher than that of using the combined PD feature set for the same
vowel /e/. A minimum difference of 11.6 % AUC is found between the MFCC and
PD performance using combined feature sets for heavy cough audio. Using PD
analysis, the maximum performance of 66.1 % AUC is exhibited by filter compo-
nents for the vowel /o/. The 95 % confidence interval calculated for AUCs across
all the nine audio categories using PD analysis is (55.3 − −65.4) and CD analy-
sis is (68.3 − −87.7). Another observation is, vowels exhibit the highest detection
performance (maximum average AUC: 86 % using MFCCs combined, 63.4 % using
the PD filter component) followed by breath signals (maximum average AUC: 77 %
using MFCCs combined, 56.8 % using the PD filter component), and then counting
(maximum average AUC: 70.1 % using MFCCs combined, 55.3 % using the PD filter
component) & cough audio signals (maximum average AUC: 68.7 % using MFCCs
combined, 55 % using the PD filter component). Figure 11.4 shows the performance
of binary detection of COVID-19 healthy subjects from the subjects at each of the
four COVID-19 stages – ‘recovered’, ‘asymptomatic’, ‘mild positive’, and ‘moderate
positive’. Again, while comparing the performance of source and filter components,
filter components perform better than the corresponding source components except
for the moderate staged ‘vowel /e/’. It is also seen from the Figure that COVID-19
healthy subjects are classified with higher AUC from asymptomatic and recovered
subjects as compared to moderate and mild subjects.
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11.1.3 Conclusion

From the results, it is evident that COVID-19 infection has a higher impact on the
properties of vocal tract modulation than the source of excitation. This also reveals
that the audio signals produced by asymptomatic and recovered subjects also carry
the required bio-markers for COVID-19 identification. More research is required to
confirm these preliminary observations.

11.2 Decoding COVID-19 using Speech-

Breathing Encoder

As seen in the Figure 11.5, the UCL-SBM dataset provided in the breathing sub-
challenge of the Interspeech 2020 Computational Paralinguistics ChallengE (Com-
ParE) [40] is used, to train an encoder model which predicts breathing patterns of
an incoming audio signal. This encoder is trained with the first combination de-
scribed in Table 10.2, which is a feature vector of length 16 and Bi-LSTM encoder.
This pre-trained encoder is further used to predict the breathing patterns of the
cough audio signals shared in the Track 1 of the DiCOVA challenge [82]. These
cough-breathing patterns are then used as feature vectors to train a decoder model.
The decoder decodes the COVID-19 status from cough-breathing patterns. This
section explains this concept of encoder-decoder approach taken for the detection of
COVID-19 using speech-derived breathing patterns.

11.2.1 Data and Procedure

The DiCOVA Challenge-I dataset is provided during the DiCOVA Challenge-I or-
ganised at the Interspeech 2021 conference [82] for the detection of COVID-19 in-
fected individuals from healthy individuals. There are two tracks in this dataset:
(a) Track-1: composed of cough sound recordings, and (b) Track-2: composed of
deep breathing, vowel [i], and number counting (normal pace) speech recordings.

DiCOVA challenge-I Track-1 and Track-2 are split into five folds; each fold hav-
ing train and validation partition. The number of subjects belonging to the folds
of each track is as described in Table 11.2. As seen in Table 11.2, the tracks pro-
vide imbalanced train and validation partitions of COVID-19 and non-COVID-19
individuals in five folds.

Techniques such as time-stretch, and pitch-change for augmenting audio data
might lead to the loss of COVID-19 bio-markers, as they change the audio signal
properties. To balance the two classes, the samples from the minority class are
augmented by repetition such that equally numbered samples in both of the classes
are obtained.
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Figure 11.5: Conceptual model of the COVID-19 recogniser informed by a data-
trained breathing predictor from audio.

The details of the two decoder architectures are explored and presented as shown
in Figure 11.6. Decoder 1 uses a dense layer with ‘sigmoid’ activation and converts
the range for breathing values into 0 to 1. An attention layer identifies the significant
breathing values using ‘tanh’ and ‘sigmoid’ layers outcome. The last layer is again a
sigmoid activation which acts as a classifier to detect the (binary) COVID-19 status.
Decoder 2 has a ’leaky-ReLU’ (Rectified Linear Unit) activation at the input layer
and uses a 1-dimensional convolution layer (Conv1D) along with stacked attention
and LSTM layers. In this Decoder 2 network, the training samples with COVID-19
positive status are passed as query to the first attention layer. Also, dropout factor
of 0.4 is used with the attention and Conv1D layers to avoid over-fitting.

11.2.2 Observations

At the output of the encoder, the Pearson correlation of true values with the pre-
dicted values is obtained, where an r value of 0.47 on the devel set is achieved. With
further observation, it is found that 4 out of 16 devel set files are having a correlation
below 0.3, while another 12 had an r value above 0.5, giving an average of 0.57 for
the r value while calculating for every file (or speaker), thus showing a drop of 0.1
for the entire dataset.
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Table 11.2: Number of subjects belonging to the healthy and COVID-19 categories
in each track and fold of DiCOVA Challenge -I dataset.

Folds # Track-1 # Track-2
Total COVID-19 75 60
Total non-COVID-19 965 930
Train Folds COVID-19 50 39
Train Folds non-COVID-19 772 744
Validation Folds COVID-19 25 21
Validation Folds non-COVID-19 193 186

11.2.2.1 Track 1 Results

The breathing parameters of the cough audio signals are passed as an input feature
vector of length 250 to the decoder. As shown in Figure 11.6, two different decoder
architectures are explored. The result obtained with the Decoder 1 network is
submitted at the DiCOVA challenge, in which an AUC of 64.4 % is achieved on the
evaluation set and an average AUC of 47.2 % on the validation set of the Track 1 data.
With Decoder 2, a further complex attention network, an absolute improvement of
10 % is obtained on the validation set from 47.2 % to 57.4 % AUC2. For the Track
1 evaluation set, using Decoder 1, the model gives an average specificity of 40.1 at
the sensitivity of 80.4. Two more submissions are made to the DiCOVA challenge –
Track 1 evaluation set. In the first submission, a RandomForest classifier is trained
using the breathing patterns extracted from speech signals. It gave an average AUC
of 69.11 % on the validation set, however, a lesser AUC of 60.66 % on the evaluation
set.

In the second submission, MFCCs gave an average AUC of 53.84 % on the val-
idation set and an AUC of 55.12 % on the evaluation set of Track 1 using Decoder
1 network. With Decoder 2 network, MFCCs give an average AUC of 51.4 % on
validation set Track 1. As seen in Table 11.3, breathing features give an absolute
improvement of 6 % over MFCCs using Decoder 2. Combining the two feature sets
further improve the result to 57.2 % and 61.1 % using Decoder 1 and Decoder 2
network respectively.

