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Abstract

In this research, we introduce a novel methodology for
assessing Emotional Mimicry Intensity (EMI) as part of the
6th Workshop and Competition on Affective Behavior Anal-
ysis in-the-wild. Our methodology utilises the Wav2Vec
2.0 architecture, which has been pre-trained on an exten-
sive podcast dataset, to capture a wide array of audio fea-
tures that include both linguistic and paralinguistic compo-
nents. We refine our feature extraction process by employ-
ing a fusion technique that combines individual features
with a global mean vector, thereby embedding a broader
contextual understanding into our analysis. A key aspect
of our approach is the multi-task fusion strategy that not
only leverages these features but also incorporates a pre-
trained Valence-Arousal-Dominance (VAD) model. This in-
tegration is designed to refine emotion intensity prediction
by concurrently processing multiple emotional dimensions,
thereby embedding a richer contextual understanding into
our framework. For the temporal analysis of audio data,
our feature fusion process utilises a Long Short-Term Mem-
ory (LSTM) network. This approach, which relies solely
on the provided audio data, shows marked advancements
over the existing baseline, offering a more comprehensive
understanding of emotional mimicry in naturalistic settings,
achieving the second place in the EMI challenge.

1. Introduction
Emotional mimicry is a phenomenon where individuals im-
itate the emotional expressions of others, such as their fa-
cial expressions, vocal tones, or body language [16–18].
This mirroring can facilitate social bonding by helping indi-
viduals understand and empathise with the emotional states
of those around them [17]. For example, when someone

smiles, others around them are likely to do the same, cre-
ating a shared emotional experience. One particular inter-
esting aspect that this mimicry phenomenon mostly appears
when people already have bonds to each other [29]. In ther-
apeutic settings, emotional mimicry can be particularly ben-
eficial, as it helps therapists connect with their clients, mak-
ing them feel understood and supported.

Leveraging deep learning to discern and anticipate emo-
tional states in therapeutic settings enhances therapists’ in-
sight into and reaction to clients’ emotions. Utilising indica-
tors like facial expressions, and variations in voice pitch and
tone aids in this process. Previous research [7] introduced
a multi-modal dataset categorising emotional mimicry into
“Approval”, “Disappointment”, and “Uncertainty”. Con-
temporary studies [11, 14, 43] employ diverse multimodal
features from this dataset, including audio-visual and, with
the aid of ASR models [36], textual data, further enhanced
by textual embeddings [8, 10, 46]. Integrating large lan-
guage model features with audio-visual data for predicting
emotional mimicry brings considerable computational chal-
lenges. This is due to the intricate process of combining
and analysing different types of data. Therefore, creating
a cohesive end-to-end pipeline becomes an important goal.
Such a pipeline would provide a harmonious balance be-
tween efficiency and performance when handling diverse
data streams.

For this study, we participated in the 6th Workshop and
Competition on Affective Behavior Analysis in-the-wild,
specifically the Emotional Mimicry Challenge. This seg-
ment of the challenges focuses on predicting the intensity of
mimicked emotions, a crucial aspect that could enhance the
precision of therapeutic applications. The challenge utilises
video data showcasing individuals mimicking specific seed
emotions, with a notable twist: the annotators were unaware
of the intended emotions of the seeds, providing intensity



ratings based on their mimicry and seeded emotions. This
approach allowed for a more authentic assessment of emo-
tional mimicry intensity, offering valuable insights into how
emotions are conveyed and perceived in a naturalistic set-
ting. Compared to the previous dataset [7] it contains a
more fine-grained categorisation of the emotions, which is
more challenging to separate.

We present an innovative method focused solely on au-
dio to predict emotional mimicry in response to perceived
videos. This approach stems from our preliminary findings,
which indicated that relying on visual data did not yield sat-
isfactory outcomes and imposed significant hardware limi-
tations during the training process. By exclusively utilising
audio data, we conducted evaluations of the given challenge
dataset and achieved competitive results. Our findings un-
derscore the critical role of task-specific pre-trained weights
and highlight the significance of our architectural decisions
in the success of this method.

2. Related work
Within the domain of affective computing, notable ad-
vancements have been achieved in a variety of tasks,
each contributing to an enhanced comprehension of emo-
tional expressions and their computational detection. The
scope of these tasks encompasses the recognition of emo-
tional expressions [22, 24], the detection of facial ac-
tion units [24, 25], regression analysis of valence and
arousal [23, 24, 26, 45], and, more recently, the estimation
of emotional mimicry [7]. These tasks are systematically
organised within the Affective Behavior Analysis in-the-
wild (ABAW) Challenge [19–21, 27], which, in its latest
iteration [28], has introduced emotional mimicry in a more
nuanced way as a novel area of exploration, reflecting the
field’s evolving focus and expanding methodologies.

