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Abstract

Over the past decade, research has focused on integrating collaborative robots, or cobots,
into assembly lines. The envisioned future industrial workplaces involve close collabora-
tion between humanworkers and cobots. With the advent of Industry 5.0, human-centered
approaches to facilitate human-robot collaboration (HRC) have gained significant traction.
These approaches go beyond ensuring physical safety, emphasizing the mental health and
well-being of industrial workers. To achieve this goal, cobots have to be equipped with ca-
pabilities to detect real-time worker states. Despite various investigations into user states
related to well-being in different domains, the manifestations of these states in industrial
settings are relatively unexplored. Hence, a critical gap exists in our understanding of
whether machine learning models developed for other contexts are applicable to indus-
trial HRC.

Many aspects of existing datasets pose challenges to the applicability of the machine
learning models in industrial settings. On the one hand, most datasets for well-being-
related states (e.g., pain, distraction) are typically small and lack variation in recording con-
ditions, raising concerns about whether models trained on these datasets learn generic or
dataset-specific features. On the other hand, although states like stress are well-researched,
there are limited public datasets involving HRC tasks. This limitation is exacerbated by
the lack of long-term studies involving industrial HRC tasks, limiting our understanding of
worker states (e.g., boredom, flow) that emerge over a long period of familiar and repetitive
tasks. These limitations of existing datasets form the motivation for the works presented
in this thesis.

This thesis explores applicability through multiple lenses: transferability (leveraging
features from a related task), generalizability (ensuring models perform well on multiple
datasets), replicability (testing approaches on various datasets and recording conditions),
reproducibility (recreating industrial HRC experiences), and versatility (utilizing features/-
models for multiple tasks). The investigations of this thesis are presented in two parts. The
first part addresses transferability, generalizability, and replicability by utilizing transfer
learning techniques to train various models and assess them using explainable AI methods
and cross-dataset evaluations. The second part addresses reproducibility and versatility by
analyzing user studies in simulated industrial HRC scenarios with durations ranging from
half an hour to several days. The results of this thesis not only demonstrate approaches to
develop models applicable to industrial HRC settings but also identify potential avenues
for improvement. These findings form the foundations for developingmodels that enhance
human-robot collaboration in industrial environments by focusing on both efficiency and
worker well-being.
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Chapter 1

Introduction

1.1 A Brief History of Industrial Revolutions

Throughout history, distinct industrial revolutions have emerged, each bringing about
drastic improvements in workflow and productivity [Xu et al., 2018; Popkova et al., 2019;
Sharma and Singh, 2020]. The first industrial revolution, or Industry 1.0, began in the late
18𝑡ℎ century and was characterized by the transition from manual production methods to
machine-based manufacturing. The invention of steam engines powered the rapid mech-
anization of factories. The second industrial revolution, or Industry 2.0, occurred in the
late 19𝑡ℎ and early 20𝑡ℎ centuries. This period saw the widespread use of electricity and
mass production techniques like the assembly line. The third industrial revolution, or In-
dustry 3.0, began in the late 20𝑡ℎ century and was driven by the development of digital
technologies. This revolution saw computer-aided automation become an integral part of
the industrial setting. The fourth industrial revolution, or Industry 4.0, began around 2010
and led to the adoption of advanced technologies such as the Internet of Things, Machine
Learning, and Cloud Computing. This revolution focused on end-to-end digitalization,
paving the way for “smart factories". One of the primary technologies of Industry 4.0 is
Cyber-Physical Systems called Collaborative Robots, or Cobots. These are robotic arms
that can work safely alongside human workers.

Currently, factories are transitioning towards a human-centric paradigm as part of the
fifth industrial revolution or Industry 5.0 [Sharma and Singh, 2020; Xu et al., 2021; Adel,
2022; Rožanec et al., 2023]. Unlike previous industrial revolutions, where each era largely
superseded the last, Industry 5.0 coexists with Industry 4.0. Industry 5.0 can be seen as an
extension of Industry 4.0, leveraging similar technologies but focusing on human-centered
design and collaboration. This new revolution emphasizes close collaboration between
human workers and cobots, leveraging each of their individual strengths. Imagine a cobot
and a worker sharing a workspace, simultaneously working on an object – this exemplifies
the collaborative workflow of Industry 5.0.

In the famous words of the Greek philosopher Aristotle - human beings are by nature
social animals. Humans thrive on interaction and can struggle in isolated environments.
Unfortunately, many factory work cells, especially small- and medium-scale industries,
involve a single worker collaborating with the robot, limiting human-to-human interac-
tions [Hovens, 2020; Mühlemeyer, 2020; Osika, 2023]. This reduction in social interac-
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tions can lead to emotional loneliness, which might negatively impact employee perfor-
mance [Akçit and Barutçu, 2017]. Moreover, the reduced interactions with human col-
leagues also hinder skill development due to knowledge sharing, which slows down the
technology acceptance of cobots [Welfare et al., 2019; Meissner et al., 2020].

Beyond social isolation, other factors can also impact the workers’ well-being in
Human-Robot Collaboration (HRC) settings. These factors include the speed of the cobot
and the potential for an imbalanced workload, which can lead to stress, boredom, and frus-
tration for the human worker [Welfare et al., 2019; Meissner et al., 2020; Storm et al., 2022].
These negative experiences can ultimately hinder the success of HRC implementations.

Hence, a foundational principle of Industry 5.0 is that optimal human-robot communi-
cation and worker well-being lead to improved productivity [Grosse et al., 2023; Loizaga
et al., 2023]. When workers feel supported by prioritizing their mental health, they are
more likely to be engaged, efficient, and less stressed. So, it is crucial to equip cobots with
capabilities to recognize theworkers’ experiences, transforming them into Cyber-Physical-
Cognitive systems [Adel, 2022; Rožanec et al., 2023; Khan et al., 2023]. By understanding
the worker’s affective and cognitive states, a cobot can adapt its behavior to be more sup-
portive and improve the working environment.

1.2 Workers’ Mental Health and Well-Being

Worker safety has always been paramount when introducing cobots into factories [Khalid
et al., 2017; Robla-Gómez et al., 2017; Bragança et al., 2019; Arents et al., 2021; Coron-
ado et al., 2022; Gladysz et al., 2023]. Initially, cobots were separated from workers by
physical barriers to ensure the workers’ safety. However, Industry 5.0 emphasizes close
collaboration between humans and cobots. This shift resulted in a renewed focus on en-
suring worker safety through cobot behavior. For instance, cobots are now equipped with
strategies to prevent collisions with workers, minimizing the risk of physical harm. These
strategies not only ensure worker safety but also foster trust in cobot technology, ulti-
mately leading to acceptance of cobots among workers and its adoption in factories [Lu
et al., 2022b; Baltrusch et al., 2022; Faccio et al., 2023].

However, human-centricity in Industry 5.0 is not limited to the physical safety of the
workers. As mentioned before, the introduction of cobots can reduce face-to-face inter-
actions between workers, potentially leading to feelings of loneliness and a lack of social
support, both of which are critical for mental well-being [Rook, 1985; Leigh-Hunt et al.,
2017; Saltzman et al., 2020; Emerson et al., 2021]. Ideally, cobots would evolve to serve the
role of a supportive colleague, capable of social interaction with the worker [Storm et al.,
2022; Osika, 2023; Sharma et al., 2024]. This expanded role goes beyond simply incorporat-
ing a human-like appearance for the cobot. That is, cobots should be capable of perceiving
and responding to social cues from the worker [Sauppé and Mutlu, 2015; Nicora et al.,
2021; Dwyer et al., 2021; Baltrusch et al., 2022]. For example, a cobot that detects stress in
a worker could adapt its movement speed or offer assistance, fostering a more positive and
engaging work environment. Such adaptations would need the cobots to leverage machine
learningmodels to interpret non-verbal cues such as facial expressions, body language, and
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physiological signals (e.g., heart rate, respiration, etc.) [Papetti et al., 2020; Gervasi et al.,
2023; Loizaga et al., 2023; Gladysz et al., 2023].

Stress is one of the most researched experiences that negatively impacts the mental
well-being of workers [Tran et al., 2022; Lu et al., 2022a; Coronado et al., 2022; Blandino
et al., 2023; Faccio et al., 2023; Loizaga et al., 2023; Adattil et al., 2024]. There are many
sources of stress in an industrial setting. Industrial environments can be inherently stress-
ful due to noisy manufacturing processes or higher temperatures. Chronic exposure to
these conditions can contribute to stress and fatigue [Battini et al., 2022; Adattil et al.,
2024]. The rapid adoption of cobots can also be a significant source of stress for work-
ers. They may fear that cobots will render their skills obsolete, leading to the loss of their
jobs [ElMakrini et al., 2018; Fedorova et al., 2022; Liao et al., 2023]. Moreover, the increasing
complexity of cobot technology can be a source of “techno-stress" [Brod, 1984; Shu et al.,
2011] as workers may struggle to understand and adapt to unfamiliar systems [Wurhofer
et al., 2015; Zambon, 2022; Cunha et al., 2022].

In addition to these long-term stressors, the cobots’ behaviors can contribute to worker
stress. Cobots operating close to the worker or moving at high speeds can significantly
increase a worker’s cognitive load [Kato et al., 2010]. The worker may feel the need to
constantly monitor and adapt to the robot’s actions, leading to mental fatigue and stress.
Even cobot adaptations designed for worker safety, such as changes in speed or trajectory,
might be misinterpreted as unpredictable behavior and lead to additional stress.

Researchers have been exploring ways for prophylactic facilitation of workers’ well-
being. One area of focus is detecting physical fatigue and similar ergonomic fac-
tors [Gualtieri et al., 2021; Coronado et al., 2022; Faccio et al., 2023; Loizaga et al., 2023].
Cobots equipped with sensors to detect fatigue patterns of workers (e.g., changes in pos-
ture, decreased movement) could dynamically adjust their behavior to support the worker.
For instance, a cobot could take on a higher share of the workload or suggest breaks at
appropriate times.

An emerging topic in prophylactic cobot adaptations relies on pain detection [Giallanza
et al., 2024]. The typical concept involves the cobot adapting to the onset of pain in workers
and is particularly critical for ensuring safety. Additionally, Meissner et al. [2020] reported
that industrial workers develop muscle and joint pain due to repetitive tasks, which can be
alleviated by cobots sharing the workload. Moreover, social support is a crucial in mitigat-
ing work-related pain [Baek et al., 2018; Hoogendoorn et al., 2000]. So, detecting pain is a
prerequisite for designing cobots that can provide appropriate social support to workers.

Another well-researched human factor involves worker intent recognition [Lu et al.,
2022b; Mukherjee et al., 2022; Rožanec et al., 2023]. Cobots that can infer a worker’s in-
tended actions can improve safety and productivity. For example, a cobot anticipating the
worker’s movement can adjust its trajectory to avoid collisions. Similarly, a cobot that
understands which object a worker intends to use next could proactively prepare that ob-
ject and streamline the workflow. So, intent recognition and subsequent cobot behavioral
adaptations can contribute to reducing painful and stressful situations.

Researchers are also exploring the potential of worker attention/distraction and emo-
tion recognition in the context of HRC [Toichoa Eyam et al., 2021; Mukherjee et al., 2022;
Coronado et al., 2022; Loizaga et al., 2023]. Cobots that can understand a worker’s level
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of focus or emotional state could tailor their interactions accordingly. For instance, the
cobot that can detect boredom may offer to take up repetitive tasks so that the worker
can engage in a more stimulating task. However, it’s important to note that research on
worker attention/distraction and emotion recognition in industrial settings is still in its
early stages.

1.3 Need for Assessing Applicability

Based on the literature discussed in the previous section, this thesis initially focuses on
three worker states relevant to industrial HRC settings: distraction, pain, and stress. The
next steps involve identifying modalities for detecting these states and training machine
learning models. While such models are promising for improving cobot’s supportive be-
havior, the following challenges regarding the identified states and the industrial HRC
context need to be addressed.

1.3.1 Lack of Public Datasets from Industrial HRC

As highlighted earlier, states like distraction and pain are not frequently researched in In-
dustry 5.0. This results in a scarcity of publicly available datasets collected during industrial
HRC scenarios. Even well-researched areas like stress detection often lack publicly avail-
able datasets from real factory workers or realistic simulations. Consequently, training
models for these states often rely on public datasets from other contexts. Inevitably, this
leads to potential discrepancies in the characteristics of the experienced state. For example,
the methods used to elicit the state (sudden versus existing pain, cognitive versus social
stress) or the intensity of the state (moderate versus high) may differ, leading to variations
in participants’ responses. These differences raise the question: Can models trained on
datasets from different contexts be effectively applied to industrial HRC settings? Or
are these models specific to the training context?

1.3.2 Small Size of Datasets

Public datasets for some states, like pain, are typically small due to ethical considerations
involved in inducing such states. Additionally, subjecting participants to prolonged neg-
ative states raises health concerns. Another reason for the limited dataset size could be
the genuine rarity of certain states or the fact that their manifestations occur only after
extended periods. For instance, natural distractions due to monotony might emerge only
after performing the task for an extended duration. Initially, the task might be engaging
due to its novelty or the learning involved in getting familiar with it. Mind wandering
and distractions occur after these factors diminish over time. While techniques exist to
train well-performing models on small datasets, the limited variation within these datasets
raises another question: Are the features learned by the model generic and applicable to
real-world scenarios, or are they specific to the limited data available?
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1.3.3 Limited Long-term Studies

The scarcity of public industrial HRC datasets is further compounded by the lack of long-
term studies, even in lab settings mimicking industrial environments. While the survey
papers on Industry 5.0 reveal some relevant worker states, most of the works they ana-
lyzed were limited in duration (typically less than one hour) and may not capture the full
range of worker experiences. For example, tiredness or apathy often manifests only after
extended periods. This limitation raises two key questions: What other relevant worker
states might manifest during long-term industrial HRC? Can machine learning models
be applied to detect these newly identified states?

1.4 Research Objectives

The core focus of this thesis is to develop and train machine learning models for real-time
cobot behavior adaptations in industrial HRC settings, while simultaneously addressing the
overarching challenges identified earlier. These challenges necessitate novel approaches
to model development and assessment of applicability. The various facets of applicability,
presented in the upcoming chapters, are discussed below.

1.4.1 Transferability of Learned Features

Deep learning models are currently a popular choice for various tasks due to their ability
to achieve high prediction performances. However, training these models often requires
substantial amounts of data. As identified earlier, some relevant states often have small
datasets, which poses a significant challenge for deep learning model development.

Transfer learning is a technique that can be leveraged to address this challenge. It
involves applying the knowledge learned by a model on a source task to train models for a
related target task. The transfer learning process for worker state detection can be broken
down into several steps:

• Identify suitablemodalities: Awide range of modalities, such as facial images, phys-
iological signals, and gaze data, have been explored in the literature for detecting
various user states. However, not all modalities are equally suitable for industrial
environments. For example, audio data may be impractical due to noise levels, and
finger-based heart beat sensors might be disruptive during assembly tasks. Hence,
identifying data modalities suitable for industrial HRC is an essential first step.

• Identify source datasets: Ideally, source datasets for transfer learning should: (a) be
a large dataset and (b) share some similarities with the target dataset. For instance,
a large dataset of labeled facial images could serve as a source for training a smile
detection model on a smaller dataset. This step will explore various existing datasets
that meet these criteria and are appropriate for the target task.

• Train source models: Once suitable source datasets are identified, deep learning
models will be trained using these datasets. This step involves defining the deep
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learning network architecture and empirically setting the training parameters to op-
timize model performance on the source task.

• Train and evaluate target models: Finally, the target models (e.g., pain detection
model) will be trained on the smaller target dataset, leveraging the knowledge
learned from the source models. The performance of these target models will be
evaluated and compared to existing state-of-the-art models.

1.4.2 Generalizability of Models

Generalizability is a critical aspect of machine learning model development. It refers to a
model’s ability to perform well on unseen data, indicating that it has learned generic fea-
tures applicable beyond the training data. Evaluating a model’s generalizability is essential
to ensure its real-world applicability in industrial HRC settings.

Some studies evaluate generalization using leave-one-subject-out (LOSO) or hold-out
participants. This evaluation method involves training the model on data from a subset of
participants and evaluating its performance on the remaining unseen participants. While
this approach provides a basic assessment of generalizability, it is important to note that
the overall dataset characteristics (e.g., recording settings, elicitation method) remain con-
sistent across all participants.

Cross-dataset evaluations is a more rigorous assessment of generalizability. In this
method, the model is trained on one dataset and then evaluated using a different dataset. If
the model performs well on this new dataset (with potentially different elicitationmethods,
participant demographics, etc.), it suggests that the model has learned generic features.

Visualizing the features or parts of the input data that aremost influential in themodel’s
prediction can be used to assess generalizability. These visualizations can be generated
using eXplainable Artificial Intelligence (XAI) techniques. Analyzing these visualizations
can provide insights whether the model is relying on generic features or overfitting to
specific characteristics of the training data.

This thesis will explore the above methods to assess the generalizability of the trained
models. The assessment process will involve the following steps:

• LOSO or hold-out evaluations: All the models presented in this thesis will be eval-
uated using this method.

• Cross-dataset evaluations: The models developed for distraction, pain, and stress
will be assessed for their generalizability using this method. The states identified
through long-term studies are not evaluated through this method due to the lack of
suitable datasets.

• Devise XAI-based approach: While existing XAI approaches rely solely on manual
inspection of visualizations, this thesis proposes a novel systematic method for quan-
titatively assessing the learned features of a model. This new XAI-based approach
will be demonstrated in the context of the pain detection models.
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• Determine factors contributing to low generalizability: Generalizability assess-
ments typically focus on determining if a model has learned generic features can
be deployed in other contexts. This thesis will take an additional step to identify and
analyze the specific factors within the datasets that may have contributed to lower
generalizability of models.

1.4.3 Replicability of Methods

Unlike the previously discussed aspects related to model characteristics, replicability fo-
cuses on the methods. It refers to the ability to apply the developed methods effectively to
different datasets, ensuring they are not specific to a particular dataset or its characteristics
(e.g., elicitation method, participant demographics, or behavioral patterns). Replicability is
crucial in research as it allows other researchers to reproduce the findings and extend the
knowledge base.

Replicability of a method is typically demonstrated by successfully applying it to mul-
tiple datasets and obtaining similar results. In the context of this thesis, replicability en-
compasses the transfer learning processes employed, the generalizability assessment ap-
proaches developed, and other methodological aspects. For example, the source datasets
and transfer learning steps used for training a facial pain detection model can be leveraged
for training pain detection models using other facial pain datasets, even those not used in
this thesis. This ensures the broader applicability of the transfer learning methods beyond
the specific datasets employed here.

To emphasize the importance of replicability, all the methods developed in this thesis
were tested on at least two datasets. This approach strengthens the confidence that these
methods can be effectively utilized in various research contexts.

1.4.4 Reproducing Long-term States in Industry-like HRC Settings

As highlighted earlier, the scarcity of long-term (lasting for many hours and spanning over
multiple days) industrial HRC studies presents a significant challenge in understanding
the full range of worker experiences in these settings. This thesis tackles this challenge by
reproducing an industrial HRC task within a laboratory environment. Two key considera-
tions motivated the selection of a lab setting over a real-world factory environment. Firstly,
real-world data collection involving video recordings or in-depth analyses of worker per-
formance and working styles raises ethical concerns. In a factory environment, the data
will be limited to the notes taken during fly-on-the-wall observations, hindering a compre-
hensive analysis of worker experiences. Secondly, the lab setting enables balanced recruit-
ment, ensuring gender diversity and the inclusion of participants with Autism Spectrum
Disorder (ASD). By leveraging a more inclusive participant pool, this thesis will explore the
extent of applicability of solutions while taking into account the needs of ASD operators.

This thesis employed the following steps to identify the relevant long-term worker
experiences in industrial HRC settings:

• Identify relevant literature: A review of existing literature will be conducted to
explore user experiences and the associated manifestations during HRC tasks. The
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literature review will be extended to include studies involving individuals with ASD
to identify specific behavioral patterns that may be relevant in an industrial context.
The insights gained from this literature review will inform the selection of analysis
tools and the behavioral aspects targeted for further investigation.

• Design an industry-like setting involving a collaborative task: To study long-term
worker experiences, a laboratory environment mimicking an industry-like work cell
will be designed. This setup will feature a well-defined collaborative assembly task.
In line with the close collaboration envisioned in Industry 5.0, the task will involve
a human operator and cobot: (a) working towards a common goal, (b) sharing the
workspace at the same time, and (c) jointly manipulating an object. The task will be
repeated over multiple production cycles, simulating a work shift that spans several
hours (around four hours) of collaborative work. The participants will perform these
simulated work shifts daily for one week to emulate long-term worker experiences.

• Analyze collaboration sessions: Given the exploratory nature of this objective, the
experiences and behavioral patterns of the operators will be analyzed using a combi-
nation of quantitative and qualitative methods. This analysis approach will facilitate
the identification of relevant experiences and repetitive behavioral patterns associ-
ated with long-term industrial HRC.

1.4.5 Versatility of Models and Features

Here, versatility refers to the application of features or models developed for one predic-
tion task to another concept. This is particularly valuable for developing computationally
efficient systems, as it leverages existing knowledge for new prediction tasks. For example,
consider a model trained to detect stress, a state characterized by high arousal and elevated
heart rate. The features learned by this model can potentially be leveraged to identify other
high-arousal states.

This thesis will explore the versatility of the developed models and features, particu-
larly in predicting newly identified long-termworker experiences. Assessing the versatility
of models relies on the following steps:

• Identify literature for newly identified experiences: The first step involves identi-
fying relevant literature related to the long-term experiences identified earlier. This
literature review will focus on understanding the physiological and behavioral char-
acteristics associated with these experiences. Acknowledging that these long-term
states are rarely studied in HRC contexts, the review will be extended to literature
from other relevant domains.

• Inducing targeted experiences and behavioral patterns: Informed by the findings
from the literature review, the previously developed industry-like HRC setup will
be adapted to elicit the identified long-term states within relatively shorter sessions.
This adaptation will involve modifying the task characteristics and robot behavior
to facilitate the emergence of these states. During the adapted task sessions, relevant
data will be collected from participants for analysis and development of models.
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• Analyze participants’ responses: The physiological and behavioral responses from
participants will be analyzed to assess whether the models already trained for other
states or extracted features can be leveraged for detecting the long-term states.

• Demonstrate models: The final step involves demonstrating the versatility of the
models and features. This thesis will consider two approaches to accomplish this
step. The first approach leverages existing knowledge by utilizing the feature ex-
traction from previously developed models. The extracted features are used to train
newmodels for detecting the long-term states. The second approach deploys existing
models for real-time cobot adaptation to address long-term states, thus showcasing
the existing models’ broader applicability.

1.5 Thesis Overview

This thesis is organized into four parts, as illustrated in Figure 1.1. A brief overview of the
contents of each part is listed below:

• Part 1 - Foundation (Chapters 1 and 2): This part lays the groundwork for the re-
search by providing essential background information and introducing key concepts.
The current chapter serves as the introduction, outlining the challenges addressed
in the thesis. Chapter 2 delves deeper, introducing psychological definitions for vari-
ous operator states, the physiological and behavioral responses associated with these
states, and fundamental machine learning concepts used in training prediction mod-
els.

• Part 2 - Transferability, Generalizability, and Replicability (Chapters 3, 4, and 5):
This part presents the research outcomes obtained while developing models for pre-
dicting specific worker states: Attention/Distraction (Chapter 3), Pain (Chapter 4),
and Stress (Chapter 5). These chapters address the challenges associated with the
limited availability of public industrial HRC datasets and the issue of small dataset
sizes. The developed models, methodologies, and insights contribute significantly to
the research objectives related to the transferability, generalizability, and replicabil-
ity of the developed solutions.

• Part 3 - Reproducing Industrial HRC and Versatility (Chapters 6, 7, and 8): This
part addresses the challenge of limited research on long-term worker experiences
within industrial HRC settings. In contrast to Part 2, this part focuses on inducing
specific states and behavioral patterns solely through cobot behavior manipulations.
Chapter 6 describes a long-term industrial HRC study conducted in a laboratory en-
vironment. This study aims to reproduce worker states that typically manifest over
extended periods in real-world settings. Chapter 7 explores the elicitation of flow,
boredom, and anxiety by varying the production rate of the cobot. It then presents
the analysis of participants’ responses during these states and the development of a
machine-learning model to differentiate them. Chapter 8 investigates the potential
of using participants’ gaze cues to initiate collaborative activities within the HRC
tasks.
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Figure 1.1: An overview of the parts and chapters of this thesis.

• Part 4 - Conclusion (Chapters 9 and 10): The final part of the thesis consists of two
chapters: Summary (Chapter 9) and Outlook (Chapter 10). Chapter 9 provides an
overview of the key takeaways from Parts 2 and 3. It also highlights the contribu-
tions made by this thesis to the field of industrial HRC research. Chapter 10 outlines
potential future directions to expand upon the presented research.
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Chapter 2

Background

The research objectives of this thesis are centered around developing machine-learning
models that are applicable to Human-Robot Collaboration (HRC) scenarios. This chapter
establishes the essential background knowledge for the research presented in this thesis.
It delves into three key areas: psychological concepts, measurable affective signals, and
machine learning. This thesis utilizes behavioral and physiological signals that can serve
as objective indicators of worker state. Behavioral signals often refer to various observable
non-verbal communication cues, such as facial expressions, gaze, and body language [Arya
et al., 2021; Lin and Li, 2023]. Physiological signals, on the other hand, are measurable bi-
ological signals produced by the body that provide insights into an individual’s physical
and mental condition [Arya et al., 2021; Lin and Li, 2023]. These biosignals such as electro-
cardiogram (ECG), blood volume pulse (BVP), and electrodermal activity (EDA) are often
recorded using specialized sensors. The section on psychological concepts delves into var-
ious theories related to the worker states discussed later. Following this, the behavioral
signals section examines the various behavioral patterns and modalities that can be used
to infer relevant worker states. Similarly, the section on physiological signals discusses the
various biosignals and the worker states that can be detected using them. Finally, the sec-
tion onmachine learning provides an overview of various model architectures and training
techniques utilized in this thesis.

2.1 Psychological Concepts

This section outlines the psychological models and theories associated with some key
worker states discussed in the subsequent chapters. It is important to note that a few
states were excluded from this discussion due to the lack of well-established psychological
theories associated with them.

2.1.1 Emotion

Human emotions play a critical role in the HRC experience. However, capturing and rep-
resenting the complexities of human emotions presents a significant challenge for machine
learning models. Psychology researchers have proposed two main approaches to address
this challenge: discrete and continuous emotion models [Bota et al., 2019; Wang et al.,
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2022]. Discrete models categorize emotions into a finite set, while continuous models rep-
resent emotions as values within a multi-dimensional space.

Discrete Emotion Models

One of the first attempts to formulate a standard representation of emotions was by Ekman
[1971], who proposed a set of six basic emotions: happy, sad, surprise, fear, anger, and
disgust. However, later research supports the inclusion of contempt [Ekman and Heider,
1988; Paul Ekman Group, 2023]. Ekman’s basic emotions are said to be instinctive, cross-
cultural, and associated with well-established facial expressions [Gu et al., 2019; Wang
et al., 2022]. Facial expressions associated with these emotions are visualized in Figure 2.1.

Figure 2.1: Images from CK+ [Lucey et al., 2010] facial expression dataset showing Ekman’s
six basic emotions and contempt (considered as a basic emotion later). Reused with permission,
the copyright belongs to the publisher (Copyright©2010 IEEE)

Another popular discrete emotion model is Plutchik’s emotion wheel model [Plutchik,
2003]. This model has a set of eight basic emotions: joy, trust, fear, surprise, sadness, dis-
gust, anger, and anticipation. A combination of these basic emotions forms more complex
emotions. For example, joy and anticipation combine to form optimism. The model also
incorporates intensity or levels of basic emotion, with more intense versions of the ba-
sic emotions closer to the center and less intense versions on the outer ring of the wheel.
For example, rage is a more intense version of anger, whereas annoyance is a less intense
version. Figure 2.2 depicts the wheel containing basic emotions, varying intensities, and
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complex emotions. Interestingly, a study by Yamashita and Kudoh [2022] comparing the
two discrete emotion models suggests that Ekman’s model aligns better with human intu-
ition of basic emotions.

Figure 2.2: An illustration of Plutchik’s wheel of emotions.

Continuous Emotion Models

A widely used dimensional emotion model is Russell’s circumplex model [Russell, 1980].
As illustrated in Figure 2.3, this model represents emotions along two dimensions: valence
and arousal. Valence (or pleasure) refers to the pleasantness of an emotion, with negative
emotions like sadness and anger having low valence, and positive emotions like happiness
and joy having high valence. Arousal represents the level of physiological activation asso-
ciated with the emotion. Emotions like boredom and calmness have low arousal, whereas
excitement and fear have high arousal. The valence-arousal axes create a two-dimensional
space divided into four quadrants, with opposing emotions positioned on opposite sides
(e.g., joy and sadness).
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Figure 2.3: An illustration of two-dimensional Russell’s circumplex model

The three-dimensional PAD (Pleasure-Arousal-Dominance) model builds on Russell’s
model by adding a third dimension (see Figure 2.4): dominance [Mehrabian, 1980; Wang
et al., 2022; Bota et al., 2019]. Dominance captures the feeling of being in control of an
emotional situation. Emotions like pride and anger have high dominance, while shame
and fear have low dominance. This additional dimension creates eight sub-spaces or oc-
tants, where various emotions are placed depending on their pleasure, arousal, and domi-
nance values. Although the PAD emotion model provides a more nuanced representation
of emotional states, Russell’s circumplex model remains a more popular emotion model in
affective computing research [Wang et al., 2022].

2.1.2 Pain

Williams and Craig [2016] define pain as “a distressing experience associated with actual
or potential tissue damage with sensory, emotional, cognitive, and social components".
Expressing pain can trigger social reactions such as empathy and care [Williams, 2002].
Understanding the various aspects of pain perception is important for developing machine
learning models to detect pain.

Gate Control Theory of Pain

The gate control theory of pain, proposed by Melzack and Wall [1965], provides a frame-
work for understanding how individuals perceive pain. While rooted in neurophysiology,
this theory also explains the cognitive and psychological aspects of pain. It suggests that
pain signals from the body to the brain are not transmitted directly. Instead, a metaphor-
ical “gate" mechanism in the spinal cord modulates these signals. This gating mechanism
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Figure 2.4: An illustration of the three-dimensional PAD model. The solid circles depict the
various emotions in the PAD space, and the non-solid circles represent the projection on the
Valence-Arousal plane.

can be influenced by various factors, including emotions, cognitive state, and past experi-
ences [Campbell et al., 2020]. This theory explains phenomena like pain being increased
by negative emotions [Wiech and Tracey, 2009] and catastrophic thinking hindering re-
covery [Hadjistavropoulos et al., 2011]. For instance, negative emotions like anxiety can
heighten pain perception by further opening the gate, whereas positive emotions (e.g., re-
laxation) or distraction techniques can reduce perceived pain by closing the gate [Chester-
field PCT Service, 2014].

Diathesis-Stress Model of Pain

The diathesis-stress model has been used in many contexts to explain the effects of stress
on the manifestation of illnesses. Turk and Flor [1984] adapted the model for pain, of-
fering a perspective on the link between stress and pain experience. They propose that
chronic pain may manifest due to stress, provided three conditions are met: (a) a pre-
existing pain-eliciting condition (diathesis) like injuries, (b) recurrent stressful situations
(e.g., employment-related stress), and (c) inadequate coping mechanisms. Figure 2.5 illus-
trates the diathesis-stress model for pain. This model has limitations but it holds particular
significance for industrial HRC scenarios. It suggests that the occurrence of pain in work-
ers might not solely be caused by work-related injuries. Understanding this connection
could inform the design of cobots that can identify stress and potentially recommend cop-
ing mechanisms to human workers, which in turn, might help prevent the development of
chronic pain.
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Figure 2.5: Visualization of the diathesis-stress model for pain.

Classifications of Pain

Pain is traditionally classified as acute and chronic, based primarily on the pain dura-
tion [Cole, 2002; Lumley et al., 2011]. Acute pain is a short-duration pain, typically lasting
less than 30 days. It serves as a warning signal, prompting individuals to take action to
prevent tissue damage. On the contrary, chronic pain refers to persistent pain that lasts
for more than three to six months. Chronic pain is more complex than acute pain and
may cause neurobiological, psychological, and behavioral changes. Sub-acute pain falls
between these categories, lasting longer than 30 days but less than three months.

Another classification system, which is gaining traction with the rise of automatic pain
recognition models and the availability of public pain datasets, distinguishes between clin-
ical and experimental pain. This classification is based on the type of stimuli that triggers
the pain experience [Edens and Gil, 1995; Bouhassira et al., 2003; Kunz and Lautenbacher,
2014]. Clinical pain arises from specific actions (e.g., movement, light touch) in individu-
als with medical conditions like injuries, surgeries, or medical procedures [Charron et al.,
2006]. Experimental pain, on the other hand, is induced under controlled laboratory set-
tings in healthy individuals using stimuli like heat, pressure, or electricity [Edens and Gil,
1995; von Baeyer et al., 2005; Charron et al., 2006]. Traditionally, experimental pain is uti-
lized to study pain experience in a controlled environment [Edens and Gil, 1995; Kim et al.,
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2004]. Clinical pain can be either acute or chronic depending on the persistence of the
stimuli, whereas experimental pain is typically acute.

Figure 2.6: Classification of pain based on duration and nature of pain stimuli.

Pain and Emotional States

Defining pain remains a challenge due to its subjective nature. However, a widely ac-
cepted definition by the International Association for the Study of Pain (IASP) describes it
as “an unpleasant sensory and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage" [Raja et al., 2020]. While there are on-
going discussions for refining this definition, most researchers agree on the presence of an
emotional component in pain [Cohen et al., 2018; Rhudy and Meagher, 2001]. Similar to
emotions, pain manifests through various behavioral (e.g., facial expressions, body pose)
and physiological changes (e.g., elevated heart rate, sweating).

Like many emotions, pain also has distinct facial expressions, with some overlaps. For
instance, both pain and disgust (aversive experiences) can involve nose wrinkling [Kunz
et al., 2013]. However, considering the entire expression pattern allows for differentia-
tion between pain and other emotions [Simon et al., 2008; Kunz and Lautenbacher, 2014].
Research suggests that pain, focusing on its emotional component, can be mapped onto
Russell’s circumplex model as a low-valence (unpleasant) and high-arousal state [Rhudy
and Meagher, 2001; Price, 2002; Kyle and McNeil, 2014; Ciuffini et al., 2023]. It is important
to note that this categorization considers the emotional aspect and does not imply pain can
be solely understood through emotion models.

2.1.3 Stress

Stress is a ubiquitous experience in modern life. While the occurrence of stress is natu-
ral, excessive stress can have a significant negative impact on both physical and mental
well-being. Although colloquially “stress" is often used interchangeably with other related
concepts, the literature distinguishes between stress, stressors, and distress [Wheaton and
Montazer, 2010]. Stressor refers to any event, situation, or stimulus that causes strain on
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an individual. The stress response is the individual’s response to the stressor, which may
include physiological (e.g., elevated heart rate), psychological (e.g., anger, depression), or
behavioral (e.g., smoking) changes [Schwarzer and Schulz, 2003; Khalil and Elfaki, 2014].
Individuals employ coping strategies to mitigate stress. However, when the coping strate-
gies are not effective, stress turns into distress.

Researchers have explored stress from various angles, leading to different theoretical
perspectives. Some theories focus on the stressor itself, others on the individual’s response,
and still others explore the interplay between stimuli, response, and mediating factors like
coping strategies [Bailey and Clarke, 1989; Schwarzer and Taubert, 2002; Schwarzer and
Schulz, 2003; Shahsavarani et al., 2015; Khalil and Elfaki, 2014]. This categorization broadly
classifies stress theories as stimulus-based, response-based, and transactional, respectively.
The following paragraphs delve into representative stress theories from each of these cat-
egories.

Life-Change Events Model

This model represents a stimulus-based approach to study stress [Khalil and Elfaki, 2014;
Wheaton and Montazer, 2010; Schwarzer and Taubert, 2002; Schwarzer and Schulz, 2003;
Shahsavarani et al., 2015]. A well-known version of this model was proposed by Holmes
and Rahe [1967], who developed the Social Readjustment Rating Scale (SRRS) as a tool to
measure major stressors over a certain period (e.g., over the last year). This model posits
that stress arises from the accumulation of stressful life events (stressors). The SRRS con-
siders 43 stressful life events, each measured in life-change units. Higher values are as-
signed to events like the death of a spouse/loved one, and lower values for events like
minor violations of law. The underlying assumption for the different scores is that some
events require more effort to overcome than others [Schwarzer and Taubert, 2002; Shah-
savarani et al., 2015]. Moreover, some positive events are also included in the SRRS list as
any change can be stressful, regardless of whether it is positive or negative [Schwarzer and
Schulz, 2003]. Individuals with higher SRRS scores (indicating they experienced major life
changes) are considered more likely to develop stress-related health problems.

Researchers have identified multiple limitations of this model. Critics point out that it
does not account for variances in individual appraisal of various situations [Schwarzer and
Taubert, 2002; Shahsavarani et al., 2015; Khalil and Elfaki, 2014]. For instance, individuals
may perceive and respond differently to the stressor of minor violations of law. Addition-
ally, the model can assign similar scores to individuals who experience very different life
events. For example, someone who experienced the death of a spouse might have a similar
SRRS score to someone who got married and was fired from work. However, questions
have been raised on whether these experiences can be considered equal and analyzed in a
similar way [Schwarzer and Schulz, 2003].

General Adaptation Syndrome (GAS)

TheGASmodel, proposed by Selye [1950], exemplifies a response-based approach to study-
ing stress [Khalil and Elfaki, 2014; Schwarzer and Taubert, 2002; Schwarzer and Schulz,
2003; Shahsavarani et al., 2015]. This model focuses on the physiological stages the body
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Figure 2.7: Illustrative plot of the stress resistance over time in the GAS stress model.

undergoes in response to a stressor. According to Selye, stress experience develops three
stages (see Figure 2.7): alarm reaction, resistance, and exhaustion. The alarm reaction refers
to the body’s initial response, also called the “fight-or-flight" response. This stage triggers
physiological changes such as elevated heart rate, blood pressure, and breathing rate. If
the stressor persists, the body enters this second stage, i.e., the resistance stage, where it
adapts to the demands of the situation. This stage utilizes bodily resources for adaptation
and repairing damages caused during the alarm reaction stage. If the stressor remains un-
addressed and resources gets depleted, it enters the exhaustion stage. This stage can lead
to stress-related illnesses, burnout, depression, etc. The GAS model highlights that stress
leads to “defense [adapting response] and damage".

Based on this model, Selye [1976] formulated a generic definition of stress as the body’s
“non-specific response to any demand". While this model holds value in understanding
physiological responses to stress, it has limitations. Psychology researchers point out
that GAS does not consider the cognitive and emotional aspects of the stress experience
Schwarzer and Taubert [2002]; Schwarzer and Schulz [2003]. Additionally, similar to the
SRRS model, GAS does not account for individual differences in stress perception.

Transactional Model of Stress and Coping

This model was proposed by Lazarus [1966] and refined in a subsequent work [Lazarus
and Folkman, 1987]. This model represents a transactional approach, viewing stress as a
dynamic interplay between the individual and the environment [Khalil and Elfaki, 2014;
Schwarzer and Schulz, 2003; Schwarzer and Taubert, 2002; Shahsavarani et al., 2015; Dewe
et al., 2012]. It addresses the limitations of previous models like the GAS model and SRRS
by emphasizing the role of cognition and appraisal in shaping the stress experience.

There are three core elements of this model: transaction, process, and emotional sys-
tem. Transaction or relationship refers to the specific encounter between the individual
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Figure 2.8: A depiction of the transactional model of stress and coping.
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and the environment. A threat (stressor) gains meaning only in context with the individ-
ual experiencing it. In other words, stress is not inherent to the situation itself but arises
from the interaction between the person and the environment. The process element em-
phasizes the dynamic nature of stress. The stress experience is constantly evolving as the
individual and their environment adapt. The transaction and process elements supple-
ment an emotional system view of the stress experience. The emotional system consists
of causal antecedents, mediating processes, and outcomes. Causal antecedents are person-
related factors (e.g., beliefs, skills, sense of control) and environment-related factors (e.g.,
demands, resources, constraints). Mediating processes refer to an individual’s cognitive
appraisal of the situation and coping strategies. The outcomes are the consequences of the
stress experience, including both short-term (e.g., physiological changes, affective experi-
ence) and long-term effects (e.g., psychological well-being, illnesses).

A crucial aspect of this model is the role of mediating processes, particularly cognitive
appraisal and coping processes. Lazarus and Folkman identified two types of cognitive ap-
praisals: primary and secondary. Primary appraisal, also called demand appraisal, refers
to the initial evaluation of the situation to determine if it is irrelevant, positive, or stress-
ful (threat, harm, or challenge) [Schwarzer and Schulz, 2003; Khalil and Elfaki, 2014; Dewe
et al., 2012]. During the secondary appraisal or resource appraisal, the individual evaluates
their coping resources and options for dealing with the stressor. Coping efforts are con-
tinuously adjusted based on re-evaluations of the situation. The model also proposes two
coping strategies: problem-focused coping (actively managing the situation) and emotion-
focused coping (regulating emotions arising from the situation). However, later studies
have proposed additional strategies such as meaning-centered and relationship-social cop-
ing strategies [Dewe et al., 2012].

A visualization of the various aspects of this transactional model of stress and coping
is presented in Figure 2.8. This model has led to a widely accepted definition of stress:
“a particular relationship between the person and the environment that is appraised by
the person as taxing or exceeding his or her resources and endangering his or her well-
being" [Lazarus and Folkman, 1984]. This definition highlights the subjective nature of the
stress experience.

Classifications of Stress

Similar to pain, stress can be classified into three categories based on the duration of the
stressor: acute, chronic intermittent, and chronic stress [Kovács et al., 2005; Shahsavarani
et al., 2015; Giannakakis et al., 2019]. Acute stress refers to short-term stress, typically in-
volving a single encounter with the stressor. Examples include a public speaking event or
cold pressor stress. Chronic stress refers to long-term stress, where the stressor is continu-
ously present (e.g., chronic work overload, poor financial situations). Chronic intermittent
stress or repeated stress refers to a situation where an individual experiences a stressor re-
peatedly for a prolonged duration. For example, a student facing multiple exams through-
out an exam week has repeated encounters with the stressor (exam). While all types of
stress can elicit physiological changes, chronic stress can lead to stress-related illnesses
such as cardiovascular diseases, depression, and sleep issues.
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Stress can also be categorized based on the nature of the stressor into physiological and
psychological stress [Lu et al., 2021; Shahsavarani et al., 2015; Giannakakis et al., 2019].
Physiological stress arises from physical stimuli that disrupt the body’s balance (home-
ostasis). This class of stressors can include heat stress, loud noises, or pain from an injury
or illness. Psychological stress, on the other hand, is induced by an individual’s thoughts,
emotions, and perceptions of the situation. It can be further divided into four subcategories:
emotional stress (anxiety, fear, etc.), cognitive stress (information overload, interruptions,
etc.), perceptual stress (competition, perceptual workload, etc.), and psychosocial stress
(e.g., social evaluation, social defeat, social confrontation). Unlike physiological stress,
which may have a localized source (e.g., pain in a specific body part), psychological stress
is more intangible.

Figure 2.9: Classification of stress based on duration and nature of the stressor.

2.1.4 Flow

The concept of flow state was first described by Csikszentmihalyi [1975] and refers to
a state of deep engagement and optimal experience. This state is often associated with
enhanced performance, positive emotions, and improved mental well-being [Norsworthy
et al., 2021; Jackson et al., 2001; Peifer et al., 2022]. Understanding the characteristics and
manifestations of the flow experience is important for developingmachine learningmodels
that can facilitate the occurrence of this state.

Characteristics of Flow

There are nine characteristics of the flow state, which are widely accepted in the litera-
ture [Jackson and Csikszentmihalyi, 1999; Nakamura and Csikszentmihalyi, 2002; Jackson
et al., 2001; Csikszentmihalyi, 2020; Norsworthy et al., 2021] and are briefly described below
(adapted for the context of industrial HRC).
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• Challenge-Skill balance: The perceived challenge level of the task matches the
worker’s perceived skill level.

• Clear goals: The purpose of the task and the steps to accomplish it are clearly defined
and understood by the worker.

• Unambiguous feedback: The worker receives clear and immediate feedback on their
task performance.

• Merging of action and awareness: The worker becomes deeply involved in the task,
with their actions becoming automatic.

• Concentration on the task at hand: The worker’s attention is completely focused
on the present moment and the task at hand, with no distracting thoughts or mind-
wandering.

• Sense of control: The worker feels a sense of control or agency over their actions,
the task, and the situation.

• Loss of self-consciousness: The worker becomes less worried about themself and
less concerned with how they are perceived by others.

• Transformation of time: The worker’s subjective experience of time is altered.

• Autotelic experience: The word autotelic is derived from the Greek words auto
meaning self and telos meaning purpose. This characteristic implies that the worker
finds the task intrinsically rewarding and enjoyable for its own sake, rather than for
external rewards (e.g., monetary bonuses).

Out of the nine characteristics, the first three (challenge-skill balance, clear goals,
and unambiguous feedback) are considered the pre-conditions for the flow state to oc-
cur, whereas the other six are considered descriptions of the state itself [Norsworthy et al.,
2021; Peifer et al., 2022]. The challenge-skill balance is considered a primary characteristic
as research has found correlations between this characteristic and the other eight. This
has led to the utilization of challenge-skill balance as a means to elicit a flow state during
tasks.

Three-channel Flow Model

The most simple representation of the flow experience is Csikszentmihalyi’s three-channel
flow model, which captures boredom, anxiety, and flow states [Csikszentmihalyi, 1975;
Pearce, 2005; Peifer et al., 2014]. In psychological flow models, the relationship between
skills and challenges is utilized to map the corresponding experience states or “channels".
As illustrated in Figure 2.10, this model depicts channels as zones on a graph, visualized
with respect to a diagonal line (x = y). This diagonal line represents a state of equilibrium
where perceived challenge and skill levels are equal. The flow state is achieved when the
perceived challenge of a task matches the individual’s perceived skill level. This state is
represented by the zone closest to the central diagonal line (identity line).
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Figure 2.10: An illustration of Csikszentmihalyi’s three-channel model, showing how perceived
challenge and individual skill influence the experience of boredom, anxiety, and flow.

Deviations from this ideal balance can lead to negative experiences. When the chal-
lenge of the task exceeds the individual’s perceived skill level (zone above the identity
line), feelings of anxiety and stress arise. Conversely, when the challenge is significantly
lower than the skill level (zone below the identity line), boredom and disengagement be-
come prevalent.