11.2.2.2 Track 2 Results

This system’s performance is also evaluated on the Track 2 dataset. With the same
encoder-decoder (Decoder 1) architecture, average AUC on the five folds of Track
2 validation and evaluation sets are as shown in Figure 11.7. As seen for both vali-
dation and evaluation sets, breathing features extracted from counting and vowel-e
audio signals are performing better than that from the breathing audio signals. This

2Note that this result was obtained after the challenge’s closure of deadline.
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Figure 11.6: Decoder architecture for detecting COVID-19 using speech-derived
breathing patterns.

seems to be corollary of using breathing features extracted from speech signals for
training the decoder. With the complex attention based decoder network (Decoder
2) mentioned in Section 11.2.2.1, we could not find major improvement in the Track
2 results. On comparing the performance exhibited by MFCCs on this dataset, us-
ing Decoder 1 network, it is seen that again breathing features perform better with
an absolute improvement of 2 % for vowel-e data. In case of counting-normal data,
both MFCCs and breathing features, have similar performance. MFCCs are found
to perform better than breathing features for breathing audio data with an absolute
improvement of 12 % on the evaluation set. The feature set combining MFCCs and
breathing features, improves the performance across all the modalities.

11.2.3 Conclusion

The concept of encoding speech audio signals into breathing patterns and using
these breathing patterns for identification of COVID-19 bio-markers is presented.
This is a preliminary attempt to examine the significance of breathing-pattern rep-
resentation of an audio signal for one of the many possible applications. It is seen
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Figure 11.7: Track-2 validation (left) & evaluation (right) set average performance
for breathing, counting, and vowel-e using MFCCs, BF: breathing features and
Comb: feature set combining MFCCs & BF.

Table 11.3: Track-1 performance reported in average AUC. D1: Decoder 1, D2:
Decoder 2, BF: Breathing Features, Comb: Combined set of MFCC & BF.

Set D1 D2

% MFCC BF Comb. MFCC BF Comb
Val 53.8 47.2 57.2 51.4 57.4 61.1
Test 55.1 64.4 −− −− −− −−

that the breathing features outperform MFCCs for cough and vowel-e audio data.
In case of counting, both have similar results. In case of breathing audio data,
MFCCs are found to perform better. However, the feature set combining both the
features throughout performs better than the individual feature set. This provides
an encouragement to augment this concept with recent deep learning techniques to
accomplish better results for speech analysis based applications including detection
of COVID-19.

11.3 Speech-derived Breathing Pattern Parame-

ters of COVID-19 Subjects

11.3.1 Data and Procedure

The second DiCOVA challenge took place at the International Conference of Acous-
tics, Speech, and Signal Processing (ICASSP) in 2021. Similar to the first challenge,
the second DiCOVA challenge aimed to detect COVID-19 infection using speech,
breathing, and cough sounds. The dataset used in this challenge is a subset of
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Table 11.4: Details of the data provided in the second DiCOVA challenge. We show
only the count of COVID-19 and non-COVID-19 samples in the partitions, train,
dev, and test.

# # Train & Dev # Test
COVID-19 172 60
non-COVID-19 793 411
Total Samples 965 471

the Coswara dataset. The encoder-decoder approach used in this experiment is as
described in Figure

11.3.1.1 Data Details

In the second DiCOVA challenge, there are four tracks, and our participation was
in track-3, which involved speech data from both COVID-19 and non-COVID-19
subjects. The complete dataset is divided into a train-set, development (dev)-set,
and a blind test-set. The train and dev sets combined consist of 965 files, while the
blind test set consists of 471 files. Each file is labelled with a COVID-19 status.

When reporting performance on the dev-set, it is required to use the five train-
dev partitions provided in the challenge. The number of COVID-19 samples in the
train+dev partition and the test partition can be found in Table 11.4. For more
detailed information on the data, including the train and development partitions,
please refer to [83].

11.3.1.2 Encoder Details

Figure 11.8 shows the encoder employed in this section. The encoder, previously
trained on speech data from the breathing sub-challenge of the Interspeech 2020
ComParE challenge, is now utilised to predict the breathing patterns within the
speech data provided in track-3 of the second DiCOVA challenge. These breathing
patterns consist of a time series comprising 250 breathing values.

To correlate the speech signals with their corresponding breathing patterns, the
encoder employs a feature vector of length 27, which includes time-domain fea-
tures. Additionally, the histogram of the frame and the histogram of the Fourier
transformed frame, each with 64 bins, are incorporated. Consequently, each 40-
millisecond frame yields a feature vector of length 155 (27 + 64 + 64). These
features are then coupled with the BiLSTM architecture.

79



11. Detecting Respiratory Disorders from Speech

Pre-trained 
Encoder

Dicova 2: 
Track-3: 
Speech

Breathing 
Patterns

Deep 
Network

Train+Dev
Partition

Test 
Partition

Encoder Section

Training

Inferencing

Decoder Section

5
Features 
Extractor

COVID-19 
Status

K-NN 
Classifier

Train+Dev
Partition

Test 
Partition

Training

Inferencing

COVID-19 
Status

5 partitions-
based analysis

5 partitions-
based analysis

Figure 11.8: The pre-trained encoder provides breathing pattern predictions for the
speech signals of track-3 Dicova Challenge 2. The breathing patterns are consumed
by the deep network based decoder. The five breathing parameters extracted from
the breathing patterns are consumed by k-NN classifier. The final COVID-19 status
is obtained separately for the two decoders. This approach enables a comparison
between the predictions provided by the two decoder types.

11.3.1.3 Representation Details

Further, five breathing parameters are extracted from the speech-derived breathing
patterns as explained below:

1. Inhale-exhale cycle (Breath cycle) counter: Number of times the breathing
value in the breathing pattern rises from negative to positive and again retains
a negative value.

2. Maximum inhale duration: Time taken by the breathing value to rise from
negative peak to positive peak.

3. Min-max value ratio: Ratio of the lowest breathing value (negative peak) to
the highest breathing value (positive peak) in a breath cycle.

4. Average of inhaling and exhaling counts: An average count of the number of
inhales and exhales in a speech file. In some cases, only inhale/exhale appear
in the prediction and not the complete breath cycle. This parameter also
considers the presence of shallow breaths, which means either inhale or exhale
is of extremely short duration.
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Table 11.5: Details of the data provided in the second DiCOVA challenge. We show
only the count of COVID-19 and non-COVID-19 samples in the partitions, train,
dev, and test.

Metric Deep+250 k-NN+250 k-NN+5
Dev-AUC 57.0 57.0 40.1
Test-AUC 51.2 52.2 –
Sensitivity 10.0 11.7 46.7
Specificity 93.2 93.4 54.7

5. Min-max duration ratio: Ratio of the minimum duration of the breath cycle
to the maximum duration of the breath cycle.

