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Abstract. Affective speech analysis is an ongoing topic of research. A
relatively new problem in this field is the analysis of affective vocal bursts,
which are non-verbal vocalisations such as laughs or sighs. The current
state of the art in the analysis of affective vocal bursts is predominantly
based on wav2vec2 or HuBERT features. In this paper, we investigate
the application of the wav2vec2 successor data2vec and the extension
wav2vec2phoneme in combination with a multi-task learning pipeline to
tackle different analysis problems at once, e.g., type of burst, country
of origin, and conveyed emotion. Finally, we present an ablation study
to validate our approach. We discovered that data2vec appears to be
the best option if time and lightweightness are critical factors. On the
other hand, wav2vec2phoneme is the most appropriate choice if overall
performance is the primary criterion.

Keywords: data2vec - wav2vec2 - wav2vec2phoneme - vocal bursts -
affective vocal bursts

1 Introduction

The human voice is a fundamental means of communication. While it can be used
to produce spoken language, it can also carry an enormous amount of informa-
tion on its own. Especially in the field of affect, non-verbal patterns are often
even more important than linguistic content [21]. This becomes particularly ap-
parent when listening to vocal bursts, which are short and intense vocalizations,
often expressing strong emotions. The fact that vocal bursts can effectively com-
municate affective information without using verbal language makes them an
interesting object of research. However, computational analysis of affective vo-
cal bursts still remains a challenging topic [23, 24, 8,10]. As such, it is surprising
that the current state-of-the-art approaches for affective vocal burst analysis rely
on wav2vec2 [5] or HuBERT [14] models that were trained on speech data, which
has a substantially different structure than non-verbal vocal bursts. Therefore,
in this paper, we examine the use of a successor and an extension of wav2vec2:
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— First, we study if data2vec [4], a more generic version of wav2vec2, can be
used to effectively infer various characteristics from vocal bursts.

— Second, we conduct various experiments using wav2vec2phoneme [28], which,
instead of being trained on raw audio data, makes use of a phoneme vo-
cabulary. As vocal bursts can, similar to speech, also be seen as a series of
phonemes, we examine if using that intermediate representation additionally
can improve automatic affect analysis pipelines.

We evaluate both architectures in a multi-task setting using HUME-VB dataset [9],
a dataset of vocal bursts annotated regarding 5 different tasks. To further our
understanding of how to build a successful system for analysing affective voice
breaks, we subject our approach to an ablation study. Therefore, we investigate
how different aspects of our training pipeline contribute to the performance of
the analysis pipeline.

2 Related Work

Multi-task learning for vocal bursts recently became a popular research topic,
partly because it was addressed in multiple conference challenges. E.g., in the
ExV02022 challenge, participants were asked to predict the expression of 10 emo-
tions along with the age and native country of the speaker at the same time [7].
[25] approached the task by experimenting with various encoder frontends as
well as handcrafted features. They found that using the HuBERT model [14],
which is closely related to the wav2vec architecture and training approach, as
a backbone yielded the best performance. Purohit et al. [22] compared various
embeddings that have been either trained using self-supervision or directly in
a task-dependent manner. They found that overall, the self-supervised embed-
dings are outperforming the task-dependent ones, which, supports the choice of
data2vec for our experiments. Anuchitanukul and Specia [1] also rely on wav2vec
and HuBERT backbones to extract embeddings for their multi-task training sys-
tem. They further utilise an adversarial training approach to disentangle the
input representations into shared, task-specific ones. Their experiments showed
that the wav2vec-based model performs best, but using ensemble techniques to
combine multiple variations of their wav2vec and HuBERT models can achieve
even higher performance.

Another challenge that addressed similar tasks was the ACII-VB challenge [6].
Here, participants of the challenge had to assess the type, valence/arousal, in-
tensity of the emotion type, and the emotional type specific to certain countries.
Again, the majority of contributions made use of either HuBERT or wav2vec2
models [27,19, 2, 26,15, 3,11].