Grósz et al. [14] present an multimodal approach on the
MuSe Mimic dataset by integrating audio, visual, and tex-
tual data. They utilised fine-tuned Wav2vec 2.0 features
to analyse audio inputs, extracted facial action units from
video data to interpret visual cues, and employed an ELEC-
TRA text encoder [8] for textual feature extraction. These
diverse data streams were then synergistically combined us-
ing a late fusion technique.

In contrast to a conventional late fusion method, Ding et
al. [11] implement a specialised fusion block with cross-
attention mechanisms for the integration of multimodal
data. This novel component is specifically trained to
manage the fusion of different modalities, enhancing the
model’s capability to identify key features across the var-
ied data types. This method represents a more nuanced ap-
proach to feature integration, aiming to improve the overall
efficacy.

Adopting a multimodal transformer with cross-attention
for data fusion, Guofeng et al. [43] distinguishes itself by

utilising features from a large language model rather than
conventional text encoders. This approach provides a more
nuanced understanding of text, enriching the model’s inter-
pretative depth within a multimodal context.

While prior research often utilised the standard Wav2Vec
2.0 model, sometimes without any fine-tuning, Chen et
al. [35] highlighted the necessity for task-specific adjust-
ments. They demonstrated that the Wav2Vec 2.0 model,
originally trained for automatic speech recognition (ASR),
requires fine-tuning to better align with the nuances of emo-
tion recognition tasks, due to the distinct nature of these ap-
plications. Similarly, Pepino et al. [6] explored the integra-
tion of additional audio features, such as eGeMAPS [13],
with the Wav2Vec 2.0 framework. This combination offers
a structured approach to enhance the model’s performance
by providing supplementary contextual cues for emotion
analysis.

Building upon similar research, Wagner et al. [40, 41]
conducted a comprehensive analysis across various tasks
and models, revealing that extra fine-tuning aimed at au-
tomatic speech recognition (ASR) fails to enhance perfor-
mance. This finding implies that the default Wav2Vec 2.0
model might not be optimally configured for emotion recog-
nition tasks. Accordingly, their study highlights the im-
portance of domain-specific training to better prepare the
model for emotion detection.

Recent advancements in affective computing reveal that
audio features are pivotal for recognising emotions, with
multimodal integration highlighting the complexity and
computational demands of current models. The use of
advanced fusion techniques to combine diverse data un-
derscores the challenge of balancing sophisticated analysis
with the high computational needs of these complex archi-
tectures.

3. Dataset and Challenge

3.1. Challenge

The dataset [28] for the Emotional Mimicry Intensity Chal-
lenge (EMI-Challenge) includes over 30 hours of audiovi-
sual content from 557 participants, recorded in natural set-
tings using webcams. Participants were prompted to mim-
ick seed videos showing a person expressing a particular
emotion. After that, they had to rate the intensity of the
resulting emotional experience on a 0-100 scale. Partici-
pants evaluated videos displaying emotional mimicry with-
out knowing the intended emotion to be mimicked, ensuring
their judgements remained unbiased. The dataset is split
into training (8072 videos, approx. 15 hours), validation
(4588 videos, approx. 9 hours), and test set (4586 videos,
approx. 9 hours) without speaker overlap. Training and
validation sets come with annotations, while test set pre-
dictions are submitted for evaluation. The dataset includes



detected faces at 6 fps, features from Vision Transformer
(ViT) [3, 12] for video and Wav2Vec 2.0 features [1] and the
raw videos and audios. Six different emotional expressions
are annotated, namely: “Admiration”, “Amusement”, “De-
termination”, “Empathic Pain”, “Excitement”, and “Joy”.

The performance on the respective data-split (ρVAL,
ρTEST ) as reported in Table 1 and Table 2 in this task is
measured with the Pearson’s Correlation Coefficient ρ ∈
[−1, 1] averaged over all predicted emotions:

ρ =
1

6

6∑
i=1

ρi , (1)

with ρi as

ρi =
Cov(Xi,pred, Yi,label)√

V ar(Xi,pred)
√

V ar(Yi,label)
. (2)

In the boxplots depicted in Figure 1 for both the training
and validation datasets, we observe a significant imbalance
in the distribution of regression targets. The distribution for
validation also mainly differs from training in the classes
“Determination” and “Joy”.