11.3.1.4 Decoder Details

In this experiment, a decoder utilises the breathing patterns obtained from the
encoder as a feature set to predict the COVID-19 status. Two different types of
decoders are explored as shown in Figure 11.8. The first decoder, referred to as
decoder 2 and depicted in Figure 11.6, employs the 250 breathing values predicted
by the encoder as the feature set. The second decoder is a k-Nearest Neighbour (k-
NN) classifier. Unlike the first decoder, this second decoder utilises the five breathing
pattern parameters described in Section 11.3.1.3 as the feature set, rather than the
250 breathing values. To evaluate the test set using k-NN, the COVID-19 status of
the corresponding test clusters identified by k-NN cluster0 and k-NN cluster1 are
combined, providing the final k-NN evaluation.

Five partitions, each having train and val sets are provided for reporting the
performance of the development set. Five deep and five k-NN models are trained
with the train set of each partition and are used for predicting the COVID-19 status
of corresponding val sets.

11.3.2 Observations

11.3.2.1 Decoder Performances

The performance exhibited by the decoder, where we compare the deep model
trained with 250 features with the k-nearest neighbour model trained with five
breathing parameters is discussed in this section. Table shows the performances
of the two decoders.

The deep model trained with the 250 features vector gives 57.0 % AUC on the
development partition and 51.2 % AUC on the test partition. On the test set, this
model reaches 10.0 % sensitivity and a specificity of 93.2 %. The five parameters
extracted from the breathing patterns perform the same on the development set
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Breath Cycle Count

t(6436) = 4.98 , p < 0.001

Maximum Inhale Duration
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Figure 11.9: The box plots of five breathing parameters of the train + dev set along
with their t-test performances. The parameters that differ in the two classes are
shown for each of the five parameters on their plots.

with 57.0 % AUC and give an AUC of 52.2 %, a sensitivity of 11.7 % and a specificity
of 93.4 % on the test set. Note that the performance on the development set is
reported as per the five partitions provided in the challenge. We also evaluate the
performance of the k-NN classifier using the breathing pattern of length 250 as the
features. This model reaches a sensitivity of 46.7 % and specificity of 54.7 % with
an AUC of 40.1 %.

11.3.2.2 Analysing Breathing Parameters

The five breathing parameters extracted from the breathing values help us in in-
terpreting the results. As seen in Figure 11.9, the t-scores of the five breathing
parameters depict their significance in classifying the two classes. The parameters,
‘min-max breath value ratio’ and ‘min-max breath duration ratio’, has more out-
liers than others, which might have interfered with the COVID-19 identification
task. There are more ‘breath cycle counts’ and lesser ‘maximum inhale duration’
median values for the COVID-19 positive samples compared to healthy samples. As
COVID-19 individuals usually suffer from breathing difficulties leading to shorter
breath cycles and more breath counts, the same is evident from these two parame-
ters. The ‘average inhale-exhale count’ is larger for COVID-19 subjects indicating
the presence of more shallow breaths in them. However, the taller box for COVID-
19 subjects indicates lesser coherence of this parameter for the COVID-19 group.
‘Minimum breath duration to maximum breath duration’ would attain a smaller
value for a longer maximum breath cycle duration. The data of the second Di-
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11.4. Decoding Respiratory Disorders with SBreathNet

COVA challenge has the metadata information about the presence of respiratory
ailments in each of the samples. The false positives of the k-NN classifier using the
five breathing parameters have no samples from the subjects with other respiratory
ailments. It positively indicates the absence of confusion between COVID-19 and
other respiratory ailments.

11.3.3 Conclusion

The breathing parameters were computed based on the derived breathing patterns
from the speech signals. The long and uninterrupted nature of speech signals makes
them ideal candidates for providing more accurate representations of breathing pat-
terns. Therefore, it is crucial to investigate the performance of such a model using
speech signals obtained during extended conversations with COVID-19 positive in-
dividuals. By incorporating a larger dataset within this context, the approach can
be further advanced and refined to achieve more comprehensive results.

11.4 Decoding Respiratory Disorders with

SBreathNet

11.4.1 Data and Procedure

1319

134
211

44

488

652 681

45

296

72

1214

118
180

39

433

583 618

37

266

57

1217

118
180

39

433

584
620

37

265

57

0

200

400

600

800

1000

1200

1400

Healthy Asthma BD CLD Cold Cough Covid Pneumonia ST Others

Sp
ea

ke
r 

C
o

u
n

t

Respiratory Disorder

# Speakers # Fast Speech # Normal Speech

Figure 11.10: Figure shows the number of healthy and unhealthy subjects present
in the Coswara dataset. Unhealthy classes comprise of Asthma, BD (Breathing
Difficulty), CLD (Chronic Lung Disorder), Cold, Cough, Covid (COVID-19), Pneu-
monia, ST (sore throat), and OtherResp.

The full version of the coswara dataset (FvCD) [50] of respiratory sounds has
grown to have labels for COVID-19, smoking, mask-wearing status, hypertension,
diabetes, diarrhoea, fever, muscle pain, OtherResp, and heart disorders. The FvCD
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comprises three categories of respiratory sounds: cough, breath, and speech. For the
analysis presented in this thesis, the labels for respiratory disorders and COVID-
19 status for speech samples present in the FvCD are considered. There are two
activities performed by the subjects while their speech samples are collected: 1)
Counting the digits from one to ten at a fast speed 2) Counting the digits from one
to ten at normal speed. The analysis of both task-based speech samples for the
nine respiratory disorders (asthma, BD, CLD, cold, cough, COVID-19, pneumonia,
ST, and OtherResp) is presented. The COVID-19 class comprise of covid-status:
positive-mild, positive-moderate, and positive-asymptomatic. The healthy class is
defined as the one comprising those who do not have any health disorders mentioned
in the FvCD labels. (Note that this is different from the healthy label of the FvCD,
which indicates the absence of COVID-19 infection.) All the respiratory disorder
classes together are also sometimes referred to as ’unhealthy class/es’. As shown in
the Figure 11.10, the healthy class has much higher subject count as compared to
unhealthy classes.
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Figure 11.11: The approach used for balancing the two classes for the detection
of unhealthy classes (classes having respiratory disorders) from the healthy class
(absence of any disorder enlisted in the Full version of Coswara dataset).

To avoid the impact of imbalanced data, the analysis is done in batches. As
shown in Figure 11.11, the healthy class is segmented into chunks of size matching
that of the unhealthy class being detected. Such batches of data from the healthy
and unhealthy classes are represented using feature vectors and are further processed
for building the predictive models. The performance outcomes of all the batches are
averaged to get the final outcome.

