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Abstract— Cardiovascular diseases (CVDs) are the leading
cause of death globally. Heart sound signal analysis plays an
important role in clinical detection and physical examination of
CVDs. In recent years, auxiliary diagnosis technology of CVDs
based on the detection of heart sound signals has become a
research hotspot. The detection of abnormal heart sounds can
provide important clinical information to help doctors diagnose
and treat heart disease. We propose a new set of fractal features
— fractal dimension (FD) — as the representation for classifica-
tion and a Support Vector Machine (SVM) as the classification
model. The whole process of the method includes cutting heart
sounds, feature extraction, and classification of abnormal heart
sounds. We compare the classification results of the heart sound
waveform (time domain) and the spectrum (frequency domain)
based on fractal features. Finally, according to the better
classification results, we choose the fractal features that are
most conducive for classification to obtain better classification
performance. The features we propose outperform the widely
used features significantly (p < .05 by one-tailed z-test) with a
much lower dimension.

Clinical relevance—The heart sound classification model
based on fractal provides a new time-frequency analysis method
for heart sound signals. A new effective mechanism is proposed
to explore the relationship between the heart sound acoustic
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properties and the pathology of CVDs. As a non-invasive
diagnostic method, this work could supply an idea for the
preliminary screening of cardiac abnormalities through heart
sounds.

I. INTRODUCTION

Out of the 17 million premature deaths (under the age of
70years) due to noncommunicable diseases in 2019, 38 %
were caused by CVDs [1]. In addition, the high prevalence
of CVDs and high medical costs have increased the socio-
economic burden, posing huge challenges for developing
countries and their families. The initial diagnosis of CVDs
can be made by auscultation of heart sounds. However,
due to the lack of fully automatic diagnostic tools, cardiac
auscultation and interpretation of results depend on the
subjectivity and training of the human ear. Meanwhile, the
diagnosis of heart sounds requires a physician with years
of clinical experience and specialised medical equipment.
Therefore, auscultation became a suitable method of heart
examination because of its simplicity and low cost widely
accepted by the public [2].

There are many artificial intelligence algorithms to classify
heart sound. Tang et al. used multidomain features and
Support Vector Machines (SVM) for classification of heart
sound [3]. Nassralla et al. considered random forests to
classify time and frequency features of heart sounds [4].
Alqudah et al. proposed a bispectrum analysis approach
and used a convolutional neural network (CNN) to achieve
heart sound classification [5]. Almost universally, most of
the proposed algorithms segment the recording into charac-
teristic heart sounds S1, S2, related systolic and diastolic
intervals. Although this segmentation provides many classi-
fication features, which may help to identify abnormal heart
sounds, it also brings considerable complexity and increases
computational burden to the algorithm. In the heart sound
classification model based on fractals, we do not need to
consider this complex segmentation process. Fractal is a
mathematical structure that shows self-similarity on a series
of scales and non-integer dimensions. With these features,
fractal geometry can be used to effectively estimate the geo-
metric complexity of the object, as well as the irregularity of
the shape and pattern observed in the heart sound recording
(changing with space or time). The phonocardiogram (PCG)
signal is considered as a fractal signal where the FD is a
measure of signal complexity [6]. Therefore, we are inspired



to try to extract the FD characteristics of heart sounds from
multiple perspectives.

The main contributions of this work can be summarised
as follows: Firstly, as far as we know, this is the first
study that only uses fractal information as the feature to
classify heart sounds. Secondly, we explore the performance
of fractal information as a classification feature in the time
domain, frequency domain, and time-frequency domain to
obtain better classification results. Thirdly, we observe that
the fractal feature type performs better in the time domain,
which could provide some useful ideas for abnormal heart
sound classification from this domain. The rest of this paper
will be organised as follows: Firstly, Section II describes
the data and methods used in this study. Subsequently, the
experimental results are shown in Section III followed by a
discussion in Section IV. Finally, this work is concluded in
Section V.

II. METHODS
A. Dataset

Our proposed approaches are evaluated on the database of
the PhysioNet/CinC Challenge 2016 [7]. The data consists
of six independent databases that are non-independent identi-
cally distributed (Non-IID) [8]. As the test set labels for this
data are not publicly available, we use the training set of
the database and split it into a new training/development/test
set. There are totally 3240 heart sound recordings collected
from 947 pathological patients and healthy individuals [9].
All recordings were resampled to 2000 Hz and have been
provided in an uncompressed wav format, with recording
times ranging from several seconds to minutes [10]. The
dataset consists of six sub-databases from different research
groups: the MIT, AAD, AUTH, UHA, DLUT, and SUA heart
sounds database [9]. A detailed overview of the database is
given in Table L.