Figure 1. Boxplots of the label distribution: train (upper plot)
and validation (lower plot).

3.2. Descriptive Data Analysis

The data in both plots are heavily skewed, with a vast major-
ity of values congregating near zero. This skewness high-
lights the relative rarity of regression targets assigned the
value ’1’, setting them apart as the less frequent outcomes

Figure 2. Video duration’s in seconds (top) and fps (bottom)
distribution over all data splits in log-log scale.

amidst a dominant backdrop of values near zero - account-
ing for 55.3% to 89.9% of labels for training, respectively
34.1% to 52.4% for validation. Such a distribution presents
challenges for learning algorithms, particularly in terms of
accurately predicting or learning from these rare extreme
values.

Audios are of constant quality - mono, 16kHz sampling
rate, and 64kb/s bitrate.

Figure 2 highlights a key challenge in video analysis: the
variability in video lengths and recording diversity, which
impacts the stability of frames per second (fps) and sig-
nificantly increases memory demands for batch process-
ing videos of different lengths, or even for videos of same
length with highly different fps. This variability introduces
complexities for deep learning models, which rely on con-
sistent input data formats and sizes for optimal training and
inference.

For the main part of video lengths, we see a Gaussian
distribution, with the left tail standing out. The distribu-
tion ranges from 0.1s to 1249.9s with 6.93s on average.
533 (3.1%) are shorter than 1s, 753 (4.4%) longer than 12s.
Former are likely an issue of data quality, as mimicking an
emotion in less than 1s seems infeasible, or rather is the re-
sult of recording errors. The latter have to be considered



Figure 3. Example of particular challenging videos: overall
quality, e.g. illumination (left, manual crop), affects downstream
tasks, e.g. face detection (right).

for a trade-off between batch processing, finite VRAM, and
seeing the whole length of the videos. We can safely say,
that the video with a duration longer than 2 hours is either a
recording error or mimics the same emotion for a very long
time. The remaining 752 long videos have to be considered
for the trade-off – we cut videos to a length of maximum
12s, thereby seeing 95.6% of videos wholly, and the cut
data amounts to 1.4% of total data – a good compromise.

The fps distribution is unexpected - since the recordings
happen in a domestic webcam-based scenario, you would
expect to see 2 to 3 bars – 25, 30 and maybe 60 fps. The
values range from 25 to 1000 fps, with an average of 226.
62.6% of videos are recorded at 30 fps, 20.1% at 1000
fps. There are also exotic values present like 29.83 or 62.5
fps. This means, that frames of different videos resembles a
highly variable different amount of time, which affects au-
dio alignment to said frames. Extracting faces at a fixed
fps does not alleviate this completely, as you have to ex-
tract at a higher rate than the target fps, since the face de-
tector can fail, thereby retaining some of the variance of
time resembled per frame. E.g. for video “11437”, origi-
nally recorded at 30 fps and a duration of 6.54s, you expect
6.54s · 6fps = 39 frames, but are given 42 frames, resem-
bling a frame rate of 42/6.54 = 6.42. Analogously, for
“15709” this results in 5.84fps .

Figure 3 presents one of those issues where crucial fa-
cial features are occluded, adding another layer of complex-
ity, failing downstream tasks. For deep learning algorithms,
particularly those focused on facial recognition or emotion
detection, occlusions can severely hinder the model’s abil-
ity to accurately identify and analyse key features. This ob-
struction challenges the model’s learning process as well as
the above aligning frames to audio issue, which is why we
focus on an audio-only approach.
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Figure 4. Architecture overview of our approach. We use
a pre-trained Wav2Vec 2.0 model [40] with a Valence-Arousal-
Dominance (VAD) module and extract the features as well as the
VAD predictions. To leverage global context we use a global vec-
tor and fuse the temporal features in an LSTM.

4. Methodology
In our methodology, code publicly available here1, we
harness the capabilities of the pre-trained Wav2Vec 2.0
model [40, 41] as a core feature extractor. This choice is
underpinned by Wav2Vec 2.0’s proven efficiency in distill-
ing important acoustic features, particularly for emotional
speech analysis, a strength validated by numerous stud-
ies [11, 14, 43]. Our decision to rely solely on audio data is
informed by the practical challenges encountered in thera-
peutic and real-world scenarios, such as the potential occlu-
sion of facial expressions, which can compromise the reli-
ability of visual cues. Moreover, while incorporating mul-
timodal data can enrich the analysis, it invariably escalates
computational demands.