Four-channel and Eight-channel Flow Models

The three-channel flow model provides a foundational framework, but some researchers
have proposed models with additional states to capture a wider range of experiences. The
four-channel model [Csikszentmihalyi, 1975] extends the original model to include the
state of apathy (see Figure 2.11). In this model, the four states (flow, boredom, apathy, and
anxiety) are represented as four quadrants formed by the challenge-skill axes [Jonsson and
Persson, 2006; Lambert et al., 2013]. The newly added state of apathy is characterized by
low challenge and low skill levels. Boredom (low challenge, high skill) and anxiety (high
challenge, low skill) are on the opposite quadrants. Flow is characterized by high challenge
and high skill in this model.

Both three-channel and four-channel flow models distinguish only flow as a positive
state, with all others considered negative [Jonsson and Persson, 2006]. The eight-channel
model or experience fluctuation model, proposed by Massimini et al. [1987], presents a
more nuanced representation of various experiences [Lambert et al., 2013]. As depicted
in Figure 2.12, the model maps these states within a circular formation divided into eight
45-degree sectors on a two-dimensional challenge-skill plane. Unlike previous models, the
eight-channel model considers not just high and low, but also moderate levels of perceived
challenge and skill to differentiate the various states.
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Figure 2.11: An illustration of the four-channel flow model, showing various experiences in
terms of perceived challenge and individual skill levels.

Figure 2.12: An illustration of the eight-channel flow model, showing various experiences in
terms of perceived challenge and individual skill levels.
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2.2 Behavioral Signals

This section presents a background for some of the facial modalities and cues that are
leveraged in this thesis. It is important to note that some modalities are better suited than
others in detecting certain states. So, this section also briefly discusses these signals in the
context of their potential for detecting specific worker states.

2.2.1 Facial Images/Videos

Facial images and videos represent a rich source of behavioral patterns such as emotional
expressions and head orientation. These data are typically recorded using an RGB camera
facing a person. Machine learning models can leverage these cues to detect worker states
that may be visible through their faces (e.g., pain).

Action Units

Facial expressions are one of the most informative modalities of non-verbal communica-
tion [Ko, 2018; Valstar et al., 2017]. Facial expressions are produced by contractions and re-
laxation of facial muscles, which result in momentary changes in facial appearance. These
movements are known as Action Units (AUs). Ekman and Friesen [1978] devised the Facial
Action Coding System (FACS) based on AUs, assigning them specific numbers. The system
has numbered AUs for capture various movements, including facial muscles (e.g., AU 6 -
cheek raiser, AU 12 - lip corner puller), eye movements (e.g., AU 62 - eyes turn right, AU 64
- eyes down), and head orientations (e.g., AU 55 - head tilt left, AU 53 - head up) [iMotions,
2022]. The intensity of each AU is scored on a 5-point scale from A (trace) to E (maximum)
based on how pronounced the movement is [Clark et al., 2020]. Specific AUs or combina-
tions of AUs are associated with different facial expressions and corresponding emotions.
For example, the prototypical expression of happiness involves simultaneous activation of
AU 6 and AU 12. Emotional expressions typically use 30 facial muscle AUs, 12 from upper
face and 18 from lower face muscles [Tian et al., 2001]. A comprehensive list of AUs and
their occurrences in Ekman’s basic emotions are visualized in iMotions website [iMotions,
2022].

Some limitations of using AUs as features have been identified in the literature [Clark
et al., 2020]. FACS captures visible changes in facial movement and doesn’t account for
subtle visible changes (e.g., changes in muscle tone). Moreover, it does not capture other
facial changes like sweating (e.g., during stress) or slight changes in skin complexion (e.g.,
during anger).

Facial Landmarks

Facial landmarks are distinct and identifiable locations on the face, such as the corners of
the eyes, the tip of the nose, and the corners of the mouth. Each location or key point is
represented using two values, indicating the x and y coordinates. The number of key points
depends on the available annotations in a dataset, i.e., unlike FACS for AUs, there is no
standard landmark system. The minimum number of key points in public facial landmark
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datasets can be as low as four [Wu and Ji, 2019; Johnston and deChazal, 2018]. However, the
number of annotated key points has increased in recent datasets [Wu and Ji, 2019], with
some datasets often using 68 key points. Facial landmarks serve as reference points for
localizing and tracking facial features, enabling tasks like face cropping, facial alignment,
and head pose estimation.

Emotion Expression

Inferring emotions from facial expressions has been extensively studied in affective com-
puting [Wang et al., 2022; Ko, 2018; Canal et al., 2022]. Some works utilize extracted fea-
tures (e.g., AUs, facial landmarks) to recognize the expressed emotion. Others employ deep
learning methods to predict the emotions directly from the facial images/videos.

While Ekman’s principles of basic emotions argue for universal facial expressions based
on studies across cultures, others point to significant variability in how emotions are fa-
cially expressed and perceived [Klingner and Guntinas-Lichius, 2023; Stahelski et al., 2021].
For example, a scowling expression could be interpreted as anger by some people and
disgust by others. This has led to mislabelling in many datasets. Notably, the misla-
belling occurs predominantly among negative emotions, particularly between anger and
disgust [Stahelski et al., 2021]. This has led to a shift towards estimating the valence-arousal
of an expression rather than a classification approach.

Pain Expression

Unlike emotions, research has found similarities in the perception of pain expressions
between different cultures (e.g., Western vs. Eastern cultures) [Klingner and Guntinas-
Lichius, 2023]. Moreover, facial expressions are considered reliable for detecting pain as
they involve certain muscles, especially around the eyes, that cannot be voluntarily con-
trolled [Williams, 2011; Hadjistavropoulos et al., 2011]. In other words, pain expressions
are difficult to completely mask or fake.

The development of FACS invigorated the goal of establishing a standard expression of
pain [Prkachin, 2009]. Many researchers studied the variousAUs activated during pain. For
example, Prkachin [1992] studied facial expressions during pain induced through multiple
stimuli (cold, pressure, ischemia, and electricity) and found four patterns consistent across
all four stimuli: brow lowering, nose wrinkling, lid tightening, and eye closure. Although
AUs like lip-corner pulling and blinking were observed in some instances, they were not as
consistent as the four “core" patterns. Similarly, Kunz et al. [2019] investigated existing pain
datasets and found eye closure was more associated with clinical pain than experimental
pain. However, they found mouth opening along with the other three core patterns were
consistent across both types of pain. These findings suggest that developing a generic pain
detection model is a feasible goal.

2.2.2 Gaze

Like facial expressions, gaze is a visual signal people use in their communications. How-
ever, the role of gaze changes depending on the context [Hamilton, 2016; Frischen et al.,
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2007]. For example, although a direct gaze can indicate attentiveness, an averted gaze does
not always indicate distraction as it can be part of expressing emotions like embarrassment.
Moreover, gaze can be perceived as positive (e.g., love/attraction), neutral (e.g., regulating
turn-taking), or negative (e.g., staring). Gaze is especially interesting in HRC scenarios
as it can enhance collaboration by facilitating aspects such as resolving ambiguities and
establishing joint attention [Mehlmann et al., 2014; Schneider and Pea, 2017; Mitev et al.,
2018].

Gaze is typically recorded using standard RGB cameras, remote eye-tracking devices,
or wearable gaze trackers. Most dedicated eye trackers (wearable and remote) use infrared
(IR) illuminators along with IR cameras to track the eyes and pupil movements [Caporusso
et al., 2022; Karmakar et al., 2024]. The IR light creates bright pupil and corneal reflec-
tions that are easier to detect and track than visible light. Moreover, their high framerate
and resolution lead to more accurate gaze-tracking than standard cameras. However, RGB
cameras are a cost-effective and ubiquitous alternative. In addition, standard cameras are
non-obtrusive compared to wearable trackers.

There are primarily three aspects of gaze that are used to derive relevant features:
saccade, fixation, and gaze direction [Mézière et al., 2021; D’Angelo and Schneider, 2021].
Saccades refer to rapid eye movements that change the gaze from one location in the field
of view to another. Fixations are the periods between saccades when the eyes remain
relatively still and focused on a specific location. Gaze direction is the location at which
the person is looking.

Gaze Direction

The first step before inferring saccades and fixations is determining the gaze direction.
This task is also called gaze estimation. Gaze is estimated either as a two-dimensional or
a three-dimensional vector. The two-dimensional representation uses the pupil’s angular
coordinates (pitch, yaw), whereas the three-dimensional vector also includes the depth
information [Kwon et al., 2006; Yu and Odobez, 2020].

When using standard camera images, gaze direction can be inferred using two types of
information: eye gaze and head pose [Matsumoto et al., 2000; Cheng et al., 2024]. The eye-
based gaze estimation is more accurate than the estimation based on head pose [Palinko
et al., 2016]. However, the head pose is more robust when occlusions are (partially) cover-
ing the eyes.

Attention and Distraction

Attention and distraction detection have become increasingly important in many domains,
including driver safety, education, and human-machine interaction [Cartella et al., 2024].
In this thesis, attention refers to visual attention, i.e., the cognitive process of selectively
focusing on specific areas of the visual environment while ignoring other perceivable in-
formation. Distraction occurs when the visual attention is on areas unrelated to the task
or HRC scenario (e.g., interruptions) [Kotseruba and Tsotsos, 2022]. In such use cases, gaze
direction is often considered a measure of attention to specific areas of interest in the field
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of view. Subsequently, machine learning models are developed to map the individual’s
gaze direction to areas or objects within the visual field.

Social Gaze Cueing

There are many social contexts in which people employ gaze-based cues [Hamilton, 2016;
Frischen et al., 2007]. Understanding all the social roles of gaze cues is a broad research
area. However, some of the social gaze cues are interesting for HRC research. One such
cue that has gained significant traction is recognizing intent [Belardinelli, 2023]. Studies
have explored inferring the operator’s intention (e.g., the next assembly step, component
choices) from their gaze to improve efficiency during collaboration. The core idea behind
gaze-based intention recognition is that people tend to look at objects or areas they plan
to work on before starting work on them.

Another interesting phenomenon is attention orienting through gaze cues. Re-
search has shown that humans can use gaze cues to direct others’ attention in a shared
space [McKay et al., 2021; Edwards et al., 2015]. This is often seen as a necessary step in ini-
tiating joint attention. Moreover, gazing at someone can capture their attention [Frischen
et al., 2007; Akechi et al., 2013; Lee et al., 2020]. All the discussed scenarios highlight the
need for the cobot tomonitor an individual’s gaze for social cues during collaborative tasks.

2.3 Physiological Signals

This section describes the physiological signals utilized in this thesis and how they reflect
some of the relevant worker states discussed in this thesis.

2.3.1 Autonomic Nervous System

The human nervous system consists of two main parts: central and peripheral [Thau et al.,
2022; Guy-Evans, 2023]. The central nervous system consists of the brain and spinal cord,
whereas the peripheral nervous system consists of nerves and ganglia. Further, the pe-
ripheral nervous system can be divided into the somatic (responsible for voluntary skeletal
muscles) and the autonomic nervous system (ANS). The ANS regulates involuntary bodily
functions and maintains homeostasis in the body [McCorry, 2007; Guy-Evans, 2023; Wax-
enbaum et al., 2023; Bota et al., 2019]. It controls vital functions like heart rate, breathing,
and digestion.

The ANS has two components: sympathetic, parasympathetic, and enteric nervous
system. Activation of the sympathetic system leads to a “fight-or-flight" response to a
perceived strenuous situation. This response is characterized by elevated activity and at-
tentiveness, resulting in physiological changes such as increased heart rate, sweating, and
respiration. It also slows lower-priority processes like digestion. On the contrary, the
parasympathetic nervous system activation facilitates a “rest-and-digest" response during
relaxation periods. This response is associated with decreased bodily activity (e.g., lower
heart rate and blood pressure). The enteric system is independent of the other parts of the
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Figure 2.13: Diagram showing the division of the various components of the nervous system.

nervous system. It mainly facilitates the movement of water and electrolytes across the
intestinal wall and coordinates the gut muscles to produce peristalsis.

In summary, the sympatheticmodulations of the different organs and cells are prevalent
during high arousal states, whereas parasympathetic modulations are predominant during
relaxation.

2.3.2 Heart Rate Variability

Heart rate variability (HRV) represents the variation in time intervals between consecutive
heartbeats. It reflects the activations of the sympathetic and parasympathetic branches of
the autonomic nervous system.

The HRV values can be computed from signals capturing heartbeats, i.e., ECG or BVP.
Brief descriptions of these signals are presented below.

ECG

An ECG device records the electrical activity of the heart over time. The ECG signal can
be recorded in a non-invasive manner by placing electrodes on the skin of the chest, arms,
and legs. These electrodes detect the minor electrical changes when the heart muscles
depolarize and repolarize during each heartbeat [Gacek, 2011; Singh and Krishnan, 2023].
The electrical signals are amplified and recorded as a series of repeating waveforms, form-
ing the ECG signal. Typically, ECG signals are recorded at a high frequency of 500 - 1000
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Hz [Bota et al., 2019].

Figure 2.14: An illustrative plot of an ECG waveform with two beats, labeled with the P-QRS-T
waves. The blue dotted line represents the R-R distance (an NN interval).

The heart has two atria (right and left) that perform blood collection and two ventri-
cles (right and left) that pump the oxygenated blood to the rest of the body [Singh and
Krishnan, 2023; Al-Qazzaz et al., 2014]. These activities are represented in the ECG signal
as characteristic waves. An ECG waveform consists of P-QRS-T waves, where the P wave
represents atrial depolarization, the QRS complex represents ventricular depolarization,
and the T wave represents ventricular repolarization [Gacek, 2011]. While the shape and
amplitude of these waves provide valuable information, the calculation of HRV involves
identifying the timestamps of the peak of the QRS complex. The time interval between
two consecutive peaks is called the R-R distance or NN (normal-to-normal) interval. The
NN intervals are computed over a period (e.g., 1 minute, 5 minutes, etc.) to obtain the HRV
signal. Figure 2.14 shows a snippet from a sample ECG signal, marked with the P-QRS-T
waves and measurement of the NN interval.

BVP

The BVP signal represents the dynamic changes in blood volume in the peripheral tis-
sues, such as the fingertips or face [Peper et al., 2010; Bota et al., 2019]. The blood vol-
ume changes are caused by the rhythmic contraction and relaxation of the heart during
each cardiac cycle. Photoplethysmography (PPG) is the most common method to record
BVP [Peper et al., 2010; Yu et al., 2018]. A PPG sensor shines light onto the skin and detects
the changes in light absorption or reflection due to the changes in blood volume. The BVP
signals are typically recorded at frequencies lower than 100 Hz [Bota et al., 2019].

The BVP signal waveform typically consists of the systolic peak, diastolic trough, and
dicrotic notch. While the systolic peak corresponds to the maximum blood volume during
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ventricular contraction, the diastolic trough corresponds to the minimum blood volume
during ventricular relaxation [Al-Qazzaz et al., 2014]. In ECG, the terms depolarization
and repolarization were used to represent contraction and relaxation. Depolarization and
repolarization indicate the electrical phenomenon, whereas contraction and relaxation are
mechanical terminology [Mammen et al., 2004]. The dicrotic notch is a small deflection or
secondary peak that appears on the descending limb of the BVP waveform (after the pri-
mary systolic peak). It is caused by the closure of the aortic valve at the end of ventricular
systole [Li et al., 2003]. Similar to ECG, time intervals between two consecutive systolic
peaks are computed to obtain the HRV signal. The various components of a BVP signal are
illustrated in Figure 2.15, along with the visualization of the computation of NN intervals
from the BVP signal.

Figure 2.15: An illustrative plot of a BVP waveform with two beats, labeled with the systolic
peak, diastolic point, and dicrotic notch. The blue dotted line represents the interval between
two systolic peaks called an NN interval.

Although both ECG and BVPmeasure heart activity and are often highly correlated, the
ECG signal is deemedmore suitable for computingHRV [Yu et al., 2018]. A plausible reason
is the sharp QRS peaks in ECG are more accurately detected than the curvy systolic peaks
in BVP. Moreover, the quality of the BVP signal is susceptible to various factors, including
skin pigmentation, motion artifacts, and environmental conditions (e.g., lighting) [Bota
et al., 2019].

HRV Features

HRV is widely recognized as a biomarker for the ANS modulations [Shaffer and Ginsberg,
2017; Kim et al., 2018b; Arakaki et al., 2023]. Consecutively, handcrafted HRV features
and their link to sympathetic and parasympathetic activations have been explored in the
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literature. HRV features are broadly classified as time domain, frequency domain, and
non-linear features. Time domain features are statistical values computed from the NN
intervals. The frequency domain features are calculated from the power spectral density
analysis of the HRV signal. The non-linear features include values obtained from entropy
and poincaré plot analyses. Some of the frequently studied HRV features from each domain
and how they reflect the ANS activations are described below.

• Mean NN: This is the simplest time domain feature, which represents the average
time interval between two beats of a given HRV segment. It can be computed as:

𝑚𝑒𝑎𝑛𝑁𝑁 =
1

𝑁

𝑁

∑

𝑖=1

𝑁𝑁𝑖

Here, 𝑁𝑁𝑖 refers to the 𝑖𝑡ℎ NN interval and 𝑁 is the total number of NN intervals in
the HRV signal.
The mean NN decreases with sympathetic activation and increases with parasympa-
thetic activation [Kim et al., 2018b; Peabody et al., 2023; Purnamasari et al., 2019].

• SDNN: This feature is the standard deviation of NN intervals and is computed as:

𝑆𝐷𝑁𝑁 =

√

1

𝑁 − 1

𝑁

∑

𝑖=1

(𝑁𝑁𝑖 − 𝑚𝑒𝑎𝑛𝑁𝑁 )
2

SDNN is a measure of the total variability of the HRV signal. This feature reflects
the sympathetic activity as a lower SDNN is an indicator of sympathetic modula-
tions [Shaffer and Ginsberg, 2017; Purnamasari et al., 2019; Arakaki et al., 2023].
Similarly, parasympathetic modulations lead to larger HRV and higher SDNN val-
ues [Peabody et al., 2023; Shaffer and Ginsberg, 2017].

• RMSSD: It is short for root mean square of successive differences (RMSSD). This is
another popular time domain feature, especially in stress detection. It captures the
variations in adjacent NN intervals and is calculated as:

𝑅𝑀𝑆𝑆𝐷 =

√

1

𝑁 − 1

𝑁−1

∑

𝑖=1

𝑆𝐷 2
𝑖

𝑆𝐷𝑖 refers to the 𝑖𝑡ℎ successive difference and 𝑆𝐷𝑖 = 𝑁𝑁𝑖+1 − 𝑁𝑁𝑖. For a given HRV
segment, there are 𝑁 − 1 successive differences.
The RMSSD values reflect the parasympathetic activity, i.e., increased parasympa-
thetic modulations lead to larger HRV and higher RMSSD [Kim et al., 2018b; Peabody
et al., 2023; Shaffer and Ginsberg, 2017].

• pNN50: This is another feature that quantifies variations in adjacent NN intervals.
Specifically, it calculates the number of adjacent NN intervals that differ bymore than
50 milliseconds and represents them as a percentage of all such successive intervals.
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𝑝𝑁𝑁50 =
num of 𝑆𝐷𝑖 > 50𝑚𝑠

𝑁 − 1
× 100

Like RMSSD, pNN50 also represents parasympathetic influence, with a higher value
representing parasympathetic activation [Kim et al., 2018b; Shaffer and Ginsberg,
2017].

• LF: This feature represents the power intensity in the low-frequency band (0.04 Hz
to 0.15 Hz) of the HRV signal. The frequency features of HRV are computed from
power spectral density, which is estimated by applying techniques like fast Fourier
transform or autoregressive modeling on the HRV signal [Purnamasari et al., 2019].
The LF feature is represented as:

𝐿𝐹 = ∫

0.15

𝑓=0.04

𝑃𝑆𝐷(𝑓 )

The 𝑃𝑆𝐷 function represents the power spectral density and the variable 𝑓 repre-
sents the frequency bands.

While some studies consider LF as a reflection of sympathetic activity [Kim et al.,
2018b], others associate it with both sympathetic and parasympathetic modula-
tions [Shaffer and Ginsberg, 2017; Arakaki et al., 2023].

• HF: This feature represents the power intensity in the high-frequency band (0.15 Hz
to 0.4 Hz) of the HRV signal and is mathematically represented as:

𝐻𝐹 = ∫

0.4

𝑓=0.15

𝑃𝑆𝐷(𝑓 )

The HF components indicate parasympathetic influence and a higher value indicates
an increase in parasympathetic activity [Shaffer andGinsberg, 2017; Kim et al., 2018b;
Arakaki et al., 2023; Peabody et al., 2023].

• SD1: The poincaré plots (see Figire 2.16) are generated by mapping NN intervals and
the previous NN intervals as ordered pairs [Claudia et al., 2003; Piskorski and Guzik,
2005]. The SD1 feature represents the dispersion of data points perpendicular to the
identity line (𝑦 = 𝑥) in the Poincaré plot. In other words, it is the standard deviation
of each point from the identity line and denotes the width of the ellipse [Piskorski
and Guzik, 2005; Shaffer and Ginsberg, 2017].

𝑆𝐷1 =

√

𝑉𝑎𝑟
(

𝑁𝑁𝑖+1 − 𝑁𝑁𝑖)
√
2 )

SD1 quantifies the short-term or beat-to-beat variability in the NN intervals and
is similar to the RMSSD feature. So, an increase in SD1 indicates parasympathetic
activation [Shaffer and Ginsberg, 2017].
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• SD2: This feature quantifies the dispersion of data points along the identity line in the
Poincaré plot. SD2 denotes the length of the ellipse and is calculated as the standard
deviation of each point from the line 𝑦 = 𝑥 + 𝑚𝑒𝑎𝑛𝑁𝑁 [Piskorski and Guzik, 2005;
Shaffer and Ginsberg, 2017].

𝑆𝐷2 =

√

𝑉𝑎𝑟
(

𝑁𝑁𝑖+1 + 𝑁𝑁𝑖)
√
2 )

SD2 reflects the long-term or slower fluctuations in the NN intervals, which are in-
fluenced by both the sympathetic and parasympathetic branches of the ANS [Shaffer
and Ginsberg, 2017].

Figure 2.16: An illustration of a Poincaré plot between NN intervals (𝑁𝑁𝑖) and the subsequent
NN intervals (𝑁𝑁𝑖+1). The identity line, SD1, and SD2 are labeled in the plot.

HRV during Stress

Stress is a high arousal state that increases sympathetic activity and reduces parasympa-
thetic activity of ANS. This leads to an increase in heart rate, measured as the number of
beats per minute. The increase in sympathetic activity during stress leads to a decrease in
time-domain HRV features such as mean NN and SDNN. On the other hand, the reduced
parasympathetic activity decreases RMSSD and pNN50 values [Purnamasari et al., 2019;
Shaffer and Ginsberg, 2017; Kim et al., 2018b]. In the frequency domain, HF decreases,
indicating reduced parasympathetic activity. The trend regarding LF is conflicting due to
the decrease in parasympathetic activity and an increase in sympathetic activity.

Research has explored other HRV features that could be indicators of stress. A more
extensive list of HRV features was utilized in Chapter 5 for stress detection. However, the
relation between many of these features and ANS activations has not been investigated.
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HRV during Flow

Considering the three-channel model, the three states lead to different ANS activa-
tions [Knierim et al., 2018; Peifer et al., 2014]. The anxiety state is similar to the stress
state and is characterized by high arousal. It is associated with a decrease in HRV fea-
tures, including mean NN, SDNN, RMSSD, pNN50, and HF, due to increased sympathetic
activation and reduced parasympathetic activation. The boredom state is considered a low
arousal state, with a lower heart rate and higher HRV. This state follows an opposite trend
to stress in all the mentioned features.

The flow state is characterized by moderate arousal as well as relaxation. This leads to
the activation of both sympathetic and parasympathetic branches of the ANS. While HRV
features associated with sympathetic activation (e.g., mean NN) increase moderately, fea-
tures associated with parasympathetic activation such as RMSSD and pNN50 also increase
moderately. The flow state could lead to an increase in HF, reflecting the parasympathetic
activity. Interestingly, the LF feature is expected to increase because of both sympathetic
and parasympathetic activations.

2.3.3 Electrodermal Activity

Electrodermal activity (EDA), also known as galvanic skin response, is a signal that indi-
cates the electrical conductance or resistance of the skin [Topoglu et al., 2020; Tronstad
et al., 2022; Braithwaite et al., 2013; Posada-Quintero and Chon, 2020]. EDA is based on the
principle that the skin’s ability to conduct electricity varies with its moisture level, which
is regulated by the sweat glands. Sweat is mostly made up of water and electrolytes, and
thus, sweating leads to an increase in the electrical conductivity of the skin. The EDA sen-
sors are typically placed on hands and feet due to the high density of sweat glands in these
areas. However, it is important to note that EDA measurements are susceptible to various
factors such as temperature and humidity.

The EDA signal contains two components: skin conductance level (SCL) and skin con-
ductance response (SCR) [Topoglu et al., 2020; Tronstad et al., 2022; Braithwaite et al., 2013;
Posada-Quintero and Chon, 2020]. SCL is the tonic component and represents the slow-
moving part of the EDA signal. It indicates the baseline level of electrical conductivity in
the skin. SCR is the phasic component and represents the fast-changing part of the EDA
signal. It captures event-related changes in skin conductance that occur in response to
specific stimuli. Due to the rapid changes, the SCR signal contains peaks characterized by
sharp rises and slow decline.

Many techniques have been proposed to extract the SCL and SCR components from
the EDA signal [Topoglu et al., 2020; Posada-Quintero and Chon, 2020]. A widely used one
is the cvxEDA algorithm [Greco et al., 2015], which is shown to be robust against noise.
This algorithm models the EDA signal as a sum of SCL, SCR, and noise. It applies a convex
optimization approach to decompose the signal into the individual components.
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EDA Features

EDA is awell-establishedmarker of sympathetic activation of theANS [Topoglu et al., 2020;
Tronstad et al., 2022; Posada-Quintero and Chon, 2020]. Features are typically extracted
from the raw EDA, SCL, and SCR signals. The widely used features from EDA and SCL
signals are simple statistical metrics, whereas various peak-related features are extracted
from SCR. This could be because many of the studies employ EDA in detecting stress or
arousal, and SCR reflects the changes caused by the stimuli. Some of the popular EDA
features are described below.

• Mean and SD: The simplest yet popular statistical features computed inmany studies
utilizing EDA are mean and standard deviation [Giannakakis et al., 2019; Horvers
et al., 2021; Topoglu et al., 2020; Yu et al., 2018]. These features are computed for raw
EDA, SCL, and SCR signals. The general formulas for computing these features are:

𝑚𝑒𝑎𝑛𝑆𝑖𝑔 =
1

𝑁
∑ 𝑆𝑖𝑔𝑛𝑎𝑙

𝑆𝐷𝑆𝑖𝑔 =

√
1

𝑁 − 1
∑ (𝑆𝑖𝑔𝑛𝑎𝑙 − 𝑚𝑒𝑎𝑛𝑆𝑖𝑔)

2

Here, 𝑆𝑖𝑔𝑛𝑎𝑙 can be any of the three signals (raw EDA, SCL, or SCR) and 𝑁 refers
to the length of the signal. For a 60-second long EDA signal sampled at 50 Hz, the
length of the signal is 60 × 50 = 3000.

• Range: This feature is typically computed for the raw EDA signal as 𝑅𝑎𝑛𝑔𝑒 =

𝑚𝑎𝑥(𝐸𝐷𝐴) − 𝑚𝑖𝑛(𝐸𝐷𝐴). Some studies utilize the minimum and maximum values
as features instead of computing the range [Horvers et al., 2021].

• Number and Amplitude of SCR Peaks: The features derived from the SCR peaks are
widely used in many studies [Horvers et al., 2021]. The number of SCR peaks and the
total amplitude of these peaks are frequently computed features. Figure 2.17 shows
an example of a peak in the SCR signal.

• Rise and Recovery times: Rise time is the duration between the onset and the peak
point. Similarly, recovery time is the duration between the peak point and offset. Fig-
ure 2.17 visualizes the rise and recovery times for a peak in the SCR signal. While the
peak points are identified using a peak finding algorithm, the onset and offset points
are identified based on threshold values [Horvers et al., 2021]. Features derived from
these variables are also used in some studies targeting stress detection [Giannakakis
et al., 2019].

EDA during Stress and Flow

The sweat glands are controlled by the sympathetic nervous system, which is responsi-
ble for the body’s fight-or-flight response. When an individual experiences a high arousal

39



CHAPTER 2. BACKGROUND

Figure 2.17: An illustrative plot of an SCR signal, labeled with onset, and peak points. The
amplitude, rise time, and half recovery time are depicted in the plot.

state, such as stress or anxiety, the sympathetic nervous system activates, causing the in-
dividual to sweat more. The higher the amount of sweat, the higher the skin conductivity
and the higher the EDA. Both SCL and SCR components increase with sympathetic activity.
So, an increase in statistical features associated with these signals indicates sympathetic
activity and arousal [Giannakakis et al., 2019]. Moreover, high-arousal stimuli also cause
event-based changes in SCR, increasing the SCR peaks [Giannakakis et al., 2019].

While the EDA responses during stress are relatively known, it is not an efficient
biomarker for differentiating various states in the flow model [Knierim et al., 2018]. A
plausible reason is that the EDA is a signal governed almost exclusively by the sympa-
thetic activity, without influence from the parasympathetic branch [Giannakakis et al.,
2019; Topoglu et al., 2020; Tronstad et al., 2022; Posada-Quintero and Chon, 2020]. How-
ever, the flow state involves both sympathetic and parasympathetic activations. Although
EDA could differentiate anxiety from boredom, it is not the most optimal for single-modal
flow detection. However, the EDA signal is still a promising physiological signal in multi-
modal flow detection scenarios.

2.4 Machine Learning

Artificial Intelligence (AI) is defined as equipping machines with the ability to per-
form tasks typically associated with human intelligence, such as learning and problem-
solving [Goodfellow et al., 2016]. Machine learning is a field of AI that focuses on devel-
oping algorithms and statistical models that learn an optimal representation of the data to
recognize patterns or make predictions [Jordan and Mitchell, 2015; Goodfellow et al., 2016;
Mahesh, 2020]. Although research has identified many techniques for machine learning,
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there are two categories of learning that are widely used: supervised and unsupervised
learning [Bishop, 2006; Baştanlar and Özuysal, 2014; Nasteski, 2017; Mahesh, 2020; Jani-
esch et al., 2021]. Supervised learning involves training models using labeled data, where
the input data is mapped to known output labels or values. The goal is to learn the map-
ping function for a given dataset. Typical supervised machine learning problems involve
classification (e.g., predicting a discrete emotion label) and regression/estimation (e.g., pre-
dicting continuous values of valence-arousal) tasks. In unsupervised learning, the model is
trained on unlabeled data, with the goal of discovering inherent patterns, statistical regu-
larities, or relationships within the given dataset. Some common tasks under this learning
paradigm include clustering (grouping similar data points) and dimensionality reduction
(reducing the number of features or dimensions used to represent data while preserving
the most relevant information). This thesis predominantly utilizes supervised machine
learning models to predict various worker states.

2.4.1 Model Development

Phases

A machine learning model development typically follows three phases: training, valida-
tion, and testing [Baştanlar and Özuysal, 2014]. The training phase involves learning the
mapping function that can predict the output label/value for a given input. This phase uti-
lizes a training set, which comprises a majority of the data (typically around 80%) from the
dataset. The validation phase utilizes a small subset of data, also called the validation set, to
assess the performance of the trained model. The testing phase evaluates the performance
of the model on unseen data, also called the testing set. The testing set can be an external
dataset (different than the training dataset) or may originate from the same dataset as the
training and validation sets (different data points from the same dataset).

Evaluation Methodology

K-fold cross-validation and leave-one-subject-out (LOSO) cross-validation are two com-
mon techniques used for training and evaluating the performance of machine learning
models [Bishop, 2006; Baştanlar and Özuysal, 2014; Badillo et al., 2020]. K-fold cross-
validation is a resampling technique that involves partitioning the available data into k
equal-sized subsets or “folds". The model is trained using data from k-1 subsets and eval-
uated on the remaining subset. This process is repeated k times, where each iteration
corresponds to one subset serving as the validation set. The final performance metric is
calculated by averaging the results across all k iterations. LOSO cross-validation is a spe-
cial case of cross-validation that is employed in scenarios where the data originates from
a set of individuals. In LOSO, the model is trained on data from all subjects except one,
and the left-out subject’s data is used for validation. This process is repeated, leaving out
a different subject each time, until all subjects have been used for validation once.

LOSO evaluation is crucial in assessing the model’s ability to generalize to new, unseen
subjects. K-fold cross-validation may not capture this aspect, as the folds can include data
from the same subject in both the training and validation sets. This can lead to models
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achieving lower performance during LOSO evaluations, making it a stricter evaluation
technique.

Performance Metrics

Performance metrics are quantitative measures used to assess the performance of machine
learning models. These metrics are different for classification and estimation tasks. This
thesis uses Accuracy and F1-score as performance metrics for classification tasks, whereas
Concordance Correlation Coefficient (CCC) and Root Mean Squared Error (RMSE) for es-
timation tasks [Bajaj, 2023; Janiesch et al., 2021; Baştanlar and Özuysal, 2014; Badillo et al.,
2020].

Both Accuracy and F1-score are based on the True classes (ground truth) and predicted
classes (positive or negative). Accuracy measures the proportion of correct predictions
made by the model out of all predictions and is given by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇 𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is the number of positive class samples that the model predicted cor-
rectly, whereas 𝑇 𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 is the number of negative class samples predicted correctly.
𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 is the number of negative class samples that were predicted incorrectly as
the positive class. Similarly, 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 is the number of positive class samples that
were predicted incorrectly as negative class.

For the positive class, precision measures the proportion of correct positive predictions
out of all positive predictions made by themodel. Recall measures the proportion of correct
positive predictions out of all positive samples. The F1-score is a measure that combines
precision and recall into a single metric. It is the harmonic mean of precision and recall,
providing a balanced evaluation of a model’s performance.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇 𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

Both Accuracy and F1-score metrics range between 0 and 1, with 1 indicating a perfect
model that predicted all samples correctly. While accuracy is a commonly used metric, it
can be misleading in cases where the dataset is imbalanced (i.e., one class is significantly
more prevalent than the other). In such cases, the class-wise averaged F1-score may be
more appropriate for evaluating the model’s performance [Czakon, 2023].

For estimation tasks, RMSE measures the difference between the ground-truth value
and the predicted value. On the other hand, CCC is a measure of similarity between a list
of ground-truth values and predicted values. They can be computed as:
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𝑅𝑀𝑆𝐸 =

√

1

𝑁

𝑁

∑

𝑖=1

(𝑌 𝑇 𝑟𝑢𝑒𝑖 − 𝑌 𝑃𝑟𝑒𝑑𝑖)
2

In a list of𝑁 samples, 𝑌 𝑇 𝑟𝑢𝑒𝑖 refers to the true value of the 𝑖𝑡ℎ sample and 𝑌 𝑃𝑟𝑒𝑑𝑖 is the
corresponding estimated value. A lower RMSE value indicates better model performance,
as it implies that the predicted values are closer to the ground-truth values. The lowest
plausible value is 0, indicating perfect agreement between predicted and true values.

𝐶𝐶𝐶 =
2 × 𝐶𝑜𝑉𝑎𝑟(𝑌 𝑇 𝑟𝑢𝑒, 𝑌 𝑃𝑟𝑒𝑑)

(𝑚𝑒𝑎𝑛(𝑌 𝑇 𝑟𝑢𝑒) − 𝑚𝑒𝑎𝑛(𝑌 𝑃𝑟𝑒𝑑))
2
+ 𝑆𝐷(𝑌 𝑇 𝑟𝑢𝑒) + 𝑆𝐷(𝑌 𝑃𝑟𝑒𝑑)

Here, 𝐶𝑜𝑉𝑎𝑟(𝐿1, 𝐿2) represents the covariance between two lists 𝐿1 and 𝐿2, 𝑚𝑒𝑎𝑛(𝐿1)
refers to the mean value of the list 𝐿1, and 𝑆𝐷(𝐿1) is the standard deviation of the list 𝐿1.
The CCC ranges from -1 to 1, with 1 indicating perfect agreement between the predicted
and true values, 0 indicating no agreement, and -1 indicating perfect inverse agreement.

2.4.2 Shallow Models

Numerous machine learning algorithms have been proposed over the years [Bishop, 2006;
Goodfellow et al., 2016; Janiesch et al., 2021]. They can be broadly classified as shallow and
deep learning models. Shallow models are older machine learning techniques that follow
simple algorithms or architectures, making them computationally efficient. As shown in
Figure 2.18, they often rely on domain-specific knowledge and feature engineering, where
relevant features are manually selected or hand-crafted from the raw data. The shallow
models used in this thesis are described below.

Figure 2.18: A typical shallow model pipeline.

Random Forest Classifier

A random forest classifier (RFC) [Breiman, 2001] is an ensemble learning method used for
classification tasks. As illustrated in Figure 2.19, themain idea of RFC is combiningmultiple
decision trees to form a “forest" [Badillo et al., 2020]. A decision tree is made up of nodes
and edges [Nasteski, 2017; Mahesh, 2020]. It starts with the root node, which does not have
an incoming edge. All other nodes have one incoming edge. The tree ends with a set of leaf
nodes that represent the predictions of the decision tree model. The intermediate nodes or
internal nodes represent decision points or rules that are discrete functions of input data.

The RFC algorithm creates subsets of the original training data through bootstrapping.
That is, the samples in the subsets are randomly selected from the dataset with replace-
ment, resulting in some samples being repeated while others are left out. For each subset,
a decision tree is trained using the bootstrapped data. During the training phase of each
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tree, a random subset of features is selected at each node split rather than considering all
features.

For each test sample, the RFC model aggregates the prediction of the individual trees
through techniques such as averaging or majority votes. Although individual trees are
prone to overfitting, the RFC model is considered robust as it mitigates this risk through
ensemble learning [Jiang et al., 2020; Badillo et al., 2020].

Figure 2.19: A visualization of an RFC model consisting of three decision trees with majority
voting prediction aggregation.

Support Vector Machines

The goal of a support vector machine (SVM) [Cortes and Vapnik, 1995] model is to find
the hyperplane that maximally separates the classes in the feature space. A hyperplane is
a flat subspace that separates the data into classes. In two dimensions, the hyperplane is a
line; in three dimensions, it is a plane, and so on. The hyperplane is chosen such that the
distance between the closest data points (called the support vectors) and the hyperplane
is maximized. This distance is known as the margin. For a binary classification of linearly
separable data, the SVM is modeled as [Goodfellow et al., 2016; Baştanlar and Özuysal,
2014]:
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𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 = 𝑤
𝑇
𝑥 + 𝑐

𝑤 = ∑

𝑖

𝛼𝑖𝑦𝑖𝑥𝑖

Here 𝑥𝑖 represents a feature vector in the dataset, 𝑦𝑖 is the corresponding label (𝑦𝑖 ∈
{−1, 1}), and 𝛼 is a vector of coefficients. For any sample, if the 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 equa-
tion is positive, then the label 𝑦 = 1, and if the equation evaluates to negative, then 𝑦 = −1.

Figure 2.20: A visualization of an SVM model for linear separable data represented in terms
of two features. The hyperplane (line in this case), margin, and support vectors are labeled in
the image.

Kernel functions are utilized when the decision boundary is not linear [Goodfellow
et al., 2016; Baştanlar and Özuysal, 2014; Badillo et al., 2020; Mahesh, 2020]. In this tech-
nique, the input data is mapped onto a high-dimensional feature space where a linear sep-
aration is possible. Subsequently, a hyperplane decision boundary is determined following
the same procedure as linearly separable data. Radial basis function and linear kernels are
commonly used in training SVMs.

To handle cases where the data is not perfectly separable, SVM utilizes a “soft margin"
that tolerates some misclassification. This is controlled by a regularization parameter C
that represents the trade-off between maximizing the margin and minimizing the classifi-
cation error.

Simple Artificial Neural Networks

An artificial neural network (ANN) is a machine learning model that follows a graph-like
structure made up of neurons or perceptrons [Bishop, 2006; Goodfellow et al., 2016; Badillo
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et al., 2020]. There are many neural network architectures that have been proposed in the
literature. A neural network can be shallow or deep depending on the depth or number
of layers in the architecture, which changes the model’s learning capabilities [Janiesch
et al., 2021]. The shallow models considered in this thesis are simple feedforward neural
networks. A simple neural network involves an input layer, a few hidden layers, and an
output layer. Neurons in each layer are connected to neurons in the subsequent layer
through weighted connections. As visualized in Figure 2.21, each neuron in the hidden and
output layers computes a weighted sum of its inputs from the previous layer and applies an
activation function (e.g., sigmoid, ReLU) to produce its output. The output from the final
layer represents the prediction of the model. The shallow networks in this thesis are called
feedforward because information flows in a single direction, from the input layer through
the hidden layers to the output layer, without any cycles or loops. Figure 2.22 presents an
example representation of the simple ANNs used in this thesis.

Figure 2.21: An illustration of operations associated with a simple neuron activation.

The training of a neural network involves three main components: loss function, back-
propagation, and optimization algorithm. The loss function computes the loss for each in-
put by calculating the difference between the predicted output and true values. Commonly
used loss functions include mean squared error for regression tasks and cross-entropy loss
for classification tasks. The errors (gradients of the loss function) are propagated back-
ward through the network, starting from the output layer. The errors computed during
backpropagation are used to update the weights and biases of the neural network using
an optimization algorithm, such as stochastic gradient descent (SGD) and Adam. The opti-
mization algorithm adjusts the weights and biases in the direction that minimizes the loss
function, with the learning rate determining the step size. A higher learning rate leads to
larger changes in weights. The training steps are repeated for a certain number of epochs
or iterations until the neural network converges to a solution where the loss function is
minimized.

2.4.3 Deep Learning Models

Deep learning models are neural networks that are “deeper" than simple feedforward mod-
els, i.e., they have many hidden layers. [Goodfellow et al., 2016; Janiesch et al., 2021]. In
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Figure 2.22: Visualization of a simple feedforward neural network with an input layer, two
hidden layers, and an output layer.

recent years, neurons capable of advanced computations like convolution and feedback
loops (recurrent connections) have been used in constructing convolutional neural net-
works (CNNs) and recurrent neural networks. Deep learning models are more complex
and capable of learning data representations from the raw data instead of relying on hand-
crafted features. Consequently, these models are computationally heavy, and specialized
hardware like GPUs are often employed to train them.

Figure 2.23: A typical deep learning model pipeline. Compared to shallow models in Fig-
ure 2.18, deep learning models learn the relevant features, eliminating the need for explicit
feature extraction.

Convolutional Neural Networks

CNNs are deep learning models that are typically used for processing structured grid-like
data (e.g., images). They are widely used in computer vision tasks such as image classifi-
cation and object detection, as they can learn spatial features from input data. The work
by LeCun et al. [1998] is considered the foundation of modern CNNs [Goodfellow et al.,
2016; Gu et al., 2018].

The core component of CNNs is convolutional layers, which apply convolution opera-
tions to the input [Goodfellow et al., 2016; O’Shea and Nash, 2015; Gu et al., 2018; Dishar
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and Muhammed, 2023]. The convolution operation involves sliding a filter (or kernel)
across the input, computing dot products between the filter weights and the input values
to generate feature maps. An example of the convolution operation with a 2 × 2 filter is
presented in Figure 2.24. Each filter detects specific local patterns such as edges, textures,
or more complex features in deeper layers. These filters are learned during the training
process.

Figure 2.24: An example of convolution operation for a 3 × 3 input and a 2 × 2 filter.

The pooling layer is another widely used layer in CNNs [Goodfellow et al., 2016; O’Shea
and Nash, 2015; Gu et al., 2018]. The pooling function replaces values at a location by sum-
mary statistics (e.g., average, maximum) of nearby values. It can be seen as a downsampling
layer, which reduces the dimensions of the feature maps. After several convolutional and
pooling layers, the feature maps are flattened and fed into one or more fully connected
layers. These layers are similar to the hidden layers of a simple ANN. They utilize the
features extracted through convolutional layers to generate predictions.

Batch normalization and dropout layers are often used in CNN architectures to reduce
overfitting [Gu et al., 2018; Dishar and Muhammed, 2023]. During training, for each mini-
batch, the batch normalization layer applies z-normalization (subtracting the mini-batch
mean and dividing by the mini-batch standard deviation) to the input. This layer stabilizes
the learning process by reducing the dependence on the initial values of the weights. The
dropout layer randomly drops a fraction (set as a hyperparameter) of the neuron activations
in a layer during the training phase. This prevents any single neuron or feature fromhaving
an excessive influence on the output.

VGG-16 Architecture

Throughout this thesis, the VGG-16 architecture is utilized as a basis for the image-based
deep learning models. This architecture was proposed by Simonyan and Zisserman [2014],
and is named after their group (Visual Geometry Group). The original model proposed
for object recognition tasks had 16 weighted layers (13 convolutional layers and 3 fully
connected layers).

The model takes as input RGB images (three channels), typically scaled to 224 × 224
pixels (default dimensions). The base network (without fully connected layers and output
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layer) is made up of five convolutional blocks, stacked one after the other. Each block con-
tains two or three convolutional layers, followed by a max pooling layer. All convolutional
layers utilize filters of size 3 × 3. The number of filters increases with each block, starting
with 64 filters in the convolutional layers of the first block and doubling after each block,
reaching 512 filters in the last block.

The final layers of the model are modified following the approach proposed by Lin et al.
[2014]. The last pooling layer is replaced with a global average pooling over all feature
maps. After this layer, a fully connected layer with 1024 neurons is added, which in turn
is connected to the output layer. Figure 2.25 visualizes the VGG-16 architecture followed
in this thesis.

Transfer Learning

Transfer learning is a machine learning technique that involves transferring knowledge
gained from one task or domain to another related task or domain. This technique is par-
ticularly useful when the target task has limited training data. There are many classifica-
tions of transfer learning [Zhuang et al., 2020]. One classification distinguishes between
inductive, transductive, and unsupervised transfer learning [Pan and Yang, 2009]. In in-
ductive transfer learning, the source and target domains are the same, but the tasks are
different but related. Transductive transfer learning involves the same source and target
tasks, but the domains are different but related. Unsupervised transfer learning involves
unsupervised learning tasks (e.g., clustering, dimensionality reduction) with both source
and target domains containing unlabeled data. This thesis focuses on inductive transfer
learning, where the learned feature representations are transferred.

As highlighted by Yosinski et al. [2014], there are two primary methods for transfer
learning feature representations in deep neural networks: freezing and fine-tuning. In
the freezing method, weights from the initial layers of a pre-trained model are copied to
the target model, and these layers are designated as “frozen" or not trainable. Meanwhile,
the remaining layers, marked “unfrozen", are initialized randomly and trained on the target
dataset. The fine-tuningmethod also involves transferringweights from the initial layers of
a pre-trained model and initializing the remaining layers with random weights. However,
in fine-tuning, no layer is marked as frozen; instead, all layers undergo further training on
the target dataset.