11.4.2 Observations

11.4.2.1 Average Breathing Pattern Analysis

Figure 11.12 shows the average breathlets (single breath cycle from inhalation to
exhalation) that comprise of 250 points corresponding to 5 s duration of speech of
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Figure 11.12: Average breathlets (SDBP representing a single breath cycle from
inhalation to exhalation) of each respiratory disorder compared with that of the
healthy class. DA: Difference in the area-under-the-curve (AUC-ROC) value for the
unhealthy class with that of the healthy class. The average breathlets are calculated
for the speech of the normal speed counting task.

participants counting the digits with normal speed. As seen in Figure 11.12, the
average breathlet of each category of respiratory disorder is compared with that of
the healthy class. It is observed that, for the unhealthy classes, the inhalation peaks
are lower and the exhalation exhibits higher perturbation than that of the healthy
class.

The area-under-the-receiver-operating-characteristic-curve (AUC-ROC) is calcu-
lated for the average breathlet of each respiratory disorder class using the scikit-learn
[84] library and compare it with that of the healthy class. The difference in the AUC-
ROC between healthy and unhealthy classes (DA) is represented on the respective
plots in Figure 11.12. The DA is on the higher side (above 5) for CLD, pneumo-
nia, and OtherResp indicating higher difference from the healthy class. The DA is
on the lower side (below 4) for cough and cold and remains average for BD, ST,
and asthma. The AUC-ROC of the average breathlet indicates the lung volume
capacity exhibited by the subjects belonging to specific category. With this, it is
observed that the subjects of the classes CLD and pneumonia have the lowest av-
erage lung volume capacities. Subjects of the classes cough, cold, and COVID-19
have comparatively higher average lung volume capacity.
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Figure 11.13: Average breathlets (SDBP representing a single breath cycle from
inhalation to exhalation) of three categories of COVID-19 infection: Mild, Moderate,
and Asymptomatic. DA: Difference in the AUC-ROC value for the COVID-19 class
with that of the healthy class. The average breathlets are calculated for the speech
of normal speed counting task.

The COVID-19 class has further subsets of labels based on the three different
categories of the infection: mild, moderate, and asymptomatic. The average SDBPs
of these three categories of COVID-19 are as shown in Figure 11.13. The subsets
mild and moderate show a higher variance from the healthy class than that of
asymptomatic subset. Subjects of the moderate subset exhibit lowest lung volume
capacity, even lower than those infected with CLD.

11.4.2.2 Cross-Validation

Both Random Forest and XGBoost as classifiers are executed and their performances
are compared. It is seen that, the performance with XGBoost is lower than for
Random Forest for the detection of all the nine categories of respiratory disorders.
Hence, this section discusses the results of the Random Forest classifier alone.

Figure 11.14 shows the average cross-validation performance (using AUC) of the
detection of unhealthy classes from the healthy classes while the subjects count the
digits with fast speed. As seen in Figure 11.14, SDBPs as features perform better
than MFCCs in detecting the respiratory disorders across all classes. The perfor-
mance further improves when combining the two feature sets. The best performance
of an AUC of 0.77 is achieved in detecting pneumonia and OtherResp from healthy
class. Followed by this, an AUC of 0.76 is achieved in detecting chronic lung disorder
from the healthy class. Further, individuals having breathing difficulty are detected
from the healthy ones with an AUC of 0.74. The results indicate that the SDBPs
are a suited speech representation for the detection of respiratory disorders from
speech. The 95 % confidence interval calculated (using quantile method of pandas
library [85]) for AUCs across all the nine respiratory disorder classes using SDBPs
as features is (0.61 −−0.76).
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Figure 11.14: Detection of a respiratory disorder from the healthy class speech
samples while the subjects count the digits with fast speed; measured using metric
area under the curve (AUC). Breath-fast: Results using SDBPs as the feature set on
the counting-fast speech samples. MFCC-fast: Results using MFCCs as the feature
set on the counting-fast speech samples. Combined-fast: Results with both the
SDBPs and MFCCs combined together as feature set on the counting-fast speech
samples.

Figure 11.15 shows the average cross-validation performance in AUCs across all
the respiratory disorders while the subjects count the digits in normal speed. Unlike
the observations with fast-counting speech, the performance exhibited by SDBPs as
features is exactly the same as that of MFCCs. Together, the two feature sets
perform better with a fine margin of 0.1 on average across all classes. The best
discrimination is found between the healthy class and the class OtherResp with an
AUC of 0.76. Followed by this, the AUCs for the detection of pneumonia, CLD, and
BD are 0.71, 0.70, and 0.68 respectively. The 95 % confidence interval calculated
for the AUCs across all the nine categories of respiratory disorders using SDBPs as
features is (0.60 −−0.73).

11.4.2.3 COVID-19 Analysis

The three subsets of the COVID-19 class are evaluated using 10-fold cross validation
analysis. As seen in Table 11.6, SDBPs continue to perform better than MFCCs
for the counting-fast speech samples. Once again, the performance exhibited by the
combined feature set outperforms all the three subsets. The maximum AUC of 0.72
and 0.70 is achieved for the subjects infected moderately by COVID-19 while they
count the digits in fast and normal speed respectively. For moderately infected cases,
SDBPs detect better using counting-normal speech. For counting-normal speech
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Figure 11.15: The classification results obtained on the speech samples of subjects
counting the digits in normal speed. the results are measured using AUC as metric.
Breath-Normal: AUC values for the normal-speed speech samples using SDBPs as
the feature set. MFCC-Normal: AUC values for the normal-speed speech samples
using MFCCs as the feature set. Combined-normal: AUC values for the normal
speed speech samples using combined features (SDBPs and MFCCs).

Table 11.6: Classification results in AUCs for the three categories of COVID-19
positive: Mild, Moderate, and Asymptomatic.

# # Mild # Moderate # Asymp
DataCount 426 165 90
SDBP − Fast 0.63 0.71 0.55
SDBP −Normal 0.59 0.68 0.52
MFCC − Fast 0.58 0.58 0.50
MFCC −Normal 0.62 0.67 0.62
Combined− Fast 0.64 0.72 0.56
Combined−Normal 0.61 0.70 0.56

samples, MFCCs are performing better for the mild and asymptomatic subjects.
Asymptomatic have no symptoms of the infection, and the same is visible in the
speech data as well. It is difficult to detect them from the healthy class.

11.4.3 Conclusion

For each class of the respiratory disorder, the average SDBPs with that of the healthy
class are compared, and also an attempt to detect them using the Random Forest
classifier is made. A synchronisation is seen in the observations of the average
SDBPs in the 10-fold cross-validation analysis. All those classes that exhibit a
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higher difference in the AUC-ROC values for the average SDBP from that of healthy
class are found to perform better in the considered 10-fold cross-validation analysis.
As AUC-ROC measures the lung volume capacity of the subjects belonging to a
specific class, lung volume capacity is one of the important factors that helps in
discriminating between healthy and unhealthy subjects.

The analysis and results on the COVID-19 positive categories for mild, moderate,
and asymptomatic are correlated with the severity of the corresponding categories.
Moderately infected individuals experience more problems with their respiratory
tract as compared to mild and asymptomatic. As per the average breathlet anal-
ysis, the moderately infected class has the lowest AUC-ROC value indicating the
subjects of this class having the least lung volume capacity. This is followed by
mild and asymptomatic respectively. Similarly, moderately infected subjects are
detected with a maximum AUC from the healthy subjects followed by mild and
asymptomatic.