All those works indicate that self-supervision in general and wav2vec specif-
ically are building a good foundation for the task at hand and confirming our
choice of data2vec and wav2vec2phoneme as the successor of wav2vec.
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Fig. 1. Overview of the data2vec architecture.

Dataset

For our experiments, we utilised the HUME-VB dataset [9], which consists of
emotional non-linguistic vocal bursts. Overall, there are roughly 37 hours of
recorded audio clips at a 16 kHz sampling rate spread over 59,201 files. The
data has been recorded in 4 countries (China, South Africa, U.S. and Venezuela)
representing different cultures, totalling in 1702 speakers with ages from 20 to
39 years. Each vocal burst was rated on average by 85 raters from the same
country as the vocal burst’s origin. For our experiments, we use the Train and
Validation splits provided by the authors of dataset. The corpus provides multi-
ple annotations for each sample that we use to train and evaluate our multi-task
learning architecture:

High refers to the intensity of 10 different emotions: Awe, Ezxcitement, Amuse-
ment, Awkwardness, Fear, Horror, Distress, Triumph, Sadness, Surprise.
Country labels inform about the origin of the person a vocal burst was

recorded from.

Culture labels provide the country-specific annotations of the 10 different
emotions. As such, for each country, a 10 different emotion gold standard
is given that was derived from annotators of the same country, resulting in
4 -10 = 40 dimensions.

Two refers to the two-dimensional continuous emotion representation of the
samples, i.e., valence/arousal labels.
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— Type annotations are given to divide the samples into 8 different expression
classes, i.e., Gasp, Laugh, Cry, Scream, Grunt, Groan, Pant and Other.

High, Culture, and Two are multi-label regressions with each label ranging from
0 to 1. Type and Country are classifications, having 8 respectively 4 classes.
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Fig. 2. Overview of the wav2vec2phoneme architecture.

4 Methodology

data2vec Since vocal bursts are not “speech made out of words”, but rather
“speech made out of vocalised emotions”, the not fine-tuned version of data2vec
is used for our first experiments. Instead of handcrafted features which are of-
ten specifically engineered for spoken language, data2vec uses dataset-specific
representations learnt in an unsupervised way.

To follow data2vec’s modality-agnostic approach (i.e., it can be applied to
either audio, video, or textual data) no or as few assumptions as possible are
posed for the downstream supervised fine-tuning. To use all the provided labels
of task ¢ = 1,...,n, multi-task learning is applied in a self-learning way [16],
which approximates optimal task weights by the learning task uncertainty o;:

n 1 n
L= ZF[M’ +Zlogai (1)

In figure 1, the network architecture is depicted. The raw audio is fed into the
pretrained data2vec model, including its preprocessor. Variable sequence lengths
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Table 1. Results for the experiment sets on Intermediate Tasks and Task Loss.

High Culture Two Type Country All
Method CCC CCC CCC UAR UAR HMean

Baseline .564 .436 .499 .412 - AT72
2/3 639 .625 .252 .562 .631 476
1/4 628 614 245 .542  .603 463
0/5 650 .636 .254 .564 .633 481

MSE 624 598  .244 553  .591 .460
MAE .640 573 251 .575  .655 474

-High - 608 .244 543  .600 432
-Culture .625 - .255 .539  .599 442
-Two .651  .637 - .574  .645 .625
-Type .649  .634 .265 — .665 AT6
-Country .659 .642 .266 .577 - 467

are zero-padded to the longest seen sequence. Because of the attention mask, the
extracted features vary in length. Therefore, these are mean-pooled and fed into
downstream projection layers. To investigate the question of whether knowing
certain tasks before predicting other tasks is helpful, the intermediate tasks are
separated and their prediction is fed along with the extracted features to the
remaining tasks.