B. Preprocessing

Heart sound is vulnerable to noise interference from the
acquisition equipment during the recording process and the
heartbeat frequency components are below 420Hz [11]. In
this section, we design a low-pass Butterworth filter with
a cut-off frequency of 420Hz to remove high-frequency
noise [12]. Referring to the work of [13], we cut all heart
sounds into 5-second segments for subsequent processing
and analysis. The main reason is that the heart sound segment
contains the complete basic heart sound. Heart sound is also
a non-stationary time-varying signal. Therefore, the heart
sound signal is divided into a group of frames to analyse
its characteristic parameters. We set the frame length to 256,
the frame shift to 128, and choose Hamming window as the
window function.

C. Fractal

A fractal is a morphological feature that fills the space in
the form of a non integer dimension. It is a self-similar pat-
tern [14], which means that it is completely or approximately
similar to a part of itself. Heart murmur is an abnormal heart

TABLE I
AN OVERVIEW OF THE DATASET USED.

Dataset Database  Recordings Normal Abnormal
Trainine set AUTH 31 7 24
ng $ DLUT 2141 1958 183
Total 2172 1965 207
Devel ¢ set UHA 55 27 28
cvelopment st AAD 490 386 104
Total 545 413 132
Test set SUA 114 80 34
estse MIT 409 117 292
Total 523 197 326
TABLE II

DIFFERENT FRACTAL FEATURES. FD: FRACTAL DIMENSION.

Name Feature Description

FD of the original waveform

Fractal (wave) of each audio frame

FD of the waveform amplitude

Fractal (amp) of each audio frame

FD of the instantaneous frequency

Fractal (fre) of each audio frame waveform

FD of the waveform amplitude and the instantaneous

Fractal (amp-+fre) frequency of each audio frame

sound. If there is murmur, the PCG signal will be more
confused. This situation is very similar to a fractal. The FD
is also sensitive to the change of information contained in
the signal sequence. Therefore, we try to classify normal
and abnormal heart sounds by using FD as the classification
feature of heart sounds. There are several measures of FD, we
choose the commonly used box-counting method to calculate
it [15]. The FD of an object is defined as:

FD = lim 220 (D)
r—0 log(1/r)
where N(r) is the least number of boxes of size r needed to

completely cover the fractal object. Fig. 1 shows the FD of
two curves.

(D

D. Feature Extraction

In this section, we try to extract the FD from the time do-
main and frequency domain as classification features, explore
four kinds of fractal features for heart sound classification,
and analyse classification results. To facilitate comparison,
we use a baseline model. This model uses the COMPARE
feature set (780 features, through functionals) of the widely
used OPENSMILE tool, and SVM as the classifier. All FD
calculations are implemented using MATLAB.

To verify the influence of different fractal features on the
classification effect of the heart sound, Table II gives detailed
information. Among them, Fractal (amp+fre) is obtained by
combining the results of Fractal (amp) and Fractal (fre). The
general framework of the proposed method is depicted in
Fig. 2.

E. Functionals

When analysing general audio signals, the changes of low-
level descriptors (LLDs) in a certain period of time can
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Fig. 2. A frame is used to calculate the fractal dimension of the heart sound
in the time and frequency domain. Firstly, After preprocessing, the heart
sound signal is divided into frames. Then, the fractal dimension features
are calculated based on the frame level. Finally, heart sounds are classified.

provide important information for further model building
step. If the number and dimension of LLD vectors are too
large, the calculation cost and test time will increase when
the analysed audio signal is long. On the contrary, functionals
can be applied to the time series of LLDs (frame-level LLDs)
to obtain a single fixed dimension vector independent of
the input length [16]. The functionals we use include the
arithmetic mean, minimum value, maximum value, range,
variance, standard deviation, skewness, kurtosis, coefficient
of variation, and quartile.