2.5 Background Summary

This chapter presented the psychological backgrounds of relevant user states, the behav-
ioral and physiological signals that are indicators of these states, and the various machine
learning models utilized in this thesis. Various theories regarding the manifestation of
emotion, pain, stress, and flow were briefly described in the psychological concepts sec-
tion. Discrete emotion models like Ekman’s basic emotions and continuous emotion mod-
els like the pleasure-arousal-dominance models were discussed. Theories about the pain
experience and how it can be modulated by emotions and stress were also discussed. The
concept of stress was explored from the perspective of stressors (stimuli), stress response,

49



CHAPTER 2. BACKGROUND

Figure 2.25: An illustration of VGG-16 architecture utilized in this thesis for image-based
predictions.
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and cognitive evaluation of the situation (challenges and resources). Finally, the modeling
of flow state and related experiences (boredom, anxiety) in terms of challenge and skill
were presented.

The next sections focused on the various affective and social signals. Facial behavioral
signals including facial expressions and gaze were discussed, along with their potential
in emotion, pain, and visual attention recognition. The section on physiological signals
provided a brief overview of the role of ANS in regulating physiological responses. Two
signals - HRV and EDA - were described including the signal characteristics, various fea-
tures, and how they vary depending on the different ANS activations. A brief description
of how these signals reflect stress and flow states was also presented.

The last part of this chapter focused on the machine learning concepts. The phases of
model development and the techniques used in these phases were discussed. The concepts
of shallow and deep learning models were presented, along with some architectures for
each type of learning. In the subsequent chapters, the signals and features are used to
train various models for detecting the relevant states.
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Chapter 3

Attention and Distraction Recognition

Figure 3.1: A comic strip illustration of an industrial Human-Robot Collaboration (HRC) use-
case where attention/distraction detection can mitigate negative experiences. In this situation,
a worker collaborating with a cobot on a production line becomes distracted. The non-adaptive
cobot continues production, resulting in excess production of incomplete items, ultimately lead-
ing to a stressful situation when the worker returns.
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3.1 Overview

In Industry 5.0 scenarios, the gaze of a worker provides valuable information that a cobot
can utilize to adapt its behavior. Research in this domain often focuses on adaptations
that enhance productivity and safety, while the aspect of worker well-being is relatively
unexplored [Nicora et al., 2021; Fan et al., 2022]. Imagine a scenario depicted in Figure 3.1,
where a brief lapse in the worker’s attention results in a highly stressful circumstance. In
this case, the cobot can either slow down its production rate or place the assemblies in a
dedicated location, and thus avoid disruption of the assembly line. Such human-centered
adaptations can reduce negative experiences and psychological stress on the worker.

This work utilizes the direction of gaze as an indicator of an individual’s attention,
effectively conveying their current area of interest. The primary objective of previous
related studies [Saran et al., 2018; Shi et al., 2021; Huang and Mutlu, 2016] was identifying
objects on a table that the participant is currently observing. Drawing inspiration from the
field of driver attention detection [Ahlstrom et al., 2013; Vora et al., 2017; Tayibnapis et al.,
2018], this chapter proposes a gaze-based model to categorize operator’s attention and
distraction. The underlying concept of developing this model involves a two-step process:
the initial training of a model to detect gaze direction, followed by mapping this detected
direction to predefined classes of attention. The model utilizes images captured from a
frontal camera as its input.

The model described in this chapter is used in Chapter 8 to analyze the operator’s gaze
behavior and subsequently adapt the cobot behavior. The contents of this chapter expand
the research presented in:

∗ P. Prajod, M. Lavit Nicora, M. Malosio, and E. André. Gaze-based attention recog-
nition for human-robot collaboration. In Proceedings of the 16th International Con-
ference on PErvasive Technologies Related to Assistive Environments, pages 140–147,
2023a

[ I curated the datasets, including data processing and labeling. I also developed the
machine learning models and performed the analysis. Furthermore, I contributed to the
design of data collection setup. ]

∗ R. Arora, P. Prajod, M. L. Nicora, D. Panzeri, G. Tauro, R. Vertechy, M. Malosio, E. An-
dré, and P. Gebhard. Socially interactive agents for robotic neurorehabilitation train-
ing: Conceptualization and proof-of-concept study. arXiv preprint arXiv:2406.12035,
2024

[ I contributed significantly to defining the framework and designing the data collection
setup. Additionally, I developed the machine learning models and the real-time data
processing and detection pipelines.]
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3.2 Background Literature and Previous Works

3.2.1 Distraction Datasets

Worker distraction detection is critical in industrial settings as it can lead to increased mis-
takes and faulty products. Gaze-based distraction detection has been studied thoroughly in
applications like driver assistance and education, but it is not widely studied in the context
of worker distraction. This section discusses some of the existing distraction datasets from
various domains, tabulated in Table 3.1.

Paper Context Participant Data
Montoya et al. [2016] (SFDDD) Driver Face/Upper body images
Taylor et al. [2015] (Warwick-JLR) Driver ECG, EDA
Taamneh et al. [2017] Driver Face/Upper body videos,

Eye tracker, EDA, Heart
rate, Breathing rate

Abouelnaga et al. [2017] (AUCDD) Driver Face/Upper body images
Billah et al. [2018] (EBDD) Driver Face/Upper body videos
Jegham et al. [2020] (3MDAD) Driver Face/Upper body videos
Saad et al. [2020] Driver Face/Upper body images
Delgado et al. [2021] Student Face images
Asish et al. [2021] Student Eye tracker
Das et al. [2022] Driver Face/Upper body videos,

Temperature, EDA,
Heart rate, Breathing
rate

Rahman et al. [2023] (SynDD1) Driver Face/Upper body videos
Shaiqur Rahman et al. [2022] (SynDD2) Driver Face/Upper body videos
Wang et al. [2023] (100-Driver) Driver Face/Upper body videos
Zaparas et al. [2023] (ARDIST) Worker Eye tracker
Dai et al. [2023] Worker Face/Upper body videos,

Eye tracker
Kaewkaisorn et al. [2024] (RLDD) Student Face images

Table 3.1: A brief overview of existing human distraction datasets.

Distraction detection is widely studied in the context of driving. One of the most popu-
lar driver-distraction datasets is the State Farm Distracted Driver Dataset (SFDDD) [Mon-
toya et al., 2016], which was published as part of a Kaggle competition. This dataset con-
tains RGB images recorded using a dashboard camera. The SFDDD labeled nine classes of
distraction, such as texting, drinking, and talking to passengers. Similar distraction activ-
ity labels were leveraged by other driver distraction datasets (e.g., Abouelnaga et al. [2017];
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Billah et al. [2018]; Saad et al. [2020]; Rahman et al. [2023]). It is important to note that
these labels are chosen based on frequent distracted driver behaviors and are not universal
indicators of distraction. For example, a worker talking to the cobot does not suggest that
the worker is distracted.

In naturalistic situations, driving can occur in the daytime or at night. The typical RGB
images/videos that are reliable in daytime illumination may not be effective at night in
low-lighting conditions. So, datasets such as 3MDAD [Jegham et al., 2020], SynDD1 [Rah-
man et al., 2023], and 100-Driver [Wang et al., 2023] additionally collected infrared camera
recordings for effective low-lighting distraction detection. Both RBG and infrared cam-
eras are typically placed near the dashboard, recording a side profile of the driver along
with their upper body. These images/videos capture information about gaze as well as
posture (e.g., hands off the wheel, holding a phone). In addition to distraction instances,
SynDD1 [Rahman et al., 2023] and SynDD2 [Shaiqur Rahman et al., 2022] datasets con-
tain samples of drivers looking at various pre-determined gaze zones of the car. These
samples can be used to train models that predict the visual attention of the driver. A few
datasets [Taylor et al., 2015; Taamneh et al., 2017; Das et al., 2022] collected physiological
data to assess driver distraction.

Some datasets were collected to detect distraction in students in learning environments.
While Asish et al. [2021] utilized gaze tracking in a VR environment to detect distraction,
works like Delgado et al. [2021] and Kaewkaisorn et al. [2024] relied on dedicated facial im-
ages/videos. The cameras capturing RGB facial images are typically placed in front of the
student. Unlike driver distraction datasets, the attention/distraction labels in these datasets
are assigned based on the student’s gaze direction (e.g., whiteboard, table/notebook, ran-
dom direction) instead of specific behaviors.

Recent research has acknowledged the lack of worker distraction datasets, which led to
the emergence of datasets designed for recognizing worker distraction in industrial con-
texts. Notable examples include the datasets proposed by Zaparas et al. [2023] and Dai
et al. [2023]. The dataset collected by Zaparas et al. [2023] contains gaze-tracking data
from participants working with a cobot in augmented reality settings. They incorporated
visual (e.g., random objects) and audio (e.g., ambulance siren, honking) distracting stimuli.
On the other hand, Dai et al. [2023] collected both frontal camera and wearable eye-tracker
data during physical HRC sessions. They induced distractions by sudden clapping noise, a
co-worker entering theworkspace, and personal phones. However, this dataset is currently
a pilot version that is very limited in size.

3.2.2 Gaze Detection from Facial Images in HRC

As seen from Table 3.1, facial/upper body images are the most popular modality in detect-
ing distraction. The typical features extracted from facial images include gaze direction,
facial expressions, and head pose. As mentioned in Chapter 2, the literature has shown that
gaze is a prominent indicator of human attention and distraction. This section focuses on
gaze-based attention/distraction in the HRC context. Many works in HRC settings [Huang
andMutlu, 2016; Newman et al., 2020; Shi et al., 2021; Chadalavada et al., 2018; Paletta et al.,
2019; Chan et al., 2022; Gomez Cubero and Rehm, 2021] utilize wearable eye trackers to
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detect the gaze direction and in turn, the area that attracted the user’s attention. Most of
these works are described further in Chapter 8. In these works, the attention information is
used in recognizing intent, which is based on the observation that humans typically direct
their gaze towards an object before interacting with or manipulating it. However, wearable
devices can be intrusive and less suitable for industrial settings since they require workers
to wear extra equipment, thereby introducing additional prerequisites and protocols. For
instance, workers may need training on how to wear the gaze tracking device correctly.
As an alternative, non-intrusive solutions utilizing facial images/videos have gained trac-
tion. Hence, this section further narrows its focus by considering works that utilize facial
images/videos to detect gaze-based attention/distraction.

There are mainly two ways to recognize gaze direction from a camera image - using
eye region information and head pose. Palinko et al. [2016] compared these two methods
during an HRC setting. The features for both methods were derived from frontal face im-
ages. These images were captured using the robot’s (iCub robot) camera situated near its
eye. They used head orientation to calculate head-gaze direction, while eye gaze was de-
termined using information from the eye region, which in turn was computed from facial
landmarks. To evaluate these methods, the researchers designed a collaborative puzzle ex-
periment. Operators were tasked with assembling a tower using four blocks, which were
held by an experimenter and the robot. Success in retrieving the blocks was contingent
on the operators exhibiting specific gaze behaviors, involving looking at the blocks and
then looking at the robot’s face, or vice versa. Compared to head-gaze method, eye-gaze
method led to more successful collaborations. Although the study’s primary goal differed
from typical intention recognition, the experimental design naturally inclined towards dis-
cerning gaze directed toward specific objects in space, namely two blocks and a stationary
robot face.

Dufour et al. [2020] proposed using the visibility of the end-effector as a kinematic
constraint for robot motion. This idea was inspired by literature suggesting that a robot
should always perform its tasks within the operator’s field of view to ensure the operator’s
safety and comfort. To implement this, the authors computed the participant’s gaze direc-
tion from camera images by taking into account the positions of the shoulders, neck, and
head. The researchers utilized an RGB-D camera facing the participant, mounted on the
wall behind a Baxter robot. Initial tests of their system showed promise for automatically
adapting the robot configuration based on the participant’s line of sight.

Wong et al. [2023] developed a prototype for safety in HRC through the integration of
camera and tactile sensors. The primary aim of their study was to differentiate between
intentional and unintentional touches during interactions. They deployed an RGB-D cam-
era positioned above the Baxter robot’s head to capture color and depth data. For the
extraction of relevant information, they employed OpenPose to identify body keypoints
from the camera images. Gaze direction was subsequently computed based on these head
keypoints. Using the features derived from gaze, body pose, and tactile sensor data, they
trained shallow machine learning models to determine whether an operator’s touch on the
robot was intentional or not.

The studies discussed until now have very distinct areas of interest, making gaze di-
rection estimation based on head pose reasonably effective. However, Saran et al. [2018]
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proposed the use of frontal face images to discern the object that the participant is look-
ing at (intention recognition), without relying on eye trackers. Such a task requires more
precise estimation of gaze direction. They developed a deep-learning model to track a par-
ticipant’s gaze from the perspective of a robot. Their experimental setup involved a robot
equipped with a Kinect camera positioned on its head, situated across a table from a par-
ticipant. To train and evaluate their model, they collected an image dataset where each
participant was asked to gaze at particular objects or the robot itself for a fixed duration.

Paper Objective Cross-dataset
Palinko et al. [2016] Comparing gaze estimation methods No
Saran et al. [2018] Intention recognition No
Dufour et al. [2020] Robot within user’s line of sight No
Wong et al. [2023] Intentional touch recognition No
Prajod et al. [2023a]* Distraction detection Yes

Table 3.2: An overview of the literature on attention recognition in HRC settings. The entry
marked with * is expanded in the subsequent sections of this chapter.

While the above studies may not have gaze estimation as their primary objective, it
remains a significant underlying factor for precision-related issues. Hence, gaze estimation
would be a good starting point for training models discerning attention and distraction.

3.2.3 Research Gap

As highlighted through Table 3.2, two significant research gaps have come to light, and
these gaps will be the focal points of upcoming sections of this chapter: the lack of distrac-
tion detection and the absence of cross-dataset evaluations.

• Distraction detection: Current research in industrial HRC primarily emphasizes ef-
ficiency and safety through intent recognition. However, there is a notable gap con-
cerning human factors, particularly in addressing the automatic detection of worker
distraction. The lack of worker distraction datasets underscores this gap. Moreover,
the two identified datasets were recently published, which implies that there is lim-
ited research on detecting worker distraction.

• Cross-dataset validation: The effectiveness of attention recognition is inherently
tied to the specific experimental setup, making it difficult to apply these models to
different settings. None of the studies discussed in Section 3.2.2 closely mimicked
real-world industrial environments, and thus the applicability of their models to ac-
tual industrial scenarios is uncertain. Hence, it is imperative to validate such models
in an industry-like use case. Moreover, facial image models including gaze estima-
tion models need to be evaluated under various conditions, including diverse partic-
ipants and recording scenarios, even though the setup layout is consistent between
experiments.
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3.3 From Gaze Estimation to Attention Recognition – A
Transfer Learning Approach

While gaze-based distraction detection is relatively uncommon in the context of HRC, it is
a prevalent topic in driver assistance systems. Driver attention and distraction are typically
assessed by monitoring gaze zones within the vehicle. Research in this domain often relies
on datasets captured through frontal cameras with participants gazing at predefined zones
of interest within the car. Although the challenges and settings for driver distraction differ
from those in HRC, the methodologies developed for addressing driver distraction could
offer valuable insights for attention (and distraction) recognition within HRC scenarios.

Research by Vora et al. [2017] demonstrated the potential of deep learning models in
detecting driver distraction, although thesemodels typically demand extensive data. To cir-
cumvent this limitation, Tayibnapis et al. [2018] introduced a transfer learning approach.
They connected a pre-trained neural network to an SVM, enabling the classification of
driver’s face images into gaze zones. Drawing inspiration from these studies, a transfer
learning approach is taken to train a deep learning model for gaze-based attention recog-
nition.

As mentioned earlier in Section 3.2.2, gaze estimation plays a pivotal role in the atten-
tion/distraction recognition process. The effectiveness of the attention model is greatly
contingent on the precision of the underlying gaze estimation. So, in the proposed ap-
proach, a deep learning model is initially trained using a state-of-the-art gaze estimation
dataset. Subsequently, a transfer learning technique is employed to establish a mapping
between gaze directions and distinct attention classes. This approach is demonstrated us-
ing two use cases. The first one involves a straightforward scenario aimed at identifying
whether the participant is focused on the screen or is distracted. In the second use case,
which resembles an industrial assembly setup, the goal is to discern instances where the
operator is engaged in assembly, directing their gaze towards the robot, or distracted.

3.3.1 Gaze Estimation Model

Figure 3.2: Illustrative images from the Columbia [Smith et al., 2013] (on the left) and ETH-
XGaze Zhang et al. [2020] (on the right) datasets. These images depict participants with a
forward-facing head pose while gazing towards the sides. The copyright remains with the
respective dataset creators.
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This section outlines the training process for the gaze estimation model, which forms
the basis for the attention recognition model. Unlike several prior studies (refer to Sec-
tion 3.2.2), the gaze direction is estimated based on eye gaze rather than head orientation.
This decisionwasmotivated by the goal of achieving amore precise gaze estimationmodel.
While head orientation can serve as a reasonable proxy for gaze direction, disparities be-
tween the two can arise, as depicted in Figure 3.2.

ETH-XGaze Dataset

Figure 3.3: Sample images from the ETH-XGaze dataset illustrating variations in gaze di-
rection, head pose, illumination, and other factors. The copyright remains with the dataset
creators [Zhang et al., 2020].

The gaze estimation model is trained using the ETH-XGaze dataset Zhang et al. [2020].
The ETH-XGaze dataset is a large collection of high-resolution images designed for the
training of robust gaze estimation models. It encompasses over one million images ob-
tained from 110 participants with diverse attributes, including gender, age, and ethnicity.
As shown in Figure 3.3, this dataset introduces variations in gaze, such as extreme angles
and different head poses, under varying illumination conditions. The dataset labels these
images with two continuous values, indicating the pitch and yaw of the gaze direction vec-
tor from the camera’s perspective. Ground-truth labels for 80 participants are available for
training models.
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Training Procedure

The neural network architecture used in this task is VGG16 Simonyan and Zisserman
[2014], comprising five convolutional blocks and pre-trained on the ImageNet Russakovsky
et al. [2015] dataset. As illustrated in Figure 3.4, VGG16 is connected to a fully connected
layer, and subsequently to a prediction layer for estimating gaze direction. Input images
undergo preprocessing, involving face-cropping and scaling to conform to the standard
VGG16 input dimension of 224 × 224. Among the labeled dataset consisting of data from
80 participants, 10% (8 participants chosen randomly) are reserved for validation, while the
remaining data is employed for training. During training, images are processed in batches
of 32. The mean absolute error is employed as the loss function. The Stochastic Gradient
Descent (SGD) optimizer is used with an initial learning rate of 0.001, and the learning rate
is reduced by a factor of 0.1 if the validation loss remains stagnant for five epochs. An
early-stopping mechanism is implemented to prevent overfitting, whereby training stops
if the validation loss doesn’t decrease over the last 7 epochs.

Figure 3.4: A depiction of the VGG16-based gaze estimation network. The boxes filled with blue
color represent the convolutional blocks and the last outline box represents the fully connected
and prediction layers. Gaze is estimated in terms of pitch and yaw

3.3.2 Use Case 1 – Screen vs. Distracted

In this initial use case, the primary objective is to determine if the participant is distracted,
which is defined as the participant shifting their attention from the screen to their sur-
roundings. Notably, this scenario does not involve human-robot collaboration. Instead, its
focus is on assessing the feasibility of training a deep learning model that can effectively
map the participant’s gaze to areas of interest using a small dataset.

In the driver distraction scenario, the predefined gaze zones within the car provide a
reference for determining the driver’s attention. In contrast, gaze-based attention recog-
nition in HRC is inherently tied to the specific characteristics of the setup, necessitating
customized models. Acquiring large datasets suitable for training deep learning models
in an industrial setting can be challenging. Therefore, the core question here is whether
the estimated gaze direction can be accurately mapped to areas of interest with a limited
number of samples.
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Setup and Dataset

The experimental setup was relatively straightforward, involving participants positioned
in front of a computer screen while following specific guided gaze instructions on where to
look. To ensure the robustness of the dataset, participants were encouraged to vary their
gazing angles and head poses during the data collection process. A total of 5 participants
(3 males, 2 females; age: 24 to 52 years) took part in the study, with 3 of them wearing
glasses. Each participant contributed approximately 20 images for each of the two pre-
defined classes, namely “screen" and “distracted". Figure 3.5 shows some example images
from the two classes. High-resolution 1920 × 1080 images of participants’ faces and gaze
were captured using a Logitech C920 camera positioned on top of the computer screen.

Figure 3.5: Sample images collected to differentiate between screen attention (on the left) and
distraction (on the right). Images displayed here with special permission from the participants.
The copyright remains with the dataset creators [Arora et al., 2024].

Gaze Mapping

The idea is to fine-tune the gaze estimation network for mapping gazes to either the screen
region or elsewhere (indicating distraction). This process involves a transfer learning ap-
proach, where theweights learned by the gaze estimationmodel (discussed in Section 3.3.1)
are reused. Specifically, the convolutional layers’ weights are copied and frozen to prevent
further modifications. The prediction layer is adjusted for two-class classification using
Softmax activation. The fine-tuning process employs an SGD optimizer with a learning
rate of 0.01 and Categorical Cross-Entropy loss. The gazemapping process described above
is depicted in Figure 3.6.

The input images go through a face detection step using MediaPipe face detec-
tion [Bazarevsky et al., 2019]. The detected faces are cropped to the face region, scaled
to 224 × 224, and processed in batches of 15. To augment the training data, brightness in
input images is randomly adjusted within the range of ± 25%. The model undergoes 50
epochs of training, and the best model across all epochs is saved.

A leave-one-subject-out (LOSO) validation technique is utilized. In this approach, data
from four participants are used for training, leaving one for validation. This process is
repeated for all the participants, yielding fivemodels. Attention recognition performance is
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Figure 3.6: An illustration of the transfer learning process used to map gaze direction to atten-
tion classes (screen and distraction).

Model Accuracy F1-score
Participant 1 0.71 0.70
Participant 2 0.95 0.95
Participant 3 0.74 0.73
Participant 4 0.92 0.92
Participant 5 0.91 0.91
Average 0.846 0.842

Table 3.3: Results of LOSO Evaluation for Use Case 1 (Screen vs. Distracted). Participant ⟨𝑖⟩
refers to the model obtained by leaving the 𝑖𝑡ℎ participant from training.

measured by accuracy and F1-score. As seen from Table 3.3, the models achieve an average
accuracy of 84.6% and an F1-score of 84.2%. Interestingly, LOSO models for participants
without glasses (Participants 2 and 4) outperform the average, with mean accuracy and
F1-score reaching 93.5%. This is likely because, in certain cases, the participants’ glasses
had reflections from the screen that occluded the eye region.

3.3.3 Use Case 2 – Assembly Scenario

Use case 1 demonstrated the feasibility of mapping gaze directions using a small dataset.
In this use case, the proposed approach is applied to an assembly scenario. The model
developed here is further validated in Section 3.4 and subsequently utilized for participant
behavior analysis and real-time robot behavior adaptation in Chapter 8.
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Setup

Figure 3.7: A visual representation of the setup layout highlighting the regions or objects of
interest for attention and distraction recognition. This layout is reused withminor adjustments
in the studies presented in Part 3 of this thesis.

The setup involves a human operator collaborating with a cobot to assemble a gearbox.
However, in developing the attention recognition model for this setup, the primary focus is
on identifying the key gaze areas, or areas of interest, rather than the specific assembly task.
The setup’s layout is depicted in Figure 3.7. The arrangement consists of tables configured
in an L-shape, with the cobot positioned to the right of the operator. The operator carries
out the various assembly steps on the table in front of them. It is important to highlight
that the layout of the setup described in this section is nearly identical to the studies in
Part 3 of this thesis. However, aspects of the setup like locations of windows and doors are
critical to distraction detection but not other studies. So, these details have been removed
from subsequent layout visualizations.

While piloting this setup, three main areas of interest were identified: the cobot, the
assembly table, and the non-assembly areas. Non-assembly areas encompass spaces that
are not directly related to the assembly task but may serve as potential sources of distrac-
tion. These non-assembly areas are distributed throughout the room, such as windows and
cupboards.

Dataset

The dataset for the assembly scenario consists of images obtained from 8 adult volunteers
(comprising 3 females and 5 males, aged 18 - 34 years). To capture these images, a Logitech
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C920 Pro HD camera is positioned approximately 1.5 meters away from the operator, as
illustrated in Figure 3.7. The data collection process follows a guided gazing protocol in
which each participant is instructed to stand in front of the camera. They are then in-
structed to direct their gaze on one of three distinct areas: the cobot, the work table, or any
other location in the room. Similar to Use Case 1, the participants are requested to vary
their head orientation and gazing angles during the data acquisition. For each of the three
specified conditions, 30 images are collected from each participant, resulting in a total of
720 labeled images with a resolution of 1920 × 1080 pixels. Figure 3.8 shows some example
images from the collected dataset.

Figure 3.8: Some example images belonging to cobot, table, and distracted classes. The copy-
right remains with the dataset creators [Prajod et al., 2023a].

Gaze Mapping

Similar to Use Case 1 (Section 3.3.2), the approach in this scenario involves employing
a transfer learning technique for fine-tuning the gaze estimation model. In this context,
the prediction layer of the model is adapted to classify the input image into three defined
classes: cobot, table, and distracted. The above dataset was used to map the gaze direction
to these specified areas. The input image pre-processing, data augmentation techniques,
and training parameters remain the same as those used in Use Case 1.

As with Use Case 1, models were trained using the LOSO validation method. This
method yields a total of 8 models, each corresponding to one of the 8 participants. Per-
formance measures such as class-wise recall, accuracy, and F1-score were computed to
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Model Recall Accuracy F1-score
Cobot Table Distracted

Participant 1 1.0 1.0 0.90 0.97 0.97
Participant 2 0.97 0.87 0.90 0.91 0.91
Participant 3 1.0 1.0 0.97 0.99 0.99
Participant 4 0.97 1.0 0.97 0.98 0.98
Participant 5 0.93 1.0 0.93 0.96 0.95
Participant 6 0.90 1.0 0.89 0.93 0.93
Participant 7 0.83 0.90 0.74 0.83 0.82
Participant 8 1.0 1.0 0.90 0.97 0.97
Average 0.943 0.94

Table 3.4: Results of LOSO Evaluation for Use Case 2 (Cobot vs. Table vs. Distracted). Partici-
pant ⟨𝑖⟩ refers to the model obtained by leaving the 𝑖𝑡ℎ participant from training.

provide a comprehensive assessment of the classification performance of these models.
The results of LOSO validation are presented in Table 3.4. Notably, all models performed
well in LOSO validation, achieving an average accuracy of 94.3% and an average F1-score
of 94%. It’s worth mentioning that the model corresponding to Participant 3 outperforms
the rest, achieving an accuracy of 99% and an F1-score of 99%. On the other hand, the
model corresponding to Participant 7 exhibits comparatively lower performance with an
accuracy of 83% and an F1-score of 82%. Manual inspection of the images from Participant
7 revealed that certain images exhibited blurriness due to head movement, while others
suffered from inaccuracies in face boundary detection, as illustrated in Figure 3.9.

Figure 3.9: Illustrative images from Participant 7 showing blurriness and inaccurate face de-
tection. The copyright remains with the dataset creators [Prajod et al., 2023a].

3.4 Validating Model in Industry-like HRC

As demonstrated in Sections 3.3.2 and 3.3.3, the utilization of transfer learning for mapping
gaze direction yielded models that perform well in attention and distraction recognition.
The outcomes of the LOSO evaluation highlight the robustness of these models when con-
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frontedwith images of previously unseen participants. Nevertheless, it is important to note
that all the images used in these evaluations originate from the same dataset, which was
collected under a guided gaze protocol. In this case, the attention and distraction states
captured are intentionally simulated rather than naturally elicited in the participants.

To gain deeper insights into how well these models can perform in detecting genuine
instances of attention and distraction, a new dataset was collected. This dataset is derived
from videos of participants engaging in a collaborative assembly task with a cobot. Unlike
the previous datasets, these videos were recorded during an extended study, making them
more likely to capture unguided, natural behaviors that manifest during genuine attention
and distraction. This new dataset is instrumental in validating the attention recognition
model described in Section 3.3.3, ensuring that its performance extends to real-world sce-
narios characterized by unscripted, natural behavior.

3.4.1 Data Acquisition

The validation dataset was collected within a controlled laboratory environment designed
to emulate an Industry 5.0 assembly process. To achieve this, the same setup described in
Section 3.3.3 was employed. Video recordings were obtained from 8 participants, consist-
ing of 3 males and 5 females with ages ranging from 18 to 30 years. Each participant was
assigned the role of an operator and engaged in the task for 3.5 hours each day, continu-
ously for 5 consecutive days, effectively simulating the workweek experience of a cobot
worker.

Given the extended duration of the study, spanning multiple days, it was anticipated to
naturally elicit instances of genuine attention and distraction. The assembly task itself en-
compassed four primary phases: Gathering Components, Assembling, Waiting for Cobot,
and Collaborative Joining of Sub-assemblies, all of which together constitute a single as-
sembly cycle, as depicted in Figure 3.10. The primary objective of this data collectionwas to
create a dataset that represented naturalistic gaze behaviors. Hence, participants were not
provided with guided or scripted gaze instructions. Instead, the data acquisition process
was designed to encourage participants to exhibit their own, unguided gaze behaviors.

The videos were recorded using the frontal camera (see Figure 3.7), at a resolution of
1280 × 720 and 25 frames per second. During the first workday, three videos of approxi-
mately 10 minutes each were recorded. These videos provided a representative sampling
of the entire workday, comprising segments from the beginning, middle, and end of the
day. Likewise, three additional videos were recorded during the last workday of the exper-
iment. This approach led to the acquisition of one hour of video data for each participant,
resulting in a total of 8 hours of recorded content. The dataset acquisition followed the
guidelines of the Declaration of Helsinki and was approved by the Ethics Committee of
I.R.C.C.S. Eugenio Medea (protocol code N. 19/20—CE of 20 April 2020). The dataset is
utilized to validate the gaze-based attention recognition model in a context involving un-
scripted, natural behaviors.
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Figure 3.10: A series of images illustrating the collaborative assembly task. From left to right,
the operator performs various phases - gathering components, assembling, waiting for the
cobot, and finally, collaboratively joining sub-assemblies with the cobot. The copyright re-
mains with the authors [Prajod et al., 2023a].

3.4.2 Validation Dataset

The videos were annotated to align with the various phases of the assembly task that par-
ticipants engaged in. This approach enables the identification of segments where the par-
ticipant’s attention is directed towards the table, the cobot, or when they are distracted. For
instance, during the Assembling phase, participants typically focus their gaze downward
at the table since this is where their assembly work takes place. However, during the Gath-
ering Components phase, the placement of the component box influences the participant’s
visibility. Some participants opted to place the box on the floor, which required them to
bend down to retrieve components, rendering them out of the camera’s view. So, only the
Assembling phase could reliably provide samples of attention to the table.

Although the assembly task was shared equally between the cobot and the human
operator, there was a considerable difference in their respective production speed. This
discrepancy led to extended waiting periods for the operator. During these waiting seg-
ments, the operator may either direct their attention towards the cobot or look in random
directions, such as checking their watch or looking out of a window. Consequently, these
Waiting segments serve as samples for identifying attention to the cobot or moments of
distraction. In addition to the Waiting segments, the segments from Collaborative Joining
phase were also considered for attention to cobot. However, the participants often lifted
their hands in front of their faces while performing the joining activity, leading to their
faces being occluded in the camera view.

Each labeled video segment corresponds to a short duration, typically lasting only for
some seconds. Notably, there is minimal variation in gaze behavior within a given seg-
ment. Consequently, to avoid repetition, three representative frames were extracted from
each segment: first, middle, and last frames. Following this extraction process, the selected
images underwent a pre-processing step. In this step, the presence of a human face was
detected within the image, and the images were cropped to the facial region. It’s worth
noting that any images where face detection failed were discarded from the dataset. Ad-
ditionally, images that exhibited blurriness, often due to sudden quick movements during
the recording, or where the participant’s eyes were obscured by objects, were also omitted.
In total, approximately 20% of the initially selected images were excluded based on these
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Figure 3.11: Some sample images from the validation dataset. From left to right - Attention
to the cobot (while waiting), Attention to the table (while assembling), and Distracted (while
waiting). The copyright remains with the dataset creators [Prajod et al., 2023a].

criteria. Consequently, the resulting validation dataset consists of 833 images indicating
attention directed towards the cobot, 940 images depicting attention focused on the table,
and 962 images representing moments of distraction. Figure 3.11 provides examples of
images from this dataset, each labeled to indicate the participant’s state of attention.

3.4.3 Results and Discussion

The 8 LOSO models previously discussed in Section 3.3.3 were evaluated in an industry-
like collaborative assembly setting, using the validation dataset described in Section 3.4.2.
The results of this cross-dataset evaluation are presented in Table 3.5. All the models have
similar performance and achieve an accuracy and F1-score of 81 - 82%. Although the recalls
are lower than Use case 2, the performance of the models indicate the applicability of these
models to industrial settings.

In all models, the drop in performance mainly stemmed from the Distracted class, fol-
lowed by the Attention to Cobot class. To gain insights into this reduction in recall, an in-
vestigation was conducted on the confusionmatrix of predictions generated by the models.
Figure 3.12 shows the confusion matrix corresponding to the predictions from the Partic-
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Model Recall Accuracy F1-score
Cobot Table Distracted

Participant 1 0.85 0.98 0.61 0.81 0.81
Participant 2 0.87 0.95 0.66 0.82 0.82
Participant 3 0.87 0.95 0.65 0.82 0.82
Participant 4 0.83 0.95 0.67 0.81 0.82
Participant 5 0.89 0.98 0.61 0.82 0.82
Participant 6 0.86 0.96 0.62 0.81 0.81
Participant 7 0.87 0.96 0.63 0.82 0.82
Participant 8 0.83 0.94 0.67 0.82 0.82
Average 0.816 0.818

Table 3.5: Performance of the eight LOSO models from Use Case 2 on the validation dataset.

Figure 3.12: Confusion matrix for Participant 7 model predictions on the validation dataset

ipant 7 model on the validation dataset. It’s worth noting that all models exhibit similar
confusion matrices, and interestingly, most of the misclassified Distracted images are pre-
dicted as Attention to Table.

The observed trend was further explored through a manual inspection of misclassified
images. Notably, many instances revealed participants being distracted by items located
on the table. For instance, during periods of waiting, participants often directed their gaze
towards a sub-assembly on the table. Some illustrative examples of Distracted images,
where participants are looking in the direction of the table even when they are not actively
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assembling parts, are shown in Figure 3.13. Observations from the manual inspection in-
dicate that the classification performance could potentially be enhanced by incorporating
additional data, such as the proximity of the hand to the table and the body pose of the
operator.

Figure 3.13: Few examples of images belonging to the Distracted class that were misclassified
as Attention to Table. Reused with permission, the copyright remains with the authors [Prajod
et al., 2023a].

3.5 Reflections and Remarks

This chapter delves into the domain of attention and distraction recognition in the con-
text of human-robot collaboration, with a specific focus on the Industry 5.0 context. It
addresses two challenges faced in this field: the limitations imposed by small dataset sizes
and the necessity for model validation in natural, unscripted settings. The models devel-
oped and discussed in Sections 3.3.2 and 3.3.3 demonstrate that, evenwith relatively limited
datasets, it is feasible to map gaze effectively for a given industrial setup. This finding is
especially significant in practical scenarios where acquiring large datasets tailored to the
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specific setup can be a challenging task. Furthermore, the research presented in Section 3.4
highlights the pressing need to shift from guided, scripted data collection methods to un-
scripted, natural scenarios for model validation. This validation is necessary for evaluating
the applicability and effectiveness of attention and distraction recognition models within
industrial settings.
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Chapter 4

Pain Detection

Figure 4.1: A comic strip illustration of how pain detection can improve the collaboration
experience in an industrial scenario. In this situation, an operator experiences pain due to a
certain stretching movement. The cobot detects the operator’s pain expression and offers to
modify its configuration to avoid stretching. The cobot proceeds to change its configuration
according to the operator’s preference.
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4.1 Overview

In the context of Industry 5.0, ensuring the well-being of workers is essential for a safe and
efficient workplace. Pain detection is integral for identifying and addressing discomfort or
injuries resulting from workplace conditions. Imagine the scenario depicted in Figure 4.1,
where an operator experiences pain while stretching hands for collaboration. The cobot
detects the pain expression and proactively offers to modify its configuration. This not
only addresses the operator’s discomfort but also fosters a more effective human-robot
collaboration.

This chapter proposes a pain detection model developed through a transfer learning
approach, leveraging feature representations initially learned for emotion recognition. Ad-
ditionally, it addresses the often-overlooked aspect of quantitatively assessing the learned
feature representations of the model. An approach based on eXplainable Artificial Intelli-
gence (XAI) is introduced for this purpose. The approach is further employed to compare
the feature representations of models trained for two different types of pain, facilitating
the assessment of prominent features in specific datasets. This analysis helps determine
whether a dataset can effectively be used to train robust and generic pain detection models.
The content of this chapter builds upon and extends the research presented in:

∗ P. Prajod, D. Schiller, T. Huber, and E. André. Do deep neural networks forget facial
action units?—Exploring the effects of transfer learning in health related facial ex-
pression recognition. AI for Disease Surveillance and Pandemic Intelligence: Intelligent
Disease Detection in Action, 1013:217, 2022b

[ I developed the machine learning models and performed the analyses. I also con-
tributed significantly to the development of the analysis framework. Furthermore, I
contributed significantly to formulating research questions and deriving insights. ]

∗ P. Prajod, T. Huber, and E. André. Using explainable AI to identify differences be-
tween clinical and experimental pain detection models based on facial expressions.
In International Conference on Multimedia Modeling, pages 311–322. Springer, 2022a

[ I developed the machine learning models and performed the analyses. I also con-
tributed significantly to formulating research questions and deriving insights.]

4.2 Background Literature and Previous Works

This section provides a background for pain detection (Section 4.2.1) and an overview of
two approaches - XAI visualizations (Section 4.2.2) and Cross-Dataset evaluations (Sec-
tion 4.2.3) - to assess the generalizability of pain models.

4.2.1 Towards Automatic Pain Detection

Pain Detection in Industry 5.0

Detecting pain early enables proactive interventions in industrial settings, improving both
job satisfaction [Yamada et al., 2016; Hoogendoorn et al., 2000; Baek et al., 2018] and pro-
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ductivity [Witt et al., 2016; Fan and Straube, 2016; Harman and Ruyak, 2005]. In the con-
text of human-robot collaborations, the ability to detect pain becomes crucial for cultivat-
ing positive relationships between human operators and cobots. For instance, social sup-
port is a crucial psychosocial factor that influences work-related pain [Baek et al., 2018;
Hoogendoorn et al., 2000], with potential implications for the development of chronic
pain Matthias et al. [2022]. Currently, cobots cannot detect pain in operators, consequently
limiting their ability to offer any form of social support.

Pain Datasets

As mentioned in Chapter 1, collecting pain datasets is challenging due to ethical concerns
and patient availability. This section identifies existing pain datasets that recorded fa-
cial expressions of pain, which is the focus of this chapter. The identified datasets are
presented in Table 4.1. Datasets such as Hi4D-ADSIP [Matuszewski et al., 2011] and
Delaware [Mende-Siedlecki et al., 2020] pain datasets were not considered as they collected
posed pain expressions.

Among the existing facial pain datasets, some [Brahnam et al., 2006; Heiderich et al.,
2015; Egede et al., 2019; Yan et al., 2020; Brahnam et al., 2023] are collected from infants
to develop neonatal pain assessment systems. They typically utilize medical procedures
or pain-inducing punctures (e.g., pin picks, pinching) to elicit pain. Since self-reports are
not feasible, pain is often labeled depending on the activity (e.g., before vs. during the
procedure). Moreover, the datasets typically include labels for crying induced by non-pain
stimuli (e.g., hunger, fear).

The other datasets listed in Table 4.1 are collected from adults undergoing painful
stimuli. Notably, UNBC-McMaster [Lucey et al., 2011] and EmoPain [Aung et al., 2015]
datasets are collected from participants with pre-existing conditions. Hence, their pain
experience (e.g., shoulder pain, lower back pain) can be considered as manifestations of
chronic pain. The other adult pain datasets such as BioVid [Walter et al., 2013] and MInt-
PAIN [Haque et al., 2018] are collected from participants undergoing acute pain stimuli
(e.g., heat, electrical currents). The UNBC-McMaster, BP4D-Spontaneous [Zhang et al.,
2014], and PEMF [Fernandes-Magalhaes et al., 2023] datasets collected only image/video
data, whereas others such as BioVid and X-ITE [Gruss et al., 2019] collected physiological
signals (e.g., electrocardiogram, electrodermal activity, etc.) as well.

Pain Annotations and Predictions

The field of affective computing has proposed a variety of models for detecting, recog-
nizing, and estimating pain from facial expressions. Inspired by the terminologies from
facial Action Unit (AU) models, this thesis distinguishes between detection, recognition,
and estimation. Pain detection involves binary classification of whether a facial expres-
sion exhibits pain or not. Whereas, pain recognition entails multi-class classification of
pain levels, such as differentiating between no pain, mild pain, and severe pain. Pain esti-
mation, on the other hand, predicts pain intensity on an ordinal scale (e.g., ranging from
0 to 15). However, comparing pain recognition and estimation models poses a significant
challenge due to the absence of standardized pain scales and class labels. For instance,
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Paper Stimuli Pain Scale

(iCOPE)
Brahnam et al. [2006]

puncture
Pin prick and

labeling
2 levels - activity-based

(UNBC-McMaster)
Lucey et al. [2011] Shoulder pain pain intensity

16 levels - AU-based

(BioVid)
Walter et al. [2013] Heat pain pain thresholds

5 levels - Individual

(BP4D-Spontaneous)
Zhang et al. [2014] Cold pain 6 levels - Self reported

(EmoPain)
Aung et al. [2015] Lower-back pain observer ratings

Continuous 0 to 1

(UNIFESP)
Heiderich et al. [2015] Medical procedure labeling

2 levels - activity-based

(Sense Emotion)
Velana et al. [2017] Heat pain pain thresholds

4 levels - Individual

(MIntPAIN)
Haque et al. [2018] Electrical pain pain thresholds

5 levels - Individual

(X-ITE)
Gruss et al. [2019]

electrical pain
Heat and

Individual pain thresholds
4 levels for each type -

(APN-db)
Egede et al. [2019]

vaccination
Medical procedure,

pain intensity
12 levels - behavior-based

(FENP)
Yan et al. [2020] Natural settings observer labeling

3 levels -

(PEMF)
F-Magalhaes et al. [2023] Pressure pain observer ratings

9 levels -

(iCOPEvid)
Brahnam et al. [2023]

puncture
Pin prick and

labeling
2 levels - activity-based

Table 4.1: An overview of available pain datasets that collected facial images/videos.

the UNBC-McMaster shoulder pain dataset [Lucey et al., 2011] utilizes the PSPI (Prkachin
and Solomon Pain Intensity) scale to assess pain in image sequences. This scale assigns a
numerical pain level value between 0 and 15, which is computed based on facial AU anno-
tations. In contrast, the BioVid heat pain dataset [Walter et al., 2013] relies on participant-
specific pain tolerance levels to label pain intensity (0 - 4) in videos. Consequently, this
chapter primarily focuses on pain detection. Nevertheless, the research gaps identified be-
low extend beyond pain detection tasks and are equally relevant to pain recognition and
estimation tasks.
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XAI Methods

Recent advancements in pain facial expression prediction have placed a strong empha-
sis on explaining the model’s decision-making process. A widely employed approach in
health-related domains is visual explanation [van der Velden et al., 2022]. This approach
involves highlighting specific pixels or regions in the input image that contributed most
significantly to the prediction. During the development of pain models, generating and
evaluating explanations are essential to ensure that the models extract meaningful facial
features that occur in pain expressions. The pain models reviewed in the next section
(Section 4.2.2) predominantly utilize four XAI methods to generate heatmaps (also called
saliency maps): GradCAM (Gradient-weighted Class Activation Mapping) [Selvaraju et al.,
2017], LRP (Layer-wise Relevance Propagation) [Bach et al., 2015], LIME (Local Inter-
pretable Model-agnostic Explanations) [Ribeiro et al., 2016], and SHAP (SHapley Additive
exPlanations) [Lundberg and Lee, 2017].

The Grad-CAM method computes the gradient of the target class score with respect
to the feature maps of a convolutional layer. It uses a weighted combination of gradients
from the feature maps to produce a coarse heatmap that highlights the salient regions in
the image for the target class.

The LRP technique propagates the output prediction backward through the network,
distributing the prediction score to each neuron based on their contribution. It provides a
pixel-wise decomposition of the model’s decision, producing a fine-grained heatmap high-
lighting input features that are most important for a particular prediction.

LIME is a model-agnostic method that explains individual sample predictions of a clas-
sifier by approximating the model’s behavior using a simpler model. It generates in-
terpretable explanations by perturbing the input and observing how the model’s output
changes. Like Grad-CAM, this method also produces coarse visualizations.

The SHAP algorithm calculates the Shapley value for each feature, which represents
the average contribution of a feature to the prediction across all possible combinations.
The sum of the calculated SHAP values for all features equals the model’s prediction. This
technique is model-agnostic and produces fine-grained visualizations.

4.2.2 XAI-based Investigation of Pain Models

Existing pain detection models that utilize XAI methods can be broadly categorized based
on their intended purpose as: neonatal pain detection and pain detection in adults. Neona-
tal pain detection models typically utilize datasets such as iCOPE and UNIFESP datasets for
training and evaluation. On the other hand, pain recognition models for adults often em-
ploy datasets like UNBC shoulder pain and BioVid heat pain for their model development.
This chapter focuses exclusively on pain datasets involving adult participants because the
aim is to develop a robust pain detectionmodel for industrial settings. The following works
were identified through Scopus1 literature search for their application of XAI methods in
their pain prediction models.

1https://www.scopus.com/, Query: TITLE-ABS-KEY ( ( face OR facial ) AND pain AND (
deep*learning OR ml OR machine*learning OR network ) AND ( detect* OR recogni* OR predict* OR es-
timat* OR classif* ) AND ( explaina* OR interpretab* OR salien* OR relevan* OR xai ) )
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One of the first works to employ XAI techniques to explain pain prediction was pre-
sented by Xu et al. [2019]. They employed multitask learning to simultaneously recog-
nize self-reported Visual Analog Scale pain scores and AUs from the UNBC shoulder pain
dataset. They utilized the SHAP method to generate saliency maps, highlighting pixels
in varying intensities based on their impact on the model’s prediction. Their results indi-
cated that the model captured facial regions associated with pain expression, particularly
the eyebrows, mouth, and nasolabial folds. These regions also influenced the prediction of
specific pain AUs, such as the eye area in AU7 and AU43, and the mouth in AU25.