The projection layers reduce the output dimension of data2vec (768 base,
1024 large) to 256, apply GELU [12], and further reduce the dimension down to
the five task’s required dimensions (high: 10, culture: 40, two: 2, type: 8, country:
4). The tasks’ layers then apply softmax for classification and compute the loss
via cross-entropy using inversely proportional class weights. For regression, we
apply sigmoid and compute the loss using the concordance correlation coefficient.
The losses are then linearly combined through the learnt optimal uncertainty-
based weights. This architecture serves as a starting point for the ablation study,
where the design is iteratively improved.

wav2vec2phoneme Using the insights drawn from our experiments with data2vec
(see section 5), the architecture was slightly altered for wav2vec2phoneme, as
seen in figure 2 - the intermediate tasks were removed. With the projection of
wav2vec2’s 1024-dimensional feature vector down to a 392-dimensional phoneme
vocabulary, the resulting sequence had to be aggregated to a fixed length for
downstream tasks.

Training The whole architecture has a size of 360MB for the base and 1.2GB
for the large version of data2vec, and 1.4GB for wav2vec2phoneme. They are
trained in a two-stage matter. First, we freeze the net and train only the tasks
with their projection layers. Second, we unfreeze the net and fine-tune the whole
architecture. Both stages are trained for a maximum of 30 epochs with early
stopping using a patience of 2 on the validation split to avoid overfitting on the
training data. We use a batch size of 32 for the base version of data2vec, 24 for the
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Table 2. Results for the experiment sets on Weighting, Fine- Tuning Splits and Network
Size.

High Culture Type Country All
Method CCC CCC UAR UAR HMean
-CW 645 631 .276  .632 480
+SW 643 .629 .319 .644 511
-SM 654 .639 .584 .657 .632
B10m .656 .642 .577  .655 .631
B100h .639 .624 .552 .634 .610
B960h .658 .642 567 .647 .626
L 635 .622 .554  .603 .602
L10m .641 .624 .555  .607 .605
L100h .497 .601 .540 .578 .551
L960h .613 .617 .540 .539 575

large version, and 16 for wav2vec2phoneme. As optimiser, we used AdamW [18].
For the first stage, the optimiser was initialised with default parameters and a
learning rate of 1-1073. For the second stage, the learning rate is set to 4 -107°
and follows a cosine schedule with a warmup of 1 epoch.

The training runs for our experiments were done on a single Nvidia A40 GPU
and took 5 to 6.5 hours for the base version of data2vec and 5.5 to 8.5 hours for
the large version. For wav2vec2phoneme, training took between 10 to 13 hours.
Replacing the optimiser with ASAM [17], which we did for some experiments as
described in Section 5, increased the training times by a factor of 2.5 to 3.5.

5 Experiments & Results

data2vec In our experiments, we varied certain details of the data2vec network
architecture as listed below. The results for the validation set are shown in
tables 1 and 2, additionally to the official baseline results that were published by
the authors of the dataset [6]. Note that the single experiments were conducted
iteratively, carrying the best configuration of the previous set of experiments over
to the next set of experiments. Since we use a multi-task approach, comparing
different approaches can be difficult if not all tasks perform better or worse than
in the experiment being compared to. Therefore, we calculate the harmonic mean
of the tasks’ metrics to provide an overall comparison. The results of the first
set of experiments are listed in table 1.

Intermediate Tasks Following the dataset’s motivation that vocal bursts depend
on the country of origin to assess the conveyed emotions like a rater of the
same origin would, we tried three different variants: (i) Country and Type as
intermediate tasks before predicting the remaining three (2/3). (i) Only Country
as an intermediate task (1/4), assuming the type depends less on the country.
(iii) No intermediate tasks, i.e., predicting all tasks simultaneously (0/5). (iii)
performed best.
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Table 3. Results for the experiment sets on Aggregation, Loss adjustments, Features,
Combination, Optimiser, and Loss Revision.