While analysing the performance between the speech samples of the two activi-
ties: counting digits fast and counting digits with normal speed, in our experiments
and shown in Figure 11.14, 11.15, and Table 11.6, the fast counting activity based
speech reflects more information related to the respiratory disorder in their breathing
patterns.

We conclude that the breathing patterns derived from speech signals carry the
information of respiratory disorders and their impact on lung volume capacity of
an individual. Overall, SDBPs could detect a respiratory disorder with an absolute
improvement of 6 % AUC as compared to MFCCs while the subjects count digits in
fast speed and on par when they count digits in normal speed.

Given the nature of breathing patterns as features, their usability would reflect
more when applied on lengthy speech samples of duration more than 30 s. In such
cases, the lung volume capacity variations exhibited over a period of time will further
strengthen the analysis. We will work with longer speech samples of infected subjects
to further reinforce our analysis.
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12

Detecting Human Confidence
Levels from Speech

12.1 Decoding human-confidence levels from

speech

12.1.1 Data and Procedure

Figure 12.1: (a): Number of unique speakers in the confident class, non-confident
class, and in the total data; number of confident, non-confident and total responses
in total of HCD. (b): Distribution of the number of confident and non-confident
responses to each of the 5 questions asked to the candidates during discussion.
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Table 12.1: Duration (in minutes) of confident and non-confident responses in the
train and validation partitions in each fold of the 5-fold cross-validation.

Train Validation
# Confident Non-confident Confident Non-confident
1 29 19 11 4
2 38 23 10 7
3 35 23 12 7
4 32 18 8 5
5 33 18 7 6

As discussed in Section 5.2.2, 51 individuals participated in the data collection
protocol of speech with human-confidence labels in HCD. A total of (51 X 5) 255
responses, each with a duration ranging between 10 − 30 s are obtained. For all the
responses at least two researchers’ labels match with that of the label given by the
candidates themselves. Hence, all the responses receive the majority vote of three
out of four. As seen in Figure 12.1, the non-confident expression is mostly captured
in the responses to questions 4 and 5 having 13 and 14 samples, respectively, whereas
responses of all the 51 speakers to the question 1 are highly confident. There are
37 (14 % of the total responses and 36 % of the responses to questions 4 and 5)
non-confident responses and 218 confident responses. These statistics reflect the
difficulty in capturing non-confident responses from the candidates in a study setup.
To perform the unbiased analysis, the entire HCD is split into five folds, each fold
having confident and non-confident sample count as shown in Table 12.1. Each fold
is then balanced by repeating the non-confident samples to match with that of the
confident samples of respective folds.

12.1.1.1 Model Architectures

The centre of Figure 12.2 shows the SBreathNet architecture for the extraction
of breathing patterns from speech signals. The bottom part of the Figure 12.2
shows the auto-encoder network architecture. The raw frames of duration 40 ms are
normalised and are passed as an input to the auto-encoder network. After several
trials of configuration, four LSTM layers are used to capture the time-series nature of
speech, followed by a last dense layer. As shown in Figure 12.2, the dimension of the
input data is mx320, where m represents the number of 40 ms speech frames in each
response. After experimenting with several node sizes of the bottleneck layer, 25
nodes are found to perform the best in re-generating the input by the auto-encoder.
The LSTM layers in the auto-encoder are fine-tuned to have a learning rate of 0.001
with an Adam optimiser. The loss function used calculates the Pearson’s correlation
coefficient (r) between the input and the re-generated output of the auto-encoder
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Figure 12.2: Four different speech representation techniques: MFCCs, time-domain
features, phase decomposed components, and raw speech frames, are used across
three approaches for the classification of confident and non-confident responses.
The centre of the diagram explains the novel approach of using the deep regres-
sion network (SBreathNet) to extract breathing patterns from the speech signal.
The auto-encoder architecture provides the representation for performance compar-
ison.

and returns ’1-r’ as the loss value. A batch size of one is used with a batch length
of 25 to encode the speech of one second (25X40 ms) in one batch.

12.1.2 Observations

12.1.2.1 Classification with RandomForest

All the three feature sets – MFCCs, SDBPs, and auto-encoder representations – are
fed to the RandomForest Classifier as shown in Figure 10.2. In the first approach,
an MFCC vector represents a 20 ms speech frame, which is then fed to the Random-
Forest classifier. In the second approach, a breathing pattern of 5 s is predicted for
every 5 s of speech. These 5 s SDBPs are then fed to a RandomForest classifier as
feature sets. In the third approach, an auto-encoder representation is obtained for
every 1 s of speech frame. A batch size of one is used with a batch length of 25 to
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Table 12.2: Fold-wise performance of SDBPs, auto-encoder, and MFCCs using a
RandomForest classifier.

Method Fold AUC Accuracy Precision
SDBPs 1 57.8 67.2 55.2

2 95.2 95.0 94.8
3 93.4 93.8 93.6
4 63.0 65.7 63.6
5 68.4 70.4 77.5

Average 75.6 78.4 76.9
Autoencoder 1 53.3 68.1 55.5

2 95.2 95.3 95.3
3 93.6 94.4 94.7
4 56.7 63.3 60.2
5 53.9 57.4 61.6

Average 70.5 75.7 73.5
MFCCs 1 48.9 61.8 48.7

2 93.4 93.2 93.0
3 91.0 91.6 91.3
4 53.1 59.1 54.4
5 51.7 55.3 55.2

Average 67.7 72.2 68.5

encode the speech of one second (25X40 ms) in one batch. These 1 s representations
are then fed to the RandomForest classifier. The Random Forest algorithm is built
with 100 trees and a maximum depth of 7.

12.1.2.2 Classification Performance

Speaker independent training and validation partitions are used to improve the
generalising capability of the RandomForest model. Speaker-independent analysis
indicates that the speakers in the training and validation partitions are different and
unseen. The results for all the models are calculated over five folds. The distribution
of the data across these five folds is as shown in Table 12.1; each fold is balanced
for only training partition by performing augmentation by repetition.

As seen in Table 12.2, the SDBPs exhibit a highest AUC of 75.6 % averaged
across five folds of the data. When compared with MFCCs and the auto-encoder
representation based classification, SDBPs outperform in all other metrics as well.
Specifically, SDBPs exhibit an AUC that is higher than that of MFCCs and the auto-
encoder representation by an absolute value of around 8 % and 5 % respectively. The
SDBPs when fused with the auto-encoder representation gives 71.7 % AUC across
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Figure 12.3: The average breathing patterns for the confident and non-confident
classes.

the five folds, which is an average of the performance exhibited by the two feature
sets individually. This strengthens the contribution of SDBPs as the feature set for
confidence level classification.