To augment the model’s ability to predict emotional
mimicry intensity, which includes nuanced expressions like
“Admiration”, “Amusement”, “Determination”, “Empathic
Pain”, “Excitement”, and “Joy”, we employ a unimodal
multi-task fusion approach by incorporating a Valence-
Arousal-Dominance (VAD) prediction module, as shown
in Figure 4. The inclusion of VAD is strategic, aimed
at embedding an additional layer of emotional granular-
ity. Valence captures the positivity or negativity of an emo-
tion, arousal reflects the intensity of emotional activation,
and dominance denotes the control level within the emo-
tional experience. By integrating these dimensions, we aim
to encapsulate a more comprehensive emotional spectrum,
thereby providing a richer contextual basis for predicting
specific emotional mimicry intensities.

End-to-end Description The raw mono-channel audios,
sampled at 16kHz , are cut to a maximum length of
12s, cf . Section 3.2, and prepared by a Wav2Vec2.0-
preprocessor. These preprocessed, variable length audios

1https://github.com/Skyy93/CVPR2024_abaw

https://github.com/Skyy93/CVPR2024_abaw


are then batch-processed by a Wav2Vec2.0 model, fine-
tuned to VAD regression [41], having continuous VAD val-
ues ranging from 0 to 1. The sequence lengths are re-
duced by the model to maximum of 599, for an initial max-
imum length of 12s · 16kHz = 192000. Both the 1024-
dimensional model features, as well as the 3-dimensional
VAD regressions, are fed concatenated as 1027 dimensions
into mean pooling and an LSTM. Both eliminate the se-
quence dimension, with the former outputting a per audio
global mean, and the latter yielding temporal aware fea-
tures. These 2 · 1027 = 2054 features are then concate-
nated and finally processed by a regression head, consisting
of a dense layer with tanh activation, and a projection layer,
outputting the final 6 dimensional emotional mimicry inten-
sities. For the architectural choice of our regression head we
follow the VAD module from [41].

Implementation Details In our method we unfreeze the
Wav2Vec 2.0 model together with the pre-trained VAD
module. To improve the generalisation of the LSTM a
dropout of 0.1 serves as additional regularisation. We adopt
a learning rate of 1e-4, applying cosine decay. For our loss
function, we use Mean Squared Error (MSE) because ini-
tial experiments with Concordance Correlation Coefficient
(CCC) loss and Pearson Correlation Loss did not yield per-
formance improvements. The training process spans 30
epochs, incorporating early stopping with a batch size of
32.

5. Evaluation

As demonstrated in Table 1, the proposed methodology sur-
passes the established baseline and secures the position of
runner-up in the 6th Workshop and Competition on Affec-
tive Behavior Analysis in-the-wild. The baseline consists
of pre-extracted Wav2Vec 2.0 features with a linear layer
for the auditory modality. The vision features are extracted
with a ViT and processed by a 3-layer gated recurrent unit
(GRU) network. For the multimodal fusion the predictions
were averaged. A detailed analysis of the architectural deci-
sions is given in Section 6.1. Initially, the study explored the
use of vision input as a foundational benchmark. However,
due to limitations and challenges mentioned in Section 3.2
and Section 6.2, this approach is subsequently discontinued.
Notably, incorporating vision input was found to detrimen-
tally affect the performance of our unimodal model, partic-
ularly when subjected to joint fine-tuning.

For the test set, additional regularisation is applied
through the incorporation of a 10% Dropout in the LSTM
layer. The highest scores are achieved by training the
model on a combined dataset of training and validation sets,
thereby enhancing the model’s capacity to address under-
represented emotions.

While our approach does not leverage the vision data,
Savchenko et al. [38] use a variety of different Convolu-
tional Neural Networks (CNNs) to encode the facial in-
formation of the dataset. The facial descriptor models are
note fine-tuned and a simple linear layer is optimised on
the statistical feature descriptor vector of the whole video.
Wav2Vec 2.0 is also used for audio processing in their ap-
proach, albeit without fine-tuning or additional pre-training.