High Culture Type Country All

Method CCC CCC UAR UAR HMean
LSTM-1 549  .558  .468 .253 412
Mean-1 665 .652 .574 .660 .635
Count .053 .055 .125 .250 .082

Regularisation .041 .039 .125 .250 .064
Weighting .267 .160 .166  .250 .200

LSTM-2 .673 .656 .580  .562 .614
Mean-2 327 642 581 .703 .516
Separate 670  .638 .595  .688 .646
Concat-1 675 .650 .596  .689 .650
Mean-3 .664 .649 583  .696 .645
ASAM-1 .683 .667 .602 .624 .642
ASAM-2 673 .645 588  .699 .649
DRUW-1 570 .643 584 .692 .619
DRUW-2 .680 .667 .593  .561 .621
DRUW-3 .666 .650 .562  .675 .635

Task Loss To investigate why task Two performed so poorly, we experimented
with replacing the CCC loss by (i) mean squared error (MSE) and (ii) mean
absolute error (MAE). Further, to investigate if there is an issue with a single
task, we removed each task from training once (iii) - (vii) (e.g. -Task, -High). (v),
i.e., removing task Two, turned out to be the best option. As removing that task
improves the harmonic mean for the other tasks by large margins, we decided to
drop it for the following experiments. Results of the second set of experiments
are reported in table 2.

Weighting Since the cross-entropy losses in tasks Country and Type have inverse
proportional class weights while the other tasks do not, we experimented with
(i) removing these class weights from the training (-CW) so that every sam-
ple’s tasks are unweighted, (ii) adding sample weights inversely proportional to
Country (+SW), thereby weighting all tasks, and (iii) keeping the class weights
but removing the sigmoid activation from the last layer (-SM) and clamping the
linear output to [0, 1] in the regression tasks High and Culture instead. We could
marginally boost the network’s performance by applying (iii).

Fine-Tuning Splits To investigate if fine-tuning the self-supervised learnt au-
dio representations using labeled speech improves the pipeline’s performance,
we experimented with different versions of the base network. Each version was
fine-tuned on word labels after pretraining using connectionist temporal classifi-
cation (CTC) loss on a different amount of LibriSpeech [20] data: (i) 10 minutes
(B10m), (ii) 100 hours (B100h), (iii) 960 hours (B960h). Version (i) performed
best overall.
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Network Size At last, we replaced the base network with (i) the large version
(L) and (ii) the respective fine-tuning splits (L10m, L100h, L960h). None of
the large versions could outperform the former base version experiments. For
the tasks High and Culture, experiment B960h worked best on the validation
set. For the tasks Type and Country, experiment -SM performed best on the
validation set.

wav2vec2phoneme The insights on data2vec so far are:

— No intermediate tasks are needed.

— Removing task Two greatly benefits the other tasks.

— Removing the sigmoid activation in the last layer improves the performance.
Using larger versions of the model does not improve performance.

— No fine-tuning on word labels is needed.

With those findings as a starting point, we investigated if using another vo-
cabulary than words made out of letters to describe vocal bursts improves the
performance. For this, we use wav2vec2phoneme, which transcribes audio using
a phoneme vocabulary. Intuitively, it is conceivable that this allows for a better
vocal burst description. The results of the following experiments are reported in
table 3.

Aggregation The next set of experiments targets the aggregation of the varying-
length sequence of the transcribed 392-dimensional phoneme vocabulary. We
did this by (i) using a bi-directional two-layer LSTM [13] with a feature size
of 768 (LSTM-1), the same feature size as data2vec’s base version. Further, we
(ii) applied mean pooling (Mean-1), and (iii) simply counted the occurrences of
each phoneme (Count). (ii) performed best. The experiments also showed that
experiment (iii), by aiming to learn constant predictions, artificially induced the
loss to decrease — the net converges towards chance level.