12.1.3 Conclusion

To further understand the classification performance of the SDBPs, we have calcu-
lated the average representation for confident and non-confident classes. As seen
in Figure 12.3, the depth of the breathing pattern is found to differ between the
confident and non-confident speakers. Non-confident speakers exhibit deep breaths
as they also take longer pauses while speaking. However, the confident speakers
are found to have shallow breaths. From the average breaths per minute calculated
for both the classes the confident class is found to have an absolute increment of 2
breaths per minute on an average when compared with the non-confident class.

We conclude that SDBPs not only perform better in automatically classifying
confident and non-confident speech responses, but also help in understanding the
rationale. An empirical evidence of enhancement in performance by using the pro-
posed feature set over MFCCs and auto-encoder representations is presented. In
future work, we intend to extend this analysis to other behavioural parameters such
as emotions, stress, and anxiety.
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13

Concluding Remarks

13.1 Summary

This thesis explored different methods of extracting breathing patterns from speech
signals and compared their performance. The combination of time-domain and
phase-domain decomposed speech components with an LSTM-based deep network
achieved results similar to state-of-the-art models while having lower complexity.
The effectiveness of this approach was demonstrated using a dataset of 100 col-
lege students and was also validated on a benchmark dataset called CCD. The
model’s performance was evaluated across various criteria, including overall datasets,
speaker-wise, cluster-wise, and separately for egressive and ingressive speakers.

One important finding from the analysis was that ingressive speakers, who spoke
during inhalation, were less common, occurring in only 20 % of the participants.
This behaviour did not necessarily indicate the presence of a respiratory disorder
but could also be attributed to psychological conditions such as stage fright. The
predicted breathing patterns for ingressive speakers exhibited negative correlation,
but the breath events were still correctly detected. The remaining 80 % of speakers
were egressive, who spoke during exhalation. In low-performing egressive speakers,
deep exhalations were not properly matched, resulting in lower correlation values.
However, once again, the breath events were matched correctly.

In order to achieve the desired outcomes, an encoder-decoder architecture was em-
ployed. The encoder, which was a pre-built model, extracted breathing patterns
from speech signals. These SDBPs were then utilised by the decoder as feature vec-
tors to detect respiratory disorders and assess psychological states such as human
confidence levels.

The breathing patterns derived from speech were used as feature vectors to detect
physiological and psychological states of individuals. In the physiological realm,
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respiratory disorders, including COVID-19, exhibited lower amplitude and lower
area-under-the-curve in their breathing patterns compared to healthy individuals.
The difference was more pronounced when the speakers counted digits at a faster
pace. Further analysis could be done when longer speech samples labelled with
respiratory disorders became available. For COVID-19, there was a noticeable dif-
ference in the average breathing patterns between mildly and moderately infected
speakers compared to healthy ones. The binary classification of disorders from the
healthy class aligned with the observations of average breathing patterns.

SDBPs also showed promise as feature vectors for detecting human confidence levels.
They outperformed autoencoder-based representation and MFCCs. The average
breathing patterns of confident and non-confident classes exhibited a significant
difference, indicating the potential for accurate detection of confidence levels.

In summary, this thesis presents a comprehensive exploration of extracting breath-
ing patterns from speech signals and their applications in detecting physiological
and psychological states of individuals. The analysis includes evaluation on mul-
tiple datasets, speaker-wise and cluster-wise assessments, and separate analysis for
egressive and ingressive speakers. Furthermore, the study highlights the unique char-
acteristics of ingressive speakers and their potential link to psychological conditions.
The derived breathing patterns prove valuable in identifying respiratory disorders,
including COVID-19, and detecting human confidence levels. This research opens
avenues for further investigations, particularly in utilising longer speech samples la-
belled with respiratory disorders and refining the classification of disorders based on
observed breathing patterns. Ultimately, this work contributes to the understand-
ing and utilisation of SDBPs for various applications in healthcare and psychological
assessments.

13.2 Limitations and Challenges

Data. Collecting data for ingressive speakers poses challenges due to the absence
of predefined physiological or psychological conditions that define ingressiveness.
Breathing patterns can be influenced by various factors, making it necessary to
control for other parameters when collecting data for a specific parameter. This
task proves difficult as it requires managing and mitigating the impact of variables
like stress, anxiety, and other confounding factors while focusing on individuals with
conditions such as asthma.

Generic model. From a signal processing perspective, ingressive patterns are the
complete inversion or opposite of egressive patterns. The low signal values observed
in egressives correspond to the highest levels in ingressives. Consequently, developing
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a generic model capable of detecting both breathing patterns presents a challenge. It
is also necessary to differentiate between the two patterns. However, audibly, there
is no discernible difference between the speech of an ingressive and an eggressive
speaker. Additionally, empirical exploration of various signal characteristics does
not reveal any significant distinctions between the two patterns.

Deep Valleys. In the presented work, the deep valleys in the breathing patterns
that correspond to deep exhalations do not generate corresponding audio, resulting
in a speech pause. However, the depth of the exhalation and the subsequent utter-
ance could not be determined. This aspect necessitates further exploration in the
design space of representation and model architecture to better capture and analyse
these dynamics.

Distinguishing between similar conditions Accurate classification within dif-
ferent categories of respiratory disorders presents a significant challenge, particularly
when examining cases such as asthma and breathing difficulties. In some instances,
the breathing patterns of speakers with asthma and those experiencing breathing
difficulties may appear similar, making it difficult to differentiate between the two
conditions based solely on the observed patterns. This highlights the complexity
involved in precisely categorising and distinguishing respiratory disorders based on
breathing patterns alone. Further research and investigation are necessary to de-
velop more refined and specific classification techniques that can effectively discern
subtle differences between these conditions. Therefore, additional diagnostic infor-
mation or complementary data sources may be necessary to enhance the accuracy
of classification in such cases.

13.3 Future Work

Data collection. Based on the presented analysis, we have gained insights into the
characteristics of minority speakers, including ingressiveness and deep exhalations.
Our intention is to further investigate and refine the methods by which these char-
acteristics can be better captured, allowing for more accurate representation of the
observed variations. By augmenting our dataset with this additional data, we aim
to enhance our observations and develop improved models for extracting breathing
patterns.

To expand the scope of our analysis on SDBPs as a feature set, we plan to cap-
ture simultaneous speech and breathing patterns from individuals with respiratory
disorders, extending the recording time to approximately 3-4 minutes. This ex-
tended duration will provide a richer dataset for analysis and enable us to identify
additional bio-markers related to underlying health conditions.
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Furthermore, in the realm of psychology, we intend to broaden the scope of our
analysis by incorporating more parameters such as stress, anxiety, depression, and
other relevant factors. We aim to design studies that capture these conditions in a
controlled manner, allowing for a deeper understanding of the relationships between
psychological states and SDBPs.