Yu et al. [44] employ vision features extracted by a
ResNet-18, pre-trained on the AffectNet database [32], in
conjunction with predicted Action Units and Wav2Vec 2.0
features. Considering the temporal characteristics of the
video data, a Temporal Convolutional Network (TCN) is
utilised for additional feature refinement across both modal-
ities. To address long-range dependencies in the vision data,
a Transformer encoder is applied to the vision features pro-
cessed by the TCN. Consistent with the above research, it is
observed that vision features underperform in comparison
to audio features. To fuse the predictions of both modalities
a late fusion strategy is employed, which provide additional
performance gain, unlike our work.

A new feature extractor specifically designed for facial
feature extraction was introduced by Zhang et al. [47], util-
ising a Masked Autoencoder [15] (MAE) trained over 800
epochs on an extensive composite dataset. This dataset,
integrates multiple sources - Affect-Net [32], CASIA-
WebFace [42], CelebA [30], IMDB-WIKI [37], and Web-
Face260M [48] - resulting in an expansive collection of 262
million images. Beyond facial analysis, their approach inte-
grates audio encoding through VGGish [5] and textual fea-
ture extraction. The methodology utilises Transformer en-
coders tailored to each data modality, merging the outcomes
via a voting strategy. This ensemble technique results in su-
perior performance, albeit with the trade-off of substantial
initial training requirements.

Across the compared approaches, a common finding is
the underperformance of vision encoders compared to audio
modalities, with sound consistently emerging as the most
indicative modality for emotional analysis. Our method-
ology, distinct in its exclusive reliance on audio without
the integration of vision or textual data, offers an efficient
and streamlined approach for inferring the intensity of emo-
tional mimicry, standing out for its simplicity.

6. Ablation
Our study adopts a unimodal approach, centering on the au-
ditory modality as the primary source of input. This deci-
sion is underscored by the employment of the Wav2Vec 2.0
framework, renowned for its ability to capture rich, nuanced
acoustic features from raw audio data. In this ablation we
feature multiple experiments over our architectural choice
and the challenges that arise when using a multimodal ap-
proach.



Model Vision Audio ρVAL ρTEST

Baseline [28] X - - .090
Baseline [28] - X - .240
Baseline [28] X X - .250
Savchenko et al. [38] X X .289 .331
Yu et al. [44] X X .328 .359
Zhang et al. [47] X X .463 .718
Ourstrain X - .013 -
Ourstrain X X .198 -
Ourstrain (freezed) - X .262 -
Ourstrain - X .386 .461
Ourstrain (w/ Dropout) - X .389 .465
Ourstrain+val - X - .522
Ourstrain+val (longer Training) - X - .554

Table 1. Quantitative comparison of our approach.
We compare our solution with the Top-3 other solutions

and achieve second place in the EMI Challenge.

6.1. Architectural Choices

In our study, we systematically evaluated various configura-
tions of the Wav2Vec 2.0-large model. Our results, detailed
in Table 2, demonstrate the incremental impact of different
architectural elements on model performance, measured by
the correlation coefficient (ρVAL).

The foundational experiment utilised the fine-tuning
of a Wav2Vec 2.0-large model [1] and its multilingual
derivate [9], yielding a ρVAL of 0.017 and 0.021. This
initial outcome highlighted the limitations of using mod-
els pre-trained on standard Automatic Speech Recogni-
tion (ASR) tasks, such as those involving the LibriSpeech
dataset [34], for complex emotional recognition tasks.

Subsequent experiments involved incrementally adding
components to the model architecture, such as Global Vec-
tor, Regression Head, and LSTM layers. The introduction
of a Regression Head and Global Vector improved the ρVAL

to 0.356, indicating the significance of incorporating model
components that enhance the representation of speech fea-
tures relevant to emotion recognition.

Further incorporation of LSTM layers, known for their
effectiveness in capturing temporal dependencies in data,
resulted in a ρVAL of 0.375. A notable point from our find-
ings is that neither the global vector nor the VAD (Valence,
Arousal, Dominance) module significantly enhances perfor-
mance on their own. However, when integrated, they collec-
tively offer an additional enhancement.

The most comprehensive model configuration, which in-
cluded all evaluated components (Global Vector, Regres-
sion Head, LSTM, and VAD Head), achieved the highest
ρVAL of 0.386.