Loss adjustments (i) To avoid the regularisational term from becoming negative,
a lower bound was introduced to the uncertainties in equation 1 (Regularisation):

L= Z%LiﬂLZlog(leai) (2)

(ii) additionally to the above adjustment, the loss is weighted by the sequence
length (Weighting). Both experiments did not improve the results. As such,
the former best configuration remains the starting point for the next set of
experiments.

Features To investigate if the transcription to human-readable 392 different
phonemes or the preceding 1024-dimensional layer should be passed on, the
latter is (i) fed to a bi-directional two-layer LSTM with a hidden size of 1024
(LSTM-2), and (ii) mean pooled (Mean-2). While for both the harmonic mean
decreased compared to the former best, the LSTM improved the regression, while
mean pooling improves the classification tasks.
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Table 4. Transfer of best setup Concat-1 to other wav2vec2-architectures. Upper half
ex- and lower half includes task Two while applying the same configuration.

High Culture Two Type Country All
Method CCC CCC CCCUAR UAR HMean

w2v2-B 642 .630 - .563  .661 .622
w2v2-B960h .293  .285 - 125 250 211
w2v2-L 651  .642 - 579 .T11 .642
w2v2-L960h .366 .636 - .584  .636 527
Concat-1 .675 .650 - .596 .689 .650
w2v2-B 652 .636 .137 .581  .669 367
w2v2-B960h .198 273 .232 .125 .250 .200
w2v2-L 665 .650 .263 .588 .706 .502

w2v2-L960h .138 .163 .137 .493  .592 .205
Concat-2 .669 563 .255 .593  .695 485

Combination In these experiments, we tried to find a combination of LSTM
and mean pooling to improve the harmonic mean, thereby overall performance,
partly at the cost of a higher dimension. In order to do so, we (i) separately used
the LSTM features for regression and the mean-pooled features for classification
(Separate). In (ii), both were concatenated (Concat-1), and last, in (iii), they
were averaged to keep the dimension the same (Mean-3). (ii) performed best.

Optimiser To investigate if the loss issues are caused by the optimiser, it is
extended by applying adaptive sharpness-aware minimisation (ASAM) [17]. For
parameter p, we experimented with (i) p = .5 (ASAM-1) and (ii) p = .05
(ASAM-2). Both slightly reduced the harmonic mean — they decrease some
tasks’ performance and increase the others’. As such, no overall improvement
could be observed.

Loss revision By applying dynamic restrained uncertainty weighting (DRUW) [15],
we tried to tackle the loss issues through further adjustments to equation 2:

n 1 n
L= z:(a—l2 + X)L + Zlog (1+logo?)+

¢ — Z | log |
i
with the dynamic weights A; being:

Lit—1
exp (7741)
Ai =n— A (4)
> exp (Tﬁ)
Using the configuration parameters proposed by [15], i.e., 7 = 1 for temperature
and ¢ = 1 as regularisation constant, DRUW is applied to Concat-1 and both
ASAM-1/2 experiments, resulting in experiments (i) - (iii) (DRUW-1/2/3). No
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overall performance improvement was observed. However, (ii) managed to main-
tain the performance for task Culture.

Transfer to wav2vec2 To investigate if phonemes are really more suited than
words, the experiments that worked best were transferred to the base and large
versions of wav2vec2 (w2v2-B, w2v2-L). The same modifications were applied to
the respective fine-tuned models (w2v2-B960h, w2v2-LI60k). Additionally, all
of those four experiments were run with the inclusion of task Two in order to
validate if the aforementioned negative interferences of that task still occur for
the wav2vec2 model. Results are shown in table 4. Concat-1 remains the overall
best choice.

6 Discussion

Recapitulating the conducted experiments and considering the results, the fol-
lowing insights can be drawn:

Intermediate Tasks Determining the country of origin before assessing the con-
veyed emotions like a rater of that country would may be beneficial to a human
rater in order to detect and adjust emotional biases. However, it is disadvanta-
geous for our pipeline — the extracted features already encompass these biases
and need not be handcrafted into.