Through these planned expansions and improvements to our methodology, we
anticipate advancing our understanding of breathing patterns and their association
with both physiological and psychological aspects, ultimately contributing to en-
hanced diagnostic and assessment capabilities.

Exploring signal parameters and deep techniques. In order to establish
a methodology that effectively captures the diverse variations present within the
dataset, we will conduct an exploration of additional signal parameters to enhance
the representation. As previously discussed in Section 3.2, a physiological parameter
that significantly influences voice quality is sub-glottal pressure. This parameter,
inversely proportional to the steepness of the spectrum slope, plays a key role in
controlling the characteristics of the vocal output. A higher sub-glottal pressure
indicates increased lung volume or inhalation activity.

To achieve our objective of understanding both egressive and ingressive patterns
equally well, we will endeavour to model the sub-glottal pressure parameter. This
can be accomplished through the application of either hand-crafted techniques or
end-to-end deep learning approaches. By incorporating the sub-glottal pressure
parameter into our methodology, we aim to develop a comprehensive understanding
of the breathing patterns exhibited in both egressive and ingressive speech. This
will enable us to effectively capture and analyse the diverse variations present within
the dataset, ensuring a more robust and inclusive approach to our research.

Expanding the applications of speech-derived breathing patterns. The
augmented dataset will encompass labelled data related to additional physiological
disorders, including fatigue, pain, cardiac problems, and more, as well as psychologi-
cal disorders such as stress, anxiety, depression, schizophrenia, personality disorders,
and others. Our intention is to expand the analysis and investigation of utilising
SDBPs as features for the detection of all the aforementioned disorders.

By incorporating a broader range of physiological and psychological conditions
in our dataset, we aim to enhance our understanding of the relationships between
breathing patterns and various disorders. This expanded analysis will allow us to
explore the potential of SDBPs as effective markers for the detection and classifi-
cation of these diverse disorders. Furthermore, we anticipate that this research will
contribute to the development of diagnostic tools and methodologies that can aid
in early detection, monitoring, and intervention for individuals affected by these
conditions.
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Through this comprehensive approach, we strive to advance the field’s knowledge
and pave the way for the integration of SDBPs as valuable features in the assessment
and diagnosis of a wide range of physiological and psychological disorders.

101





Acronyms

AUC . . . . . . . . . . . Area Under the Curve

BD. . . . . . . . . . . . .Breathing Difficulty

Bi-LSTM. . . . . . .Bi-directional Long Short Term Memory

BPM . . . . . . . . . . . Breaths Per Minute

BPME . . . . . . . . . Breaths Per Minute Error

CA. . . . . . . . . . . . .Computer audition

CCC . . . . . . . . . . . Concordance Correlation Coefficient

CCD . . . . . . . . . . . Compare Challenge Dataset

CD. . . . . . . . . . . . .Cepstral Domain

CLD . . . . . . . . . . . Chronic Lung Disorder

CNN . . . . . . . . . . . Convolutional Neural Network

ComParE . . . . . . Computational Paralinguistics Challenge

Conv1D . . . . . . . . 1-Dimensional Convolution Layer

COPD . . . . . . . . . Chronic Obstructive Pulmonary Disease

COVID-19 . . . . . Coronavirus Disease of 2019

DA. . . . . . . . . . . . .Difference in AUC-ROC

DFT . . . . . . . . . . . Discrete Fourier Transform

E . . . . . . . . . . . . . . Energy

Erms . . . . . . . . . . . Root Mean Square Energy

EP . . . . . . . . . . . . . Expiratory Phonation

EvCD . . . . . . . . . . Early Version of Coswara Dataset
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Acronyms

ExP. . . . . . . . . . . .Exhalation Pause

ExT. . . . . . . . . . . .Exhalation Time

F0 . . . . . . . . . . . . . Fundamental Frequency

F1 . . . . . . . . . . . . . First Formant

F2 . . . . . . . . . . . . . Second Formant

FEV1/FEC . . . . Forced Expiratory Volume in a Second / Forced Vital Capacity

FFT . . . . . . . . . . . Fast Fourier Transform

FvCD . . . . . . . . . . Full Version of Coswara Dataset

GCI . . . . . . . . . . . . Glottal Closure Instance

GRU . . . . . . . . . . . Gated Recurrent Unit

HFC . . . . . . . . . . . High Frequency Component

HNR . . . . . . . . . . . Harmonic to Noise Ratio

Hz . . . . . . . . . . . . . Hertz

ID . . . . . . . . . . . . . Identity

InDSB . . . . . . . . . Indian Dataset of Speech-Breathing

InP . . . . . . . . . . . . Inhalation Pause

InT . . . . . . . . . . . . Inhalation Time

IP. . . . . . . . . . . . . . Inspiratory Phonation

kHz . . . . . . . . . . . . KiloHertz

LFC. . . . . . . . . . . .Low Frequency Component

LOSO . . . . . . . . . . Leave One Speaker Out

LP . . . . . . . . . . . . . Linear Prediction

MAE. . . . . . . . . . .Mean Absolute Error

MFCC . . . . . . . . . Mel-Frequency Cepstral Coefficients

ms . . . . . . . . . . . . . miliseconds

MSE . . . . . . . . . . . Mean Square Error

PD. . . . . . . . . . . . .Phase Domain

PDDFC . . . . . . . . Phase Domain Decomposed Filter Components

ReLU . . . . . . . . . . Rectified Linear Unit

RIP . . . . . . . . . . . . Respiratory Inductive Plethysmography
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Acronyms

RMSE . . . . . . . . . Root Mean Square Error

RNN . . . . . . . . . . . Recurrent Neural Network

ROC . . . . . . . . . . . Receiver Operating Characteristics

r-value . . . . . . . . . Pearson’s Correlation Coefficient

s . . . . . . . . . . . . . . . Seconds

SDBP . . . . . . . . . . Speech Derived Breathing Patterns

ST . . . . . . . . . . . . . Sore Throat

STAI-6 . . . . . . . . . State and Trait Anxiety Inventory of 6 Questions

SVM . . . . . . . . . . . Support Vector Machine

tanh . . . . . . . . . . . Hyperbolic Tangent

TDDF . . . . . . . . . Time Domain Difference Feature

UAR . . . . . . . . . . . Unweighted Average Recall

XGBoost . . . . . . . Extreme Gradient Boosting

ZCR . . . . . . . . . . . Zero Crossing Rate

ZZT. . . . . . . . . . . .Zeros of Z-Transform
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List of Symbols

f . . . . . . . . . . . . . . . . . Frequency

Σ . . . . . . . . . . . . . . . . . Sum of all the samples

σ . . . . . . . . . . . . . . . . . Standard Deviation

µ . . . . . . . . . . . . . . . . . Mean Value
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[71] J. J. Guyer, P. Briñol, T. I. Vaughan-Johnston, L. R. Fabrigar, L. Moreno, and R. E.
Petty, “Paralinguistic features communicated through voice can affect appraisals of
confidence and evaluative judgments,” Journal of Nonverbal Behavior, vol. 45, no. 4,
pp. 479–504, 2021.