III. EXPERIMENTAL RESULTS
A. Setup

We adopt MATLAB and Sklearn to build our experimental
environment. In order to avoid over-optimistic results, we
consider the independence of subjects and divide the dataset
into train, development, and test set with the proportions
of nearly 60 %, 20 %, and 20 %, respectively. The details
are shown in Table I. In this paper, feature extraction and

TABLE III
COMPARISON OF DIFFERENT CLASSIFICATION FEATURES ON THE TEST
SET ([%]), WITH SVM AS CLASSIFIER (DIM REPRESENTS THE
DIMENSION OF THE FEATURE SPACE).

Feature Se Sp Prec WAR UAR Dim
COMPARE (baseline) 55.8 49.7  64.8 535 52.8 780
Fractal (wave) 44.5 70.6 71.4 543 57.5 12
Fractal (amp) 552 609 70.0 574 58.1 12
Fractal (fre) 248 680 563 41.1 46.4 12
Fractal (amp+fre) 374 71.1 68.2 50.1 54.2 24

classification of all models (including baselines) follow the
data division in Table I.

According to the official scoring mechanism of the 2016
PhysioNet/CinC Challenge [7], our model is evaluated by
both Sensitivity (Se) and Specificity (Sp). For two-class
classification, Se and Sp are defined as:

TP

- 2

S¢= TP T FN’ 2)
TN

Sp= " 3

P = INTFP’ )

where TP denotes the number of true positive abnormal
samples, FN denotes the number of false negative abnormal
samples, TN denotes the number of true negative normal
samples, and FP denotes the number of false positive normal
samples.

Then, precision (Prec) and weighted average recall (WAR)
(or accuracy) are used as complementary metrics for evalu-
ating the proposed model’s performance, which are defined
as:

TP
Prec = ——. €]
TP+FP
TP+TN
WAR = + . (&)
TP+TN+FP+FN

Finally, considering the impact of the imbalance of the
given sample and to render the results more authentic, we
add the unweighted average recall rate (UAR) [17], i.e., the
average recall rate of each classes, as the main evaluation
metric.

B. Results

Table III shows the classification performance of different
fractal features. According to the results of UAR, the choice
of the Fractal (fre) model obtained the best performance,
with a UAR of 58.1 %. At the same time, the UAR of the
Fractal (amp) model and the Fractal (amp-+fre) model both
exceed 53.0 %. It is worth noting that among the four fractal
based feature methods, the performance in time domain is
better than that in the frequency domain.

The normalised confusion matrices of the FD character-
istics of time domain and time-frequency domain on the
test set are shown in Fig. 3. Among them, Fractal (fre) and
Fractal (wave) have high UAR values — 5.3% and 4.7 %
higher than baseline —, respectively, which is significant
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(p < .05 by one-tailed z-test). In addition, the two methods
also use a lower feature space dimension than the baseline
(12 features equalling, resembling only 1.5 % of the baseline
space). Therefore, this feature space appears easier to deploy
on hardware.

IV. DISCUSSION

Interestingly, the performance of heart sound classification
directly from the perspective of the time domain superseded
that of the frequency domain. The experimental result is
encouraging and promising. It shows that we can use FD
as a feature to provide heart sound classification from the
time domain.

The limitation and perspective of this pilot study are: It
can be seen from Table III that the performance of FD in
time-frequency domain features on the UAR test set is better
than the baseline, the performance of the Fractal (fre) model
is not as good as the other three models. The first reason
for this result could be we solve the instantaneous frequency
by Hilbert transform. Due to the latter’s limitations [18], we
cannot obtain the accurate instantaneous frequency of the
heart sound signal. The second reason may be the repetitive
(self-similar) patterns characterising the shape of the signal
in time domain, and which FD tries to capture, are lost when
moving to the frequency domain. In future work, we will
study how to combine multifractal analysis with FD to obtain
better results. Further, we will investigate FD feature types
with others.

V. CONCLUSION

In this work, we studied the use of fractal feature methods
to classify heart sounds. The classification feature based
on the FD was introduced into the field of heart sound
analysis for the first time, and it was observed that the highest
UAR was 58.1 %(p < .05 by one-tailed z-test) in a strictly

subject independent setting. This promising result shows that
calculating the FD of the heart sound signal as a classification
feature can help for heart sound classification. As a fractal
can describe the whole as well as the details of shapes,
fractal features have fewer dimensions. The advantage of
this method is that feature extraction does not need to divide
the recording into characteristic heart sounds and systolic
and diastolic intervals. This may significantly reduce the
complexity and computational burden of algorithms, and
promote their implementation as embedded algorithms in
PCG devices.
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