Various XAI methods are available for generating explanations. But, which method is
suitable for a particular explanation objective? To address this question, Weitz et al. [2019]
conducted a comparative study of two explanation methods - LRP and LIME - and assessed
their effectiveness in explaining a model’s decision and identifying relevant facial regions.
They fine-tuned a VGG-Face [Parkhi et al., 2015] network on the BioVid heat pain dataset
to discern between Happy, Disgust, and Pain expressions. They found that LRP produced
more granular saliency maps, while the visualizations generated through LIME made it
easier to identify relevant facial regions. While examining the visualizations for the pain
class, they did not find a consistent facial pattern across images. However, they observed
that these visualizations highlighted background features or irrelevant features such as
hair and neck, which they believe partly accounts for the model’s poor performance.

Rieger et al. [2020] underscored the significance of considering explanations alongside
classification performance in evaluating pain detection models. They trained a ResNet [He
et al., 2016] network to detect pain-related AUs using the Actor Study [Seuss et al., 2019]
and Extended Cohn-Kanade [Lucey et al., 2010] datasets, and evaluated it on the UNBC
shoulder pain dataset. By generating LRP saliency maps, they identified the pixels that
contributed most significantly to the prediction of each AU. They then used facial land-
marks to determine the bounding boxes for each AU. They observed that, in the majority
of cases, the highlighted pixels were located outside the corresponding bounding boxes.

Semwal and Londhe [2021b] trained a model to recognize pain levels (0 - 5) using a
combination of RGB images and texture images to obtain features from both modalities.
The model was trained on a dataset collected by the authors from 10 participants in a
hospital setting. They generated CAM heatmaps [Zhou et al., 2016] to visualize the regions
that the model focused on for different pain levels. Their findings revealed that for all
pain levels, the model’s attention was primarily concentrated on the face, particularly the
forehead, eye, nose, and mouth regions. Additionally, the model placed less emphasis on
the background region.

Yuan et al. [2022] developed a transformer-based pain recognition model using the
UNBC shoulder pain dataset. They introduced the concept of pre-training the model with
masked faces from the same dataset. To visualize the model’s focus, they employed the
Grad-CAM method to generate heatmaps. They observed that without mask pre-training,
the model primarily focused on the eye and eyebrow regions. However, they noted that
while eye features are effective in discerning high-pain expressions, they may not be suf-
ficient for distinguishing between lower pain levels. Notably, applying an upper-region
mask during pre-training led to a shift in the model’s attention towards nasolabial folds
and mouth corners. This result suggests that mask pre-training enabled the model to in-
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corporate a broader range of pain-related facial features.
In the context of neonatal pain detection, Carlini et al. [2021] fine-tuned a VGG-Face

network utilizing images from both the iCOPE and UNIFESP datasets. Using the gradi-
ent [Sundararajan et al., 2017] technique, they generated pixel-wise saliency maps for the
test images. Their findings revealed consistent highlighting of key facial features such
as the forehead, upper nose contour, and mouth with tongue protrusion. However, they
noted that some images from the UNIFESP dataset highlighted pixels extending beyond
the face (e.g., blanket) – an observation they attributed to the dataset’s lower recording
quality compared to iCOPE.

Coutrin et al. [2022] fine-tuned four existing Convolutional Neural Networks (CNNs)
for pain detection using the iCOPE and UNIFESP neonatal pain datasets. Additionally, they
trained the N-CNN network from scratch without leveraging transfer learning. Heatmaps
generated using Grad-CAM revealed that only one of the models (VGG-Face) consistently
highlighted facial regions, such as the nose, nasolabial region, and forehead, which are
known markers of pain expression. Notably, the other fine-tuned models either focused
on the entire face or detected irrelevant non-facial features (e.g., hair ornaments). The au-
thors observed that the N-CNN also highlighted facial regions, but there was no consistent
pattern across heatmaps. They attributed the N-CNN model’s inconsistent heatmaps to
the limited amount of training data and lack of transfer learning.

One of the widely adopted network architectures for neonatal pain assessment (N-
CNN) was proposed by Zamzmi et al. [2019]. In their study, Ferreira et al. [2023] investi-
gated hyperparameters such as image size, optimizer, and epochs to identify optimal train-
ing parameters for the neonatal pain detection task. Similar to Carlini et al., they also
utilized both iCOPE and UNIFESP datasets to train the model. To generate explainable
heatmaps, they utilized both Grad-CAM and IG methods. Their model focused on relevant
facial regions and exhibited lesser focus on background features like clothing. Further-
more, their model exhibited a more uniform distribution of highlighted regions across the
face, unlike the non-tuned model, which heavily emphasized the eyes and mouth. Notably,
they observed that pain predictions with a confidence of 40-60% highlighted features un-
related to the face. In contrast, predictions at the extreme ends (less than 20% or greater
than 80%) highlighted more relevant facial features.

Building upon their previous research on neonatal pain detection models [Carlini et al.,
2021; Coutrin et al., 2022], Carlini et al. [2024] examined the Grad-CAM and IG heatmaps
generated by VGG-Face and N-CNNmodels. Similar to their earlier studies, they employed
the iCOPE and UNIFESP datasets for training and evaluation. The N-CNN model’s Grad-
CAM and IG heatmaps consistently highlighted the mouth area in pain images, while the
VGG-Face model’s heatmaps focused on regions like the forehead, eyes, nose, and mouth.
Additionally, they analyzed the visual attention of human participants by tracking their
gaze patternswhile viewing the images. Their correlation analysis revealed highest overlap
between VGG-Face’s Grad-CAM heatmaps and human assessments.

A closer examination of the literature revealed two nuanced objectives for generating
explanations in the context of pain prediction models. The first objective aimed to ensure
that the model focused on the facial region and not on irrelevant background elements.
In this case, explanations served as a tool to assess whether the model had mistakenly
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identified non-facial features like hair ornaments, neck, or other background elements as
indicators of pain. The second objective focused on identifying specific regions of the
face that played a crucial role in pain prediction. Some studies extended this objective to
correlate the identified regions with pain-related AUs and facial patterns. Coarse-grained
heatmaps, such as CAMand LIME, arewell-suited for highlighting facial regions. However,
pixel-level fine-grained heatmaps, like LRP and IG, are more suitable for identifying subtle
facial features like AUs.

Paper XAI Method Model Interpretation
Carlini et al. [2021] IG Manual
Coutrin et al. [2022] Grad-CAM Manual
Ferreira et al. [2023] Grad-CAM, IG Manual

N
EO

N
AT

A
L

Carlini et al. [2024] Grad-CAM, IG Manual
Xu et al. [2019] SHAP Manual
Weitz et al. [2019] LRP, LIME Manual
Rieger et al. [2020] LRP Manual, Counting
Semwal and Londhe [2021b] CAM Manual
Yuan et al. [2022] Grad-CAM Manual
Prajod et al. [2022b]* LRP + TCAV Manual, Statistical

A
D
UL

T

Prajod et al. [2022a]* LRP + TCAV Manual, Statistical

Table 4.2: An overview of the existing works on predicting pain from facial expressions that
employ XAI techniques, along with the model’s heatmap interpretation method. The entries
marked with * are expanded in the subsequent sections of this chapter.

4.2.3 Assessing Generalizability of Pain Models

The findings from XAI techniques can serve as indicators of a model’s generalization ca-
pabilities [Doshi-Velez and Kim, 2018]. For instance, a model that relies on background
or non-facial information for its predictions will likely struggle when applied in a new
environment with a different background. However, as evident from Table 4.2, insights
obtained from XAI heatmaps are predominantly based on manual inspection and often
lack quantitative analysis.

A commonly used approach for assessing the generalizability of a pain model is to
reserve data from some unseen participants for testing, such as leave-one-subject-out and
participant hold-out methods [Hassan et al., 2019; Gkikas and Tsiknakis, 2023a]. However,
the unseen participants in the test set are subject to the same pain stimuli and are recorded
under identical setups. That is, within-dataset evaluations do not evaluate how well the
model performs in detecting pain in users subject to different pain stimuli or recorded
under varying conditions. As demonstrated by Dai et al. [2019], such models may learn
dataset-specific features and fail to generalize effectively to other pain datasets.
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Paper Objective
Carlini et al. [2021] Visualize facial features, Face vs. background
Coutrin et al. [2022] Compare face regions focused by different

models
Ferreira et al. [2023] Shift in focused regions due to hyperparameter

tuning, Face vs. backgroundN
EO

N
AT

A
L

Carlini et al. [2024] Compare CNN-generated explanations with
human visual attention

Xu et al. [2019] Visualize face features
Weitz et al. [2019] Comparing XAI methods on interpretability
Rieger et al. [2020] Visualize AU regions, Highlighted pixels

within AU bounding box
Semwal and Londhe [2021b] Visualize facial features, Face vs. background
Yuan et al. [2022] Shift in focused regions due to masking
Prajod et al. [2022b]* Shift in relevance of AUs due to transfer

learning

A
D
UL

T

Prajod et al. [2022a]* Compare facial features learned by two dis-
tinct models

Table 4.3: An overview of the existing facial pain detection models that generate visual ex-
planations and their objectives for employing XAI techniques. The entries marked with * are
expanded in the subsequent sections of this chapter.

To address this limitation, cross-dataset evaluations have been employed to expand
the assessment of a model’s generalization capabilities. This approach involves training a
model on a dataset A and evaluating its performance on a different dataset B. The model
is deemed to generalize well if it yields consistent performance on both datasets. The
following works were identified through Scopus2 literature search as works that evaluated
their pain models using cross-dataset validations.

Recognizing the limited cross-dataset evaluations in pain detection research, Othman
et al. [2019] conducted cross-dataset evaluations of their pain models. They trained two
pain models, an RFC, and a deep learning model, each on both the BioVid heat pain dataset
and the X-ITE thermal and electrical pain dataset [Gruss et al., 2019]. Subsequently, they
evaluated the BioVid models on the X-ITE dataset and vice versa. Both the BioVid and X-
ITE models achieved comparable performances in both within-dataset and cross-dataset
evaluations. This led the authors to conclude that both models demonstrated strong gen-
eralization capabilities.

To underscore the significance of cross-dataset evaluations in real-time pain detection

2https://www.scopus.com/, Query: TITLE-ABS-KEY ( ( face OR facial ) AND pain AND ( detect*
OR recogni* OR predict* OR "intensity estimation" OR classif* ) AND ( cross-dataset OR cross-database OR
cross-corpus OR generaliza* OR transferab* ) )
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applications, Dai et al. [2019] conducted a comparative study of models trained on Affect-
Net emotion and UNBC pain datasets using extracted AUs and RGB face images. They
initially evaluated these models in real-time scenarios involving posed facial expressions.
Their findings revealed that CNNs trained on RGB images exhibited a tendency to classify
all posed expressions, including pain, as no-pain. This observation prompted the authors
to suggest that these CNNs might be learning dataset-specific features. In contrast, the
AU-basedmodel demonstrated promising performance in the real-time test. However, sub-
sequent evaluation with images from the BioVid heat pain dataset revealed a substantial
decline in the model’s performance. A manual examination of randomly selected instances
from the BioVid dataset indicated that, in contrast to the UNBC dataset, participants in the
BioVid dataset frequently closed their eyes even during non-pain conditions.

Tavakolian et al. [2020] trained spatio-temporal models on the UNBC and BioVid
datasets and evaluated their performance across these datasets. Cross-dataset evaluations
revealed a decline in performance for both models, with the UNBC model experiencing a
more significant drop. Furthermore, they conducted additional evaluations incorporating
a portion of the test dataset (10 - 50%) into the training process. This approach consistently
led to an improvement in cross-dataset performance.

Rezaei et al. [2020] employed a contrastive training approach to train pain estimation
models on the UNBC shoulder pain and UofR dementia pain [Hadjistavropoulos et al.,
2018] datasets. Their cross-dataset evaluations revealed a notable drop in the performance
of the UNBC model when applied to the dementia pain dataset. In contrast, the dementia
pain model exhibited a surprisingly higher performance on the UNBC dataset compared
to its within-dataset evaluation.

To investigate the impact of combining pain datasets, Zarghami et al. [2023] trained
pain detection models using the UNBC dataset, a self-acquired sedation dataset, and a
combined dataset. They discovered that themodel trained on the sedation dataset exhibited
the best performance, whereas combining datasets resulted in a performance drop. They
attributed this observation to the prevalence of eye closure in the sedation dataset for both
pain and no-pain classes, in contrast to the UNBC dataset, where closed eyes are strongly
correlated with pain. Notably, the authors did not evaluate their models on the UNBC
dataset, preventing a comprehensive cross-dataset comparison.

The UNBC shoulder pain dataset is widely employed in cross-dataset studies. However,
models trained on UNBC often exhibit poor performance when applied to other datasets.
While the reasons for this performance gap have not been thoroughly investigated, Dai
et al. and Zarghami et al. conductedmanual inspections of the datasets to propose potential
contributing factors for the performance discrepancy.

4.2.4 Research Gaps

The literature review aimed to gain insights into the approaches employed by previous
studies to assess the learned features and generalization capabilities of pain detection mod-
els. The review identified three key research gaps: the lack of quantitative analysis to inter-
pret XAI visualizations, the absence of systematic XAI approaches for comparing models
trained on different datasets, and the limited investigation into the performance drop ob-
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Paper Pain
Datasets

Cross-dataset
Outcome

Outcome
Analysis

Othman et al. [2019] D1: BioVid
D2: X-ITE

D1 model on D2: ∼
D2 model on D1: ∼ —

Dai et al. [2019]
D1: UNBC
D2: Own
D3: BioVid

D1 model on D2: ∼
D1 model on D3: ↓ Manual

Tavakolian et al. [2020] D1: UNBC
D2: BioVid

D1 model on D2: ↓
D2 model on D1: ∼ —

Rezaei et al. [2020] D1: UNBC
D2: Dementia

D1 model on D2: ↓
D2 model on D1: ↑ —

Zarghami et al. [2023] D1: UNBC
D2: Own

All combinations
were not tested Manual

Prajod et al. [2022a]* D1: UNBC
D2: BioVid

D1 model on D2: ↓
D2 model on D1: ∼ XAI

Table 4.4: An overview of the existing works that perform cross-dataset evaluations to assess
the generalizability of their pain models. The downward arrow (↓) indicates a decline in cross-
dataset performance compared to the model’s within-dataset performance, the upward arrow
(↑) signifies an improvement in cross-dataset performance, and the tilde symbol (∼) represents
comparable within- and cross-dataset performances. Performance differences below 5% are
considered similar. The entries marked with * are expanded in the subsequent sections of this
chapter.

served in cross-dataset evaluations. These gaps are addressed in the subsequent sections
of this chapter.

• Quantitative analysis of XAI heatmaps: The studies reviewed in Table 4.2 primarily
rely onmanual inspections of heatmaps, lacking a quantitative approach to analyzing
these visualizations. A notable exception is the work by Rieger et al. [2020], which
introduces an initial step towards quantitative analysis by quantifying the instances
where highlighted pixels lie outside pre-defined bounding boxes. However, the out-
comes of the manual inspections are often subjective and it remains unclear whether
these findings represent statistically significant patterns. Hence, incorporating sta-
tistical testing into manual inspection procedures is crucial to determine whether
the observed model behavior differs significantly across pain classes or datasets.

• XAI for systematic comparison of models: A notable gap in the literature is the
absence of comparative studies that analyze and contrast explanations generated by
models trained on different pain datasets. Existing research (see Table 4.3) primar-
ily focuses on generating explanations for either a single model or multiple mod-
els trained on the same dataset. This lack of comparative analysis hinders the un-
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derstanding of the variations in learned feature representations among pain models
trained on different datasets. Hence, there’s a need to develop a systematic XAI pro-
cedure that facilitates a visual and statistical comparison of differences between pain
models trained on different datasets.

• Augmenting cross-dataset evaluations with XAI: Cross-dataset evaluations to as-
sess the generalizability of pain detection models are surprisingly uncommon. Even
fewer studies delve beyond performance evaluations to identify the underlying
causes of cross-dataset disparities. As seen from Table 4.4, existing studies rely on
subjective manual inspections of datasets, which are time-consuming and lack sta-
tistical rigor. This chapter presents a systematic XAI-based comparison approach to
identify the differences between pain models that contribute to cross-dataset perfor-
mance gaps.

4.3 Transfer Learning Pain from Emotions

State-of-the-art approaches for facial expression recognition predominantly employ deep
learning techniques, which can learn task-specific representations from raw data in-
puts [Luqin, 2019; Li and Deng, 2020; Gkikas and Tsiknakis, 2023a]. While these methods
consistently outperform traditional handcrafted features in terms of classification perfor-
mance, they come with a substantial requirement for large amounts of annotated training
data. This requirement poses a significant challenge in sensitive classification tasks, such
as automatic pain detection, where data scarcity is prevalent due to limited patient con-
tact, privacy concerns, and strict adherence to ethical guidelines [Kunz et al., 2017; Cowie
et al., 2017; Charlton, 1995]. Hence, pain datasets are typically limited in size, with only a
few pain samples available for analysis [Wang et al., 2017; Hassan et al., 2019; Xiang et al.,
2022].

To address the data scarcity challenge, a frequently employed technique is transfer
learning [Wang et al., 2017; Coutrin et al., 2022]. This technique involves re-using certain
parameters from a pre-trained model while training the remaining parameters on a smaller
target dataset. Ideally, the pre-trained model should originate from a domain closely re-
sembling the target domain [Yosinski et al., 2014; Weiss et al., 2016]. In the case of pain
detection, emotion recognition can be leveraged as a related task, given that both pain and
emotion expressions can be characterized by facial AUs. Facial AUs represent a collec-
tion of distinct facial muscle movements that correspond to a facial expression. Notably,
pain and Ekman’s basic emotions have some overlapping AUs [Kappesser and deWilliams,
2002; Simon et al., 2008; Kunz et al., 2019]. Moreover, previous work by Florea et al. [2015]
showed that data representations of hand-crafted features learned in emotion recognition
task can be leveraged for pain estimation. Additionally, emotion recognition from facial
expressions is a well-explored task with existing large datasets such as AffectNet [Molla-
hosseini et al., 2017] and SEWA DB [Kossaifi et al., 2019], making it a promising source
task. All the pain detection models discussed in this chapter were trained using a transfer
learning approach, with the emotion recognition model as the source model.
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Figure 4.2: Sample images from the AffectNet dataset comprising images collected from the
internet. The copyright remains with the dataset creators [Mollahosseini et al., 2017].

4.3.1 Emotion Recognition Model

Dataset

The facial emotion recognition model was trained using the AffectNet dataset [Mollahos-
seini et al., 2017]. The dataset contains over 400,000 annotated facial images distributed
across 11 classes - Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger, Contempt, None,
Uncertain, and Non-Face. The images were collected from the internet through multi-
lingual search queries containing emotional keywords. Some example images are shown
in Figure 4.2. Each image was assigned a discrete emotion class through a manual an-
notation process involving 12 experts. Additionally, annotations were extended to include
valence and arousal values. Notably, the dataset is imbalanced, with categories like ’Happy’
and ’Neutral’ containing a substantial number of samples (over 75,000), while ’Disgust’ and
’Contempt’ have fewer samples (around 4,000). Images belonging to ‘None’, ‘Uncertain’,
and ‘Non-face’ were excluded due to the absence of a relevant emotion label. Around 90%
of the valid images were used for training and the remaining 10% for validation. The per-
formance of the model was evaluated on the test set provided by Mollahosseini et al. as
part of the dataset. This test set contains a total of 4000 images (500 per class × 8 classes).

Training Procedure

The emotion recognition model was trained by leveraging the VGG16 architecture [Si-
monyan and Zisserman, 2014], which contains five convolution blocks. Although Affect-
Net is a large dataset with sufficient images to train a deep learningmodel from scratch, the
VGG16 network is pre-trained on ImageNet dataset [Russakovsky et al., 2015] to enhance
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Figure 4.3: Visualization of the training process employed for the emotion recognition model.
The model is trained on the AffectNet dataset to output prediction probabilities for eight emo-
tion classes.

its performance and training efficiency [Yen and Li, 2022]. This network is connected to
a fully connected layer, followed by a dense layer with softmax activation to predict the
probability of an image belonging to each of the eight emotion classes - Neutral, Happy,
Sad, Surprise, Fear, Disgust, Anger, and Contempt. As illustrated in Figure 4.3, the model
underwent a full model fine-tuning, i.e., all the layers were trained on the AffectNet dataset.
All input images were scaled to default VGG16 dimensions (224 × 224). During training, the
images were randomly flipped horizontally to increase variations in the input. The training
process employed the Stochastic Gradient Descent (SGD) optimizer (learning rate = 0.01)
and a weighted focal loss function. The focal loss function [Lin et al., 2017] is computed as
follows:

𝑓 𝑜𝑐𝑎𝑙_𝑙𝑜𝑠𝑠 = (1 − 𝑝𝑡)
𝛾
× 𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑙𝑜𝑠𝑠 (4.1)

The variable 𝑝𝑡 represents the predicted probability of a sample belonging to its true
class (𝑡), and 𝛾 is a hyperparameter that was empirically set to 5. Given the substantial
imbalance in the AffectNet dataset, a weighted focal loss function was implemented using
the weighting scheme proposed by Cui et al. [2019], which is given by:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑙𝑜𝑠𝑠 = 1 − 𝛽

1 − 𝛽𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑝𝑒𝑟_𝑐𝑙𝑠 × 𝑓 𝑜𝑐𝑎𝑙_𝑙𝑜𝑠𝑠 (4.2)

Following the examples provided by Cui et al., the hyperparameter 𝛽 was empirically
set to 0.99998.
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Emotion Precision Recall F1-score
Neutral 0.45 0.56 0.50
Happy 0.62 0.81 0.70
Sad 0.64 0.54 0.58

Surprise 0.58 0.52 0.55
Fear 0.65 0.64 0.65

Disgust 0.57 0.61 0.59
Anger 0.55 0.54 0.54

Contempt 0.59 0.41 0.48
Average 0.58 0.58 0.57

Table 4.5: Performance of the emotion recognition model in terms of precision, recall, and F1-
score for the eight emotion classes

Evaluation

The evaluation of the emotion recognition model was conducted on the dedicated test set
within the AffectNet dataset, consisting of 4000 images evenly distributed among the eight
classes. Class-wise precision, recall, and F1-score were computed to evaluate the model’s
performance on individual emotions. Additionally, average F1-score and accuracy were
calculated as measures of overall performance. The class-wise prediction performance is
presented in Table 4.5, with the model achieving an accuracy of 58% and an average F1-
score of 57%. The overall performance aligns with the baseline performance reported for
this test set [Mahoor, 2017].

4.3.2 Transfer Learning Pain

There are two primarymethods for transfer learning feature representations in deep neural
networks: freezing and fine-tuning. In this chapter, a hybrid approach is adopted, wherein
all layer weights from the pre-trained model are transferred to the target model, and a
subset of layers is frozen, while the remaining layers undergo fine-tuning on the target
dataset. In the hybrid approach, no layer is randomly initialization. The three approaches
are visualized in Figure 4.4.

The following paragraphs describe the transfer learning process for Section 4.4. The
pain transfer learning process for Section 4.5 is a specific instance of the process followed
in Section 4.4, where no layer is frozen, i.e., the whole pre-trained model undergoes fine-
tuning.

Reduced UNBC Pain Dataset

For training pain detection models, the facial images from the UNBC-McMaster Shoulder
Pain Expression Database [Lucey et al., 2011] are utilized. This dataset consists of image
sequences derived from video recordings of 25 participants experiencing shoulder pain;
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Figure 4.4: Depiction of the freezing, fine-tuning, and hybrid approaches for transfer learning.
The hybrid approach utilizes both freezing and fine-tuning to train a model.

however, only four participants consented to the usage of their images in publications.
Participants were instructed to perform specific arm movements, serving as stimuli for
pain expression. Each image in the dataset is annotated with a PSPI score on a scale from 0
(no pain) to 15 (extreme pain). In this chapter, images with a PSPI score of 0 are categorized
as no-pain images, while those with scores greater than 0 are considered pain images. The
dataset comprises a total of 48,398 images, with 40,029 classified as no-pain and 8,369 as
pain images. Due to the visual analysis in this chapter, the test set exclusively includes
images from the four participants who consented to publication. Some examples from the
test set are presented in Figure 4.5.

Since these images originate from video sequences, many frames are similar. To miti-
gate redundancy in the training and validation sets, images are randomly chosen, adhering
to the following conditions:

(a) There is at least one pain and one no-pain image from each of the 21 participants

(b) At least five images separate two selected images from the same sequence

Additionally, to address dataset imbalance, a deliberate effort is made to balance the
dataset. Following the criteria to mitigate redundancy, 1,000 images (500 pain and 500 no-
pain) are randomly selected. Following a 90-10 split, this reduced dataset is divided into
training (900 images) and validation (100 images) sets.

Pain Training

The emotion recognition model trained on AffectNet was leveraged as the pre-trained
model for transfer learning pain detection. As shown in Figure 4.6, the transfer learning

90



CHAPTER 4. PAIN DETECTION

Figure 4.5: Some examples of pain and no-pain images from the UNBC-McMaster shoulder
pain dataset. The copyright remains with the dataset creators [Lucey et al., 2011].

process involved freezing and fine-tuning of layers. The VGG16 architecture is composed
of five convolutional blocks, with each block comprising several convolutional layers and
ending with a pooling layer. The weights of all convolution blocks of the emotion recogni-
tion model were copied, and the initial blocks were frozen, rendering them unchangeable
by pain training. For the analyses detailed in Section 4.4, the number of frozen blocks
was systematically varied from 0 (allowing all blocks for pain training) to 5 (excluding all
blocks from pain training, with only the prediction layers trainable). This method resulted
in six distinct pain detection models. For ease of referencing, the models are denoted as
’FrozenBlocks⟨𝑖⟩’, where 𝑖 ranges from 0 to 5, indicating the number of frozen convolutional
blocks during pain training. Each FrozenBlocks⟨𝑖⟩model was trained by freezing the initial
𝑖 convolutional blocks and fine-tuning the remaining blocks using the pain dataset. Specif-
ically, FrozenBlocks5 represents a model with all convolutional blocks frozen, and only
the output layers were trained to detect pain. Conversely, FrozenBlocks0 corresponds to a
model where no blocks were frozen, signifying that all layers underwent fine-tuning with
the pain dataset.

All the models were fine-tuned using the aforementioned reduced UNBC pain dataset.
The prediction layer employed softmax activation to output whether a facial image ex-
pressed pain or not. The input images were scaled to default VGG16 dimension. Due to
the small size of the dataset, image augmentation was employed during training using the
Keras data augmentation options, including rotation (within ± 25𝑜), height shift (within
± 10%), width shift (within ± 10%), shear (within ± 10%), zoom (within ± 10%), and hori-
zontal flip. Unlike the AffectNet dataset, the reduced UNBC pain dataset was intentionally
balanced, allowing the use of unweighted focal loss (Equation 4.1). The hyperparameter
𝛾 was empirically set to 2, reflecting a balance between focusing on difficult-to-classify
samples and general model performance.
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Figure 4.6: Illustration of the process followed for transfer learning pain detection from an
emotion recognition model. The image shows the process of training a pain detection model
by freezing the first two blocks of the emotion recognition model.

4.3.3 Evaluation

The models were evaluated on a test set derived from the UNBC dataset, consisting of im-
ages from four participants. During testing, all images from these four participants were
utilized instead of a reduced version, resulting in an imbalanced set. Consequently, the
macro-averages of the performance metrics, which compute the metric for each class and
average them, were calculated to ensure equal consideration for every class. The perfor-
mance metrics, including recall, F1-score, and accuracy, for the six pain detection models
are presented in Table 4.6.

While the recall for the no-pain class was the highest in FrozenBlocks4 and Frozen-

Models Recall F1-score Accuracy
No-pain Pain Avg. No-pain Pain Avg.

FrozenB5 0.99 0.54 0.76 0.95 0.66 0.81 0.92
FrozenB4 0.99 0.56 0.78 0.96 0.69 0.83 0.92
FrozenB3 0.98 0.69 0.83 0.96 0.76 0.86 0.93

FrozenB2 0.96 0.71 0.84 0.95 0.73 0.84 0.92
FrozenB1 0.95 0.71 0.83 0.95 0.72 0.83 0.91
FrozenB0 0.95 0.71 0.83 0.95 0.71 0.83 0.91

Table 4.6: Recall and F1-score for no-pain and pain classes, along with the macro averages and
accuracy for the six pain detection models. The model names are abbreviated as FrozenB⟨𝑖⟩
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Blocks5, it consistently remained high (≥ 95%). This could be attributed to the similarity
between the no-pain class and the neutral class in emotion recognition, suggesting pre-
existing discerning features of this class. As anticipated, models with a higher number
of available convolution blocks for pain training (FrozenBlocks2, FrozenBlocks1, Frozen-
Blocks0) achieved higher pain recall. Notably, the pain recall saturated beyond a certain
point, specifically, unfreezing the initial two blocks for pain training did not improve the
recall. The best overall performance, as measured by accuracy and F1-score, was achieved
by FrozenBlocks3. This observation suggests a potential risk of over-tuning models on
small datasets with fewer frozen blocks.

Paper Accuracy F1-score
Sikka et al. [2014] 0.84 0.52
Ruiz et al. [2014] 0.86 -
Pedersen [2015] 0.86 -
Wu et al. [2015] 0.85 0.78

Shrivastava et al. [2015] 0.88 -
Chen et al. [2015] 0.87 -
Yang et al. [2016] 0.73 -
Roy et al. [2016] 0.88 -
Guo et al. [2016] 0.85 -

Rathee and Ganotra [2016] 0.90 -
Kharghanian et al. [2016] 0.87 0.86

Chen et al. [2017] 0.91 0.54
Rodriguez et al. [2017] 0.84 -
Kumawat et al. [2019] 0.87 -
Abedi et al. [2020] 0.73 -

Semwal and Londhe [2021a] 0.67 0.62
Reichard et al. [2022] 0.81 0.48

This chapter (FrozenBlocks3) 0.93 0.86

Table 4.7: Performance (accuracy and F1-score) of UNBC shoulder pain detection models from
the literature

Table 4.7 summarizes the performance of pain detection models from the literature,
providing a benchmark for the models presented in this section. The performances were
obtained through a literature search in the Scopus3 database. Only binary classifiers trained
on the UNBC shoulder pain dataset and evaluated on unseen participants (leave-one-
subject-out, participant hold-out test set, etc.) were considered for comparison. Themodels
presented in this section outperform the existing models in terms of accuracy.

3https://www.scopus.com/, Query: TITLE-ABS-KEY ( pain AND ( detect* OR recogni* OR predict*
OR estimat* OR classif* OR learn* ) AND unbc )
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4.4 An XAI-based Approach to Assessing Forgetting

Figure 4.7: Visualization of the XAI-based assessment process implemented in this chapter.

The fine-tuning approach of transfer learning often leads to considerable changes to the
pre-trained model weights and thus alters the internal feature representations. This phe-
nomenon is called Catastrophic Forgetting, as the newmodel ’forgets’ the features required
to perform well on the original task Kemker et al. [2018]. The work by Khorrami et al.
[2015] involved analyzing the learned representations of an emotion recognition model,
revealing its capability to learn AUs as features. In the case of transfer learning pain, when
more unfrozen layers are available for training pain, the model becomes increasingly tai-
lored for the dataset. It is crucial to examine the learned representations of the model to
ensure that it has not overlooked certain AUs, leading to forgetting AUs relevant to pain
detection. This oversight might occur due to the dataset lacking ample samples of spe-
cific well-known pain patterns, making it less suitable for training a generic pain detection
model.

To assess the learned representations and identify any forgotten features, a multi-step
process was devised and implemented. This process is visualized in Figure 4.7. First, the
pain detection models were evaluated on the emotion recognition task, focusing on class-
wise recall. The model was deemed to have forgotten the recognition of a specific emotion
if there was a significant decrease in recall after the transfer learning process. At the end
of the first step, the images contributing to the decline in recall were identified. Second,
these imageswere used to generate visualizations of learned features using XAI techniques.
In the third step, the generated visualizations were manually examined to pinpoint the
forgotten AUs. Finally, the learned representations of the models were evaluated for the
forgotten AUs to determine whether the differences were statistically significant. This
process helps in identifying AUs forgotten during pain transfer learning, allowing for a
comparison with AUs typically associated with pain expression.
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4.4.1 Re-train to Identify Forgetting

Figure 4.8: Illustration of the process used to re-train the pain models for emotion recognition.
In this depiction, all convolutional blocks of the painmodel were frozen, and only the prediction
layers were trained on the AffectNet dataset. The image illustrates the learned weights of
FrozenBlocks2 as a representative example.

Depending on the number of fine-tuned layers, the hybrid transfer learning approach
can yield many different pain models and associated feature representations. In this chap-
ter, the convolutional blocks were frozen rather than individual layers to limit the number
of models considered. There are five convolutional blocks in VGG16 architecture, and vary-
ing the number of frozen blocks during transfer learning from 0 to 5 yielded six different
pain detection models.

The first step in assessing forgotten features involves evaluating how these models
perform on emotion recognition after adapting feature representations for pain detection.
This is accomplished through a re-training methodology, as illustrated in Figure 4.8. The
objective is to evaluate the capability of pain detection models to still recognize emotions
using the AffectNet test set. A decrease in the recall of a specific emotion suggests potential
forgetting of AUs crucial for recognizing that emotion. While the models are expected to
forget AUs irrelevant to pain expression, there is a possibility of forgetting AUs that play a
role in pain detection, contingent on their representation in the pain dataset. For instance,
Jaw Drop (AU 26) is an AU that may manifest in both pain and surprise expressions. If
the pain training dataset lacks sufficient images with AU 26, the model may forget this AU
learned for surprise, despite its relevance to pain expression.

As part of the re-training method, all convolutional blocks of a pain model were frozen
to preserve the learned feature representations. The output layers were then modified
to predict the eight emotion classes and subsequently trained on the AffectNet dataset.
The re-training process utilized the same optimizer, data augmentation techniques, loss
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Figure 4.9: Class-wise recalls of the six pain models obtained by re-training their output layers
for emotion recognition. The black ellipses highlight the decrease in recall for the Surprise and
Contempt classes. The copyright remains with the authors [Prajod et al., 2022b].
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function, and hyperparameters as previously described in Section 4.3.1. This re-training
process was followed for all six pain models, and the resulting models were compared in
terms of their recalls for each emotion. Following a comparison strategy similar to Diet-
terich [1998], McNemar’s test was employed to determine if the differences in recalls were
significant.

Given that theweights of the convolutional blocks in the re-trainedmodels are identical
to the pain models, these models are denoted as Re-trained FrozenBlocks⟨𝑖⟩ (𝑖 ∈ {0, 1, 2, 3,
4, 5}), or Re-FB⟨𝑖⟩ for short. Figure 4.9 shows the recalls for the eight emotions by utilizing
the six re-trained models. The recalls for Surprise and Contempt classes decreased with
an increase in pain training blocks, dropping notably for Re-FB1 and Re-FB0. To further
investigate this decline in recall, a detailed analysis was conducted by comparing Re-FB5
and Re-FB0. McNemar’s test between the two models revealed a significant difference in
recall for both Surprise (p-value: 1.56×10−4) and Contempt (p-value: 8.19×10−18) classes.

4.4.2 Visual Analysis

While analyzing the class-wise recalls of the re-trained models can highlight the specific
emotions affected by pain training, it doesn’t provide insight into the learned or forgotten
features. To delve into these forgotten features or concepts, the learned representations
of Re-FB5 and Re-FB0 were compared. Re-FB5 mirrors the original emotion recognition
model, while Re-FB0 underwent the most substantial modifications due to pain training.
To facilitate this comparison, the images causing the drop in recalls for the Surprise and
Contempt classes were identified. In other words, these were the AffectNet test set images
belonging to the Surprise and Contempt classes, which were correctly predicted by Re-FB5
but were incorrectly predicted by Re-FB0.

To visualize the learned feature representations of both models, a saliency map was
generated for each identified image. A saliency map highlights the pixels of an input im-
age that have the most influence on the model’s prediction probability for a specific class.
The saliency maps were created using the XAI technique called LRP Bach et al. [2015]. Fol-
lowing the recommendations by Montavon et al. [2019] and Sixt et al. [2020], the chosen
LRP variant used the 𝑧-rule for fully connected layers and the 𝑧+-rule for convolution lay-
ers. The saliency maps were generated using the iNNvestigate library [Alber et al., 2019].
Additionally, the saliency maps were normalized between 0 and 1, where a higher value
indicates higher relevance to the prediction.

To translate relevant image areas into semantically meaningful concepts, the interpre-
tation needs to be done visually by a human. The underlying intuition is that the visually
identified concepts helped Re-FB5 to correctly predict the emotion but were forgotten by
Re-FB0. However, it is crucial to consider the sensitivity of neural networks to small differ-
ences. Since both models were fine-tuned based on the same emotion recognition weights,
the saliency maps for the same input image often appear indistinguishable to the human
eye (see figure 4.10). To make those differences visible, new saliency maps were gener-
ated by subtracting the raw saliency maps from each other and again normalizing these
differences between 0 and 1.

As observed in Figure 4.9 and subsequent McNemar’s tests, there is a significant drop
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Figure 4.10: The image on the left is an example from the Contempt class, correctly predicted
by Re-FB5 but not by Re-FB0. The middle and right images illustrate the saliency maps cor-
responding to the Contempt class for Re-FB5 and Re-FB0, respectively. The copyright remains
with the authors [Prajod et al., 2022b]

in recalls for two emotions - Surprise and Contempt. Previous work by Khorrami et al.
[2015], which examined the learned representations in deep neural networks for emotion
recognition, revealed that these networks learn facial AUs. Therefore, when inspecting the
saliency maps to identify forgotten features, AUs were specifically considered as potential
learned concepts.

Figure 4.11: An illustrative comparison of saliency maps for a Surprise image, highlighting
differences in the learned representations of Re-FB5 and Re-FB0. The red circle highlights the
pixels that Re-FB5 focused on, which is indicative of AU5. The copyright remains with the
authors [Prajod et al., 2022b].

A visual analysis of the saliency maps for test images from the Surprise class revealed
that, in comparison to Re-FB0, Re-FB5 focused more on AU5 (upper lid raise). This empha-
sis on AU5 is depicted in Figure 4.11. Similarly, as illustrated in Figure 4.12, saliency maps
for Contempt images revealed a greater emphasis on dimples (corresponding to AU14) in
Re-FB5 compared to Re-FB0. These observations suggest that, although both models uti-
lized AU5 and AU14 to some extent, Re-FB5 exhibited a more pronounced representation
of these AUs. In other words, allocating more blocks for pain training resulted in a reduced
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Figure 4.12: An illustration comparing the saliency maps for a Contempt image. The image
highlights differences in the learned representations of Re-FB5 and Re-FB0. The red circle
denotes a facial region that Re-FB5 focused on, which can be linked to AU14. The copyright
remains with the authors [Prajod et al., 2022b].

emphasis on AU5 and AU14.

4.4.3 Embedded Concept Detection

After identifying the forgotten concepts — specifically, the AUs influenced by pain training
— the next step involves a statistical validation of this observation. An embedded concept
detection technique [Kim et al., 2018a] was employed to assess potential statistical differ-
ences in the learned representations of the models concerning AU5 and AU14. This tech-
nique involved training a binary linear classifier for concept detection, utilizing the output
of an intermediate layer in the network to generate feature vectors for input images. In
other words, the intermediate layer of the neural network acted as a feature extractor for
the concept detection classifier. The efficacy of the classifier in concept detection indicates
the extent to which the network has learned the specific concept. Additionally, a statistical
comparison of the performances of two classifiers (derived from two distinct models) can
be used to determine whether one representation embedded the concept more effectively
than the other.

While the identified concepts were AUs, the AffectNet dataset lacked AU annotations.
According to Kim et al., the concept detection classifier need not be trained on the same
dataset as the neural network. Hence, the concept classifiers were trained on another facial
emotion expression dataset, namely, the CK+ dataset [Lucey et al., 2010]. This is a rela-
tively smaller dataset that contains images of acted emotions with manually annotated AU
labels. Given that CK+ images with AU5 often exhibit a wide-open mouth corresponding
to AU26 (jaw drop), the mouth area (bottom of the images) was cropped to ensure that
AU5 classifiers were trained exclusively on AU5 and not influenced by AU26. This crop-
ping was specifically applied to AU5 classifiers and not AU14. As noted by Kim et al., the
cropped versions of a concept image do not impede concept detection.

The output of the last convolution block of Re-FB5 and Re-FB0 was used to generate
two sets of feature vectors for the input images. For each set, a linear Support Vector
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Machine (SVM) was trained to detect the concept (AU5 or AU14) using two-fold cross-
validation. The average F1-score of the two folds served as a measure of concept detection
performance. This training process was iterated 500 times using random seeds for weight
initialization and fold selection. This process yielded 500 performance scores for each clas-
sifier, which were used in a paired t-test comparison. The outcome of this test determined
whether there was a significant difference between the performance of SVMs trained on
Re-FB5 features and Re-FB0 features. Following the approach of Dietterich [1998] for a
comparison metric over 5 iterations, a 5 × 2 cross-validation paired t-test was extended to
500 iterations as suggested by Kim et al. [2018a]. This comparison metric was employed
by Dietterich [1998] for five iterations in a paired t-test using 5 × 2 cross-validation. It was
extended to 500 iterations, as suggested by Kim et al..

For both AU5 and AU14, the SVMs trained on Re-FB5 features significantly outper-
formed the classifiers trained on Re-FB0 features. In the case of AU5, Re-FB5 features
achieved a mean F1-score of 84.36%, compared to 83.87% for Re-FB0 features (p-value:
3.49×10−19). For AU14, Re-FB5 and Re-FB0 features achieved mean F1-scores of 74.13%
and 72.41%, respectively (p-value: 4.88×10−34). These results affirm the earlier observa-
tions suggesting that Re-FB0 tended to forget AU5 and AU14. However, considering that
neither of the feature vectors yielded a very low F1-score, the extent of forgetting appears
to be limited.

4.4.4 Insights

Both emotions and pain expressions are associated with specific characteristic AUs, and
this connection serves as a foundation to investigate why certain AUs were forgotten
through pain training. More importantly, it is essential to determine whether the forgotten
AUs are known to occur in pain expressions. Figure 4.13 outlines the typical AUs activated
during the expressions of various emotions [Simon et al., 2008; Lucey et al., 2010]. The
figure also highlights the AUs activated during pain expressions [Simon et al., 2008; Kunz
et al., 2019].

The activation of AU14 is essential in a typical Contempt expression, but it does not
manifest in typical expressions of pain. Hence, forgetting AU14 and the subsequent decline
in Contempt recall is not surprising. Similarly, AU5 is not common in typical pain expres-
sions. However, AU5 occurs not only in typical Surprise expressions but also in typical
Fear and Anger expressions. Surprisingly, forgetting AU5 did not lead to a decline in the
recall of Fear and Anger classes. This observation could be explained by the lack of overlap
between typical Surprise AUs in the upper face and those associated with typical pain ex-
pressions. In contrast, Fear and Anger share other eye-related AUs with pain expressions.
Crucially, the forgotten AUs resulting from pain training with the UNBC dataset were not
relevant for the detection of typical pain expressions.

The analyses show that the forgetting of the identified AUs, and the observed drop in
recall of Surprise and Contempt are in line with the current understanding of typical pain
expressions. Furthermore, these findings demonstrate the capabilities of the proposed XAI-
based approach to analyze learned feature representations and assess datasets.
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Figure 4.13: List of AUs that occur in the typical expressions of various emotions and pain. The
forgotten AUs (AU5 and AU14) are highlighted with red boxes. The copyright remains with
the authors [Prajod et al., 2022b]

4.5 Assessing Pain Datasets

In an industrial setting, operators may encounter pain resulting from pre-existing condi-
tions (e.g., surgery, chronic pain) or spontaneous stimuli (e.g., pressure pain). These in-
stances of pain can be broadly categorized into clinical pain and experimental pain [Kunz
et al., 2019]. Clinical pain occurs when individuals with clinically diagnosed conditions,
such as those who have undergone surgery or have arthritis, experience pain while per-
forming certain movements. On the other hand, experimental pain is induced by specific
stimuli such as exposure to a high temperature or electricity. The existing pain datasets
can also be classified as clinical and experimental pain datasets.

While Kunz et al. examined the differences between clinical and experimental pain in
terms of manually annotated AUs, little research has been done on the differences in the
learned feature representations of models trained on these datasets. This section outlines
how the technique presented in Section 4.4 was employed to analyze the learned features
of twomodels - one trained on a clinical pain dataset and the other on an experimental pain
dataset. The analysis process followed the steps visualized in Figure 4.7. The cross-dataset
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evaluations of the two models formed the basis for identifying the initial set of images.
This analysis provides insights into the robustness of each model and the extent to which
they can be applied to an industrial scenario for generic pain detection.

4.5.1 Clinical and Experimental Pain Datasets

This analysis utilized two existing datasets - the UNBC-McMaster Shoulder Pain Dataset
and the BioVid Heat Pain Dataset. The UNBC shoulder pain dataset serves as a representa-
tive clinical pain dataset, comprising images of individuals who underwent surgery while
performing movements that induce pain. The BioVid heat pain dataset is an example of
an experimental pain dataset, containing images of participants experiencing pain due to
heat stimuli.

UNBC-McMaster Shoulder Pain Dataset

The dataset, previously described in Section 4.3.2, encompasses image sequences of 25
individuals experiencing shoulder pain while performing various arm movements. Each
image is annotated with a PSPI score ranging from 0 to 15. As mentioned earlier, these
images originate from videos and therefore exhibit strong similarities between consecutive
frames. To capture the diverse range of pain intensities, a down-sampling method inspired
by Zhao et al. [2016] and Xiang et al. [2022] was employed to eliminate redundant images.
The down-sampling criteria were as follows:

(a) Each participantmust have at least one image expressing pain and one imagewithout
pain.

(b) For sequences with the same pain intensity for five consecutive frames, only the first
frame is retained.

Same as before, the images in the down-sampled dataset belonging to four participants
(who consented to image publication) were assigned to the test set. Images from one ran-
domly selected participant were reserved for validation, and the remaining 20 participants’
images formed the training set.

BioVid Heat Pain Dataset

This analysis utilizes Part A of the BioVid dataset [Walter et al., 2013], which contains short
videos capturing the facial expressions of 87 participants undergoing heat pain stimuli.
Each participant is subject to five conditions (no-pain and four increasing pain intensities)
and contributes 20 short videos (5.5 seconds in length) for each of the five conditions.
Research findings indicate that the initial two pain intensities often fail to elicit a noticeable
facial response [Werner et al., 2017]. Therefore, for pain detection, only videos labeled as
baseline (no-pain) and the highest pain intensity were considered. Additionally, Werner
et al. observed that facial activity associated with the highest pain intensity intensifies
around the 4-second mark. Accordingly, the frame captured at the 4-second mark in each
video was selected as a representative image. To eliminate participants with minimal or
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Figure 4.14: Some examples of pain and no-pain images from the BioVid heat pain dataset.
The copyright remains with the dataset creators [Walter et al., 2013].

no facial response to the stimuli, the recommendations from the BioVid dataset creators
[Walter and Al-Hamadi, 2022] were followed, leading to the exclusion of 20 participants.
This results in images of 67 participants, from which 15 are designated for testing, 5 for
validation, and the remaining images formed the training set. Example images from the
pain and no-pain classes are presented in Figure 4.14.