[72] K. Sabu and P. Rao, “Automatic prediction of confidence level from children’s oral
reading recordings.” in Proceedings of the 21st Annual Conference of the International
Speech Communication Association, INTERSPEECH. Shanghai, China: ISCA,
2020, pp. 3141–3145.

[73] E. Rothauser, “Ieee recommended practice for speech quality measurements,” IEEE
Transactions on Audio and Electroacoustics, vol. 17, pp. 225–246, 1969.

[74] P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo, “Opinion dynamics and the
evolution of social power in influence networks,” SIAM review, vol. 57, no. 3, pp.
367–397, 2015.

[75] E. Cech, B. Rubineau, S. Silbey, and C. Seron, “Professional role confidence and
gendered persistence in engineering,” American Sociological Review, vol. 76, no. 5,
pp. 641–666, 2011.

[76] P. D. Bennett and G. D. Harrell, “The role of confidence in understanding and pre-
dicting buyers’ attitudes and purchase intentions,” Journal of Consumer Research,
vol. 2, no. 2, pp. 110–117, 1975.

[77] F. Meyniel, M. Sigman, and Z. F. Mainen, “Confidence as bayesian probability: From
neural origins to behavior,” Neuron, vol. 88, no. 1, pp. 78–92, 2015.

[78] K. Black, “Stress, symptoms, self-monitoring confidence, well-being, and social sup-
port in the progression of preeclampsia/gestational hypertension,” Journal of obstet-
ric, gynecologic, and neonatal nursing : JOGNN / NAACOG, vol. 36, pp. 419–29, 09
2007.

[79] G. Deshpande, V. S. Viraraghavan, and R. Gavas, “A successive difference feature for
detecting emotional valence from speech,” in Proceedings of Speech, Music and Mind
2019, SMM19, Satellite Workshop of Interspeech, Vienna, Austria, 2019, pp. 36–40.

113



Bibliography

[80] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. v. d. Walt, M. Brett, J. Wil-
son, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen6, E. A. Quintero32, C. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. V. Mulbregt, and SciPy1.0Contributors, “Scipy 1.0: funda-
mental algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3,
pp. 261–272, 2020.

[81] G. A. Harrison, R. H. Troughear, P. J. Davis, and A. L. Winkworth, “Inspiratory
speech as a management option for spastic dysphonia: case study,” Annals of Otology,
Rhinology & Laryngology, vol. 101, no. 5, pp. 375–382, 1992.

[82] A. Muguli, L. Pinto, N. Sharma, P. Krishnan, P. K. Ghosh, R. Kumar, S. Ramoji,
S. Bhat, S. R. Chetupalli, S. Ganapathy, and V. Nanda, “Dicova challenge: Dataset,
task, and baseline system for covid-19 diagnosis using acoustics,” arXiv preprint
arXiv:2103.09148, 2021.

[83] N. Sharma, S. R. Chetupalli, D. Bhattacharya, D. Dutta, P. Mote, and S. Ganapathy,
“The Second DiCOVA Challenge: Dataset, task, and baseline system for COVID-19
diagnosis using acoustics,” in Submitted to IEEE Intl. Conference on Acoustics Speech
Signal Processing (ICASSP), 2022.

[84] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in
Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[85] W. McKinney, “pandas: a foundational python library for data analysis and statis-
tics,” Python for high performance and scientific computing, vol. 14, no. 9, pp. 1–9,
2011.

114


	I INTRODUCTION
	Introduction
	Motivation
	Problem Statement
	Objectives
	Contributions
	Outline


	II BACKGROUND
	Representation Learning for Building Models
	Hand-crafted Features
	Time-Frequency Analysis
	Speech Decomposition

	Deep Representation Learning
	Autoencoders

	Predictive Model Building
	RandomForest
	Extreme Gradient Boost
	Deep Learning Techniques
	Time-Series Analysis
	LSTM
	Bidirectional-LSTM



	Speech-Breathing Patterns
	Normal Breathing & Breath Parameters
	Phonation Breathing
	Speech Signals & Breathing Patterns

	State of the Art Techniques
	Extracting Breathing Patterns & Their Applications
	Detecting Physiological and Psychological States from Speech
	Detecting Physiological States
	Detecting COVID-19

	Detecting Psychological States



	III METHODOLOGIES
	Data
	Data Collection Procedure
	Generated Datasets
	Indian Dataset of Speech-Breathing
	Data Collection Protocol
	Participant Metadata

	Human-Confidence Dataset
	Data Collection Protocol



	Speech Representations
	Time-domain Speech Representation
	Autoencoder based representation

	Encoder-Decoder Approach
	Model Evaluation Techniques
	Data Partitioning Techniques
	Train-(Validation)-Test Partition
	K-Fold Partition
	Speaker-based Partition

	Metrics for Evaluation
	Classification Metrics
	Regression Metrics


	Speech-Breath Categories
	Speech Breathing in InDSB
	Speech Breathing in CCD


	IV EXPERIMENTS
	Extracting Breathing Patterns from Speech
	Analysis with Indian Dataset of Speech-Breathing
	Data and Procedure
	Representation Learning
	SBreathNet: Model Architecture

	Observations
	Overall Performance
	Speaker-Based Analysis
	Cluster-Based Analysis
	Ingressives and Egressives

	Conclusion

	Extracting Breathing Patterns using CCD
	Data and Procedure
	Speech Representation
	Model Architecture

	Observations
	Train-Dev Analysis
	Leave One Speaker Out Analysis
	Ingressives and Egressives

	Conclusion


	Detecting Respiratory Disorders from Speech
	COVID-19 Detection using Speech Decomposed Components
	Data and Procedure
	Early Coswara Dataset
	Analysis with Speech Decomposed Features

	Observations
	Conclusion

	Decoding COVID-19 using Speech-Breathing Encoder
	Data and Procedure
	Observations
	Track 1 Results
	Track 2 Results

	Conclusion

	Speech-derived Breathing Pattern Parameters of COVID-19 Subjects
	Data and Procedure
	Data Details
	Encoder Details
	Representation Details
	Decoder Details

	Observations
	Decoder Performances
	Analysing Breathing Parameters

	Conclusion

	Decoding Respiratory Disorders with SBreathNet
	Data and Procedure
	Observations
	Average Breathing Pattern Analysis
	Cross-Validation
	COVID-19 Analysis

	Conclusion


	Detecting Human Confidence Levels from Speech
	Decoding human-confidence levels from speech
	Data and Procedure
	Model Architectures

	Observations
	Classification with RandomForest
	Classification Performance

	Conclusion



	V DISCUSSION
	Concluding Remarks
	Summary
	Limitations and Challenges
	Future Work

	Acronyms
	List of Symbols
	Bibliography