Our experimental results underscore the critical role of
tailored pre-training and architectural design in enhancing
model performance on specialised tasks like estimating the

Model Global Vector Reg. Head LSTM VAD Head ρVAL

W2V2-L [1] X - - - .017
W2V2-L XLSR [9] X - - - .021
W2V2-L Audeering [40] X - - - .342
W2V2-L Audeering [40] X X - - .356
W2V2-L Audeering [40] - X X - .375
W2V2-L Audeering [40] X X X - .377
W2V2-L Audeering [40] - X X X .375
W2V2-L Audeering [40] X X X X .386

Table 2. Comparison of our design choices.

emotion mimicry intensity. It is evident that generic ASR
pre-training is insufficient for complex tasks requiring nu-
anced emotional understanding, thereby highlighting the
need for domain-specific adaptations in model training and
architecture.

6.2. Exploratory Findings

Zero-padding, i.e. filling missing video data with black
images or audio with silence to create fixed length batch
tensors, was not only detrimental to memory efficiency,
thereby batch size and training duration, but also to train-
ing itself – the padding amounted to 34% of batch data on
average, often disallowing the model to learn anything at
all. ρ in the region of −0.1 was not uncommon.

Correlation as loss instead of MSE, i.e.

L = 1− ρ , L ∈ [0, 2] , (3)

did not work aswell. With the huge imbalance in the labels
towards a single value, cf . Section 3.2, the models quickly
learn to make a constant prediction, thereby having an un-
defined variance (cf . Equation (2)), therefore having an un-
defined loss, blocking training via backpropagation com-
pletely.

Fine-tuning a generally pretrained vision model, e.g.
Convnext [31] or DinoV2 [33], yielded some improvement
for ρ from −0.10 to −0.01, but remained underwhelming
to a degree, that we doubted the soundness of our pipeline.
To check, we trained and validated using a 2:1 split both on
official training and official validation split – in both cases
ρ rose to about 0.18. This lead us to the assumption, that
the pipeline itself works, but that the vision models do not
generalise at all from training to validation split, but imme-
diately overfit to the data.

To mitigate the variance of the time between face detec-
tion frames, cf . Section 3.2, we tried face detection using
BlazeFace [2] at a constant framerate. Also increasing the
crop area from 160x160 to 256x256, and aligning the de-
tected faces afterwards. But this did not change the perfor-
mance of beforehand vision models noticeably.

We then replaced the vision models with models trained
for facial expression recognition, e.g. LibreFace [4] and Ef-
ficientNet [39]. The performance did somewhat improve to



our best vision-only performance of ρ = 0.013, respectively
multimodal of ρ = 0.198, but they still disappoint.

This then lead us to dropping the vision modality com-
pletely, yielding a 32% boost to the performance (ρ =
0.262) when training on audio only.

7. Discussion

In our study, we concentrated on analysing emotional
mimicry intensity through audio data, moving away from
the common focus on facial expressions in affective com-
puting. Despite having a comprehensive multimodal
dataset, we found that adding facial images to the analy-
sis decreased its effectiveness, as shown by lower Pearson
correlation coefficients when including vision compared to
audio-only results. Our findings emphasise the need to
choose the right modality for emotional analysis and hint
at audio’s unique potential in this field. Notably, our ap-
proach stood out among challenge participants by employ-
ing a unimodal strategy, prioritising computational speed
and resource efficiency. This distinctive choice underlines
the potential of streamlined, audio-focused analysis in set-
tings where efficiency is paramount. Additionally, an in-
triguing avenue for future research could be the develop-
ment of multimodal models that not only process audio sig-
nals but also interpret the textual content within these sig-
nals, enriching the emotional analysis. Further research
could explore aligning audio with facial expressions, ad-
dressing the challenging task of effectively integrating these
modalities.

8. Conclusion

Our study utilised the pre-trained Wav2Vec 2.0 model for
emotional speech analysis, focusing on audio data to ad-
dress real-world challenges like facial occlusion. We en-
hanced emotion detection by integrating a Valence-Arousal-
Dominance (VAD) module with our model, aiming for a
deeper emotional understanding. Our multi-task approach,
validated through an extensive ablation study, showed
promising results in predicting emotional mimicry intensi-
ties. This work, which achieved second place in the Emo-
tional Mimicry Challenge at the 6th Affective Behavior
Analysis in-the-wild Workshop, highlights the potential of
audio-focused analysis in affective computing.
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Sundberg, Elisabeth André, Carlos Busso, Laurence Y. Dev-
illers, Julien Epps, Petri Laukka, Shrikanth S. Narayanan,
and Khiet P. Truong. The geneva minimalistic acoustic pa-
rameter set (gemaps) for voice research and affective com-
puting. IEEE Transactions on Affective Computing, 7(2):
190–202, 2016. 2
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