4.5.2 Clinical and Experimental Pain Models

After selecting representative images from the videos or image sequences, the resulting
datasets are relatively small with around 1000 to 2000 images. To address the challenge of
limited dataset size, themodels were trained using the transfer learning approach described
in Section 4.3.2. Both the clinical and experimental pain models employed the AffectNet
emotion recognition model as the source model for transfer learning. Both models func-
tioned as binary classifiers, capable of distinguishing between pain and no-pain images.
Both models underwent full fine-tuning, meaning that none of the layers were frozen to
preserve the emotion recognition weights.

Pre-processing was applied to all input images, involving detection and extraction of
the facial region using OpenCV. Subsequently, the images were resized to conform to the
VGG16 input size of 224 × 224 pixels. The same data augmentation techniques employed
in Section 4.3.2 – rotation, height shift, width shift, shear, zoom, and horizontal flip – were
applied to the training images of both datasets. Both models utilized the SGD optimizer
(learning rate = 0.01) and focal loss function (𝛾 = 2), consistent with the previous training
methodology. The samples selected from the BioVid heat pain dataset were evenly dis-
tributed between pain and no-pain images. In contrast, the down-sampled UNBC dataset
exhibited an imbalance, with the number of pain images considerably exceeding no-pain
images. Therefore, a weighted focal loss function was employed for the clinical pain model
during the training phase. The weighting scheme proposed by Cui et al. [2019] was imple-
mented, with the hyperparameter 𝛽 empirically set to 0.99.

The clinical pain model trained on the UNBC shoulder pain dataset achieves an ac-
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Paper Accuracy F1-score
Werner et al. [2016] 0.72 -
Yang et al. [2016] 0.60 -

Kächele et al. [2017] 0.66 -
Zhi and Wan [2019] 0.62 -
Othman et al. [2019] 0.66 -
Thiam et al. [2020] 0.69 -

Gkikas and Tsiknakis [2023b] 0.73 -
This chapter 0.70 0.69

Table 4.8: Performance (accuracy and F1-score) of BioVid heat pain detection models from the
literature

curacy of 83%, which falls below the previously reported 91-93% accuracy range. This
difference highlights the impact of image selection and class weighting on a model’s per-
formance. Further inspection of pain detection performances from Table 4.7 revealed that
models trained on balanced datasets tend to achieve higher accuracy. Aspects such as im-
age selection, pre-processing, and class weighting schemes are crucial for improving the
performance of pain detection models. However, since the goal of the experiment is to
compare the models trained on different types of pain datasets, the clinical pain model was
trained using the image selection method that aligns with existing literature. The accuracy
achieved by the clinical pain model described in this section remains comparable to other
studies addressing similar classification tasks with an imbalanced training set.

The experimental pain model trained on the BioVid heat pain dataset achieved an ac-
curacy of 70%, and F1-score of 69%. This performance aligns with the accuracy reported in
other studies that utilize face images from BioVid dataset for pain detection, as shown in
Table 4.8. This table compares the experimental pain model’s performance to other similar
models, all of which were trained as binary classifiers to detect presence of pain in BioVid
facial images and evaluated on unseen participants. The works were identified through
Scopus4 database search.

The clinical pain and experimental pain models developed in this study serve as rep-
resentative examples of pain detection models trained on clinical and experimental pain
datasets. This enables the systematic comparison of their learned representations, shed-
ding light on whether humans manifest pain differently in clinical and experimental set-
tings.

4.5.3 Cross-Dataset Evaluation

Many studies have introduced automatic pain detection models that exhibit high perfor-
mance within the context of their training datasets. However, cross-dataset evaluations

4https://www.scopus.com/, Query: TITLE-ABS-KEY ( pain AND ( detect* OR recogni* OR predict*
OR estimat* OR classif* OR learn* ) AND biovid )

104

https://www.scopus.com/


CHAPTER 4. PAIN DETECTION

have been less thoroughly investigated. According to Othman et al. [2019], one poten-
tial reason for this disparity is that even well-trained models may not perform well when
deployed on another dataset. To comprehensively assess the generalizability of the pain de-
tection models presented in this chapter, cross-dataset evaluations were conducted along-
side the standard within-dataset evaluations.

The within-dataset evaluations, as described in Section 4.5.2, involved calculating re-
call, F1-score, and accuracy for both models using dedicated test sets from their respective
datasets. These evaluations were conducted within the context of the datasets the models
were trained on, evaluating their ability to detect pain expressions from unseen partici-
pants within the same pain stimuli and recording conditions. To address the limitations
of within-dataset evaluations, cross-dataset evaluations were conducted using the test set
from the BioVid heat pain dataset for the clinical pain model and the test set from the
UNBC shoulder pain dataset for the experimental pain model. These cross-dataset evalu-
ations assess the models’ ability to detect pain caused by different pain stimuli and under
different recording conditions. As mentioned previously, the potential pain stimuli in an
industrial context can be clinical or experimental type. So, it is important to perform the
cross-dataset evaluation using datasets representative of these types of pain to ensure that
the model is robust in not only detecting pain in unseen participants but also in different
pain stimuli and recording conditions.

The outcomes of within-dataset and cross-dataset evaluations for the clinical and ex-
perimental painmodels are summarized in Table 4.9. The results of the cross-dataset evalu-
ations revealed that the clinical painmodel exhibited a considerable decline in performance
when evaluated on the BioVid heat pain dataset, demonstrating its limited generalizability
to different pain stimuli. Specifically, the low recall for the no-pain class is the primary rea-
son for the decline in performance. In contrast, the experimental pain model maintained
consistent performance across both datasets, suggesting that it has learned more generic
pain features during training. This consistent performance suggests the model’s potential
for wider applicability in industrial settings where pain detectionmay involve varying pain
types and recording conditions.

4.5.4 Visual Analysis

While the cross-dataset evaluation suggests differences in the learned feature representa-
tions of the two models, it is unclear whether these differences arise from variations in
human pain responses to different pain types or if the clinical pain model has acquired
dataset-specific features. To address this gap, this section employs the approach outlined
in Section 4.4 to evaluate the learned features and gain insights into the pain expressions
in the two datasets. The first step involved generating saliency maps to facilitate visual
comparison of learned feature representations. Saliency maps were generated for each
model to highlight the areas of the input image that each model considers to be relevant
for activating the pain prediction neuron.

The test set images from both the UNBC and BioVid datasets were utilized to generate
saliency maps. For each image, two saliency maps were created – one from the clinical
pain model and the other from the experimental pain model. Since the objective was to
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Clinical (UNBC) model

Test Images Recall F1-score Accuracy
No-pain Pain Avg. No-pain Pain Avg.

UNBC (within) 0.71 0.88 0.80 0.72 0.88 0.80 0.83
BioVid (cross) 0.28 0.90 0.59 0.41 0.69 0.55 0.59

Experimental (BioVid) model

Test Images Recall F1-score Accuracy
No-pain Pain Avg. No-pain Pain Avg.

BioVid (within) 0.87 0.54 0.70 0.74 0.64 0.69 0.70
UNBC (cross) 0.80 0.61 0.71 0.60 0.72 0.66 0.67

Table 4.9: Within-dataset and cross-dataset performances of clinical (UNBC) and experimental
(BioVid) pain models.

identify disparities in the learned representations of the twomodels, the raw saliency maps
were subtracted from each other to highlight differences. To enhance human visibility, the
subtracted saliency maps were normalized between 0 and 1. This process yielded two sets
of saliency maps – one highlighting the areas that the experimental pain model focused on
more than the clinical pain model (‘Exp > Cli’ in Figure 4.15) and the other highlighting
the areas more relevant for the clinical pain model than the experimental pain model (‘Cli
> Exp’).

Figure 4.15 presents some of the test images and their corresponding saliency map
differences. Upon inspection, it was observed that the clinical pain model tends to focus
on the eye region, particularly on closing of the eyes. In contrast, the experimental pain
model demonstrates a stronger focus on the mouth area, particularly on visibility of teeth.
This observation leads to the hypothesis that the clinical painmodel may be biased towards
recognizing closed eyes as a pain indicator, while the experimental pain model may be
biased towards detecting visible teeth as a pain indicator.

4.5.5 Embedded Concept Detection

The visual inspection of saliencymaps indicated two distinct concepts (eye closure and vis-
ibility of teeth) that were differently emphasized in the learned feature representations of
the clinical and experimental pain models. To validate whether the models’ learned repre-
sentations exhibited significant disparities regarding these identified concepts, an embed-
ded concept detection technique similar to Section 4.4.3 was employed. For each concept,
a binary linear classifier was trained using the pain detection models. The model network
acted as a feature extractor, relying on the output of the last pooling layer to generate
feature vectors for each input image. The feature vectors extracted using the clinical and
experimental pain models represent the latent representations of these models. The em-
bedded concept detection approach assesses whether the models’ learned representations
exhibited statistically significant differences in capturing the identified concepts.
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Figure 4.15: Subtracted saliency maps highlighting the differences in learned representations
of experimental pain (BioVid) and clinical pain (UNBC) models. ‘Cli’ is short for Clinical
pain model and ‘Exp’ is short for Experimental pain model. The copyright remains with the
authors [Prajod et al., 2022a].
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The test images from the UNBC and BioVid datasets were utilized to train the binary
classifiers for the identified concepts. These images were manually annotated for the pres-
ence (0 or 1) of the identified concepts by two annotators. To ensure the reliability of
annotations, two annotators independently assessed each image. In instances where the
two annotators disagreed on the presence label, the images were presented to a third an-
notator for further evaluation. The final label was determined through a majority vote of
the three annotators.

To assess the models’ ability to capture the concept of closed eyes, the images were di-
vided into two categories: those where participants had both eyes closed and those where
they did not. Following themethodology outlined in Section 4.4.3, two binary classification
SVMs were trained to identify closed eyes in face images. One SVM utilized feature vec-
tors derived from the clinical pain model, while the other employed feature vectors from
the experimental pain model. The classifiers were trained using 2-fold cross-validation,
and the average F1-score across the two folds was calculated as a performance measure.
This training process was repeated for 500 iterations using different random seeds for fold
image selection and weight initialization. Finally, a significance test (paired t-test) was
conducted to compare the 500 averaged F1 scores of the two SVMs. The SVMs trained us-
ing clinical pain model features achieved an average F1-score of 81.6%, while SVMs trained
using experimental pain model features yielded a lower average F1-score of 78.4%. The ob-
served difference was statistically significant, with a p-value of less than 0.001, suggesting
a substantial distinction between the two pain detection models in their handling of the
closed-eyes feature.

An identical procedure was implemented to evaluate the concept of visible teeth, which
was also identified as potentially differentiating between the two pain detection models.
The images were categorized into two groups based on whether the teeth were at least
partially visible or not. In line with the approach employed for closed eyes, a pair of binary
classification SVMswere trained using the pain detectionmodels as feature extractors. The
classifiers underwent 2-fold cross-validation over 500 iterations. The SVMs trained using
clinical pain model features yielded an average F1-score of 73.5%, whereas SVMs trained
using experimental pain model features achieved an average F1 score of 82.5%. The SVMs
trained using experimental pain features were significantly better in distinguishing images
with visible teeth compared to SVMs trained on clinical pain features (p-value: < 0.001).
This result suggests that the visibility of teethwasmore effectively embedded in the learned
representations of the experimental pain model compared to the clinical pain model.

The outcomes of the two embedded concept detection support the initial hypothesis
derived from saliency map analysis, confirming that the experimental pain model is more
attuned to the concept of visible teeth, while the clinical pain model focuses more on closed
eyes.

4.5.6 Insights

One interesting finding is that the clinical pain model exhibits poor performance in cross-
dataset evaluation, despite performing well on the clinical pain dataset. In contrast, the ex-
perimental pain model demonstrates consistent performance across both datasets. A closer
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examination of Table 4.9 reveals that a significant contributor to the clinical pain model’s
decline in performance is the misclassification of no-pain images from the experimental
pain dataset. As supported by the saliency maps and embedded concept detection results,
the clinical pain model places greater emphasis on the eye region, particularly closed eyes.
This observation aligns with the results reported by Kunz et al. [2019], who observed that
closed eyes (AU 43) weremore prevalent in clinical pain datasets compared to experimental
pain datasets when analyzing both pain and no-pain images from a dataset.

This observation along with the findings of Werner et al. [2016] and Dai et al. [2019]
provides a plausible explanation for the clinical pain model’s misclassification of no-pain
images. Werner et al. investigated various facial activity descriptors from the BioVid
dataset to predict pain. They observed that eye closure is less pertinent in predicting pain
compared to other features. This observation was attributed to the fact that some partici-
pants close their eyes even during no-pain videos. Analysis of the annotations generated
for embedded concept detection revealed that approximately 20% of the no-pain images
from the experimental pain test set were annotated as closed eyes. This may lead to exper-
imental pain model relying less on closed eyes as a feature for detecting pain.

Dai et al. inspected videos of 20 random participants from the BioVid dataset and found
thatmany of them closed their eyes formost of the experiment. In contrast, the participants
from the UNBC dataset tend to look at the camera and usually close their eyes while in pain.
This could lead to the experimental pain model strongly associating closing of eyes to pain
expression. Hence, the experimental pain dataset (BioVid) containing no-pain images with
closed eyes become challenging samples for the clinical pain model.

The inspection of saliency maps also revealed that the experimental pain model pays
more attention to themouth area, especially the visibility of teeth. This concept aligns with
the pain pattern of ‘openmouth’, one of the four facial pain patterns identified by Kunz and
Lautenbacher [2014]. They linked AUs 25, 26, and 27 to the open mouth pattern. However,
as Werner et al. [2016] pointed out, these AUs are not included in the calculation of PSPI
scores. The clinical pain dataset (UNBC dataset) is annotated based on PSPI scores, whereas
the experimental pain dataset (BioVid dataset) is annotated based on the temperature ap-
plied. Therefore, it is possible that an image in the clinical pain dataset exhibiting an open
mouth might be labeled as no-pain if the relevant PSPI AUs are absent. Furthermore, the
annotations revealed that approximately 90% of the visible teeth images originated from
the experimental pain dataset. Although the overall number of images with visible teeth
is relatively low, the results indicate that this bias is reflected in the trained models.

4.6 Reflections and Remarks

Given the scarcity of pain datasets from industry-like settings, this chapter focuses on as-
sessing the generalizability of pain detection models trained on existing datasets. While
many studies evaluate generalizability through within-dataset testing on unseen partici-
pants, this chapter employs a more rigorous approach to investigate whether the models
learn generic pain features rather than dataset-specific patterns.

First, transfer learning is employed to train pain detection models by leveraging the
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learned feature representations of an emotion recognition model. This training method
mitigates the risk of overfitting due to the limited size of pain datasets.

Second, an XAI-based approach is introduced to analyze the learned representations of
the models. This approach involves generating saliency maps, manually inspecting these
maps, and statistically verifying the hypotheses derived from manual inspection. This
approach was used to investigate the impact of transfer learning from emotions to pain
and to ensure that the fine-tuned pain model retains the learned representations of pain-
related facial features.

Third, two pain detection models are trained on different pain datasets, and their cross-
dataset performance is evaluated to determine which dataset leads to a more generalizable
model. The XAI-based approach is employed here to identify dataset-specific features that
contribute to cross-dataset performance drops.

The presented XAI-based approach is not limited to pain detection and can be applied
to a wide range of machine-learning tasks. This versatility stems from the fact that the
approach’s steps are not tailored to pain detection, and can be applied to different domains.
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Chapter 5

Stress Detection

Figure 5.1: A comic strip illustration of a hypothetical use case where stress detection during
industrial Human-Robot Collaboration (HRC) improves the worker’s well-being. The cobot
moves very close to the operator during the HRC task. The cobot detects that the human
operator is stressed due to its proximity. The cobot adapts its movement whenever it is close
to the operator. This adaptation reduces the operator’s stress and makes the collaboration
experience more comfortable.
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5.1 Overview

Stress detection and regulation in the workplace have numerous advantages, including
improved productivity, job satisfaction, and worker well-being [Carr et al., 2011; Romero
et al., 2016; Aidoo, 2016; Nicora et al., 2021; Mittal et al., 2022; Magtibay and Umapathy,
2023]. These advantages are particularly relevant in Industry 5.0 settings, where cobots
work with human operators. In addition to typical workplace stressors like time pressure
and social evaluation, specific aspects of the cobot’s behavior, such as movement speed
and proximity, can also induce stress in workers[Roy et al., 2020; Lu et al., 2022a]. For
instance, in a hypothetical scenario illustrated in Figure 5.1, a cobot moving too quickly
near a worker might trigger a stress response. Ideally, the cobot would be able to detect
this stress and adjust its movements accordingly. Such adaptations not only reduce worker
stress but can also increase trust and acceptance of the cobot [Simões et al., 2022; Lu et al.,
2022a; Gervasi et al., 2023].

These potential benefits highlight the importance of developing automatic stress de-
tection systems for Industry 5.0 HRC environments. However, a key challenge lies in the
lack of publicly available stress datasets specifically collected in industrial HRC scenarios.
As a result, researchers often rely on models trained on data from stressful non-industrial
situations to detect stress in these settings. In such cases, it’s crucial to assess the general-
izability of these models and determine their applicability to broader real-world scenarios.

This chapter addresses the challenges of generalizability in stress detection models. It
delves into various aspects of stress datasets, including the type of stressor, the sensors
used for data collection, and the intensity of stress experienced. This research aims to
identify which of these factors need to be aligned for developing stress detection mod-
els that have broader applicability to real-world scenarios. The chapter employs multiple
models and evaluates their performance to draw broader insights that are not limited to a
specific model. The experiments and results presented in this chapter have been previously
published in the following papers:

∗ P. Prajod and E. André. On the generalizability of ECG-based stress detection mod-
els. In 2022 21st IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 549–554. IEEE, 2022

[ I developed themachine learningmodels and performed the analyses. I also formulated
research questions and derived insights.]

∗ A. Heimerl, P. Prajod, S. Mertes, T. Baur, M. Kraus, A. Liu, H. Risack, N. Rohleder,
E. André, and L. Becker. ForDigitStress: A multi-modal stress dataset employing a
digital job interview scenario. arXiv preprint arXiv:2303.07742, 2023

[ I contributed significantly to data curation, including data processing and feature
engineering. I also trained the shallow machine learning models]

∗ P. Prajod, B. Mahesh, and E. André. Stressor type matters!–Exploring factors influ-
encing cross-dataset generalizability of physiological stress detection. arXiv preprint
arXiv:2405.09563, 2024b
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[ I developed the machine learning models and performed the analyses. I formulated
research questions and derived insights.]

5.2 Previous Works

Recently, stress detection has gained traction in the field of affecting computing due to its
prevalence in everyday situations like work, social interaction, etc. [Schmidt et al., 2019;
Zamkah et al., 2020]. Moreover, detecting stress early is crucial due to its long-term health
consequences.

5.2.1 Stress Datasets

Stress can be detected through psychological tools, behavioral patterns, and physiologi-
cal signals [Giannakakis et al., 2019]. However, physiological signals are considered more
reliable than the other methods due to their measurement issues (e.g., response biases,
participants’ control over their responses, etc.). Moreover, the growing popularity of un-
obtrusive wearable sensors further facilitates the acquisition of physiological signals.

This chapter focuses on heart-related signals - Electrocardiogram (ECG), Blood Volume
Pulse (BVP), and Heart Rate Variability (HRV) - as they have been demonstrated to be
reliable indicators of stress [Kim et al., 2018b; Gedam and Paul, 2020]. An overview of
existing stress datasets that collected these signals is presented below. The datasets were
identified through a Scopus database search1.

Datasets collected in controlled laboratory settings often employ established stress-
inducing tests such as the Stroop test [Stroop, 1935] and Trier Social Stress Test
(TSST) [Kirschbaum et al., 1993]. The Stroop test elicits cognitive stress, and TSST induces
social stress. Many studies collected physiological signals using Stroop test [Markova
et al., 2019; Chen et al., 2021] or a combination of Stroop test and cognitive/arithmetic
tests [Nakashima et al., 2016; Benchekroun et al., 2022; Xefteris et al., 2023]. WhileMarkova
et al. and Benchekroun et al. recorded both ECG and BVP signals, Chen et al., Nakashima
et al., and Xefteris et al. acquired only one of those signals. All these studies, except Xef-
teris et al., collected Electrodermal Activity (EDA) signals as an indicator of stress response.
Meanwhile, studies like Schmidt et al. [2018] and Sabour et al. [2021] employed the TSST
technique to induce stress. Schmidt et al. collected multimodal signals using both chest-
worn and wrist-worn devices, whereas Sabour et al. collected signals from a wrist-worn
device.

A few studies [Parent et al., 2020; Coşkun et al., 2023] created datasets using video
games to stress the participants. In these cases, a higher difficulty indicates a stressful
condition. Although these studies employ a different stress elicitation method, they also
induce cognitive stress.

The dataset by Iqbal et al. [2022] stands out for employing two widely different types
of stressors (cognitive and social). They collected BVP signals utilizing both the Stroop test

1https://www.scopus.com/, Query: ( TITLE ( stress AND ( dataset OR database ) ) AND TITLE-ABS-
KEY ( ecg OR electrocardio* OR bvp OR ( blood AND volume AND pulse ) OR ppg OR photoplethysmo* OR
hrv OR ( heart AND rate AND variability ) ) )
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and TSST to elicit stress. They observed that a majority of the participants had elevated
heart rates in both situations. However, they did not perform any comparisons between
the two responses.

Some researchers moved away from the established tests and simulated some real-
world scenarios to induce stress. For example, Luig and Sontacchi [2014] collected ECG
signals and speech data from pilots during an advanced flight simulation. Koldijk et al.
[2014] designed a knowledge work scenario involving stressful conditions of interruptions
and time pressure. They collected ECG and EDA signals in addition to behavioral data,
such as computer logs and body pose. Campanella et al. [2024] simulated a LEGO assem-
bly scenario and induced cognitive stress by incorporating some arithmetic tasks into the
session.

Table 5.1 summarizes the datasets discussed above. Some datasets were collected in
real-world scenarios without any explicit stressors. For example, Smets et al. [2018] col-
lected ECG, EDA, and body temperature from office workers engaged in their daily rou-
tines. The dataset captured stress that naturally occurred during the day. Similarly, Jaiswal
and Bara [2020] leveraged the final exam period of university students as the stressor. They
collected physiological signals, including BVP, EDA, body temperature, and respiration.
Since these studies did not utilize a controlled stressor, the type of stress experienced by
the participants cannot be inferred.

5.2.2 Towards Generalizability of Stress Models

The datasets mentioned above led to the development of numerous uni-modal and multi-
modal stress detection models [Can et al., 2019; Haque et al., 2024]. Some of these studies
focused on comparing multiple models to determine the best model for stress detection.
For example, Bobade and Vani [2020] compared the performances of stress recognition
models such as Random Forest Classifier (RFC), Support Vector Machine (SVM), and Arti-
ficial Neural Network (ANN), trained on the hand-crafted multi-modal features from the
WESAD [Schmidt et al., 2018] dataset. They showed that the simple ANN outperformed
the other machine learning models. Similarly, Albaladejo-González et al. [2023] evaluated
multiple HRV-based shallow models, including LDA (Linear Discriminant Analysis), RFC,
SVM, and simple ANN. They trained their models on WESAD, SWELL-KW [Koldijk et al.,
2014], and the combination of these datasets. They found that the ANN model performed
consistently better than other models across all three datasets. In contrast, Gupta et al.
[2023] found that the best model varied depending on the physiological signals. They in-
vestigated both uni-modal andmulti-modal shallowmodels trained on theWESADdataset.
Although RFC was the best multi-modal stress classifier, LDA emerged as the best uni-
modal model for ECG and BVP signals.

With the growing popularity of deep learning models, yet another question emerged:
Do deep learning models trained on raw signals consistently outperform shallow models
trained on hand-crafted features? To address this question, Hwang et al. [2018] and Ah-
mad et al. [2023] adopted a similar approach and designed ECG-based deep learning mod-
els to recognize stress. They demonstrated that these models yielded a better performance
than HRV-based models on two different datasets. Similarly, Zhang et al. [2021] compared
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Paper Stressor Physiological Signals

Nakashima et al. [2016] (Cognitive)
Stroop test, Reading BVP, EDA

(WESAD)
Schmidt et al. [2018] TSST (Social) Resp, Temp

ECG, BVP, EDA, EMG,

(CLAS)
Markova et al. [2019]

(Cognitive)
Stroop test ECG, BVP, EDA

(PASS)
Parent et al. [2020]

(Cognitive)
Video game ECG, EDA, Resp, Temp

(MDPSD)
Chen et al. [2021]

(Cognitive)
Stroop test BVP, EDA

(Stress-Predict Dataset)
Iqbal et al. [2022]

(Cognitive, Social)
Stroop test, TSST, BVP

(UBFC-Phys)
Sabour et al. [2021] TSST (Social) BVP, EDA

(MMSD)
Benchekroun et al. [2022]

(Cognitive)
Stroop test, Math ECG, BVP, EDA, EMG

(AKTIVES)
Coşkun et al. [2023]

(Cognitive)
Video game BVP, EDA, Temp

ES
TA

BL
IS
H
ED

TE
ST

S

Xefteris et al. [2023] (Cognitive)
Stroop test, Math ECG, Resp

Luig and Sontacchi [2014] (Cognitive)
Flight simulation ECG

(SWELL-KW)
Koldijk et al. [2014]

(Cognitive, Time)
Knowledge work ECG, EDA

Campanella et al. [2024] (Cognitive)
Assembly, Math BVP, EDA, Temp

SI
M
UL

AT
ED

SC
EN

A
RI
O
S

(ForDigitStress)
Heimerl et al. [2023]*

(Social)
Job interview BVP, EDA

Table 5.1: An overview of the existing controlled stress datasets that collected ECG or BVP
signals. The entry marked with * is presented in this chapter.
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the performances of an ECG-based CNN-LSTM model with HRV-based machine learning
models (SVM, RFC, etc.) using their own dataset. They noted that the deep learning model
trained on 10-second segments of ECG data significantly outperformed the shallow mod-
els trained on HRV extracted from 60-second segments. Furthermore, Zhao et al. [2023]
demonstrated that the superior performances of deep learning models extend to EDA and
the combination of EDA and ECG signals.

All the models discussed until now, except Albaladejo-González et al. [2023], were
trained and evaluated on the same datasets. Even the studies that utilized multiple datasets
performed only within-dataset validations. There is a lack of evaluations to assess the gen-
eralization capabilities of stress detection models [Vos et al., 2023b].

Mishra et al. [2020] conducted an extensive cross-dataset study using four cognitive
stress datasets - two had ECG signals, and the other two had BVP signals. In addition to
arithmetic tasks, the ECG datasets had a startle response test and cold pressor task as stres-
sors. Notably, the BVP datasets employed only arithmetic tasks as the stressor. The authors
trained SVMmodels usingHRV features extracted from themental stress segments of these
datasets and conducted cross-dataset evaluations. While the ECG-based HRV models per-
formed well in detecting stress in each other’s arithmetic tasks, they had a performance
drop of 15 - 30% in predicting stress in the BVP datasets. The authors attributed this drop
in performance, despite having the same stressor, to the difference in sensors. They also
noticed an approximately 20 - 40% drop in the performance of ECG-based HRV models
when detecting overall stress (including startle and cold pressor segments), even within
the same datasets. Their findings suggest that the models trained on one type of stressor
may not be efficient in detecting other stress responses.

As mentioned above, Albaladejo-González et al. [2023] trained HRV-based models on
theWESAD and SWELL-KWdatasets. While ANN outperformed other methods in within-
dataset evaluations, they performed poorly in cross-dataset evaluations (WESAD models
tested on SWELL-KW and vice versa). Moreover, the combining datasets did not improve
the model’s performance on individual datasets. However, it’s important to note that they
utilized a custom training and test data split, which may influence the results.

Benchekroun et al. [2023] trained two HRV-based models (RFC, logistic regression) on
the MMSD [Benchekroun et al., 2022] and UWS [Velmovitsky et al., 2021] datasets. They
tested the MMSD models using the UWS data and found that the F1-scores were 12 – 14%
lower than the UWS models (from within-dataset evaluations). They further noted that
the F1-score for stress class was very low (less than 50 %), meaning the models were not
very efficient in detecting stressful instances.

Vos et al. [2023a] trained shallow models (RFC, SVM, XGBoost) using heart rate
and EDA features from the SWELL-KW dataset and evaluated them on WESAD and
NEURO [Birjandtalab et al., 2016] datasets. All three models showed poor cross-dataset
performances. They also implemented an ensemble model (XGBoost +ANN) and repeated
the cross-dataset evaluation. Although this ensemble model yielded a slight improvement,
the performance was still poor (F1-score < 50%). Furthermore, they trained the ensemble
model using a combined dataset (SWELL-KW, NEURO, UBFC-Phys [Sabour et al., 2021])
and evaluated it on WESAD. While the accuracy increased slightly, the F1-score dropped
further. Their experiments highlight the challenges of developing a generic stress model.
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The above works primarily focused on assessing the generalizability of HRV-based
models. However, Liapis et al. [2021] demonstrated that EDA-based shallow models also
struggle with generalizability. They trained their models on the WESAD dataset and then
evaluated them on their own dataset. Notably, their dataset contained subtle stress in-
stances, unlike WESAD, implying that the stress intensity might further impact generaliz-
ability.

Baird et al. [2021] compared models trained on speech features from three social stress
datasets. These datasets induced stress following the TSST technique. They predicted cor-
tisol levels as a proxy for stress levels. In cross-dataset evaluations, the trends of predicted
cortisol levels were aligned for the models, indicating compatibility between datasets. Due
to the dataset compatibility, they suggested that trainingmodels using data from both these
datasets could result in better-performing models.

5.2.3 Research Gap

The following three research gaps pertaining to generalizability of stress models have been
identified through the literature review, and will be addressed in the subsequent sections.

• Lack of generalizability assessments for ECG deep learning models: As discussed
in Section 5.2.2, ECG-based deep learning models often perform significantly better
than HRV-based models. However, as evident from Table 5.2, studies that assess
generalizability predominantly focus on HRV models. Hence, a gap exists in our
knowledge of the generalization capabilities of deep learning models trained on ECG
signals.

• Lack of investigations into factors influencing generalizability: As Table 5.2 high-
lights, most studies assess the generalizability of a model to determine if it is appli-
cable in other stress scenarios. Some studies take a step further to evaluate whether
combining datasets to train models improves stress detection performances. Al-
though most studies observe low generalizability of stress models (see Section 5.2.2),
few studies provide insights into plausible factors influencing the models’ perfor-
mance. For example, Mishra et al. [2020] highlighted the poor performance of men-
tal stress models in detecting physical stress. Similarly, Liapis et al. [2021] noted the
difference in stress intensities of the evaluated datasets. However, these studies did
not further investigate these factors. Hence, a crucial question remains relatively
unexplored - What factors or characteristics of the stress datasets need to match for
cross-dataset applicability of models?

• Need for a non-TSST social stress dataset: Mishra et al. [2020] and Baird et al. [2021]
are the only reviewed studies that reported good cross-dataset performances. While
Mishra et al. observed this performance in arithmetic tasks, Baird et al. only evalu-
ated social stress induced by the TSST technique. Since the stressor tasks involved in
their chosen datasets are virtually the same, there is insufficient evidence to infer if
matching the type of stressor would yield good cross-dataset performances. In other
words - Would the models still yield good cross-dataset performance if the datasets
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Paper Input Stressors Aim

Mishra et al. [2020] HRV features Cognitive Assess generalizability

Liapis et al. [2021] EDA features Social,
UX stress Assess generalizability

Baird et al. [2021] Speech features Social Assess compatibility
for combining datasets

Albaladejo-González
et al. [2023]

HRV features
Social,

Cognitive,
Time

Assess generalizability,
Combine datasets

Benchekroun et al.
[2023]

HRV features Cognitive,
Daily routine Assess generalizability

Vos et al. [2023a] HR features,
EDA features

Social,
Cognitive,

Time

Assess generalizability,
Combine datasets

Prajod and André
[2022]*

Raw ECG,
HRV features

Social,
Cognitive,

Time

Assess generalizability,
Combine datasets

Prajod et al. [2024b]* HRV features Social Assess generalizability,
Combine datasets,
Identify factors influ-
encing generalizability

Table 5.2: An overview of the existing works that perform cross-dataset evaluations of their
stress models. The entries marked with * are expanded in the subsequent sections of this
chapter.
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had the same stressor types but induced by different methods? For answering this
question using social stressors, the cross-dataset evaluations should involve a dataset
that elicits social stress through methods other than TSST. As seen from Table 5.1,
existing social stress datasets utilize TSST, which raises the need for a non-TSST
social stress dataset.

5.3 Generalizability of ECG and HRV Models

Deep learning approaches are becoming increasingly popular in stress detection, with
models trained on the ECG signals often performing better compared to shallow learn-
ing methods utilizing hand-crafted HRV features [Hwang et al., 2018; Zhang et al., 2021].
However, a critical question remains: can the deep-learning models perform equally well
on other stress datasets?

This question is particularly relevant in domains like Industry 5.0, where publicly avail-
able stress datasets are scarce. If ECG-based deep learning models do not generalize well,
their applicability in such scenarios might be limited.

This chapter addresses this question by investigating the generalizability of stress de-
tection models. Five models are evaluated: two ECG-based deep learning models and three
HRV-based shallow models.

5.3.1 Assessment Approach

The investigation follows a three-step approach:

1. Within-dataset Assessment: The first step assesses the stress detection performance
of each model on its corresponding training dataset using leave-one-subject-out
(LOSO) evaluation. This evaluation used two stress datasets to determine which
models performed consistently well on data from unseen participants of the same
dataset.

2. Cross-dataset Assessment: In the second step, the stress models trained on one
dataset were evaluated using the other dataset and vice versa. This evaluation as-
sesses to what extent these models can detect stress in new participants in different
settings.

3. Combining Datasets: Finally, new models were trained on a combined dataset con-
sisting of data from the two stress datasets, again using the LOSO technique. This
step investigates potential improvements in models’ performances due to the in-
crease in both sample size and variations in the training data.

5.3.2 Datasets

This study leverages two publicly available stress datasets: WESAD [Schmidt et al., 2018]
and SWELL-KW [Koldijk et al., 2014]. A brief comparison of the two datasets is presented
in Table 5.3.
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WESAD

TheWESAD dataset is a multimodal stress and affect dataset containing various physiolog-
ical signals, including ECG, EDA, and BVP. The data from 15 participants were collected
using a chest-worn RespiBan and a wrist-worn Empatica E4 device. This investigation
utilizes the ECG data recorded by the chest-worn device at 700 Hz.

The participants were subject to three conditions: neutral, amusement, and stress. In
the stress condition, the participants experienced social stress induced by the TSST tech-
nique. The participants engaged in public speaking and mental arithmetic tasks while be-
ing evaluated by a three-member panel. To induce amusement, the participants watched
selected funny video clips. The experimental sessions began with the neutral condition,
followed by the stress and amusement conditions in alternating order. For each partici-
pant, the neutral condition lasted for approximately 20 minutes, the stress condition for 10
minutes, and the amusement condition for around 6.5 minutes.

This study focuses on stress detection, i.e., distinguishing between stress and no-stress
samples. Following the labeling scheme proposed by the dataset creators, data from both
neutral and amusement conditions were considered as no-stress samples.

SWELL-KW

The SWELL-KW dataset is also a multimodal stress dataset that contains two physiological
signals, ECG and EDA. This dataset consists of data from 25 participants who engaged in
typical knowledge tasks likewriting reports and presentations. The ECGdatawas collected
using the TMSI Mobi device at a sampling rate of 2048 Hz.

The participants underwent three experimental conditions: neutral, email interrup-
tions, and time pressure. During the email interruption session, participants received eight
emails, many irrelevant and some requiring responses. In the time pressure condition, par-
ticipants had to complete the tasks within two-thirds of the allotted neutral session time.
Like the WESAD dataset, the first session was always neutral, followed by the other two
conditions in alternating order. The neutral and email interruption sessions lasted approx-
imately 45 minutes, while the time pressure session was around 30 minutes long.

Notably, the participants did not report experiencing high stress in any of the three
conditions. However, they indicated a higher temporal demand during the time pressure
session. While training stress detection models, the dataset creators considered the data
from email interruptions and time pressure sessions as stress samples and the neutral ses-
sion as no-stress samples [Koldijk et al., 2016]. Therefore, this study follows the same la-
beling scheme for consistency. However, three participants were excluded due to missing
data.

5.3.3 Data Processing

Down-sampling and Noise Removal

The WESAD and SWELL-KW datasets have different ECG signal sampling rates. HRV-
based models can circumvent this difference through feature extraction. However, deep
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WESAD SWELL-KW
Stressor Social stress Interruptions, Time pressure

ECG sensor RespiBan, 700 Hz TMSI Mobi, 2048 Hz

Avg. stress level 18.5/24 (STAI questionnaire) 3.5/10 (Likert scale)

Participants 15 22

Data duration
(per participant)

stress: 10 mins,
no-stress: 26.5 mins

stress: 75 mins,
no-stress: 45 mins

Table 5.3: A comparison of some key characteristics of the WESAD and SWELL-KW stress
datasets.

learning models utilize ECG signals and require fixed-length inputs. This restriction im-
plies that both datasets should have ECG samples of the same length for cross-dataset
validation. Hence, both datasets are down-sampled to 256 Hz for compatibility.

The ECG signals are affected by various sources of noise, including:

• Baseline wander: This is a low-frequency noise (0.5 - 0.6 Hz) caused by participants’
body movements, respiration, etc., resulting in a drift in the ECG signal. A high-pass
filter is typically applied to remove this noise [Kher, 2019; Limaye and Deshmukh,
2016; Luo and Johnston, 2010; Can et al., 2023].

• Powerline interference: This noise stems from the electromagnetic interference
from the power supply of the sensor device. It is commonly removed by a band-
stop or notch filter of 50 or 60 Hz, depending on the device [Kher, 2019; Limaye and
Deshmukh, 2016; Luo and Johnston, 2010; Can et al., 2023].

• EMGnoise: This is a high-frequency noise caused bymuscle contractions and partic-
ipant’s movements. This noise is prominent in scenarios involving a lot of movement
(e.g., exercise) and can be reduced using a moving average filter [Kher, 2019].

As described in Section 2.3.2 (refer to Figure 2.14), an ECG beat comprises P-wave,
QRS complex, and T-wave. Stress detection primarily focuses on the QRS complex, which
represents a heartbeat. Elgendi et al. [2010] suggest a frequency band of 8 - 20 Hz for
optimal QRS signal-to-noise ratio. Therefore, a second-order Butterworth band-pass filter
with this frequency range is applied. This filter removes most of the above-mentioned
noises as their frequencies fall outside the chosen band.

Input Length

Previous studies [Hwang et al., 2018; Cho et al., 2019; Sarkar and Etemad, 2020; Zhang et al.,
2021] have demonstrated that deep learning models trained on ultra short-term ECG sig-
nals perform well on stress detection tasks. Moreover, the two deep learning architectures
considered in this study (see Section 5.3.5) were designed and validated using 10-second

121



CHAPTER 5. STRESS DETECTION

ECG segments. Therefore, the deep learning models were trained using non-overlapping
10-second segments of filtered ECG data.

On the contrary, HRV feature extraction typically relies on longer ECG segments for
reliable HRV feature calculation [Fang et al., 2022; Shaffer and Ginsberg, 2017; Schmidt
et al., 2018; Pecchia et al., 2018; Pham et al., 2021]. This study utilizes 60-second segments
with 50 seconds of overlap between consecutive segments. This overlap helps balance the
number of training samples available for both ECG and HRV-based models.

Normalization

The ECG sensors used in the two datasets differ, potentially resulting in values recorded
on different scales. In addition, the range of physiological recordings may vary from par-
ticipant to participant [Braithwaite et al., 2013; Nkurikiyeyezu et al., 2019a; Sarkar and
Etemad, 2020]. To mitigate the effect of these differences, participant-specific Min-Max
normalization was applied to all inputs. It is important to note that normalization will not
entirely remove the impact of different ECG sensors. For deep learning models, the filtered
ECG data was normalized before using them as inputs to the models. On the other hand,
participant-wise Min-Max normalization was applied to each HRV feature.

For real-time stress detection, the entire dataset wouldn’t be available for normaliza-
tion. Similar to Luong et al. [2020], this study used 5 minutes of neutral data to compute
normalization parameters (minimum and maximum values) for each participant.

5.3.4 HRV Features

HRV features were extracted from the filtered ECG signals to train shallow models (see
Section 5.3.6). First, the heartbeats were detected to derive the HRV signal, and then the
corresponding features were computed.

The first step involved identifying peaks in the ECG signal, specifically the maximum
amplitude within the QRS complex. This study utilized the algorithm proposed by [Elgendi
et al., 2010] for R-peak detection. This algorithm is based on two key assumptions for
healthy adults:

1. A QRS complex contains one and only one heartbeat

2. The duration of a typical QRS complex is in the range of 80 - 120 milliseconds

Once the R-peaks were identified, the time intervals between successive R-peaks were
calculated to form the HRV signals. A total of 22 well-known features [Sriramprakash
et al., 2017; Shaffer and Ginsberg, 2017; Schmidt et al., 2018; Pecchia et al., 2018; Gian-
nakakis et al., 2019; Pham et al., 2021] were computed from the extracted HRV signals.
These features belonged to the time domain (13 features), frequency domain (5 features),
and poincaré plot characteristics (4 features). A brief description of each HRV feature
is provided in Table 5.4. These features were calculated using the NeuroKit2 Python li-
brary [Makowski et al., 2021].
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Feature Description
HR Number of R peaks in 1 minute
MeanNN Mean of R-R intervals
MedianNN Median of R-R intervals
MadNN Median Absolute Deviation of R-R intervals
StdNN Standard deviation of R-R intervals
CVNN Ratio of StdNN to MeanNN
IQRNN Inter-Quartile Range of R-R intervals
RMSSD Root Mean Square of successive differences of R-R intervals
StdSD Standard deviation of successive differences of R-R intervals
pNN50 % of successive differences of R-R intervals > 50 𝑚𝑠

pNN20 % of successive differences of R-R intervals > 20 𝑚𝑠

TINN Triangular Interpolation of R-R intervals histogram

TI
M
E

HTI HRV Triangular Index
LF Power of low frequency band (0.04 𝐻𝑧 − 0.15 𝐻𝑧)
HF Power of high frequency band (0.15 𝐻𝑧 − 0.4 𝐻𝑧)
LF/HF Ratio of LF to HF power
LFn Normalized low frequency power, LF/total powerFR

EQ
UE

N
CY

HFn Normalized high frequency power, HF/total power
SD1 Spread of HRV on Poincaré plot perpendicular to identity line
SD2 Spread of HRV on Poincaré plot along identity line
SD1/SD2 Ratio of SD1 to SD2

PO
IN
CA

RÉ

S Area of ellipse formed in the HRV Poincaré plot

Table 5.4: HRV features extracted from the ECG data and their descriptions.
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5.3.5 ECG-based Models

This section details the two ECG-based stress detection models and their training param-
eters.

Deep ECGNet

This deep learning model was proposed by Hwang et al. [2018] for stress detection. It con-
sisted of CNN (Convolutional Neural Network) layers for extracting features and LSTM
(Long Short-Term Memory) layers for learning temporal patterns from the extracted fea-
tures.

Figure 5.2: A visualization of the architecture of the Deep ECGNet Model

Figure 5.2 visualizes the architecture of the implemented DeepECGNet model. The
model began with an input layer of size 2560 that accepts 10 seconds of ECG data sampled
at 256 Hz. The input layer was followed by a convolutional block that consisted of a 1D
convolutional layer, pooling layer, dropout layer (rate= 0.2), and batch normalization layer.
The 1D convolution layer used the ReLU activation function and had 50 filters with a kernel
size corresponding to 0.6 seconds of ECG data (kernel size = 154 for 256 Hz input). The
pooling layer had a size of 205, which was equivalent to 0.8 seconds of data.

The output from the convolutional block was fed to a time series block with two LSTM
layers: the first layer has 32 units, and the second layer has 16 units. A dropout layer (rate
= 0.2) and a batch normalization layer were added between the LSTM layers. Finally, the
model was connected to a prediction layer (Softmax activation).

The training process utilized the Adadelta optimizer with a learning rate of 1.0 and a
weighted cross-entropy loss function to address class imbalance. The class-wise weights
were determined based on the class frequencies of the training samples. The training lasted
for 200 epochs with a batch size of 128 samples.
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Figure 5.3: A visualization of the architecture of the ECG Emotion Model

ECG Emotion Model

This is a deep learning model proposed by Sarkar and Etemad [2020] for ECG-based emo-
tion recognition on various datasets, including WESAD and SWELL-KW. Notably, unlike
Deep ECGNet, this model relies solely on convolutional layers for feature extraction and
classification. It does not incorporate recurrent layers (e.g., LSTM layers).

As depicted in Figure 5.3, the model consisted of three convolutional blocks, each con-
taining two 1D convolutional layers and a pooling layer. The number of filters progres-
sively increased from 32 to 64 to 128 across the blocks, while the corresponding kernel sizes
decreased from 32 to 16 to 8. All convolution layers used the ReLU activation function. The
pooling layers had a size of 8 with strides of 2. After the convolutional blocks, two dense
layers were inserted, with 128 nodes in each. A dropout layer (rate = 0.6) followed each
dense layer. The final layer of the model was the two-class prediction layer with Softmax
activation.

Similar to Deep ECGNet, the model was trained using the Adadelta optimizer with a
learning rate of 1.0, a weighted loss function, and training for 200 epochs with a batch size
of 128.
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Figure 5.4: A visualization of the architecture of the Simple ANN Model

5.3.6 HRV-based Models

The following three shallow models were trained using the extracted HRV features (see
Table 5.4).

RFC

This is an ensemble learning method that combines predictions from multiple decision
trees for improved performance and reduced overfitting. Each tree is trained on a subset of
the available training set. The final prediction is determined by aggregating the predictions
from all the trees (e.g., majority vote). This strategy often results in a better performance,
even if the individual decision trees are weak predictors.

Following the hyperparameters used in Schmidt et al. [2018], 100 decision trees (also
called estimators) were trained, with a minimum of 20 samples for splitting a node
within each tree. To account for the imbalanced sample distribution of the datasets, the
“class_weight" hyperparameter was set based on the inverse sample frequencies.

SVM

This is a commonly used supervised learningmethod for binary classification tasks. During
the training process of this model, the objective is to find a hyperplane within the feature
space that separates the data points belonging to different classes.