Task Loss Revising the task losses, adding further regularisational terms and
applying a sharpness-aware optimiser did not improve the poor performance on
task Two. Since the baseline shows double the performance here, neither of the
self-supervised learnt audio or word-/phoneme-based representations are suited
for estimating valence and arousal in these architectures. Therefore, the model
learns to predict a rather constant output for Two. As such, the uncertainty
in this task is artificially reduced, minimising the penalising uncertainty term,
but also maximising the task weight in the computation of the MTL loss. The
weight can become so large that it substantially degrades the other tasks’ per-
formance. Our experiments have shown that excluding task Two greatly benefits
the assessment of the remaining tasks.

Weighting These experiments investigated different weighting techniques to counter
imbalance in the training data. Removing the inversely proportional class weights

in the calculation of the cross-entropy losses greatly reduces the performance
in Type. Extending the cross-entropy weights over the whole sample to in-
versely proportional intra-batch weights depending on Country alleviates this
only slightly, despite having the annotations made from raters of the same coun-
try as the vocal burst’s utterer. Inversely proportional class weights both in Type
and Country to counter class imbalance combined with the removal of sigmoid
activation, is the best approach, as it increases the net’s sensitivity to samples
close to the boundaries of the value ranges.
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Fine-Tuning Splits Here, we examined the assumption that vocal bursts are not
a word-based “language”. As such, we observed a decline in performance when
fine-tuning the pretrained model using CTC on (English) word-based labels.
Consequently, this decline is only slight when using 10 minutes of fine-tuning
data, but more so for 100 hours. More than 50% performance degradations are
visible when using all 960 hours of data for fine-tuning. Therefore, sticking with
the pretrained network, or using only sensible fine-tuning, i.e. phonemes, seems
to be the best option.

Feature summarisation When processing a sequence of phonemes, i.e. listening,
one intuitively expects a recurrent neural network (RNN) to be best suited, since
those type of architectures consider chronology. However, LSTM-1 and Mean-1
showed that simply computing the distribution of phonemes, regardless of the
time of occurence, outperforms a RNN. Since Count performed poorly even with
loss adjustments, it does not matter how often (or how long) different phonemes
were uttered - only the proportion is relevant. Interestingly, when dropping the
human-readable phoneme transcription and directly using wav2vec2phoneme’s
features, LSTM-2 and Mean-2 show an equal overall performance. However,
each of them were better in either both regression or both classification tasks.
Therefore, providing both summarisations by concatenating them (Concat-1)
leads to the best overall performance.

Feature representations In these last experiments, we evaluated if our initial
assumption, e.g., a phoneme-based feature representation, indeed has the ability
to outperform the more traditional wav2vec2 approach. Therefore, we used the
configuration that worked best in the preceding experiments and applied them to
different versions of wav2vec2. The observation that the performance of neither
data2vec nor wav2vec2phoneme could be matched supports our claim that using
a phoneme-based feature representation can be a valid choice for the task at
hand.

7 Conclusion

In this work, we have shown that a single network for multi-task affective vocal
burst assessment is a valid choice. Per-task ensembling and large structures are
not necessarily needed. Task weighting can be done automatically via task un-
certainty approximation. Although being pretrained on English-only speech in a
self-supervised manner, data2vec is able to assess vocal bursts originating out of
different (non-English) countries after fine-tuning it for fiveish hours. Further-
more, by substituting the data2vec architecture with wav2vec2phoneme, a larger
and phoneme-based net, we could further boost the pipeline’s performance, while
only doubling the required time for training. If time and lightweightness are of
essence, data2vec seems to be the better choice. If overall performance is the
most important criterion, wav2vec2phoneme fits best. Applying a sharpness-
aware optimiser can yield even better results for specific subtasks, but comes
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with the cost of a decreased overall performance. By comparing our best config-
uration to a word-based wav2vec2, we can conclude that phonemes are better
suited for the assessment of affective vocal bursts than words.
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