Similar to previous research [Koldijk et al., 2016; Sriramprakash et al., 2017; Garg et al.,
2021] on these datasets, an SVM with a Radial Basis Function kernel was employed. Like
RFC, the “class_weight" hyperparameter was set inversely proportional to the sample fre-
quencies.

Simple ANN

This is a simple feed-forward neural network (also called multi-layer perceptron), which
has been growing in popularity for stress detection [Bobade and Vani, 2020; Zawad et al.,
2023; Albaladejo-González et al., 2023].

As illustrated in Figure 5.4, the implementation followed an architecture consisting of
an input layer, two hidden layers, and a prediction layer. The input layer received data
represented as the normalized HRV features. A dropout layer (rate = 0.2) was included
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after the input layer to mitigate overfitting of the model. The two hidden layers (ReLU
activation) followed the dropout layer, with 12 nodes for the first hidden layer and 6 nodes
for the second hidden layer. This final layer outputs the classification result using a Sigmoid
activation function.

Consistent with the other neural network models, this model was trained using the
Adadelta optimizer (learning rate = 1.0) and weighted loss. It was also trained in batches
of 128 samples for 200 epochs.

5.3.7 Assessment Results

All the models were trained and evaluated using the LOSO validation technique. In all
three assessments, the performances of the models were measured in terms of accuracy
and F1 scores.

Within-dataset Assessment

In this assessment, the models were trained and evaluated on the same datasets. Table 5.5
presents the LOSO evaluation results for the WESAD dataset, and Table 5.6 presents the
results for the SWELL-KW dataset. These tables also include the performance of relevant
existing models from the literature for comparison purposes. Although both datasets con-
tainmultimodal data, the comparison is limited to themodels trained solely on ECG signals
or HRV (derived from ECG) using LOSO validation. The binary classification models were
identified through a literature search in the Scopus2 database.

The deep learning models (Deep ECGNet and ECG Emotion Model) performed better
than shallow machine learning models (RFC, SVM, Simple ANN) within their respective
datasets. The margin of improvement is relatively moderate (within 5%) on the WESAD
dataset. However, on the SWELL-KW dataset, the performance gap widens. Considering
the F1-score and Accuracy, the Deep ECGNet emerges as the best model in both dataset
categories.

Cross-dataset Assessment

Cross-dataset validations were employed to assess the generalizability of the models be-
yond their training datasets. In this assessment, models trained on the WESAD dataset
were evaluated using the SWELL-KW data and vice versa. The cross-database perfor-
mances of WESAD and SWELL-KW models are presented in the top and bottom parts of
Table 5.7.

The results from the cross-dataset validation present a contrasting trend compared to
the within-dataset evaluations. Deep learning models, which performed well in within-
dataset evaluations, exhibit a significant drop in performance when tested on unseen data
from the other dataset. In contrast, models trained on HRV features, particularly SVM for

2https://www.scopus.com/, QueryWESAD: ( TITLE-ABS-KEY ( ( detect* OR recogni* OR predict* OR
classif* OR learn* ) AND wesad AND ( ecg OR electrocardiogram ) ) AND TITLE ( stress ) ), Query SWELL:
( TITLE-ABS-KEY ( ( detect* OR recogni* OR predict* OR classif* OR learn* ) AND swell AND ( ecg OR
electrocardiogram ) ) AND TITLE ( stress ) )
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Model F1-score Accuracy
LDA [Schmidt et al., 2018] 0.813 0.854
LDA [Karan and Kaygun, 2021] — 0.887
2D CNN (Spectrograms) [Liakopoulos et al., 2021] 0.794 0.824
Transformer, No Tuning [Behinaein et al., 2021] 0.697 0.804
Logistic Regression [Iqbal et al., 2021] — 0.764
LDA [Gupta et al., 2023] 0.868 0.875
1D-CNN + 2D-ResNet [Ahmad et al., 2023] 0.875 0.877
RFC 0.813 0.863
SVM 0.832 0.871
Simple ANN 0.859 0.895
ECG Emotion Model 0.858 0.897
Deep ECGNet 0.857 0.908

Table 5.5: Results of LOSO evaluation of ECG or ECG-derived HRV models trained on the
WESAD dataset. The first part tabulates the results of models from the literature and the
second part shows the results of the five models considered in this chapter.

Model F1-score Accuracy
SVM [Koldijk et al., 2016] - 0.589
Transformer, No Tuning [Behinaein et al., 2021] 0.588 0.581
RFC 0.644 0.670
SVM 0.609 0.639
Simple ANN 0.668 0.689
ECG Emotion Model 0.627 0.709
Deep ECGNet 0.688 0.755

Table 5.6: Results of LOSO evaluation of ECG or ECG-derived HRV models trained on the
SWELL-KW dataset. The top part tabulates the results of models from the literature and the
bottom part shows the results of the five models considered in this chapter.
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Model F1-score Accuracy
Testing on SWELL-KW

WESAD RFC 0.467 0.483
WESAD SVM 0.535 0.538

WESAD Simple ANN 0.478 0.49
WESAD ECG Emotion Model 0.395 0.411
WESAD Deep ECGNet 0.391 0.418

Testing on WESAD
SWELL-KW RFC 0.581 0.637
SWELL-KW SVM 0.509 0.647

SWELL-KW Simple ANN 0.49 0.621
SWELL-KW ECG Emotion Model 0.342 0.385
SWELL-KW Deep ECGNet 0.392 0.415

Table 5.7: Results of cross-dataset evaluations of models from this chapter. The top part shows
the performances of theWESADmodels on the SWELL-KW dataset. The bottom part tabulates
the results for the SWELL-KW models using the WESAD data.

WESAD and RFC for SWELL-KW, achieve the best overall performance (considering both
F1 score and accuracy) during cross-dataset evaluations.

Combined Datasets

Finally, this study investigated whether combining the stress datasets (WESAD and
SWELL-KW) could improve stress detection performances. Merging these datasets re-
sulted in ECG data from 37 participants. The five models were trained and evaluated using
LOSO validation on this combined dataset. The results are presented in Table 5.8.

Interestingly, combining the datasets did not lead to improved performance compared
to training on individual datasets (see Tables 5.5 and 5.6). In fact, for the WESAD models,
combining datasets resulted in a considerable decrease in both F1 scores and accuracies.
The SWELL-KWmodels also have decreased performances, although it wasn’t as substan-
tial as the drop observed for WESAD models.

5.3.8 Insights

In within-dataset LOSO evaluations, the ECGmodels performed better than the HRVmod-
els on both datasets. Interestingly, the study by Zhang et al. [2021] reported similar findings
on a self-collected stress dataset, where an ECG-based CNN-LSTM model outperformed
HRV-based XGBoost model. Among the HRV-based models, the simple ANN achieved the
best results within each dataset. This observation aligns with the findings of Bobade and
Vani [2020] and Albaladejo-González et al. [2023], where a simple feed-forward network
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Model F1-score Accuracy
Testing on WESAD

RFC 0.758 0.793
SVM 0.732 0.796
Simple ANN 0.758 0.813

ECG Emotion Model 0.609 0.677
Deep ECGNet 0.692 0.711

Testing on SWELL-KW
RFC 0.647 0.671
SVM 0.605 0.633
Simple ANN 0.657 0.677
ECG Emotion Model 0.593 0.683
Deep ECGNet 0.695 0.739

Testing on Combined
RFC 0.692 0.720
SVM 0.657 0.699
Simple ANN 0.698 0.732

ECG Emotion Model 0.599 0.681
Deep ECGNet 0.694 0.728

Table 5.8: Results of LOSO evaluations of models trained on the combined dataset. The top
part shows the performances of the models on the WESAD dataset, middle part displays the
results for SWELL-KW dataset, and the bottom part tabulates the overall performances.
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achieved better performance than other shallow machine learning methods (SVM, RFC)
for multimodal stress detection.

The key takeaway from the cross-dataset validation is the better performance of HRV-
based models compared to ECG-based models when tested on unseen data from a different
dataset. This observation suggests that deep learning models might have learned dataset-
specific features rather than generic stress patterns. The following three differences in the
datasets (see Table 5.3) could potentially contribute to the drop in cross-dataset perfor-
mances:

• Stressor Differences: The WESAD and SWELL-KW datasets utilize different stres-
sors, leading to potential differences in the participants’ stress responses.

• Stress Levels: The self-reported questionnaires indicate that the participants were
quite stressed in theWESAD dataset, whereas the participants from the SWELL-KW
dataset were not very stressed.

• Sensor Differences: The two datasets differ in the ECG sensors they employed
(RespiBan vs. TMSI Mobi), potentially resulting in differences in signal character-
istics. However, the HRV-based models use extracted features, which makes them
less susceptible to this difference. This aspect could be the plausible reason for better
cross-dataset performance of HRV models.

These factors could impact the generalizability of ECG-based deep learning models,
which often require substantial training data that mimic the target scenario. Hence, fo-
cused studies with large datasets are needed to improve the robustness of these models.
Based on these observations, this study recommends leveraging HRV-based models when
the target application involves data that might differ from the training data. Deep learn-
ing models are suitable when the target scenario closely resembles the training dataset
settings.

The experiment combining WESAD and SWELL-KW data revealed that simply merg-
ing datasets doesn’t necessarily translate to improved stress detection performance. In fact,
for the WESADmodels, combining datasets resulted in a notable decrease in performance.
This observation highlights the importance of data compatibility when considering such
strategies.

5.4 Multimodal Social Stress - Dataset and Detection

Previous analyses revealed limitations in the generalizability of stress detection models,
including those relying on HRV features. While HRV models demonstrated some robust-
ness, factors contributing to better generalizability need further investigation. For this
purpose, the ForDigitStress dataset was collected. Notably, this dataset employs a social
stressor (similar to WESAD) to induce stress in participants. Moreover, the participants
experienced high levels of stress, as evidenced by self-reported questionnaires and cortisol
measurements (a biological marker of stress).
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Figure 5.5: An illustration of the schedule for collecting stress questionnaires (and saliva sam-
ples).

5.4.1 Scenario and Protocol

The dataset collection setup employed a remote job interview scenario to induce stress
and emotional arousal in participants. The setting replicated an online meeting by plac-
ing the participant and the interviewer in separate rooms, and they interacted via laptops.
The participants played the role of job seekers interviewing for their dream positions. The
participants were asked to submit their resumes in advance so that the interviewer could
customize the questions depending on the participant. The interviewer questioned the
participants on topics such as their strengths/weaknesses, salary expectations, and hypo-
thetical job-related scenarios. Previous studies [Campisi et al., 2012; Gebhard et al., 2014;
Becker et al., 2023] have shown that such simulated job interviews can elicit social stress.

The experiment began with a 15-minute preparation phase. During this time, partici-
pants were briefed about the data collection process. Then, the participants wore various
sensors to measure their physiological responses throughout the experiment. While par-
ticipants were preparing for the interview, the interviewer also used this time to finalize
their interview questions. After the preparations, the mock interview began, which lasted
for approximately 25 minutes. After the mock interview, a semi-structured qualitative in-
terview took place. This follow-up interview aimed to discuss the participant’s emotional
experience during the mock interview. The follow-up interview lasted for 10 - 20 min-
utes, depending on the participant. The participants were encouraged to discuss specific
moments that triggered feelings of stress.

Throughout the experiment, six saliva samples were collected from each participant.
Two samples were collected before the mock interview began, and the remaining four
samples were collected at intervals after the mock interview to capture the cortisol rise,
peak, and eventual return to baseline. Figure 5.5 presents an illustration of the saliva sample
collection schedule. At each saliva collection point, the participants also reported their
perceived stress levels using a 10-point Likert scale ranging from “not stressed at all" to
“totally stressed".
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5.4.2 Data Acquisition

Sensors

The study employed a multi-sensor setup to capture the participants’ responses to form
the dataset. The following sensors were employed:

• Microsoft Kinect 2: This sensor recorded Full HD videos of the participant’s upper
body. The videos were recorded at 25 fps.

• Trust USB Headset: The participant wore a standard business USB headset to record
their speech during the interview.

• IOM-biofeedback Sensor: This device collected BVP and EDA data of the participants
at a sampling rate of 27 Hz.

Participants

The dataset included data from 40 healthy participants, with a gender distribution of 57.5%
female, 40%male, and 2.5% diverse. Their age ranged from 18 to 31 years, with an average of
22.7 years (standard deviation of 3.2 years). The experiment yielded a substantial amount of
multi-modal data. In total, 56 hours and 24minutes of recordings were collected. The study
was approved by Ethics Committee of Friedrich-Alexander-Universität Erlangen-Nürnberg
(protocol no.: 21-408-S) and the data protection officer of the University of Augsburg.

5.4.3 Annotations

Ground Truth

Cortisol measurements and perceived stress levels were analyzed to assess the effectiveness
of the scenario in inducing stress. Cortisol levels showed a significant change across the
entire session. As visualized in Figure 5.6 (top), cortisol levels peaked five minutes after the
interview and then gradually returned to baseline levels 35minutes after the stressor (mock
interview) ended. Perceived stress levels followed a similar pattern. Participants reported
the highest stress levels immediately after the interview, with a subsequent decrease to
baseline levels in the post-interview phase (as detailed in Figure 5.6, bottom).

Annotations

The cortisol and self-reported stress levels support the experiment’s capability to induce
stress. While the interview and post-interview phases can roughly be labeled as respective
stress and no-stress samples, the participants were plausibly not stressed throughout the
interview. In other words, the stress responses would be more pronounced during certain
instances (e.g., questions) that were the stress triggers. Hence, amanual annotation process
was employed for more nuanced stress labels.

The data was annotated by two experienced psychologists. The annotation process
involved three steps. First, two annotators independently reviewed the videos using the
NOVA tool [Baur et al., 2013], focusing on observable behaviors (video data) that might
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Figure 5.6: Plots showing the average cortisol level (top) and self-reported stress (bottom)
throughout the experiment.

indicate stress or specific emotions mentioned by the participants (e.g., shame, anxiety,
pride, etc.). Next, information from the follow-up interview, i.e., perceived stressful sit-
uations and emotions, was integrated with the behavioral observations. Based on this
combined information, the annotators assigned discrete labels for stress and emotions to
specific video frames. Finally, any disagreements in labels were discussed among the an-
notators and resolved to ensure consistency. Notably, there were no instances where the
annotators couldn’t assign time windows based on the participant reports, suggesting a
strong correlation between subjective experiences and observable behaviors.

5.4.4 Data Processing and Feature Extraction

The dataset contains multimodal data that can be leveraged to detect stress. These data
were first filtered to remove noise, and then relevant features were extracted. Features were
extracted from BVP, EDA, video (face and body keypoints), and audio (speech) signals.

BVP

Features derived from HRV are often used in training stress detection models. During
stress, heart rate increases and HRV decreases [Giannakakis et al., 2019; Pham et al., 2021].
Although ECG-based HRV features are commonly employed due to better signal qual-
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ity [Umair et al., 2021], previous studies have demonstrated the effectiveness of BVP-based
HRV features as an alternative [Namvari et al., 2022].

Like ECG, the BVP signal is susceptible to baseline wander and high-frequency noise.
Hence, a band-pass filter (0.5 - 8 Hz) was applied to reduce these noises [Elgendi et al.,
2013]. To derive the HRV signal from the BVP, the Systolic Peaks (see Figure 2.15) had to
be detected. For this purpose, a peak-finding algorithm was employed to detect points that
meet the following criteria:

(a) Amplitude threshold: The peaks had to be taller than a certain threshold. This thresh-
old was set based on the distribution of peak heights in the entire signal.

(b) Distance between peaks: To avoid identifying every fluctuation as a peak, consecu-
tive peaks had to be separated by a minimum interval of 0.333 seconds. This value
corresponds to a maximum heart rate of 3 beats per second (180 beats per minute),
the maximum heart rate observed by Kostis et al. [1982] during a physical stress
scenario.

The same 22 features listed in Table 5.4 were computed using the BVP-based HRV.
These features were calculated using BVP segments of 60 seconds. For consistency with
other modalities like video that generate features for every frame (rate = 25 fps), the HRV
features were calculated for every data point in the signal.

EDA

EDA is another commonly used physiological signal in stress detection [Healey and Picard,
2005; Schmidt et al., 2018; Koldijk et al., 2014; Nkurikiyeyezu et al., 2019b]. It indicates the
activity of the sweat glands in the body, with higher EDA levels indicating increased stress.
It can be separated into two components: Skin Conductance Level (SCL) and Skin Conduc-
tance Response (SCR) [Setz et al., 2009; Braithwaite et al., 2013; Schmidt et al., 2018; Gian-
nakakis et al., 2019; Horvers et al., 2021]. SCL, or tonic component, is the slow-changing
component indicating the underlying activity of the sweat glands. SCR, or phasic com-
ponent, captures the rapid fluctuations in the EDA signal that occur in response to stress
stimuli.

Before calculating the features, a 5 Hz low-pass filter was applied to the EDA signal to
remove high-frequency noise [Setz et al., 2009; Schmidt et al., 2018; Horvers et al., 2021].
After noise removal, some statistical features (e.g., mean, standard deviation) of the fil-
tered EDA signal were calculated [Schmidt et al., 2018; Nkurikiyeyezu et al., 2019b; Sri-
ramprakash et al., 2017]. Next, the cvxEDA algorithm [Greco et al., 2015] was applied
to decompose the filtered signal into its SCL and SCR components. Statistical features of
the SCL and SCR components were computed. In addition, features associated with the
SCR peaks, like number of peaks, duration, etc., were calculated [Healey and Picard, 2005;
Nkurikiyeyezu et al., 2019b; Giannakakis et al., 2019].

Similar to BVP, these features were calculated for each data point in the signal, tak-
ing 60-second-long filtered EDA segments. Table 5.9 presents the 17 features that were
extracted from the EDA signal.
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Facial Action Units

Facial expressions are crucial for conveying emotions, making them the focus of automatic
emotion recognition [Cohn and De la Torre, 2014; Dubey and Singh, 2016; Tarnowski et al.,
2017]. These expressions are often represented in terms of facial action units. Recent
research [Aigrain et al., 2015; Giannakakis et al., 2020, 2022] has shown promising results
in using facial action units to predict stress levels. This study leveraged the Microsoft
Kinect 2 camera to extract 17 facial action units (see Table 5.9) from the participant videos.
These features were extracted for each video frame.

Body Keypoints

Previous research [Giakoumis et al., 2012; Aigrain et al., 2015; Chen et al., 2019] has demon-
strated the effectiveness of analyzing body language and behavior in detecting stress. In
this study, the OpenPose framework [Cao et al., 2017] was employed to extract features
from the videos of participants. Although the Kinect camera provides body keypoints, it
requires specific hardware to output 3D keypoints. This restriction may hinder compari-
son with other datasets that do not use this hardware. Hence, this study chose to utilize
OpenPose as it can extract keypoints from videos recorded by any camera. However, unlike
Kinect, OpenPose outputs 2D keypoints instead of 3D points.

A total of 24 features were extracted from 12 keypoints, as listed in Table 5.9. Since the
participants were sitting, only the upper half of their bodies were visible throughout the
session. Hence, only the keypoints corresponding to the upper body were considered.

Speech

Vocal cues are known to carry emotional information [Knapp et al., 1978]. Speech charac-
teristics like pitch and speaking rate change depending on a person’s emotions [Tao and
Tan, 2005]. Stress, in particular, can trigger changes in the voice, such as a higher pitch
(fundamental frequency) or increased vocal tremor [Mendoza and Carballo, 1999; Giddens
et al., 2013; Lefter et al., 2015]. Several studies have successfully used acoustic features for
automated stress detection [Lu et al., 2012; Kurniawan et al., 2013; Lefter et al., 2015; Han
et al., 2018].

As a representation of participants’ speech characteristics, this study extracted a set of
well-established acoustic features called GeMAPS [Eyben et al., 2015]. A total of 58 features
(see Table 5.9) were extracted from the recorded audio of the participants. These features
included frequency and amplitude-related features (e.g., pitch, jitter, shimmer, loudness)
and spectral features (e.g., Hammarberg Index, harmonic differences). The features were
calculated for every one-second window of the speech data.

5.4.5 Training Baseline Models

Training Samples

As Section 5.4.3 described, the video recordingswere analyzed, and stressful moments were
annotated frame-by-frame. These frames formed the stress samples for training the model.
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Feature Description
Signal Mean, Standard deviation, Min, Max, Dynamic Range, Slope. Mean

and Standard deviation of 1st derivative
SCL Mean and Standard deviation. Correlation with timeED

A

SCR Mean and Standard deviation. Number of peaks, Sums of peak am-
plitudes, peak durations, and area under the peaks

Jaw Intensities of JawOpen, JawSlideRight
Lips Intensities of LipPucker, LipStretcherRight, LipStretcherLeft, Lip-

CornerPullerLeft, LipCornerPullerRight, LipCornerDepressorLeft,
LipCornerDepressorRight, LowerLipDepressorLeft, LowerLipDe-
pressorRight

Cheeks Intensities of LeftCheekPuff, RightCheekPuff

FA
CI
A
L
AC

TI
O
N
UN

IT
S

Eyes Intensities of LeftEyeClosed, RightEyeClosed, RightEyebrowLow-
erer, LeftEyebrowLowerer

Face x, y positions of nose, left eye, right eye, left ear, right ear

BO
DY Upper

body
x, y positions of neck, left shoulder, right shoulder, left elbow, right
elbow, left wrist, right wrist

Frequency Mean and Coefficient of variance of Pitch, Jitter, Formant 1, 2, 3
frequencies, Formant 1 bandwidth

Amplitude Mean and Coefficient of variance of Shimmer, Loudness,
Harmonics-to-noise ratio

Spectral Mean and Coefficient of variance of Alpha Ratio, Hammarberg In-
dex, Spectral Slope, Harmonic difference H1-H2, Harmonic differ-
ence H1-A3

A
UD

IO

Temporal Rate of loudness peaks, Pseudo syllable rate. Mean lengths and
Standard deviations of voiced regions, unvoiced regions

Table 5.9: Features extracted from the EDA, video, and audio data. Features corresponding to
facial action units and body keypoints were extracted separately from the video data.

137



CHAPTER 5. STRESS DETECTION

Modality Before PCA After PCA
Action Units 17 10
EDA 17 9
BVP 22 10
Body Keypoints 24 8
Speech 58 19
Combined 138 49

Table 5.10: The length of feature vectors for each modality, before and after applying PCA.

Selecting appropriate no-stress data required some consideration. While both prepa-
ration and post-interview phases could be considered no-stress samples, speech primarily
occurred during the follow-up interview. This interval began around 10 minutes after the
mock interview and lasted at least 10 minutes (until the 20-minute mark). Therefore, data
from this segment was used as the no-stress samples.

Since the stress annotations resulted in fewer samples than the no-stress segments,
down-sampling was employed to address the class imbalance. It involved randomly re-
moving no-stress samples to match the number of stress samples.

Dimensionality Reduction

The feature extraction process resulted in a substantial number of features from various
modalities. A high number of features (also called dimensions of the feature vector) can
pose challenges for somemachine learning methods, especially when combining data from
multiple modalities. To mitigate this issue, the Principal Component Analysis (PCA) tech-
nique was employed to reduce the dimensionality of the feature vectors. Reddy et al. [2020]
showed that PCA effectively reduces feature dimensions without significantly impacting
the performance of machine-learning models. PCA was applied to individual modalities
and the combined data while retaining 95% of the variance in the data. The lengths of the
resulting feature vectors were reduced for each modality, as described in Table 5.10.

For multi-modal stress detection, the following methods were used to combine features
from all modalities:

• Early PCA: PCA was applied separately to each modality, and then the resulting
feature vectors were combined. This method led to a combined feature vector with
56 dimensions (the sum of the reduced dimensions of each modality).

• Late PCA:The feature vectors from all themodalities were combined before applying
PCA. This method resulted in a feature vector of 49 dimensions.

Like Reddy et al., all features were normalized using MinMax normalization before
applying PCA.
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Classifiers

Like the previous section (Section 5.3.6), three shallow models were trained. The hyper-
parameters of these models were chosen empirically for this dataset. All the models were
trained and evaluated using the LOSO technique.

• RFC: This implementation used 100 estimators and a minimum sample size of 50 for
splitting nodes.

• SVM:Due to the higher number of samples and feature dimensions, training an SVM
with the radial basis kernel was computationally heavy. So, a linear SVMwas trained
instead.

• Simple ANN: Similar to the previous study, the ANN had an input layer, two hidden
layers, and a final prediction layer. The size of the input layer can vary depending on
the modalities used. Therefore, the number of nodes in the hidden layers depended
on the input layer size. The first hidden layer had nodes equal to half the input size
(rounded to the nearest multiple of 2). In turn, the second hidden layer had half the
nodes as the first hidden layer.

Moreover, the training process utilized the SGD optimizer (learning rate = 0.001)
and the binary cross-entropy loss function. The ANNs were trained for a maximum
of 100 epochs and used a batch size of 256 samples. The training utilized an early
stopping mechanism (patience = 15 epochs) to prevent overfitting. This mechanism
stopped training if the model’s validation loss did not decrease for 15 consecutive
epochs.

5.4.6 LOSO Evaluation Results

Table 5.11 presents the LOSO evaluation results of the three shallow models. The table
shows the results for models trained on individual modalities and combined feature vectors
(early and late PCA).

The results revealed that combining information from multiple modalities led to better
stress detection performance compared to using individual modalities alone. However,
early PCA yielded slightly better results across the tested models.

Notably, ANN emerged as the best shallow model in all individual modalities as well
as in early and late PCA feature vectors. The ANN trained on early PCA features achieved
the best stress detection performance (F1 score = 88.1%, accuracy = 88.3%).

When analyzing individual modalities, BVP (HRV features) consistently yielded the
best performances across all models, followed by facial action units and body keypoints.
Speech (GeMAPS) and EDA features showed the lowest effectiveness in stress detection,
achieving F1 scores and accuracies 15-20% lower than HRV features.

5.4.7 Insights

Models trained on HRV features outperformed other individual modalities. This result
aligns with previous research, which showed heart rate and HRV as reliable stress indi-
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Modality RFC SVM Simple ANN

Facial Action Units F1 = 71.4,
Acc. = 73.6

F1 = 75.6,
Acc. = 77.2

F1 = 76.5,
Acc. = 78.0

EDA F1 = 54.2,
Acc. = 57.1

F1 = 57.6,
Acc. = 58.9

F1 = 60.2,
Acc. = 61.3

BVP F1 = 74.5,
Acc. = 75.9

F1 = 76.1,
Acc. = 77.7

F1 = 78.4,
Acc. = 79.7

Body Keypoints F1 = 59.4,
Acc. = 63.6

F1 = 69.8,
Acc. = 73.4

F1 = 76.4,
Acc. = 79.5

Speech F1 = 52.1,
Acc. = 55.9

F1 = 57.3,
Acc. = 58.9

F1 = 58.7,
Acc. = 60.3

All modalities (early PCA) F1 = 81.3,
Acc. = 82.0

F1 = 83.8,
Acc. = 84.5

F1 = 88.1,
Acc. = 88.3

All modalities (late PCA) F1 = 78.2,
Acc. = 79.3

F1 = 83.9,
Acc. = 84.5

F1 = 87.5,
Acc. = 87.7

Table 5.11: LOSO evaluation results (F1-score and Accuracy) for classifiers on individual
modalities and combined feature sets.

cators [Kim et al., 2018b; Gedam and Paul, 2020]. Notably, face and body pose features
also achieved promising results. However, these features rely on the visibility of the face
and body, which can be challenging in industrial settings [Mosberger and Andreasson,
2013; Tarabini et al., 2018]. For example, personal protective gear or the positioning of the
worker might obstruct the camera’s view.

EDA is another popular modality utilized in automatic stress detection. While some
studies report high accuracies for TSST stress classification using EDA [Schmidt et al.,
2018; Greco et al., 2021], the models trained solely on EDA features in this study achieved
the second-lowest performance. A possible explanation is the time delay between stress
triggers and the corresponding EDA response [Sjouwerman and Lonsdorf, 2019; Gradl,
2020; Callara et al., 2021]. The stress annotations in this dataset have a high temporal
resolution, which may not account for the delayed EDA response.

Models trained on speech features (GeMAPS) yielded the lowest performance in this
study. Similar research reported moderately better results [Kurniawan et al., 2013; Han
et al., 2018], suggesting potential for performance improvement. However, it is worth
noting that the applicability of speech-based stress detection is limited in industrial settings
due to the noisy environments [Strazdas et al., 2020; Agati et al., 2020].
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5.5 Generalizability of Social Stress Models

The WESAD dataset shares more similarities with the ForDigitStress dataset than the
SWELL-KW dataset. In other words, WESAD and ForDigitStress are more compatible.
Both datasets induced social stress, although the methods employed to elicit stress differed.
The findings of Section 5.3 suggest two primary factors that affect the generalizability of
HRV-based stress models: the type of stressor and intensity of stress. By comparing two
datasets with the same stressor type, this study aims to assess the importance of matching
stress types in a model’s broader applicability.

5.5.1 Datasets

Modalities

This study leveraged two stress datasets, WESAD and ForDigitStress. As described in pre-
vious sections, both datasets induced social stress in participants. However, their stress
elicitation technique differed: WESAD utilized public speaking and mental arithmetic,
whereas ForDigitStress employed mock job interviews. While WESAD contains ECG and
BVP signals for deriving HRV, the ForDigitStress dataset provides the BVP data. For con-
sistency in modality across datasets, this study utilized the BVP signals from the datasets
to extract HRV features.

Another reason for focusing on the same modality is to control the influence of sensor
type. While ECG-based and BVP-based HRVs reflect similar physiological information
related to heart activity, the models trained on these features might not perform equally
well [Gupta et al., 2023]. This discrepancy can be attributed to the BVP signals being more
prone to noise from body movements than ECG [Martinho et al., 2018]. This noise can
affect the signal quality, which can, in turn, impact the stress detection performance.

The two datasets used different sensors to record the BVP data. The BVP signal in
WESAD was collected using an Empatica E4 device with a sampling rate of 64 Hz. In
the ForDigitStress dataset, BVP was recorded using an IOM-biofeedback sensor at a lower
sampling rate of 27 Hz.

Samples

This study utilized all data from theWESAD dataset belonging to stress and no-stress (neu-
tral and amusement) classes for training the stress detection models. While the ForDigit-
Stress dataset has frame-by-frame stress labels, such labels are absent inWESAD. Aligning
their stress labeling processes, the entire mock interview phase in ForDigitStress was con-
sidered stressful (excluding the first 5 minutes).

Further deviating from the original ForDigitStress labels, the post-interview segments
from the 20-minute mark onwards were chosen as no-stress samples. This choice was
primarily based on the observation that cortisol and perceived stress returned to baseline
levels after the 20-minutemark. Moreover, the presence of speechwas no longer a selection
criterion. A summary of key characteristics of the datasets is presented in Table 5.12 for
comparison.
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WESAD ForDigitStress
Stressor Social stress Social stress
BVP sensor Empatica E4, 64 Hz IOM-biofeedback, 27 Hz

Avg. stress level 18.5/24 (STAI questionnaire) 5.4/10 (Likert scale)
6.5/10 (Cortisol)

Participants 15 40

Data duration
(per participant)

stress: 10 mins,
no-stress: 26.5 mins

stress: 20 mins,
no-stress: 15 - 20 mins

Table 5.12: A comparison of some key characteristics of the WESAD and ForDigitStress
datasets.

5.5.2 Training Models

Similar to the generalizability assessment in Section 5.3, three shallowmodels were trained
on both datasets. The models utilized the same HRV features as before, listed in Table 5.4.

Data Processing

The same processing steps described in Section 5.3 for the ECG signal were also applied
to the BVP signal. An exception was the down-sampling of both datasets to the same fre-
quency. HRV features can be extracted from BVP signals sampled at different frequencies
as long as the resolution is sufficient to identify individual heartbeats. So, the original
sampling frequencies were retained.

Extracting HRV features from BVP signals followed the method described in Sec-
tion 5.4.4.

1. Noise Removal: A band-pass filter (0.5 - 8 Hz) was applied to the BVP signals. This
filter removed unwanted noise components, including baseline wander and high-
frequency noise.

2. Peak Detection: A peak-finding algorithm was used to identify peaks in the filtered
BVP signals. Peaks exceeding a certain amplitude and separated by a minimum time
interval were identified as heartbeats.

3. Input Length: HRV features are calculated by analyzing 60-second segments of the
filtered BVP data, with an overlap of 59 seconds. This sliding window technique
generated one feature vector for each second of the recording.

The final step of data preprocessing involved normalizing the extracted HRV features
using MinMax normalization. For each participant in the WESAD dataset, the normaliza-
tion parameters were calculated using the initial 5 minutes of the neutral phase. These neu-
tral segments represent a baseline state with minimal stress influence. In contrast, stress
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levels in the ForDigitStress dataset tend to decrease towards the end of the recording ses-
sions. Therefore, the normalization parameters were calculated using the last 5 minutes of
the participant’s data.

Classifiers

Consistent with previous studies of this chapter, three shallow models were trained (RFC,
SVM, and Simple ANN). The hyperparameters of these models were chosen empirically.

• RFC: This implementation used 200 estimators and a maximum depth of 5. Addi-
tionally, the class weights parameter was computed as inverse class frequencies.

• SVM: Due to the large sample size in this experiment, a linear kernel was utilized
with the SVM. The tolerance parameter was set to 10−5. The same class weights as
RFC were used here.

• Simple ANN: Similar to Section 5.3.6, the ANNs had an input layer, dropout layer
(rate = 0.2), two hidden layers (12 nodes and 6 nodes), and a final prediction layer.
The models were trained for 200 epochs in batches of 256 using the SGD optimizer
(learning rate= 0.001) and the weighted binary cross-entropy loss function. An early
stopping mechanism (patience = 15 epochs) was also implemented.

5.5.3 Assessment Results

Like Section 5.3, the assessment involved within-dataset, cross-dataset, and combined
dataset evaluations. The models were trained using the LOSO method, and their perfor-
mances were measured in accuracy and F1-score.

Within-dataset Assessment

This assessment involved training and evaluating models on the same dataset. The as-
sessment was repeated on two social stress datasets. The LOSO evaluation results for the
WESAD dataset are presented in Table 5.13, along with the performances of existing BVP-
based models evaluated using LOSO on the WESAD dataset. The models were identified
through Scopus database search3. Table 5.14 presents the LOSO results for the ForDigit-
Stress dataset.

The within-dataset LOSO evaluations revealed a consistent trend within each dataset:
simple ANN achieved the highest performance, followed by RFC, and lastly, SVM. How-
ever, it’s important to note that the performance differences between these models were
relatively small, falling within amargin of 3%. Interestingly, themodels also yielded similar
performance levels on both datasets.

3https://www.scopus.com/, Query: ( TITLE-ABS-KEY ( ( detect* OR recogni* OR predict* OR classif*
OR learn* ) AND wesad AND ( bvp OR blood AND volume AND pulse OR ppg ) ) AND TITLE ( stress ) )

143

https://www.scopus.com/


CHAPTER 5. STRESS DETECTION

Model F1-score Accuracy
LDA [Schmidt et al., 2018] 0.830 0.858
1D-CNN [Lisowska et al., 2021] 0.837 —
ANN (HRV) + CNN(raw) [Rashid et al., 2021] 0.862 0.886
1D-CNN [Zhang et al., 2023b] 0.528 0.570
LDA [Gupta et al., 2023] 0.805 0.82
RFC 0.768 0.826
SVM 0.763 0.792
Simple ANN 0.780 0.829

Table 5.13: Results of LOSO evaluation of BVP-derived HRV models trained on the WESAD
dataset. The first part tabulates the results of models from the literature and the second part
shows the results of the three models considered in this chapter.

Model F1-score Accuracy
Simple ANN (Table 5.11) 0.784 0.797
RFC 0.810 0.829
SVM 0.787 0.811
Simple ANN 0.814 0.831

Table 5.14: Results of LOSO evaluation of BVP-derived HRV models trained on the ForDigit-
Stress dataset. The bottom part shows the results of the five models considered in this chapter.

Cross-dataset Assessment

The objective of cross-dataset assessment was to evaluate the generalizability of the social
stress models. The LOSO models trained on one dataset (WESAD or ForDigitStress) were
assessed on the other dataset. Table 5.15 shows the results of this cross-dataset evaluation.
The top part of this table presents the performance of models trained on WESAD data
when tested on ForDigitStress data. Meanwhile, the bottom part tabulates the performance
of models trained on ForDigitStress data when tested on WESAD data.

The cross-dataset evaluation of social stress models revealed a significant improve-
ment compared to the previous cross-dataset assessment in Section 5.3, which involved
datasets with different stressors. Notably, there was no consistent best-performing model.
SVM performed the best among the WESAD models, whereas RFC was the best among
the ForDigitStress models. Despite being the best performer in within-dataset evaluations,
simple ANN did not outperform the other models in cross-dataset evaluations. However,
the performance differences between the models remained relatively small (< 4%).
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Model F1-score Accuracy
Testing on ForDigitStress

WESAD RFC 0.731 0.740
WESAD SVM 0.774 0.775

WESAD Simple ANN 0.740 0.744
Testing on WESAD

ForDigitStress RFC 0.789 0.820

ForDigitStress SVM 0.779 0.812
ForDigitStress Simple ANN 0.763 0.810

Table 5.15: Results of cross-dataset evaluations of models from this chapter. The top part
shows the performances of the WESAD models on the ForDigitStressdataset. The bottom part
tabulates the results for the ForDigitStress models using the WESAD data.

Combined Datasets

To explore the potential improvements due to a larger dataset, WESAD and ForDigitStress
were merged, resulting in a substantial amount of data from 55 participants. Again, the
LOSO method was utilized to train stress detection models on the combined dataset. The
results are presented in Table 5.16. There is a slight increase in performance compared
to models trained on individual datasets. The simple ANN model tested on WESAD data
showed a notable improvement of approximately 3%.

5.5.4 Insights

As expected, the simple ANN achieved the best LOSO performance within each dataset
(WESAD and ForDigitStress). Interestingly, all models trained on the ForDigitStress
dataset outperformed the previously reported best BVP performance (Table 5.11). This
improvement might be due to how no-stress samples were selected. For training baseline
models with ForDigitStress (see Section 5.4.5), the no-stress samples were chosen based
on the presence of speech in the post-interview phase. However, Figure 5.6 suggests that
stress levels might not have entirely returned to baseline during this window, implying
that some selected “no-stress" samples might still contain residual stress responses.

Unlike the SWELL-KW dataset used in Section 5.3, all models trained on both WESAD
and ForDigitStress datasets achieved comparable LOSO results within each dataset. This
observation suggests no inherent differences in the models’ stress prediction capabilities,
a promising trend for cross-dataset evaluations.

The cross-dataset evaluation revealed good generalizability across datasets, meaning
models trained on one dataset could be applied to the other without compromising per-
formance. This result contrasts the findings in Section 5.3, where models struggled with
generalizability. Two main dataset differences were identified that could have contributed
to the poor generalizability of the HRV models: type of stressor and stress intensity. Both
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Model F1-score Accuracy
Testing on WESAD

RFC 0.783 0.829
SVM 0.765 0.821
Simple ANN 0.808 0.857

Testing on ForDigitStress
RFC 0.812 0.831
SVM 0.780 0.805
Simple ANN 0.813 0.833

Testing on Combined
RFC 0.804 0.831
SVM 0.776 0.809
Simple ANN 0.811 0.839

Table 5.16: Results of LOSO evaluations of models trained on the combined dataset. The top
part shows the performances of the models on the WESAD dataset, middle part displays the
results for ForDigitStress dataset, and the bottom part tabulates the overall performances.

WESADand ForDigitStress datasets involved social stress (matching type) but had different
stress intensities. WESAD induced high-intensity stress, while ForDigitStress participants
experienced moderate levels of stress. This finding suggests that stressor type is critical
for the generalizability of HRV-based stress detection models.

Although the ForDigitStress dataset was not collected in an industrial environment,
it represents a real-world job interview scenario. Moreover, social stress can occur in in-
dustrial settings as well. While WESAD doesn’t directly reflect a real-world scenario, this
study demonstrates that such datasets can still be utilized to train models with broader
applicability.

5.6 Reflections and Remarks

This chapter explored the generalizability of stress detection models, focusing on signals
that reflect heart activity - ECG and BVP. This exploration was motivated by the scarcity
of stress datasets collected in industrial settings. A practical approach in such cases is
training stress detection models on publicly available datasets and deploying them in real-
world scenarios. However, this approach raises the question: to what extent can these
models be applied to the target use case? Identifying the factors impacting the models’
applicability enables the development of models compatible with real-world settings.

To address this question, the chapter initially investigated the generalizability of ECG-
based deep learning models that typically achieve state-of-the-art performances on the
training datasets. For comparison purposes, models based on hand-crafted HRV features
were also considered. While the HRVmodels performed better than the ECG-basedmodels
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in the generalizability assessment, their generalization capabilities were still limited. Some
differentiating factors of the datasets that may have influenced the generalizability of the
models were identified.

For further investigations, this chapter presented a social stress dataset. This dataset
was leveraged to investigate the generalizability of HRV models trained on datasets with
the same type of stressor. Notably, the method of inducing stress and the experienced
stress intensity were still different in the datasets. The drastic improvement observed in
generalization performances suggests that matching the type of stressor is crucial when
the training and deployment scenarios differ.

This chapter limited its exploration to ECG and BVP signals. For a comprehensive
assessment of generalizability challenges, these investigations should be extended to other
popular modalities used in stress detection, such as EDA.
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Chapter 6

Behaviour Patterns in Industry-like
Human-Robot Collaboration

Figure 6.1: A word cloud depicting the prominent topics of Human-Robot Interaction (HRI)
research involving Autism Spectrum Disorder (ASD) individuals. The size of a word reflects
its frequency in the titles of journal articles retrieved through a literature search. While search
terms included “autism" and “robot", the word “children" emerged as a significantly prominent
non-query term. This implies that HRI studies predominantly focus on children with ASD.

6.1 Overview

The growing adoption of cobots in various industries has driven research towards ensuring
safe and efficient human-robot interaction [Robla-Gómez et al., 2017; Arents et al., 2021;
Li et al., 2023]. In small and medium-sized enterprises, this rapid adoption of cobots has
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led to an emphasis on flexibility and customization [Wadhwa, 2012; Masood and Sonntag,
2020; Kopp et al., 2021]. However, with the advent of Industry 5.0, the emphasize shifted
to human-centered cobot adaptations, where cobots are tailored to the specific needs and
preferences of operators [Zhang et al., 2023a; Gervasi et al., 2023]. This worker-centric
approach is crucial not only for efficiency but also for the mental health and well-being of
cobot workers [Xu et al., 2021; Nicora et al., 2021; Lu et al., 2022b].

One particularly important population to consider for cobot integration are the poten-
tial workers with ASD. The structured and predictable nature of collaborative cobot tasks
aligns well with the strengths of individuals with ASD [Hendricks, 2010; Goris et al., 2020].
Such a workplace can provide supportive environment that fosters their inclusion [Kager-
mann and Nonaka, 2019; Tomczak, 2021]. However, a brief survey of the literature1 (top-
ics represented as a word cloud in Figure 6.1) suggests that there is a notable absence of
research focusing on industrial Human-Robot Collaboration (HRC) contexts like collabo-
ration, assembly tasks, and handovers.

This chapter presents an industrial HRC scenario involving a collaborative assembly
task with the assembly steps divided equally between the human participant and the cobot.
The behavioral patterns of the participants were investigated in an exploratory study last-
ing for a week. Behaviors of eight neurotypical and eight ASD participants were analyzed
using quantitative and qualitative tools. The behavioral manifestations of the two groups
were also compared to highlight their differences and a potential need for distinct adap-
tation strategies. The content presented in this chapter was previously published in the
following paper and has been expanded here:

∗ M. Mondellini, P. Prajod, M. L. Nicora, M. Chiappini, E. Micheletti, F. A. Storm,
R. Vertechy, E. André, and M. Malosio. Behavioral patterns in robotic collabora-
tive assembly: Comparing neurotypical and autism spectrum disorder participants.
Frontiers in Psychology, 14, 2023

[ I share first authorship for this paper. I contributed significantly to study design and se-
lection of analysis tools. I performed the video-based analysis for identifying behavioral
patterns for both neurotypical and ASD participants. I also contributed significantly to
deriving insights based on various outcomes.]

6.2 Background Literature

6.2.1 Human Factors in Industrial HRC

Goals

One of the primary goals of human-centered Industry 5.0 settings is to improve both the
physical and mental well-being of workers [Storm et al., 2022; Xu et al., 2021; Liu and Je-
belli, 2022; Verna et al., 2023]. For instance, a cobot moving too fast or too close to the
operator without proper adaptations can cause mental fatigue and chronic stress. Works

1https://www.scopus.com/, Query: TITLE-ABS-KEY ( ( autism OR asd OR autistic ) AND robot* AND
( interaction OR collaboration OR coexistence OR colocation OR co*operation ) )
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advocating a shift towards human-centered adaptations in industrial environments high-
light additional benefits of such adaptations that lead to improvements in workstation per-
formance and productivity including enhanced efficiency and reduction in errors [Faccio
et al., 2023; Simões et al., 2022; Di Pasquale et al., 2023]. For example, a cobot anticipating
the operator’s intent and actions can respond faster, leading to a more efficient interac-
tion [Huang and Mutlu, 2016; Görür et al., 2018]

Many of the studies in this field focus on improving worker safety and trust/acceptance
of the cobot [De Simone et al., 2022; Di Pasquale et al., 2023; Hopko et al., 2022; Baltrusch
et al., 2022]. These factors directly influence the willingness of workers to utilize the cobot
technology. However, human factors such as engagement, and emotional experience are
often overlooked [Storm et al., 2022; Faccio et al., 2023; Toichoa Eyam et al., 2021]. A re-
cent review by Loizaga et al. [2023] explores various human factors critical in Industry 5.0,
including aspects like fatigue, attention and stress. Crucially, factors like boredom, stress,
fatigue, etc., are major contributors of the variance of human error in manufacturing sce-
narios [Yeow et al., 2014]. Thus, it is crucial to observe and evaluate which characteristics
related to the cobot interaction and which traits of the user may influence these factors.

Operator’s Mental Well-being in HRC

Although multiple classification schemes have been proposed for characterizing operator-
cobot interaction, a commonly used scheme distinguishes between cooperation and col-
laboration [Matheson et al., 2019]. Cooperation involves the operator and cobot sharing
the same workspace at the same time but working on separate tasks. On the other hand,
collaboration involves the operator and cobot working jointly on the same task, requir-
ing real-time coordination. Notably, many works investigating human factors in industrial
HRC employ cooperative tasks rather than collaborative tasks [Jahanmahin et al., 2022;
Arents et al., 2021]. This distinction is important because the interaction experience and
the factors influencing it would differ depending on the level of collaboration.

Several studies have explored how cobot behavior influences mental well-being fac-
tors in collaborative tasks. For example, Koppenborg et al. [2017] used virtual reality to
investigate the impact of cobot movement speed and trajectory predictability on human
operators. Their findings revealed that lower predictability led to decreased performance,
while faster cobot movements increased perceived task load and anxiety.

Moving to physical cobot interaction, Gervasi et al. [2022] conducted studies with vary-
ing robot configurations, including robot movement speed, operator-robot proximity, and
control over task execution time. Analyzing physiological measures and questionnaires,
they found that robot movement speed and control over task execution time significantly
influenced the interaction quality and stress levels.

Similarly, Su et al. [2024] examined the task load and physiological measures of partici-
pants during a collaborative Lego assembly task. The participants interacted with the robot
using various methods (button press, hand gestures, and verbal commands). The authors
observed that while introducing interaction generally reduced mental stress, the complex-
ity of interactions influenced the extend of stress reduction. Notably, hand gestures elicited
higher mental stress than the other two interaction methods.
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Toichoa Eyam et al. [2021] proposed a cobot system that adapts its movement speed de-
pending on the operator’smental stress (measured through Electroencephalogram signals).
They observed how one operator interacted with this system and demonstrated potential
benefits in reducing stress. However, they also observed a slight decrease in engagement
levels with repetitions. They interpreted this as the operator becoming used to the task and
potentially losing interest over time. This suggests that addressing boredom andmonotony
alongside stress reduction might be crucial for long-term well-being in collaborative tasks.

The above studies primarily focus on cognitive load and mental stress of the operator
and the cobot-related factors that influence them. While these are crucial aspects of in-
dustrial HRC, a broader perspective on well-being is necessary. Factors like boredom and
distraction can significantly impact task performance and mental well-being in industrial
settings. Repetitive tasks, a characteristic of many industrial environments, can lead to
monotony and decreased focus, potentially increasing the risk of errors.

Moreover, these studies, and similar research, often utilize short laboratory sessions to
study the elicited states [Lu et al., 2022a]. The interactions in these studies lasted for 30 -
90 minutes and were not repeated over days. However, as noted by Toichoa Eyam et al.,
certain changes in behaviors are observed over time or with repetitions. Furthermore,
there is a growing need to replicate industrial conditions in laboratory studies [El Zaatari
et al., 2019]. This implies studies should incorporate repetitive tasks and extend over longer
periods (e.g., hours of interaction over few days) to mimic real-world industrial conditions.

6.2.2 Involving ASD Participants in Industrial HRC

What is ASD?

ASD is a developmental condition that affects an individual’s social interactions, commu-
nicative cues, and behavioral patterns [American Psychiatric Association, 2013; Pennazio
et al., 2020]. Individuals with ASD experience a wide range of challenges and varying lev-
els of severity. Some commonly observed characteristics include challenges in social skills,
repetitive behaviors, and heightened sensory sensitivity [Loucas, 2015]. Manifestations
of these characteristics differ from individual to individual. For example, some individuals
with ASD have difficulty understanding non-verbal cues during conversations, while some
others exhibit repetitive hand movements (e.g., flapping hands).

Research has shown that there is a higher prevalence of ASD in males compared to
females [Loomes et al., 2017; Shaw et al., 2020; Adak and Halder, 2017]. While the male-
to-female ratio of ASD participants varies depending on the study, a general observation
is that ASD is more common in males than females.

ASD Individuals and Industry 5.0

Individuals with ASD are often negatively impacted by traditional hiring practices, which
look for qualities like being a team player, communication skills, etc. [Kagermann and
Nonaka, 2019]. These skills might not reflect the strengths of individuals with ASD, such as
focus, attention to detail, and adherence to routine. While a few works have identified the
need for inclusive HRC workplaces for individuals with cognitive disabilities [Kildal et al.,
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2018; Colombino et al., 2021], there is a lack of research on integrating ASD individuals in
such environments.

Many individuals with ASD show significant interest in robots, which can enhance
their engagement and motivation in HRI tasks [Scassellati et al., 2012; Raptopoulou et al.,
2021]. Studies have shown success in employing social robots to improve therapy out-
comes and engagement for children with ASD (e.g., Baraka et al. [2022]; Panceri et al.
[2021]). Study by Lytridis et al. [2022] also demonstrates that robot features like LEDs can
be effective in engaging ASD children during therapy sessions.

Furthermore, the predictable and routine nature of many industrial HRC tasks aligns
well with the preferences of individuals with ASD [Hendricks, 2010; Goris et al., 2020].
Studies like Schadenberg et al. [2021] suggest that predictable robot behavior positively
influences attention, which can be beneficial in HRC work environments.

Moreover, the collaborative tasks involved in Industry 5.0 presents an opportunity for
inclusion of individuals with ASD. Research like Giraud et al. [2021], which explored in-
teractive systems involving joint activities, demonstrates the potential for technology to
foster inclusiveness alongside skill development.

6.2.3 Research Gaps

While research on industrial HRC is constantly evolving, significant gaps remain in un-
derstanding the long-term impact on operator well-being and the potential for inclusion
of individuals with ASD. These gaps are addressed in the upcoming sections of this chapter.

• Limited understanding of long-term operator well-being: As mentioned in Sec-
tion 6.2.1, Current research in HRC primarily focuses on mental states like stress
and cognitive load, often induced by varying certain parameters like cobot speed or
trajectory. These studies are often short-term, lasting for some minutes. While these
studies provide valuable insights, they might not capture the cumulative effects of
long-term collaboration with robots. Long-duration studies (e.g., sessions lasting for
few hours and repeated for some days) are necessary to understand how operator
state manifestations and behavioral patterns evolve with multiple repetitions of the
task over an extended period.

• Lack of HRC research involving adults with ASD: While the potential of integrating
individuals with ASD is discussed in Section 6.2.2, it is important to acknowledge the
lack of studies in this direction. As highlighted by Figure 6.1, most existing studies
involving robot interaction focus on children with ASD. Moreover, these studies fo-
cus on therapeutic applications or skill development rather than investigating how
robot behavior can be adapted to facilitate successful collaboration. Hence, there is a
need for studies investigating how adults with ASD interact with cobots, especially
in collaborative tasks. Understanding these interactions and potential challenges is
essential for developing cobot adaptation strategies for worker’s with ASD.
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6.3 Setup and Data Acquisition

This exploratory study employed a generic collaborative assembly scenario in a laboratory
setting to investigate behavioral patterns that emerge during industrial HRC scenarios.
To ensure ecological validity, the task design and session duration closely mimicked real-
world industrial scenarios. This approach aimed to ensure the collected data reflects nat-
ural and representative manifestations of behavioral patterns relevant to actual industrial
HRC applications. The study recruited participants who played the role of cobot workers,
collaborating with the cobot on the assembly task.

6.3.1 Collaborative Assembly

The task involved assembling a 3D-printed planetary gearbox [Redaelli et al., 2021]. The
assembly process was divided equally between the cobot and the human participant.

Figure 6.2: An illustration of the individual components used for assembly and the final as-
sembled gearbox resulting from collaborative meshing. The copyright remains with the au-
thors [Mondellini et al., 2023].

Cobot’s Tasks

The cobot assembled the first half of the gearbox, i.e., components 1 to 4 in Figure 6.2.
The cobot’s designated workspace consisted of specific sections on the table in front of it,
where the components required for its sub-assembly were placed. To identify and locate
these components, the cobot utilized a wrist-mounted Pickit3D camera. Upon successful
detection, the cobot picked and placed the components using the Robotiq Hand-e gripper,
following a step-by-step process to assemble its sub-assembly (as illustrated in Figure 6.3).
If the camera failed to detect a specific component for the next step, the cobot would pause
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the assembly process. This pause would continue until the missing component became
available and an external command was received to resume the assembly process. This
error-handling mechanism minimized the production of defective pieces.

Once the cobot completed its sub-assembly, it moved to a designated shared area for
joint activity. In this phase, the cobot held its sub-assembly at an angle suitable for meshing
the gears with the human participant’s sub-assembly, facilitating the collaborative effort.
Upon receiving a signal from the participant pressing a foot pedal button, the cobot released
its sub-assembly and began a new assembly cycle.

The control architecture integrated ROS [Quigley et al., 2009] and VSM [Gebhard et al.,
2012] frameworks. ROS facilitated control of both the detection camera and the cobot,
while VSM enabled the execution of the programmed assembly steps by the cobot.

Figure 6.3: A sequence of snaps from a video showing the various steps of the cobot’s assembly
process.

Participant’s Tasks

The human participant assembled the remaining components (5-8 in Figure 6.2). If needed,
they utilized a support structure specially designed for this task to aid them in their assem-
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bly steps. Once both sub-assemblies were complete, they collaborated with the cobot to
join the two sub-assemblies by meshing the gears. After successful meshing, the partici-
pant triggered the cobot to release the meshed sub-assemblies. They then completed the
assembly by covering the product using component 9, resulting in the final product (see
Figure 6.2).

In addition to the assembly, the participants were responsible for managing the compo-
nents involved in the entire assembly process. They were provided with a box containing
all the components needed for both themselves and the cobot. Importantly, they ensured
the cobot’s table was sufficiently stocked with spare parts by replenishing any low-running
components from a nearby box.

The task design provided participants with a high level of autonomy through an un-
constrained assembly process. This meant they could assemble as many sub-assemblies as
possible, as long as they had the necessary components. They were also not restricted in
the timing of their component replenishment or assembly steps, allowing them to work at
their own pace. Furthermore, the experiment did not impose any production targets.

6.3.2 Layout

Figure 6.4 illustrates the layout of the experimental setup. The L-shaped table served as the
primary workspace for the assembly activities. The participant utilized the participant’s
side of the table for assembling their sub-assembly. This side was equipped with a fixed,
support structure designed to assist participants in their sub-assembly steps. A camera was
positioned approximately 1.5 meters from the participant on a separate support structure
to capture their upper body during the assembly process.

The other side of the table served as the cobot’s workspace, designated for its sub-
assembly activities. Components for the cobot’s sub-assembly were placed on this side.
The cobot performed its assembly at a fixed location on this side of the table. A desig-
nated shared space at the junction of the tables facilitated the collaborative joining activity
between the participant and the cobot. A Fanuc CRX10iA/L collaborative robot was po-
sitioned at the corner of the L-shaped table configuration, ensuring its reach to both the
cobot’s workspace and the collaboration space.

As mentioned before, the participants were provided with all the components in a box.
Additionally, an empty box was provided to store the completed assemblies. They were
free to choose the placement of these boxes. Some of the participants utilized a part of
their table to keep the boxes, whereas the others placed them on the ground.

6.3.3 Participants

This study involved 16 participants, belonging to two groups:

• Neurotypical (NT) group: 8 participants (5 females, 3 males) belonging to the age
range of 18-30 years.

• Autism Spectrum Disorder (ASD) group: 8 high-functioning individuals (1 female,
7 males), aged between 21 and 50 years old. Notably, all participants in this group
had an IQ exceeding 70, confirming the absence of intellectual disability.
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Figure 6.4: An overview of the layout of the experimental setup showing the participant’s table,
cobot’s table, and collaboration area. The tables were set in an L-shaped configuration, and the
cobot was positioned at the junction. A camera facing the participant captured video snippets
of the collaborative assembly. Participants kept the assembly box (containing components)
within reach on their table. The dotted lines illustrate some of the observed box placement
variations.

It is important to acknowledge the gender imbalance towards males in the ASD
group. However, based on previous studies, gender imbalances are expected in ASD
groups [Loomes et al., 2017; Shaw et al., 2020; Adak and Halder, 2017]. Furthermore, none
of the participants had prior experience working in an industrial setting with a cobot.

Participants were engaged in the study task for 3.5 hours daily for five consecutive days,
spanningMonday to Friday. This extended duration aimed to capture and analyze potential
modifications in performance and behavior over time as they familiarized themselves with
the task and the cobot. Considering the length of the sessions and duration of the study,
participants were recruited based on their availability to travel independently to the study
location (by car or train) or to stay in a nearby facility for the entire week. Additionally, to
facilitate participation and minimize potential discomfort for individuals with ASD, they
received comprehensive briefings before commencing the experiment week. These brief-
ings covered the people they might encounter, the specific tasks they would perform, and
the daily routines of the lab (e.g., security protocols, break times, etc.).
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The study took place at National Research Council of Italy - Lecco campus. The neu-
rotypical participants were recruited from a nearby institute and the ASD participants were
contacted through Auticon. This study was conducted according to the guidelines of the
Declaration of Helsinki and was approved by the Ethics Committee of I.R.C.C.S. Eugenio
Medea (protocol code N. 19/20—CE of 20 April 2020).

6.3.4 Video Recordings

A Logitech C920 Pro HD webcam was positioned in front of the participants (see Fig-
ure 6.4) to capture their behavior during the experiment. Videos were recorded in HD
format (1280x720) at a frame rate of 25 fps. The upper half of the participant’s body was
visible in the recordings. Considering the participant’s need tomove around theworkspace
during the assembly process, the camera was strategically positioned to keep the partici-
pant in the camera’s field of view for the maximum duration.

To capture potential changes in behavior over time, three 10-minute video recordings
were taken for each participant on the first and last days of the experiment. These record-
ings were captured at the beginning, middle, and end of each workday, resulting in a total
of one hour of video data per participant. This yielded a total of 16 hours of video record-
ings for analysis. These video recordings serve as the primary data source for both the
qualitative and quantitative analyses described in the subsequent sections.

6.4 Analysis Methods

Given the limited understanding of behavioral patterns in industrial HRC settings, espe-
cially for individuals with ASD, this study adopted a multi-tool analysis approach. This
approach utilizes four distinct tools to capture behaviors during both predictable and un-
predictable instances. Two of the chosen tools, like video annotations, are designed for
the precise observation of predefined aspects of collaboration, including elements such as
gaze patterns and hand movements. Conversely, the other two tools, like live note-taking,
facilitate capturing responses to unpredictable scenarios in a long session. In addition to
enabling a qualitative exploration of observed behaviors within each group, the chosen
tools also allow for a quantitative comparison between the neurotypical and ASD partici-
pants. It is important to acknowledge that some of the quantitative measures were tailored
to the study’s assembly task, and computed for comparative analysis within the study
context. These measures should not be interpreted as broader generalizations about the
participants’ overall efficiency or effectiveness.

6.4.1 Observational Grid

To capture specific predefined aspects of collaboration, an observational grid was em-
ployed. This grid, inspired by Roller and Lavrakas [2015], enabled systematic recording
and categorization of specific observable behaviors relevant to the participants’ collabora-
tion experience. As this method is particularly effective for shorter experimental sessions,
it was well-suited for analyzing the collected video data.
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The observational grid was initially designed with four categories to capture specific
aspects of the participants’ behavior:

1. Manifestations of tiredness: This category aimed to identify body movements or
facial expressions indicating fatigue or tiredness, and potential differences in how
participants from both groups expressed it during the task. This categorywas chosen
specifically in the light of growing literature highlighting the importance of detecting
tiredness at the workplace [Åkerstedt et al., 2004; Sadeghniiat-Haghighi and Yazdi,
2015; Gabriel et al., 2018]. Since boredom due to the repetitive nature of the task
can also lead to fatigue [Caldwell et al., 2019], manifestations of boredom were also
included in this category.

2. Hand gestures: This category recorded hand movements that were not related to the
task such as touching the nose, flapping hands, etc. This information was used to in-
vestigate whether participants with ASD exhibited distinct patterns of hand gestures
compared to the neurotypical group, similar to observations in other contexts [Gold-
man et al., 2009; Grossi et al., 2021].

3. Assembly methods: This category focused on how participants assembled the gear-
box, including aspects like one-handed vs. two-handed assembly or buildingmultiple
pieces simultaneously. This data facilitated the exploration of potential differences
in adherence to routine and behavioral rigidity between the groups, as individuals
with ASD are often known to be inflexible during repetitive activities [D’Cruz et al.,
2013; Poljac et al., 2017; Petrolini et al., 2023].

4. Loading cobot table: This category recorded the participant’s timing of adding new
components to the cobot’s table (e.g., when the cobot stops, after finishing a gear-
box, at any time). This category also aimed to investigate potential differences in
behavioral rigidity in the two groups.

After an initial viewing of video recordings, additional categories were deemed essen-
tial for understanding participants’ behavior. Hence, the grid was expanded to include:

5. Other manifestations: This category captured behaviors unrelated to fatigue but
contributing to understanding the participants’ state, such as fanning oneself due to
heat.

6. Regard for cobot: This category recorded participant reactions towards the cobot’s
actions, including staring, talking, or even ignoring the cobot’s cues for joint activ-
ity. This category was added because existing literature suggests social robots are
especially engaging for individuals with ASD Pennisi et al. [2016]; Kumazaki et al.
[2020].

7. Talk to someone: This category noted instances where participants interacted ver-
bally with others in the room (e.g. experimenter).
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Finally, a dedicated space for “Notes" was included to record any additional observa-
tions during video analysis. While not aiming to comprehensively categorize participants’
behaviors, this grid effectively captured recurring patterns relevant to the industrial HRC
experience. One of the researchers, who has a psychology background, completed the ob-
servational grid based on the videos. An example of the final grid with data from one
participant is presented in Table 6.1. The data from the observational grid was utilized for
qualitative analysis of the observed behavioral patterns.

Category Entry
ID 4014006

DAY Day 1
Video 2

MANIFESTATION OF
TIREDNESS Participant looks at the clock (2 times)

HAND GESTURES Scratch the nose (1 time),
Scrub hands (1 time)

ASSEMBLY METHODS —
LOADING COBOT TABLE —

OTHER MANIFESTATIONS Tight lips (1 time),
Wet mouth with tongue (5 times)

REGARD FOR COBOT Cobot arrives, participant prefers to finish
assembling all their sub-assemblies

TALK TO SOMEONE yes

NOTES Rubs hands after completing action,
plausibly showing satisfaction

Table 6.1: An example of the completed observational grid, illustrating recorded observations
from a single video recording of a participant.

6.4.2 Live Note-taking

Building on the understanding that ASD diagnosis relies on behavioral markers [American
Psychiatric Association, 2013] and that individuals with ASD exhibit unique and poten-
tially diverse behavioral patterns, unstructured live note-taking was employed alongside
the observational grid as a qualitative measure. This additional data collection method
aimed to minimize the potential loss of relevant behavioral information not captured by
the predefined categories of the grid.

Two researchers, separate from those who utilized the grid, observed participants non-
intrusively for 3.5-hour sessions on 3 days spread across the week (Monday, Wednesday,

162



CHAPTER 6. BEHAVIOUR PATTERNS IN INDUSTRY-LIKE HUMAN-ROBOT
COLLABORATION

and Friday). One note-taker has psychology background and the other is themselves diag-
nosedwith ASD. Both of them had previouslyworkedwith ASD participants. Unstructured
notes were taken without a predetermined framework, enabling the recording of unfore-
seen behaviors that might occur during the interaction between the ASD participants and
the cobot.

These notes were then analyzed qualitatively using an “empathy map" ap-
proach [Nielsen Norman Group, 2018], which visualizes an individuals profile in terms
of “Says", “Thinks", “Does", and “Feels". An adapted version of empathy maps were utilized
to form informative cards named “persona cards" (see Table 6.2 for an example). These
personas summarize each ASD participant’s profile across five key categories:

1. Task: This category highlights the participant’s challenges and strengths in interact-
ing with the cobot during different phases of the assembly task. Examples include
managing cobot stops, using the pedals effectively, and maintaining focus on the
task.

2. Work Organization: This category describes the participant’s strategies for orga-
nizing their work, such as managing the supply of components to the cobot or per-
forming multiple tasks simultaneously.

3. Say - Quotes: This category captures verbalizations uttered by the participant during
the assembly task.

4. Act - Recurrent Behaviors: This category describes repetitive behaviors not directly
related to the task, such as checking a phone, crossing arms, or snapping fingers.

5. Feel - Emotional Expressions: This category captures any observed emotional ex-
pressions during the experiment, such as smiling or singing.

The Say - Quotes reflects the Says category in empathy map, Feel - Emotional Expres-
sions reflects Feels category, and the other three reflect the nuances of Does category.

It is important to note that due to the unstructured nature of the data, only qualitative
descriptions of behaviors were possible, not frequency quantification. Additionally, the
primary objective of live note-taking was to capture novel aspects of the long-term inter-
action between cobots and individuals with ASD. So, this measure was limited to the ASD
group and therefore a comparison between groups was not possible.

6.4.3 NOVA Annotations

This study employed NOVA [Baur et al., 2013], a tool for annotating and analyzing be-
haviors in social interactions. NOVA’s graphical interface facilitates the annotation of
multimodal data from various sources like video, audio, and bio-signals. Similar to the
observational grid, NOVA is well-suited for analyzing short experimental sessions.

In this study, NOVA enabled the quantitative analysis of videos recorded by the frontal
camera using frame-wise labeling. This allows researchers to mark specific moments and
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Person ID
Task Challenges

Needs help to stop the cobot Moves components around too much
Task Strengths

Works close to the cobot Can operate system correctly
Quick movements

Work Organization
Fills buffer while cobot moves Empties box and organizes parts
Works on two sub-assemblies in paral-
lel

Adds parts if detection fails

Takes break autonomously
Say - Quotes

“Oh no!" (no components for cobot) “Where does this noise come from?"
“What happens with these pieces?" (af-
ter the shift)

“The gripper is behaving in a weird
way"

Act - Recurrent Behaviors
Some parts fall due to quick movements Stretch their back

Feel - Emotional Expressions
No visible fear of cobot

Table 6.2: An illustrative example of a participant profile or persona card summary based on
live note-taking.

label different participant behaviors within the video frames. Additionally, NOVA’s in-
terface can handle data from multiple individuals, facilitating the analysis of interactions
between different entities like the participants and the cobot.

Beyond annotation and visualization capabilities, NOVA offers exporting annotations
in popular formats like Excel. The exported annotations include start time, end time, and
label for each identified behavior. This allows further analysis of the annotated data.

In this study, the NOVA tool was used to quantitatively analyze specific actions per-
formed by participants and compare the neurotypical and ASD groups. The process in-
volved creating two separate annotation tracks within NOVA: one for the participant and
one for the cobot (as depicted in Figure 6.5). Based on initial viewing of the videos, the
following labels were identified by the researchers along with what actions correspond to
each label. One of the researchers, who is familiar with affective signals and NOVA tool,
annotated the videos. A default label called “Other" was utilized to denote parts of the
video that were difficult to classify (e.g., blurry, transitions between phases of assembly,
etc.). This annotation enabled the measurement of the duration of specific actions for each
entity within the video frames.
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Figure 6.5: An example visualization of NOVA video annotation for a participant. The image
shows a video frame of the participant looking at the cobot. The top track has the labels for
the participant’s actions and the one below has labels for the robot’s action. The copyright
remains with the authors [Mondellini et al., 2023].
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Participant’s Labels

The annotation scheme focused on three primary participant actions:

1. Gathering: This label marked instances where the participant collected the neces-
sary components for the assembly.

2. Assembling: This label denoted the time participants spent building a sub-assembly
from the gathered components.

3. Final Joining: This label identified periods where the participant meshed the gears
of their sub-assembly with the cobot’s sub-assembly to form the final product. This
is also called the joint activity phase of the production cycle.

Additionally, the annotation scheme incorporated labels to differentiate between two
types of waiting behaviors exhibited by participants:

4. Wait (Look Robot): This label represented instances where the participant main-
tained their gaze on the cobot while they were not actively engaged in any of the
assembly steps. This behavior indicates that they were potentially waiting for the
cobot to complete its actions.

5. Wait (Look Random): This label signified periods when the participant waited but
engaged in other activities, such as looking around the environment, talking to some-
one else, or exhibiting other forms of distraction.

Furthermore, the label “Not Visible" was utilized to account for the missing data during
the occasional moments when the participants moved outside the camera’s field of view.

Cobot’s Labels

The tip of the cobot’s wrist was occasionally visible in the video, especially when it was at
the collaboration area for the joint activity. So, three labels were included in the annotation
scheme describing the cobot’s actions:

1. RobotWait: This label captured the instances where the cobot arrived at the collabo-
ration area and waited for the participant to perform the joint activity. The duration
of this action was directly linked to the participant’s pace and their decision-making
regarding the timing of the joint activity.

2. Final Joining: This label signifies the cobot’s participation in the joint activity, align-
ing with the participant’s “Final Joining" label.

3. Not Visible: This is the default label, denoting that the data regarding the cobot’s
actions were not available.
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A key difference between observational grid and NOVA annotation is the origin of the
coding scheme. The observational grid was designed by taking into account known be-
havioral patterns in ASD individuals, whereas NOVA labels were derived from the various
phases of an assembly cycle that are not specific to either of the groups. Moreover, the
observational grid identifies the occurences of behaviors and how they change over the
week, while NOVA measures the duration of specific actions in the assembly cycle.

6.4.4 Week-long Performance

While the previously mentioned tools focused on the participant’s behavioral aspects dur-
ing the collaborative assembly task, additional data was collected to quantify their overall
performance throughout the week.

An Excel spreadsheet was used to record the following information for each participant
every day of the experimental week:

1. Start and end time of the session: This enabled the computation of the total duration
of the daily experimental session.

2. Activity Stops: Any instances where the assembly activity was paused or interrupted
were documented.

3. Number of assembled gearboxes: The total number of gearboxes assembled each
day was recorded.

This data was used to compute the daily “Up-time", which refers to the total active
working time of the participant. This duration excluded breaks requested by the partici-
pants and unexpected interruptions due to factors like cobot malfunctions. A performance
index was then computed for each participant across the entire experiment week. This
index represented the ratio between the daily number of completed assemblies and the
corresponding daily up-time. Additionally, the influence of downtime on the performance
was also analyzed.

6.5 Qualitative Analysis

The qualitative analysis presented in this section delves into the behavioral patterns ob-
served during the study. As previously mentioned, the observational grid served as a
valuable tool for tracking the predefined behavioral constructs within each group. This
information, presented as the number of participants (N) exhibiting each behavior out of
the total group size (eight individuals in each group), forms the foundation for a qualita-
tive comparison between the neurotypical and ASD groups. Additionally, insights from
persona cards summarizing the behavioral profiles of the ASD participants are presented.

6.5.1 Grid Patterns in Neurotypical Participants

This section presents the behavioral patterns of neurotypical participants, observed using
the observational grid. The analysis explores how these behaviors manifested and changed
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throughout the week, comparing the first and last days of the experiment. The prominent
patterns are summarized in Tables 6.3, 6.4, and 6.5.

Manifestations of Tiredness

On the first day, several participants exhibited behaviors suggestive of tiredness, including
leaning on the table while waiting, and stretching. Manifestations of boredom such as
hand activities potentially used to occupy themselves (e.g. fidgeting, tapping fingers on
the table) were observed. Additionally, time monitoring behaviors (e.g., looking at the
clock, checking phones) were also observed. The number of participants exhibiting these
behaviors increased on the last day. Moreover, the frequency of these behaviors in the same
individual increased on the last day, potentially due to longer waiting periods. Notably,
only one person sat down on both days, albeit with an increased frequency on the last day.

Hand Gestures

Hand gestures, such as touching hair, face, and glasses, were observed throughout the
week. There was no significant change in the variety of these behaviors, but an increase
in frequency on the last day was observed. This suggests these gestures might be habitual
and independent of the task itself.

Assembly Methods

Initially, diverse assembly approaches were observed. Three participants assembled as they
retrieved the components, while one participant emptied the entire box first. Three partic-
ipants followed a sequential assembly strategy, but one participant switched in between to
a parallel assembly strategy. However, by the last day, most participants adopted a paral-
lel assembly strategy, suggesting adaptation and potentially improved efficiency. Notably,
some participants demonstrated advanced skills, such as multitasking by assembling a new
gearbox while waiting with another sub-assembly in hand.

Loading Cobot Table

The first-day observations revealed that three participants preferred to fill the cobot ta-
ble only when it had the components for one sub-assembly. So, even small delays in re-
stocking led to pauses in the assembly activity. One participant shifted the components
on the cobot table causing the cobot to stop due to misplaced components. By the end of
the week, the number of such errors decreased, indicating improved awareness and per-
formance.

Other Manifestations

On the first day, only two participants displayed heat-related behaviors (waving hand-
s/shirt). On the last day, one participant was seen humming. Since the study took place in
a different week for each participant, it is difficult to draw inferences from these observa-
tions.
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Regard for Cobot

While most participants focused on the cobot, a few exceptions were observed. On both
the first and last days, one participant did not look at the cobot during assembly and oc-
casionally seemed unaware of the cobot’s waiting state. In one instance, a participant did
not have the required sub-assembly prepared when the cobot arrived for the joint activ-
ity. In another instance, a participant prioritized emptying the box over the joint activity.
However, these were isolated instances and not frequent behaviors.

It is important to note that on both days, all participants generally exhibited gaze be-
havior directed at the cobot while waiting.

Talk to Someone

The number of participants who talked to others during the experiment increased from
two on the first day to four on the last day.

Inferences

Figure 6.6: A screenshot of a neurotypical participant’s workspace during the experiment.
Several sub-assemblies are already completed and visible on the table. The participant is also
looking at the cobot while waiting, a frequent behavior observed in the neurotypical group.
The copyright remains with the authors [Mondellini et al., 2023].

These observations suggest that participants adapted their behavior over time, poten-
tially due to increased familiarity with the task and the cobot. Notably, a shift towards
more efficient assembly methods and reduced errors were observed. Once the participants
became accustomed to the task, they began assembling multiple sub-assemblies for future
use on the table, as illustrated in Figure 6.6.

Moreover, all the participants completed their assembly tasks faster than the cobot,
resulting in a considerable amount of waiting time. Observations suggest that the waiting
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periods resulted in a possible increase in fatigue and boredom over time, leading to the
emergence of individual coping mechanisms.

First Day Last Day
Manifestation of Tiredness

Hands/arms on table while waiting for
cobot (N=5)

Hands/arms on table while waiting for
cobot (N=8)

Movements of hands (N=3) Yawn (N=2)
Hands on hips (N=2) Snort (N=1)
Sit (N=1) Sit (N=1)
Time monitoring (N=3) Time monitoring (N=4)
Stretch (N=2) Stretch (N=1)

Fidgeting (N=3)
Playing with clips (N=1)

Hand Gestures
Rub hands/fingertips (N=3)
Rub face (N=4) Rub face (N=6)
Touch hair (N=3) Touch hair (N=3)
Adjust clothes (N=1)
Touch glasses/watch (N=1) Touch glasses/watch (N=4)

Table 6.3: The observed behaviors in the neurotypical group, summarizing the “Manifestation
of Tiredness" and “Hand Gestures" categories of the observational grid

6.5.2 Grid Patterns in ASD Participants

The behavioral patterns from the observational grid for the ASD group are presented in
Tables 6.6, 6.7, and 6.8. Below is a brief discussion of the observed behaviors.

Manifestations of Tiredness

On the first day, participants exhibited behaviors indicative of tiredness, such as placing
hands/arms on the table while waiting, crossing arms, and hands resting on hips. Other
behaviors such as stretching, sighing, and yawning were also observed, but less frequently.
Time monitoring behaviors were also observed, with three participants checking the clock
and one using their phone to look at the time (8 times in 3 videos). For the same participant,
the frequency of these manifestations increased over the day, suggesting an accumulation
of tiredness and boredom.

Similar behaviors like resting hands/arms on the table, monitoring time, yawning,
stretching, etc., were observed on the last day. Notably, unlike the first day, the frequency
of these manifestations remained similar throughout the last day.
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First Day Last Day
Assembly Method

Assemble as components are taken out
(N=3)
Empty box before the assembly (N=1) -
strategy changed
Sequential assembly (N=3), (N=1)
changed strategy
Parallel assembly (N=6) Parallel assembly (N=7)
Use of support structure (N=3) Use of support structure (N=3)

Loading Cobot Table
Last set on cobot’s table (N=3)
Add components as soon as consumed
(N=1)

Move component after placing on table -
causes error (N=1)

Table 6.4: The observed behaviors in the neurotypical group, summarizing the “Assembly
Method" and “Loading Cobot Table" categories of the observational grid

First Day Last Day
Other Manifestations

Manifestation of heat (N=2) Hum (N=1)
Regard for Cobot

React in advance (N=1)
Low awareness of cobot wait (N=1) Low awareness of cobot wait (N=1)
Look at cobot while waiting (N=8) Look to cobot while waiting (N=8)

Talk to Someone
N=2 N=4

Table 6.5: The observed behaviors in the neurotypical group, summarizing the “Other Mani-
festations", “Regard for Cobot", and “Talk to Someone" categories of the observational grid

Hand Gestures

Three participants frequently rubbed their hands, with one participant focusing on fin-
gertips and another celebrating completion by clapping their hands after rubbing. Four
participants exhibited frequent face rubbing throughout the recordings. Some individual
behaviors were also observed such as touching glasses, repetitive stereotypical movements,
and shaking the wrist with the watch. One participant moved the box around multiple
times before settling on a position.

Participants generally displayed consistent and preferred hand gestures on both days.
Face touching emerged as the most common hand gesture observed in the ASD group.
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Assembly Methods

While most participants emptied the entire box of components before starting assembly,
only two participants began assembling as they took the components out. Several partic-
ipants worked on one sub-assembly at a time, whereas only three participants adopted a
parallel assembly strategy. One participant achieved faster assembly by skipping the ded-
icated assembly support structure, while another arranged all components close together.

On the last day, most participants maintained their initial assembly methods. Only one
participant shifted from a sequential to a more efficient parallel approach. While partici-
pants showed adaptation in terms of speed, they generally struggled to transition to more
efficient assembly methods.

Loading Cobot Table

Participants did not exhibit any specific strategies for loading pieces onto the cobot table.
An exception was observed with one participant who adopted a proactive approach of
adding new components immediately after the cobot finished a sub-assembly. This strategy
ensured that components required for at least two sub-assemblies were always available
on the cobot table, minimizing unexpected cobot stops. The loading strategies remained
consistent throughout the experiment for all participants.

Other Manifestations

The ASD participants showed expressions of effort (frowning, lip pursing, etc.) when they
encountered difficulties in assembly. One participant waved at the camera on the first day.
In the videos from the first day, many participants also showed manifestations of heat
and frequent wetting of lips. On the last day, some non-task-related movements like body
swaying, jumping in place, etc., were observed.

Regard for Cobot

A common behavior was prioritizing completing sub-tasks like emptying the box or
preparing new assemblies, even when sub-assemblies were ready for the joint activity,
causing the cobot to wait. Two participants frequently looked at the cobot during assem-
bly and waiting periods, possibly to monitor its arrival for collaboration. Two participants
did not adjust their assembly pace to the cobot’s timing. They would watch the cobot
assemble its half, but not have their sub-assemblies prepared for the joint activity.

Three participants displayed facial expressions in response to the cobot’s actions, in-
cluding astonishment and disappointment towards the cobot’s speed or errors.

On the last day, one participant showed significant improvement by learning to antic-
ipate the cobot. This led to the participant picking up their sub-assembly a few seconds
before the cobot arrived for collaboration. Furthermore, a tendency to reduce the amount
of time the cobot waited was observed in a few participants.
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Talk to Someone

On the first day, one participant engaged in conversation with another person in the room.
This behavior was observed again on the last day, but with a different participant. Overall,
the observations related to participants talking to others were minimal.

Inferences

Figure 6.7: A screenshot of an ASD participant’s workspace during the experiment. The table is
empty, with no sub-assemblies prepared in advance. The participant is also exhibiting a hand
gesture (rubbing hands). The copyright remains with the authors [Mondellini et al., 2023].

The ASD participants exhibited a range of behaviors while working with the cobot.
There were many manifestations of tiredness and boredom. This suggests potential areas
for improvement in task design for better engagement. They also showed some repetitive
hand gestures and other body movements typically associated with ASD individuals.

Notably, they tend to maintain their assembly routines. This implied that some partic-
ipants who started with a “one assembly at a time" strategy (see Figure 6.7), followed the
same strategy throughout the week.

Additionally, participants exhibited varying levels of regard for the cobot. Some failed
to synchronize their actions with the cobot’s joint activity timing.

6.5.3 Grid Comparison Insights

The following key behavioral differences were observed between participants with ASD
and neurotypical participants while comparing the summarized observational grids:

• Earlier signs of tiredness and boredom: Compared to the neurotypical group, partic-
ipants with ASD showed signs of tiredness and boredom earlier and more frequently.
This might be evidenced by behaviors like looking at their watches while the cobot
was working.
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First Day Last Day
Manifestation of Tiredness

Hands/arms on table while waiting for
cobot (N=4)

Hands/arms on table while waiting for
cobot (N=3)

Arms crossed (N=2) Arms crossed (N=2)
Hands on hips (N=1) Hands on hips (N=3)
Sit (N=1) Sit (N=1)
Time monitoring (N=4) Time monitoring (N=5)
Stretch (N=1) Stretch (N=3)
Yawn (N=1) Yawn (N=1)
Sigh (N=1) Close eyes (N=1)

Hand Gestures
Rub hands/fingertips (N=4) Rub hands/fingertips (N=4)
Rub face (N=4) Rub face (N=4)
Clap hands (N=1) Push components (N=1)
Shake wrist (N=1)
Stereotypical movements (N=1)
Move box around before fixing location
(N=1)
Touch glasses (N=1) Touch glasses (N=2)

Table 6.6: The observed behaviors in the ASD group, summarizing the “Manifestation of Tired-
ness" and “Hand Gestures" categories of the observational grid

• Stereotyped hand movements: The ASD group displayed more repetitive hand
movements, such as rubbing their fingertips or hands together. This contrasts with
the neurotypical participants, who used a wider variety of hand gestures.

• Different adaptation rates: While both groups used similar methods to assemble the
parts, the neurotypical participants adapted their strategies much faster, particularly
regarding the sequence, timing, and positioning of actions. The ASD group, on the
other hand, tended to maintain their initial strategies.

• Difficulty with multitasking: The ASD group demonstrated a higher frequency of
adopting a sequential assembly approach compared to the neurotypical group, which
tended to favor parallel assembly methods. This could be attributed to known chal-
lenges with multitasking in ASD [Yang et al., 2017; Mackinlay et al., 2006].

• Prioritizing own tasks: ASD participants often continued with their ongoing tasks
even when the cobot was ready for the joint activity. In contrast, neurotypical par-
ticipants prioritized the cobot, leading to less waiting time for the cobot.
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First Day Last Day
Assembly Method

Assemble as components are taken out
(N=2)
Empty box before the assembly (N=6)
Sequential assembly (N=4) Sequential assembly (N=4), later one

changes strategy
Parallel assembly (N=3) Parallel assembly (N=3/4)
No support structure (N=1) No support structure (N=1)
Components placed close (N=1)

Loading Cobot Table
Add components as soon as consumed
(N=1)

Add components as soon as consumed
(N=1)

Table 6.7: The observed behaviors in the ASD group, summarizing the “Assembly Method" and
“Loading Cobot Table" categories of the observational grid

First Day Last Day
Other Manifestations

Manifestation of effort (N=2) Manifestation of effort (N=1)
Greet camera (N=1) Jump in place (N=1)
Manifestation of heat (N=2) Sway body (N=1)
Wetting lips (N=3)

Regard for Cobot
Make cobot wait (N=5) Make cobot wait (N=3)
Look at cobot (N=2)
Facial expressions responses (N=3)
Watch cobot without doing own assem-
bly (N=2)
React in advance (N=1)

Talk to Someone
N=1 N=1

Table 6.8: The observed behaviors in the ASD group, summarizing the “Other Manifestations",
“Regard for Cobot", and “Talk to Someone" categories of the observational grid

• Lower utilization of monitoring information: While ASD participants sometimes
looked at the cobot, this gaze did not necessarily translate into adapting their actions
to collaborate effectively. In contrast, the neurotypical group looked at the cobot
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more strategically. This could be because they were waiting for the cobot or trying
to better time their own assembly steps.

• Preference for personal space: Some participants with ASD preferred to maintain
a greater distance from the cobot throughout the sessions. This preference was par-
ticularly evident during the timing of loading components onto the cobot’s table.
Unlike the neurotypical participants who readily gathered components whenever
needed, those with ASD tended to wait until the cobot completed its task on its side
of the table before gathering components. This preference for personal space likely
contributed to increased waiting times for the cobot.

• Varied Facial Expressions: Interestingly, the ASD group displayed a wider range of
facial expressions in response to the cobot’s actions compared to the neurotypical
group.

• More other manifestations: The ASD group showed a variety of “other manifesta-
tions", often involving their body (greeting, frowning, jumping, swaying).

• Variability in behaviors: Overall, there was greater variability in behaviors within
the ASD group. The neurotypical group, on the other hand, exhibited more homo-
geneous behaviors.

• Less talking with others: Participants with ASD generally talked less with others in
the room compared to the neurotypical group.

6.5.4 Behavioral Profiles of ASD Participants

This section summarizes the behavioral patterns of participants with ASD, compiled from
persona cards created based on the live notes taken during three work shifts.

Task

While interacting with the cobot participants with ASD encountered some challenges.
These included delays caused by missing cobot components that needed to be refilled,
seeking technical assistance for minor issues they could potentially handle themselves,
and cobot pauses caused by participant errors.

On the other hand, some participants also displayed positive behaviors that enhanced
task performance. These strengths included the ability to talk and work simultaneously
without getting distracted, a good understanding of the system’s functions (such as know-
ing how to respond when the cobot has trouble finding a component or using the foot
pedals correctly), and autonomy in managing their tasks (for example, rearranging their
workstation).

Work Organization

The observational notes revealed varying levels of ability in terms of howASD participants
organized their work. In terms of keeping the cobot table stocked, some participants were
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able to refill the table with components while the cobot was performing its tasks. However,
others had difficulty managing this activity. Similarly, not all participants consistently
had their sub-assemblies prepared when the cobot arrived for collaboration. This lack of
readiness sometimes led to delays in the overall assembly process.

Planning and organization skills also varied among participants. Some participants
were adept at organizing multiple sub-assemblies in advance. This allowed them to stay
ahead of the assembly and take advantage of downtime caused by cobot pauses to arrange
components on the desk. However, this planning ability was not uniformly observed across
all participants.

Breakmanagement also differed among participants. Ideally, taking breaks is important
to avoid fatigue and maintain focus. While some participants were able to take breaks on
their own initiative, others were so absorbed in the task that they required reminders from
the experimenters. To manage physical fatigue, some participants used chairs to sit down.

An interesting behavioral pattern was observed relating to how participants handled
the end of their shift. Many participants exhibited an aversion to leaving things unfinished.
This sometimes led them to prioritize completing the current component box (which typ-
ically contained components for five gearboxes) or finishing all the components on the
table.

Say - Quotes

This category focused on analyzing verbal statements from participants with ASD. Their
quotes were grouped by common themes and presented in Table 6.9 for categories not
already covered in other sections.

Interestingly, the quotes indicate a tendency among ASD participants to anthropomor-
phize the cobot. This observation is consistent with the findings of Atherton and Cross
[2018] suggesting a tendency towards anthropomorphism and stronger empathic skills
when interacting with non-humans in ASD populations.

Act - Recurrent Behaviors

The ASD participants exhibited some recurring behaviors during the experimental ses-
sions. Some participants engaged in personal activities during the interaction, such as
checking their cell phone or listening to music with headphones. Physical cues provided
insights into their physical state, with behaviors like leaning on the table, sitting, stretch-
ing, puffing, or yawning potentially indicating exertion or fatigue.

Positive expressions were also observed, including giggling, humming, or keeping time
with their foot, which could suggest enjoyment or engagement with the task. Participants
also engaged in verbal behavior, such as chatting with others or even talking to themselves.
Finally, some repetitive hand movements (for example, snapping fingers) were noted.

Feel - Emotion Expression

There were broadly four emotions that were identified from the notes: nervousness, bore-
dom/tiredness, happiness, and fear.
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Anthropomorphism
“Does the robot have a name?"
“Come on FANUC come on!" (referring to the cobot one more time looking for the
parts it cannot find)
“I am sorry that you are waiting" (referring to the cobot) “How empathetic you
are"
“Come on, there are three beautiful little pieces... Now I’m going to move it for
you sweetie"

Attention to Details
“This piece is defective" (they realize that one piece is slightly different from the
others)
“Maybe that’s why he’s having a hard time catching it" (they notice that one com-
ponent is darker in color)
“I realized that by putting the smaller rings near the edge the cobot was not taking
them"

Control/Feedback
“I need to calculate how long it takes me to do an assembly so that I will not leave
any pieces for my colleague"
“I made half of this box, at the end of the week can you tell me how many pieces
I made on average?"
“Will you count the assemblies or shall I count them?"

Opinion on Task
“While doing this work, those who are not Aspergers become so"
“It is relaxing for me to do this stuff, I don’t think while I am working, I have less
pressure"

Table 6.9: Some quotes collected from the ASD participants during the live note-taking
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Several factors triggered nervousness in participants, including long cobot pauses lead-
ing to inactivity, work disruptions from phone notifications, repeated cobot failures in
detecting components, and the inability to finish the shift by completing the opened com-
ponent box or all the components on the table.

Boredom or tiredness manifested through behaviors like puffing, slumping on the table,
yawning, or sighing. Happiness was expressed through smiles, enjoying music, dancing,
giggling, and humming. A sense of safety and comfort near the cobot was also observed.
In some cases, participants exhibited fear by jumping when the cobot approached them.

Inference

The analysis of persona cards revealed diverse behavioral patterns in participants with
ASD interacting with a cobot. Many of these patterns were captured by the observational
grid. Therefore, this analysis further validates the findings from the observational grid
regarding the ASD participants.

6.6 Quantitative Analysis

Building on the qualitative insights from Section 6.5, this section delves into quantita-
tive comparisons of behavioral and performance patterns between neurotypical and ASD
groups. By leveraging the NOVA annotations, the time spent by each group on various
actions were assessed and compared.

6.6.1 Cobot Wait Duration

One of the key quantitative measures that differed significantly between the two groups
was the cobot’s waiting time. As mentioned in the qualitative analysis (Section 6.5), par-
ticipants with ASD generally displayed a lower sense of urgency when responding to the
cobot’s waiting action.

To quantify this observation, the average waiting time experienced by the cobot was
calculated across all video sessions for each group. The results supported the qualitative
observations. On average, the cobot waited for neurotypical participants for only 20.7 sec-
onds per video. In contrast, participants with ASD caused the cobot to wait for an average
of nearly triple that duration, at 59.96 seconds per video. Figure 6.8 provides boxplots com-
paring the cobot’s waiting time across all annotated videos for both groups. This visual
representation helps in understanding the distribution of the cobot’s waiting times within
each group.

Statistical tests were conducted to determine if this difference was statistically signifi-
cant. First, the mean cobot waiting durations for all participants were visualized using Q-Q
plots. This analysis revealed that the data did not follow a normal distribution, violating an
assumption for the commonly used independent samples t-test. Given the non-normal dis-
tribution of the data, the Mann-Whitney U test, a non-parametric alternative to the t-test,
was chosen. This test confirmed a statistically significant difference in the cobot’s waiting
time between the two groups (U = 11.0, p = 0.016). This finding quantitatively supports
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Figure 6.8: Box plot distributions of cobot wait durations for neurotypical and ASD groups.
The x symbol in each distribution denotes the respective mean point.

the qualitative observation of a potentially lower sense of urgency among participants with
ASD in attending to the cobot.

6.6.2 Gaze Duration and Gaze Continuity

The qualitative analysis suggested potential differences in how the two groups gazed at the
cobot. This part of the analysis investigates these observations quantitatively, focusing on
gaze patterns.

The analysis confirmed a significant difference in the amount of time participants spent
looking at the cobot (Figure 6.9). On average, neurotypical participants gazed at the cobot
for 52.02 seconds per video, whereas participants with ASD spent only 28.07 seconds per
video looking at the cobot. This indicates that neurotypical participants exhibited nearly
double the visual attention to the cobot compared to the ASD group.

Beyond gaze duration, the analysis also considered the duration of uninterrupted gaze
contact with the cobot. Here, neurotypical participants again displayed a distinct pattern.
They tended to have longer periods of continuous gaze towards the cobot, while partic-
ipants with ASD exhibited shorter gaze durations and looked away more frequently. To
quantify this disparity, the maximum duration of uninterrupted gaze contact was com-
puted for each participant across all sessions. The average maximum gaze contact for
participants with ASD was 7.93 seconds per video, compared to 12.49 seconds per video
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Figure 6.9: Box plots of durations of look robot action for neurotypical and ASD groups. The x
symbol in each distribution denotes the respective mean point.

for neurotypical participants. These findings regarding gaze duration align with previ-
ous research by Damm et al. [2013] who observed a significant decrease in sustained gaze
towards social robots among individuals with ASD over time.

Similar to the cobot’s waiting time analysis, Q-Q plots were generated to assess the
normality of the data for both look-at-cobot duration and maximum gaze contact duration.
Neither measure followed a normal distribution, necessitating the use of non-parametric
tests. The Mann-Whitney U test revealed a statistically significant difference in look-at-
cobot duration between the groups (U = 15.0, p = 0.042). However, the maximum gaze
contact duration yielded only a trend-level significance or p-value less than 0.1 (U = 19.0,
p = 0.095). This suggests that a larger sample size might be necessary to detect potentially
smaller effects in maximum gaze contact duration.

6.6.3 Performance

This section examines the performance data collected throughout the week-long experi-
ment, revealing additional distinctions between the neurotypical and ASD groups.

The number of hourly assemblies for the neurotypical group (see Figure 6.10) exhibits a
clear upward trend in performance for all participants. This is reflected in a 15% increase in
the average performance index over the week (from 29.08 assemblies/hour on Monday to
33.43 assemblies/hour on Friday). Additionally, they seem to converge towards a common
performance level. The daily standard deviations based on individual performance scores
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Figure 6.10: The plots represent the average (top) and standard deviation (bottom) of perfor-
mance data (assemblies/hour) for neurotypical and ASD groups.
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steadily decrease from 3.95 to 1.73, suggesting a collective improvement and convergence
towards a similar level of performance by the end of the week.

The hourly assemblies of the ASD group (see Figure 6.10) also show a moderately in-
creasing performance trend over the week (around 9% increase, from 27.59 to 30.11 assem-
blies/hour). However, unlike the neurotypical group, individual performance trends within
the ASD group are more spread out, with no apparent convergence or divergence during
the experiment. Daily standard deviations for the ASD group also remain relatively stable,
ranging between 5.75 and 6.52, indicating less consistency in performance levels compared
to the neurotypical group.

Interestingly, both the best and worst performers across all participants belonged to
the ASD group. As seen from Figure 6.11, the performance range for the neurotypical
group spanned between 24.57 and 38.75 assemblies/hour, while the ASD group exhibited a
wider range of 19.50 to 41.74 assemblies/hour. This wider range aligns with the qualitative
observations of greater behavioral variability within the ASD group compared to the more
homogeneous neurotypical group.

To formally compare the two groups, the normality of the performance data was veri-
fied using Q-Q plots and Shapiro-Wilk tests (NT: p = 0.490, ASD: p = 0.094). Since the data
for both groups appeared to be normally distributed, an ANCOVA test was conducted to
analyze the influence of time and groupmembership on the collected performance indexes.
This test confirmed a statistically significant difference between the two groups (F = 4.85,
p = 0.010).

6.6.4 Impact of Downtime

To explore the potential relationship between downtime and performance, Figure 6.12
presents daily downtime trends for each participant. The plot on the left side shows data
for the neurotypical group, while the plot on the right side shows data for the ASD group.

In this case, downtime includes both participant-initiated breaks and unexpected sys-
tem pauses. Downtime could influence the level of fatigue, which in turn may affect the
performance. However, examining the individual trends for both performance and down-
time across participants reveals no clear correlation. For example, participant 3011004
(chosen due to their variable downtime) experienced a considerable increase in downtime
followed by improved performance. Then, this participant had a substantial decrease in
downtime followed by another performance increase. This lack of correlation between
downtime and performance holds true for most participants, and similar conclusions can
be drawn when examining their data. These observations suggest that the duration of
downtime may not be a major factor influencing performance.

6.7 Insights

The qualitative and quantitative analyses complemented each other, reinforcing the find-
ings. The following three behavioral patterns stand out as they emerged consistently in
qualitative and quantitative measures.
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Figure 6.11: The plots visualize the performance data (assemblies/hour) for both neurotypical
(top) and ASD (bottom) groups. Each line in the plot represents the assembly rate for a par-
ticipant during the week.
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Figure 6.12: The plots visualize the downtime durations for both neurotypical (top) and ASD
(bottom) groups. Each line in the plot represents the downtimes for a participant during the
week.
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• Tiredness/Boredom: Both neurotypical and ASD participants exhibited cues ex-
pressing tiredness or boredom. This state was probably caused by the disparity in
the production rates of the participants and the cobot. The cobot was slower than
the participants in assembling the individual sub-assembly, which led to participants
waiting for a considerable amount of time. As the participants got more familiar with
the task over the week, the manifestations of tiredness and boredom also increased.

• Cobot Priority: Participants with ASD exhibited a lower urgency in responding
to the cobot’s waiting action, often completing other tasks before attending to the
cobot. This behavior led to longer waiting times for the cobot. This observation
aligns with the findings of Murin et al. [2016], who observed task prioritization dif-
ficulties in ASD individuals. Conversely, neurotypical participants prioritized the
cobot and the joint activity, resulting in minimal cobot waiting times. This differ-
ence in cobot prioritization likely impacted assembly performance, with the ASD
group completing fewer assemblies on average.

• Gaze Behaviors: Both groups displayed a tendency to look at the robot, but the
duration of gaze differed. Zhang et al. [2017] suggest that gaze information can en-
hance synchrony and communication in human-human collaboration. However, in
this study, the intention behind the participant’s gaze could not be discerned from
the current data. Gaze could signal task completion to the cobot, facilitating syn-
chronization. It could also indicate that the participants were monitoring the cobot’s
actions.

• Assembly Routines and Performance: Both groups generally improved their assem-
bly performance over theweek, with a steeper improvement rate for the neurotypical
group. This suggests a learning curve for both groups initially, followed by optimiza-
tion of work patterns (e.g., multitasking) by the neurotypical group in the latter days
to achieve a better performance. This is further supported by the convergence of the
neurotypical group towards a common performance index, reflecting a saturation
point based on the task setup. Conversely, the ASD participants more or less main-
tained their working patterns, limiting their performance to the inherent efficiency
of their initially chosen strategies.

6.8 Reflections and Remarks

This chapter presented an exploratory study that identified behavioral patterns in neu-
rotypical and ASD participants collaborating with a cobot. The study analyzed the data
collected from eight individuals from each group during a week-long experimental session.
Some key differences emerged between the two groups including cobot prioritization, gaze
patterns, and multitasking. Notably, while these findings align with existing research on
how ASD individuals navigate social settings, it is interesting to observe similar patterns
emerging in a context that is not overtly social, lacking human or humanoid interaction.

The study outcomes hold significant implications for Industry 5.0. A specific ASD par-
ticipant outperforming their neurotypical counterparts highlights the immense potential
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for inclusivity within Industry 5.0 workplaces. The findings also hint that solutions de-
signed for the neurotypical population may not effectively meet the needs of individuals
with ASD. A personalized approach that caters to individual traits and preferences is cru-
cial, particularly in designing adaptive cobot behaviors and balancing task loads.

It is important to note that the research design did not explicitly elicit responses to
specific scenarios, such as cobot mistakes or handling stressful situations. These situa-
tions can significantly impact participants’ responses and behaviors, and warrant further
investigation.

Several key findings of this chapter form the foundation for the research presented
in the subsequent chapters. The production rate of the collaborating partners (cobot and
operator) is a crucial aspect to be considered in shaping the collaboration experience. For
example, long periods of waiting could result in the experience of boredom and tiredness.
This aspect is exploited in Chapter 7 to study the states like boredom, anxiety, and flow.
Another interesting aspect to consider is gaze behaviors in HRC settings and how they can
be used to facilitate collaboration. Chapter 8 delves deeper into this topic, examining the
potential of cobot adaptations based on gaze cues.

Moreover, a subset of the annotated video data used in the quantitative analysis of
this chapter was leveraged for an additional purpose. Chapter 3 presents an assessment
of the applicability of an attention recognition model in industrial HRC settings using this
dataset.
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Chapter 7

Flow in Industrial HRC

Figure 7.1: A comic strip illustration of how perceived challenge detection can improve the
collaboration experience in an industrial scenario. In this situation, the operator experiences
boredom due to the low challenge level of the current task. The cobot detects the low perceived
challenge and modifies the challenge level of the task to facilitate the experience of flow.
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7.1 Overview

This chapter explores flow, a state of optimal experience characterized by high engage-
ment, control, and immersion [Csikszentmihalyi, 1975, 2020; Nakamura and Csikszent-
mihalyi, 2002], in industrial Human-Robot Collaboration (HRC) settings. As mention in
Chapter 2, the balance between challenge level of the task and skill of the individual is
a necessary condition for experiencing flow state. Flow has been extensively studied in
various domains such as sports [Stamatelopoulou et al., 2018], education [dos Santos et al.,
2018; Pearce, 2005], and gaming [Nah et al., 2014], but its application in industrial contexts
remains relatively unexplored. Flow is particularly relevant to industrial HRC due to its po-
tential to enhance worker well-being, performance, and job satisfaction [Csikszentmihalyi,
2020; Maeran and Cangiano, 2013; Fullagar et al., 2018; Christandl et al., 2018; Peifer et al.,
2020; Peifer andWolters, 2021]. When workers experience flow in collaborative tasks, they
are more likely to be engaged, focused, and make fewer errors. This can lead to improved
productivity, reduced stress, and a more positive work environment. Figure 7.1 depicts a
hypothetical industrial HRC scenario where the cobot adapts task difficulty to maximize
flow among cobot workers.

This chapter investigates the perceived challenge levels and their corresponding emo-
tional and physiological responses in an industrial assembly task involving a cobot. Facial
emotion estimation (valence and arousal) and heart rate variability are explored as poten-
tial indicators of perceived challenge levels. A predictive model was developed to estimate
perceived challenge levels based on these indicators. The findings of this chapter could be
used to develop adaptive HRC systems that automatically adjust task difficulty to match
the perceived challenge levels of individual workers, fostering optimal worker experiences
and enhancing productivity.

The contents of this chapter including the setup, analyses, and models have been pre-
sented previously in:

∗ P. Prajod, M. Lavit Nicora, M. Mondellini, M. M. Falerni, R. Vertechy, M. Malosio, and
E. André. Flow in human-robot collaboration—Multimodal analysis and perceived
challenge detection in industrial scenarios. Frontiers in Robotics and AI, 11:1393795,
2024a

[ I contributed significantly to the study design and formulation of the hypotheses. I
also performed data processing, feature engineering, and development of the machine
learning models. Furthermore, I conducted the analysis and derived insights. ]

∗ M. Mondellini, M. L. Nicora, P. Prajod, E. André, R. Vertechy, A. Antonietti, and
M. Malosio. Exploring the dynamics between cobot’s production rhythm, locus of
control and emotional state in a collaborative assembly scenario. In 2024 IEEE 4th
International Conference on Human-Machine Systems (ICHMS), pages 1–6. IEEE, 2024

[ I contributed significantly to the study design and formulation of the hypotheses. Ad-
ditionally, I contributed to selection of analysis tools. ]

∗ F. Nunnari, M. L. Nicora, P. Prajod, S. Beyrodt, L. Chehayeb, E. André, P. Gebhard,
M. Malosio, and D. Tsovaltzi. Understanding and mapping pleasure, arousal and

190



CHAPTER 7. FLOW IN INDUSTRIAL HRC

dominance social signals to robot-avatar behavior. In 2023 11th International Confer-
ence onAffective Computing and Intelligent InteractionWorkshops andDemos (ACIIW),
pages 1–8. IEEE, 2023

[ I trained the emotion recognition model and developed the data processing and detec-
tion pipeline. ]

∗ S. Beyrodt, M. L. Nicora, F. Nunnari, L. Chehayeb, P. Prajod, T. Schneeberger, E. An-
dré, M. Malosio, P. Gebhard, and D. Tsovaltzi. Socially interactive agents as cobot
avatars: Developing a model to support flow experiences and well-being in the work-
place. In Proceedings of the 23rd ACM International Conference on Intelligent Virtual
Agents, pages 1–8, 2023

[ I contributed to study design and selection of analysis tools. ]

7.2 Previous Works

7.2.1 Flow and Emotions

Flow has been linked to positive affective states such as enjoyment and engagement. Con-
versely, when the perceived challenge and individual skill level are mismatched, negative
emotions such as anxiety and boredom can arise. Previous research has explored the emo-
tional responses associated with flow, mapping the flow state in terms of valence, arousal,
and dominance. Valence reflects the pleasantness or unpleasantness of an emotional state,
arousal indicates the level of activation linked with an emotional response, and dominance
refers to perceived control over the emotional experience. The following literature, iden-
tified through a Scopus database search1, offers insights into the connection between flow
and various dimensions of emotion.

To investigate the connection between flow and emotional dimensions of valence and
arousal, Kivikangas [2006] utilized a digital game to induce flow experiences. Facial muscle
activity (measured through facial Electromyogram; facial EMG for short) and Electroder-
mal activity (EDA) were measured as proxies for valence and arousal, respectively. Specif-
ically, three facial muscles were monitored: the corrugator supercilii (CS) associated with
frowning (negative valence), the zygomaticus major (ZM) associated with smiling (positive
valence), and the orbicularis oculi (OO) associated with widened eyes (positive valence). As
expected, flow experiences exhibited a negative correlation with CS activity, suggesting a
decrease in negative emotions during flow. However, EDA, an indicator of arousal, surpris-
ingly revealed no link to flow. Additionally, results for ZM and OO muscles representing
positive valence remained inconclusive, possibly due to limitations in data measurements.

Building upon the previous work of Kivikangas, Nacke and Lindley [2008] also em-
ployed facial EMG and EDA to measure participants’ emotional responses while playing
games. They induced flow and boredom states from the three-channel model. They ob-
served that increasing the game challenge did not evoke frustration, but instead induced

1https://www.scopus.com/, Query: ( TITLE-ABS-KEY ( ( emotion OR affect ) AND ( valence OR
arousal OR dominance ) ) AND TITLE ( flow ) )
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feelings of enjoyment due to engaging gameplay. Interestingly, they observed contrast-
ing results compared to Kivikangas, revealing significant differences in EDA, ZM, and OO
muscle activations. Their findings suggest that flowmanifests as a state of positive valence
with high arousal. However, the authors acknowledged that their study was limited to a
specific demographic of male experienced gamers, potentially limiting the generalizability
of the findings.

Gilroy et al. [2009] explored the relationship between flow and emotion dimensions
by utilizing an augmented reality interactive art installation. Their focus was to map the
flow experience onto the dimensions of arousal and dominance. They proposed that both
anxiety and boredom represent low-dominance states, with anxiety characterized by high
arousal and boredom by low arousal. In contrast, the flow experience was characterized as
a high-dominance, high-arousal state. While a preliminary study with limited participants
supported this proposed mapping, further investigation is needed to validate this model.

To explore whether social networking induces flow, Mauri et al. [2011] explored phys-
iological responses elicited by Facebook usage compared to relaxation induced by nature
slideshows, and stress induced by the Stroop test. Mapped onto the valence-arousal model,
they hypothesized relaxation as a positive-valence, low-arousal state, stress as a negative-
valence, high-arousal state, and Facebook usage resembling a flow state characterized by
high arousal and positive valence. To measure participants’ physiological responses, the
study gathered various signals including EDA, facial EMG, Blood Volume Pulse (BVP), and
pupil dilation. Focusing on the CS muscle activation as an indicator of valence and EDA as
an indicator of arousal, the authors plotted their findings onto the valence-arousal space.
Their data aligned with the hypothesized mapping, suggesting that Facebook usage indeed
occupied a region close to the high-arousal, positive-valence area associated with flow ex-
periences.

While the previous research suggested a positive relationship between flow and
arousal, Peifer et al. [2014] demonstrated an inverted U-shaped relationship. Their ar-
gument centered around the limitations of typical lab studies, which often utilized game-
based tasks that might not be perceived as personally relevant or stressful enough to induce
very high arousal states. To address this limitation, they employed a two-step approach.
Participants were first subjected to a socially stressful situation. They then engaged in a
computer task designed to induce boredom, anxiety, and flow states. They analyzed the
low-frequency (LF) and high-frequency (HF) components of Heart Rate Variability (HRV)
as indicators of arousal and relaxation. Their findings confirmed an inverted U-shaped
relationship, with flow occupying a state of moderate arousal between the boredom and
anxiety extremes.

Figure 7.2 depicts the positioning of boredom, anxiety, and flow states within the
valence-arousal-dominance scales, as derived from the literature. Flow is characterized by
high dominance and positive valence, distinguishing it from boredom and anxiety, which
are associated with low dominance and negative valence. The distinction between bore-
dom and anxiety is further refined by considering the arousal dimension. This visualiza-
tion, supported by aforementioned studies, underscores the effectiveness of using two-
dimensional models like valence-arousal or arousal-dominance to differentiate between
boredom, anxiety, and flow experiences.
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Figure 7.2: A visualization of how flow, boredom, and anxiety map onto the dimensions of
valence, arousal, and dominance, based on existing research. The copyright remains with the
authors [Prajod et al., 2024a].

7.2.2 Flow and HRV features

Numerous studies Knierim et al. [2018]; Khoshnoud et al. [2020] have explored the flow
experience using different physiological signals, such as HRV, EDA, and respiration. This
interest stems from the relationship between flow and arousal (see Figure 7.2), making
physiological responses promising modalities for investigation. This investigation is par-
ticularly crucial for the automatic detection of flow.

Although EDA appears as a prevalent measure of arousal in the works discussed in
Section 7.2.1, recent research investigates HRV as an alternative. This is plausibly due to
its superior discriminating power for flow detection Knierim et al. [2018]. Additionally,
findings in the next section (Section 7.2.3) suggest that incorporating EDA doesn’t neces-
sarily enhance flow detection performance. Therefore, this chapter primarily focuses on
the relationship between flow and HRV.

Flow is linked to the activity of the autonomic nervous system (ANS), which reg-
ulates various bodily functions. Sympathetic activation of the ANS results in arousal,
while parasympathetic activation leads to relaxation. Notably, sympathetic activation in-
creases heart rate, while parasympathetic activation is associated with a decrease in heart
rate [Pham et al., 2021]. Both sympathetic activation and parasympathetic activation of
the ANS have been associated with the different experiences of the three-channel Flow
model [Knierim et al., 2018]. As HRV features effectively capture both types of ANS acti-
vation, they are well-suited for analyzing experiences within the three-channel flowmodel.
In particular, the flow state is often characterized by increased heart rate and reduced inter-
beat intervals or mean HRV Tian et al. [2017]. This section discusses relevant literature
identified through a Scopus database search2, specifically focusing on works that investi-
gated the relationship between flow and HRV features.

2https://www.scopus.com/, Query: ( TITLE-ABS-KEY ( ( experience OR state ) AND ( "heart rate
variability" OR hrv ) ) AND TITLE ( flow ) )
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As one of the early investigations into physiological responses to flow, deManzano et al.
[2010] examined various physiological signals in professional pianists, including HRV (de-
rived from BVP), facial EMG, and respiration. They analyzed mean HRV and power spec-
trum features (LF/HF ratio, total power), and found significant correlations between flow
intensity and all three features. Notably, mean HRV showed an inverse relationship with
flow, suggesting that HRV decreased with an increase in flow. Conversely, frequency fea-
tures showed a positive correlation with flow. These findings were interpreted as evidence
supporting a relative increase in sympathetic activation during flow, indicating heightened
arousal.

Expanding on the research conducted by de Manzano et al., Jha et al. [2022] investi-
gated the HRV responses of pianists before, during, and after a performance. Their anal-
ysis focused on the low- and high-frequency components of the HRV signal derived from
Electrocardiogram (ECG) data. They found that lower sympathetic activity before the per-
formance, as indicated by the LF/HF ratio and LF, predicted peak flow, suggesting a relaxed
pre-performance state is crucial for experiencing flow during the performance. Addition-
ally, similar to de Manzano et al., they also found a trend towards a positive correlation
between LF/HF ratio and flow, indicating a link between sympathetic activity or arousal
and the flow state.

Investigating the relationship between mental load and physiological responses, Keller
et al. [2011] studied how HRV features varied during underload, overload, and fit condi-
tions of a computerized quiz game. They collected ECG data and measured cortisol levels
as markers of stress. As expected, the underload condition with the lowest mental load
showed the highest HRV. Although the fit condition showed decreased HRV compared to
the underload condition, this decrease could represent either high engagement or mental
strain. To discern between the two possibilities, cortisol levels were analyzed. Interest-
ingly, despite participants reporting subjective flow experiences in the fit condition, their
cortisol levels were comparable to those observed in the overload condition.

Similarly, Peifer et al. [2014] studied the flow experience under stressful conditions uti-
lizing a computerized game. They analyzed low-frequency (LF) and high-frequency (HF)
components of HRV as indicators of sympathetic and parasympathetic activity, respec-
tively. The LF component showed an inverted U-shaped relationship with flow experience,
suggesting a moderate arousal for flow. Additionally, HF showed a positive linear associa-
tion with flow, indicating increased relaxation. These findings further corroborate the idea
that both sympathetic and parasympathetic activities contribute to flow experiences.

Expanding on previous research, several studies have utilized games featuring vary-
ing challenge levels (underload, overload, and fit) to explore the physiological responses
associated with the flow experience. They measured multiple physiological signals and
correlated them to the experience of flow. Given the similarity in the outcomes of HRV
analyses across these studies, they are collectively summarized below.

While Harmat et al. [2015] observed that flow was associated with low LF, their results
lacked statistical significance. However other studies like Bian et al. [2016], Tian et al.
[2017], and de Sampaio Barros et al. [2018] found a linear relationship between difficulty
level and both heart rate (lowest for underload, highest for overload) and mean HRV (high-
est for underload, lowest for overload), indicating arousal due to sympathetic activation.
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Additionally, Bian et al. found an inverted U relationship between flow and both LF and
HF components of HRV.

Following a similar approach to video game studies, Tozman et al. [2015] examined the
link between HRV and flow states using a virtual driving simulator with varying difficulty
levels (boredom, anxiety, and optimal challenge). In addition to the driving challenge, they
also incorporated a social evaluation stressor into the anxiety condition. They collected
ECG data of the participants and analyzed the LF and HF components of the derived HRV
signal. They found higher task difficulty led to decreased LF, with the highest levels ob-
served during boredom, moderate during the fit condition, and lowest during anxiety. A
similar negative linear relationship was observed between flow and HF spectrum compo-
nents. While the decrease in parasympathetic activity (lower HF, lower relaxation) with
higher difficulty aligns with expectations, the decrease in sympathetic activity (lower LF,
lower arousal) contradicts some existing literature that associates flow with arousal. The
authors note that LF can be interpreted as a measure of baroreflex activity, a feedback
mechanism through which the body adjusts heart rate in response to sudden changes in
blood pressure, both decreasing it when pressure rises and vice versa.

Expanding beyond lab settings, Gaggioli et al. [2013] investigated flow experiences
within the daily lives of university students. Leveraging aweek-long study, theymonitored
students’ ECG data and revealed connections between flow and specific HRV features.
Notably, they found positive correlations between flow experiences and both heart rate and
LF/HF ratio. These increases suggest a relative increase in sympathetic activation, aligning
with lab studies suggesting arousal during flow. However, their study lacked analysis of the
nature of the activities participants engaged in or the type of challenge (mental, physical,
etc.).

Emulating a real-world scenario, Knierim et al. [2019] explored the experience of flow
in knowledge tasks. They used arithmetic with three difficulty levels (boredom, flow, over-
load) and scientific writing as the knowledge tasks. They computed two ECG-based HRV
features: RMSSD (lower value indicates higher stress) and HF. In the arithmetic task, the
flow condition showed higher RMSSD compared to overload, indicating lower stress. They
also observed a trend-level decrease in HF with the increase in challenge, consistent with
the literature. However, the writing task did not exhibit these patterns. Interestingly, both
RMSSD and HF were consistently lower in the writing task compared to the arithmetic
task, suggesting a potentially higher arousal state. This study highlights that even similar
knowledge tasks can evoke different flow experiences and physiological responses.

Most studies investigating flow primarily focus on mentally demanding tasks and often
analyze HRV features such as heart rate, mean HRV, LF, and HF. Heart rate often correlates
positively with task challenge, while meanHRV exhibits a negative linear relationship. The
HF component is typically associated with parasympathetic activity and the others with
sympathetic activation. However, findings regarding the relationship between flow expe-
rience and frequency components vary across studies, likely due to differences in study
design [Knierim et al., 2019].
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Paper Scenario Relating HRV features

de Manzano et al. [2010] Piano mean HRV, LF/HF,
total power

Jha et al. [2022] Piano LF, HF, LF/HF

Keller et al. [2011] Game mean HRV

Peifer et al. [2014] Game LF, HF

Harmat et al. [2015] Game LF

Bian et al. [2016] Game HR, mean HRV, LF, HF

Tian et al. [2017] Game HR, mean HRV

de Sampaio Barros et al. [2018] Game HR, mean HRV

Tozman et al. [2015] Driving
simulator LF, HF

Gaggioli et al. [2013] Daily student
activities HR, LF/HF

Knierim et al. [2019] Knowledge
tasks RMSSD, HF

Prajod et al. [2024a]* HRC
13 features, delved into
HR, mean HRV, LF, HF

Table 7.1: An overview of works that linked flow experience and HRV features. The entry
marked with * is expanded in the subsequent sections of this chapter.

7.2.3 Flow Detection at Workplace

Some studies have introduced automatic flow detection models utilizing physiological sig-
nals within gaming contexts [Khoshnoud et al., 2020]. These models typically induce vary-
ing levels of difficulty or challenge in the game and classify the corresponding physiological
data. Recently, some studies have extended this approach to activities within workplace
settings. The following works were identified through a Scopus literature search3 for stud-
ies that trained machine learning models for predicting flow at work.

For instance, Müller and Fritz [2015] investigated the feasibility of predicting whether
programmers were “stuck" or adequately progressing during software development tasks.
They considered a high-progress rating as an indicator of being in the flow state. They
employed a multimodal approach, collecting various physiological signals including HRV
(derived from BVP), Electroencephalogram (EEG), pupil features, and EDA. Utilizing these

3https://www.scopus.com/, Query: ( TITLE-ABS-KEY ( ( “at work" OR worker OR workplace OR
employee ) AND ( detect* OR recogni* OR classif* ) AND ( “deep learning" OR ml OR “machine learning" OR
network ) ) AND TITLE ( flow ) )
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signals, they trained a machine learning classifier to distinguish between low-progress and
high-progress instances, achieving an accuracy of 63.35% in leave-one-subject-out (LOSO)
evaluations.

Similarly, Lee [2020] employed a multimodal approach, utilizing physiological signals
like HRV (derived from BVP), EDA, and pupil diameter. The study, conducted in a con-
trolled lab setting, involved researchers and graduate students engaging in diverse knowl-
edge tasks such as editing spreadsheets, reading and summarizing text, and answering
patent questions. Features extracted from the physiological signals were used to train var-
ious machine learning models for a variety of classification tasks including flow recog-
nition and working state detection. Notably, the binary classifier for distinguishing flow
from non-flow states achieved an AUC of 0.889 in LOSO evaluations.

Further investigating the applicability of flow detection models in a workplace, Rissler
et al. [2020] introduced machine learning models to classify low-flow and high-flow in-
stances. They relied solely on ECG-derived HRV features for training their models. They
conducted two experiments: a controlled lab study with an invoice-matching task involv-
ing varying difficulty levels, and an in-the-field study with software developers performing
their regular tasks. Their model achieved an accuracy of 68.5% in the lab setting and even
higher (70.6%) in the real-world study, demonstrating the potential for automatic flow de-
tection in actual workplace environments.

Further building upon the concept of in-the-field models, Di Lascio et al. [2021] ex-
plored the use of physiological signals (BVP, EDA) alongside contextual information to
predict low-flow and high-flow instances. Their study recorded the physiological signals of
university employees (professors, researchers, PhDs) during various daily activities. While
individual modalities like HRV offered promising accuracy (67.46%), the most successful
model achieved an accuracy of 70.93% by fusing raw BVP, EDA, and contextual informa-
tion. However, despite the availability of additional modalities, the accuracy of their best
model was comparable to the HRV-only model from Rissler et al..

The studies discussed thus far showcase the potential of flow detection in work set-
tings. However, they primarily focus on mentally demanding tasks like knowledge work
and software development and often involve specific participant groups like researchers
or graduate students. These characteristics may not directly translate to the industrial
scenario, where tasks and participant demographics differ significantly.

7.2.4 Research Gaps

Through the above literature review, the following research gaps are identified, primarily
stemming from the lack of research on the experience of flow in the HRC context. The
experiments described in this chapter were designed to address these gaps.

• Facial emotion estimations as indicators of flow: Previous research (Section 7.2.1)
linked the three-channel flowmodel to the valence-arousal-dominance emotional di-
mensions, suggesting that flow states can be characterized by arousal combined with
either valence or dominance. Moreover, some works have used facial EMG features
as a measure of valence. Recent advancements in affective computing have enabled
the estimation of emotional dimensions, especially valence and arousal, from facial
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Paper Demand Physiological signals Accuracy
Müller and Fritz [2015] Mental BVP, EEG, EDA, Pupil 63.35%

Lee [2020] Mental BVP, EDA, Pupil —

Rissler et al. [2020] Mental ECG 70.6%

Di Lascio et al. [2021] Mental BVP, EDA, Context 70.93%

Prajod et al. [2024a]* Physical,
Temporal

ECG 70.7%

Table 7.2: An overview of works on flow detection in the workplace. The entry marked with *
is expanded in the subsequent sections of this chapter.

images. However, although these methods are non-intrusive, they are seldom em-
ployed in flow detection. A notable exception was the work by Burns and Tulip
[2017]), who analyzed facial expressions (valence and arousal) during a video game
with varying challenge levels. Given the limited existing research, further investiga-
tion is necessary to assess the effectiveness of facial emotion estimation methods in
identifying flow states, especially within HRC settings.

• HRV features as indicators of flow: Previous research (see Section 7.2.2) has exten-
sively explored the relationship between HRV and the three-channel flow model. As
highlighted by Table 7.1 existing research focuses on tasks where challenge is in-
duced primarily through mental load. However, industrial HRC often involves tasks
with significant physical demands and time pressure, raising questions about the
applicability of these findings. Specifically, it remains unclear whether similar HRV
responses are elicited when challenges arise from factors beyond mental demand.

• Automatic flow recognition: The literature survey presented in Section 7.2.3 reveals
that there are few studies that developed machine learning models for flow detection
in the workplace. Moreover, similar to HRV analysis, these studies also primarily
focus on mentally demanding tasks (see Table 7.2). However, the task challenges
in HRC extend far beyond mental load, encompassing factors such as cobot speed,
production rate, and interaction dynamics. This gap is further compounded by the
lack of understanding about which flow-related states are most critical to detect in
HRC settings. Hence, there is a need to train flow recognition models specifically
tailored for HRC scenarios, with the aim of adapting scenario-specific parameters to
facilitate flow experiences.

7.3 Balancing Challenge and Skill

Repetitive and fixed procedures are common characteristics of assembly tasks in industrial
settings. Workers typically gain proficiency in these tasks, leading to stable individual
skill levels over time. This trend was observed in the analyses of the week-long study
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described in Chapter 6. Consequently, the perceived challenge level of the task becomes
the primary determinant of the flow experience. Recognizing that flow emerges when
perceived challenge aligns with skill level, the goal is to develop adaptive task systems
that dynamically adjust challenge levels to foster flow among cobot workers.

Previous research in HRC [Kulić and Croft, 2007; Arai et al., 2010; Koppenborg et al.,
2017; Kühnlenz et al., 2018; Gervasi et al., 2022; Zakeri et al., 2023] has studied the effects
of robot movement speed and proximity on operators’ stress and anxiety levels. However,
these factors have not been shown to elicit boredom and flow. Insights from Chapter 6
revealed that production rate could potentially induce boredom and flow, in addition to
anxiety. The procedure employed to evoke these states is detailed in the following subsec-
tions.

7.3.1 Setup and Assembly Task

The experiment takes place in a controlled laboratory setting designed to resemble an in-
dustrial collaborative robotic work cell. The setup and assembly tasks were largely similar
to Chapter 6. However, slight adjustments were implemented to facilitate control over
the cobot’s production rate. Unlike Chapter 6 where the cobot assembled its own sub-
assemblies alongside the participant, this study employed pre-assembled sub-assemblies
readily available for the cobot to pick and deliver. This choice enabled manipulation of the
cobot’s production rate across various experimental conditions.

Task

The collaborative assembly task involves both the participant and the cobot working to-
gether to build a planetary gearbox (see Chapter 6). While the participant assembles
half the components following specific instructions, the cobot delivers pre-assembled sub-
assemblies at the designated collaboration area. The final step involves a joint activity,
where the cobot and participant mesh the sub-assemblies together. However, to ensure
experimental control, the participants were asked to assemble one product at a time, i.e.,
completing the current production cycle before starting the next sub-assembly.

Layout

The layout of the experimental setup is same as Chapter 6, except three notable differ-
ences: pre-assembled sub-assemblies, fixed position of participant’s component box, and
dedicated experimenter space. The layout consisted of an L-shaped table divided into des-
ignated areas for the participant and the cobot, as depicted in Figure 7.3. The participant’s
side served as their dedicated assembly area, while the cobot’s side held a readily acces-
sible matrix of pre-assembled sub-assemblies. Like in the previous chapter, the cobot was
positioned at the corner of the L-shaped table, allowing access to both the participant (for
joint activity) and the sub-assemblies. A Logitech C920 Pro HD webcam was positioned
approximately 1.5 meters in front of the participant.

In Chapter 6, the participants could choose where to keep the box with the assembly
parts, potentially impacting production cycle time due to varying proximity. To mitigate
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Figure 7.3: An overview of the experimental setup. On the top is an illustration of the layout
of the setup, which is similar to Chapter 6 with some minor differences. On the bottom is the
side view of a participant engaged in the assembly task. The dedicated front camera records
the participant’s face video during the experimental sessions. Additionally, a chest band worn
by the participant (not visible) records ECG data. The layout illustration was created specially
for this thesis; the copyright of participant’s side view (bottom image) remains with the au-
thors [Prajod et al., 2024a].
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this factor in the current study, the box was positioned fixed at the left of each participant,
ensuring consistency and minimizing timing variations arising from individual placement
choices.

A dedicated area was designated for the experimenter on the left side of the partici-
pant’s workspace (see Figure 7.3). This location provided a full view of the setup, allowing
the experimenter to monitor the participant’s progress and the cobot’s activity. Addition-
ally, the experimenter had access to a laptop for controlling the cobot’s production rate in
real-time.

Cobot capabilities

During the study, the participants collaborated with a Fanuc CRX-10iA/L cobot, an indus-
trial robotic arm with a payload of 10 kg. The cobot was equipped with a Pickit3D camera
for locating pre-assembled sub-assemblies within its workspace. It also utilized a Robotiq
Hand-e gripper to pick up and manipulate the sub-assemblies during the collaborative as-
sembly task. Within each production cycle, the cobot assists the participant by presenting
a pre-assembled part in a convenient position for the final collaborative activity: meshing
sub-assemblies. The cobot was programmed to release the sub-assembly only when the
participant pressed a foot switch. Additionally, the cobot performed a scanning motion
over the sub-assemblies when it was not actively engaged in the collaborative assembly.

7.3.2 Controlled Conditions

The insights gained from Chapter 6 revealed three distinct scenarios based on the produc-
tion rates of the participant and the cobot: participant waiting for the cobot, cobot waiting
for the participant, and synchronized assembly. These scenarios were translated into three
distinct challenge levels of the assembly task, designed to evoke the states in the three-
channel Flow model. Cobot behavior was modified to achieve these three challenge levels,
as described below.

1. Slow condition: During this condition, the cobot performed a scanningmotion using
its wrist-mounted camera over the sub-assembly matrix before selecting and deliv-
ering one to the participant. This process extended the production cycle, resulting
in an average time of 55 seconds from the start of the cycle to the cobot being ready
for the joint activity.

2. Fast condition: To create a contrasting experience, the scanning motion was elimi-
nated in the fast condition. The cobot proceeded directly to the next sub-assembly,
picked it up, and delivered it to the participant. This approach significantly reduced
the production cycle time, with an average of only 15 seconds before the cobot was
ready for the joint activity.

3. Adaptive condition: This condition utilized a “Wizard of Oz" methodology. The
cobot initially performed the scanning motion, but the timing of sub-assembly deliv-
ery was controlled by the experimenter acting as a wizard. The wizard triggered the
cobot to deliver a sub-assembly only when they deemed the participant was nearly
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ready for the joint activity. This eliminated a fixed timing for the cobot. This con-
dition aimed to synchronize the cobot’s delivery with the participant’s progress, dy-
namically adapting the production rate based on the participant’s pace.

7.4 Validating Imbalance Conditions — A Pilot Study

Due to the longer delivery time, the Slow condition is expected to create periods of waiting
and potentially lead to boredom. Conversely, the Fast condition’s reduced delivery time is
anticipated to create a demanding scenario, potentially inducing anxiety from perceived
time pressure and inability to match the cobot’s pace. In contrast, the Adaptive condi-
tion is designed to create an optimal challenge level by dynamically adjusting the cobot’s
production rate based on the participant’s pace.

To validate the experience of boredom and anxiety, a pilot study was conducted with
four participants. The study took place at Consiglio Nazionale delle Ricerche (CNR) - Lecco,
Italy, and participants were recruited from the institute’s campus.

7.4.1 Scenario

The pilot study began by introducing participants to the assembly task and providing them
with the necessary training. Each experimental session lasted approximately 50 minutes
and was divided into two phases. During the first phase, participants collaborated with
the cobot under the Slow condition. In the subsequent phase, the cobot functioned under
the Fast condition. To induce a more genuine response and authenticity, the transition
between these phases involved a simulated system failure. The cobot paused at the end of
the first phase, prompting the experimenter to respond to this “fake failure" by adjusting
the setup. Participants were then asked to adapt to the new pace of the cobot. The two
phases were recorded using a 1080p camera.

In the pilot study, validation was limited to the Slow and Fast conditions. This decision
stemmed from the empirical observation that states such as boredom and anxiety/stress are
usually triggered more quickly and within shorter sessions. Conversely, while achieving a
balance between challenge and skill is known to be conducive to flow, it does not ensure
the elicitation of flow.

7.4.2 Questionnaires and Interview

After the two phases, the participant moved to a separate room to review six video clips
from the experimental session. For each clip, participants completed two questionnaires:
the Semantic Differential [Mehrabian and Russell, 1974] for emotion assessment and the
Flow short scale [Rheinberg et al., 2003; Rheinberg, 2015]. The semantic differential scale
measured emotional experience in terms of valence, arousal, and dominance. Each dimen-
sion was assessed using six pairs of adjectives, with nine spaces between each pair. The
Flow short scale measures the flow experience using 10 components. Each component was
rated on a 7-point Likert scale from “strongly disagree" to “strongly agree". A high total
score suggests an intense experience of flow.
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Category Valence Arousal Dominance
Flow
Awe
Relaxed
Hopeful
Hostile
Anxious
U-Boredom/Disdain
O-Boredom/Apathy

Table 7.3: Categories used in coding interview data and their corresponding emotion dimen-
sions (Valence, Arousal, Dominance)

Additionally, a semi-structured interview was conducted, where the participants
shared the emotions experienced during the experimental session. The interview data was
analyzed using the deductive category assignment method [Mayring, 2014]. Eight emotion
categories were established by considering emotion dimensions (see Table 7.3), and these
categories were employed for coding the interview data. The questionnaire and interview
session lasted for approximately 45 minutes.

7.4.3 Analysis and Insights

Questionnaire Evaluation

The normalized valence, arousal, dominance, and flow values obtained from the question-
naires for each participant are presented in Figure 7.4. Some participants’ flow experiences
were more closely tied to specific emotional dimensions such as valence or arousal, while
others showed correlations with multiple emotional dimensions. Specifically, for Partici-
pant 1, valence and arousal appear to track the flow trend. Meanwhile, for Participant 2,
valence appears to best align with the flow trends. In contrast, for Participant 4, arousal
seems to most closely follow the flow trends. Although the trend following is not robust
for Participant 3, there appears to be a slight alignment with the flow trend, particularly
for arousal and dominance.

Interview Evaluation

In the pilot study, Participant 1 experienced a state of relaxation during the Slow condi-
tion but encountered a range of emotions, including anxiety and hostility, during the Fast
condition. They expressed feeling stressed due to the perceived responsibility for slowing
down the assembly. Eventually, in the Fast condition, Participant 1 adjusted their pace,
stating, “It’s enough for it to be repetitive; I don’t need it also to be to be fast".

Participant 2 described feelings of relaxation and u-boredom during the Slow phase but
mentioned being distracted, leading to assembly mistakes. Transitioning to the Fast phase,
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Figure 7.4: Plots illustrating the flow, valence, arousal, and dominance values acquired from
the questionnaires for each participant. Each data point on the graph represents the respective
dimension value for a working phase clip, resulting in a total of six points per participant for
each dimension.

the participant felt stressed by the cobot’s production rate. They reported thinking “[...]
this is my job and the robot is just a robot. So he has no feeling; he can wait. [...] also I had to
do the most difficult part like matching the gears, with the clips and stuff ". This reappraisal
of the situation led them to eventually operate at their own pace.

Similar to Participant 2, Participant 3 initially felt relaxed in the Slow condition, then
got distracted, and later experienced boredom. In the Fast condition, they did not increase
their production speed and reported that they “didn’t care anymore" about the task. The
participant could not identify a reason for this feeling of indifference.

Similar to other participants, Participant 4 also reported feeling relaxed in the Slow
condition. They did not feel rushed in the Fast condition because they thought “since the
number of movements that the machine had to do was smaller than what I had to do, [cobot]
was just completing the task earlier than me". The participant placed blame on the task giver
rather than themselves, expressing potential anger in real situations (“[...] especially if it
was in a real situation then I would have thought that the whole planning of the operation
was bad because even if I strived, I wouldn’t have managed to be so quick and be always on
time for the robot. So yeah, I would be angry in case it would always be like that").
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Insights

During the interview, the participants commonly reported feelings of relaxation (4 out of
4) and boredom (2 out of 4) in the Slow condition. Conversely, stress (2 out of 4), anxiety (1
out of 4), hostility (1 out of 4), and anger (1 out of 4) were associatedwith the Fast condition.
The interview data suggests that the Slow condition tends to evoke negative arousal states
such as relaxation and boredom, while the Fast condition elicits high arousal states like
stress and anxiety. Additionally, the Slow condition generally evokes positive dominance
emotions, while the Fast condition evokes negative dominance emotions. However, while
the Fast condition predominantly induces negative valence states, there is no clear pattern
for the Slow condition.

Participants tended to adjust their task pace after re-evaluating the situation during
the Fast condition, opting to operate at their own rhythm. This pattern is consistent with
observations in the flow plots (refer to Figure 7.4), where a higher level of flow is noted
during the later stages of the experimental session. This observation supports the inclusion
of the Adaptive condition, as it suggests that tailoring the collaboration to the participant’s
production rate may enhance their experience of flow.

7.5 Dataset Collection

Following the pilot study, the experimental setup was leveraged to gather data for analyz-
ing emotional and HRV responses across the three experimental conditions. Subsequently,
this data was utilized to develop models aimed at facilitating flow experiences in industrial
settings. A total of 37 adult volunteers participated in the study, consisting of 8 females and
29 males, with ages ranging from 18 to 48 years (mean = 29.03, SD = 7.08). Participants
were predominantly students and staff from National Research Council of Italy - Lecco
campus, with the majority being Italians (33 Italians, 4 non-Europeans). Recruitment was
conducted through word-of-mouth and advertisements in public areas. Notably, none of
the participants had prior experience working with an industrial cobot.

7.5.1 Study Protocol

The experiment began with a preparatory phase, during which participants were intro-
duced to the setup and task requirements. They received detailed information about data
collection procedures and were invited to provide informed consent, with the assurance
that they could opt out of the experiment at any time. Following consent, participants
provided demographic details and were instructed to wear a chest band for ECG data col-
lection. During this phase, participants were encouraged to practice the task until they felt
comfortable with the assembly steps. An experimenter was present in the room through-
out the experiment to address any technical issues and acted as the “Wizard" in the Adap-
tive condition. Fluent in both Italian and English, the experimenter provided instructions
and questionnaires in the participant’s preferred language. Interaction between the ex-
perimenter and participants was kept to a minimum, and participants were instructed to
refrain from providing feedback until the conclusion of the experiment.
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Figure 7.5: An overview of the experimental protocol consisting of three conditions (Slow, Fast,
Adaptive). To mitigate any ordering effect, the condition sequences were counterbalanced
among participants. The copyright remains with the authors [Prajod et al., 2024a].

As illustrated in Figure 7.5, the study employed a within-subjects design, where each
participant engaged in all three experimental conditions, separated by 5-minute breaks
between consecutive sessions. Each session had a duration of 15 minutes, during which
participants were involved in the continuous assembly of gearboxes alongside the cobot.
The sequence in which the three conditions were presented was randomized and balanced
to minimize any potential effects related to the order. During the breaks, participants filled
out questionnaires regarding their experience in the preceding session. After completing
all three sessions, participants were debriefed about the experiment. The study was con-
ducted according to the guidelines of the Declaration of Helsinki and approved by Com-
missione per l’Etica e l’Integrità nella Ricerca of the National Research Council of Italy
(protocol n. 0085720/2022 of 23/11/2022).

7.5.2 Data Acquisition Tools

After each condition, three questionnaires - NASA-TLX (Task Load IndeX), SAM (Self-
Assessment Manikin), ELoC (Experiential Locus of Control) - were administered to in-
vestigate how the task load and experiences differed across the experimental conditions.
Additionally, videos and ECG data were collected during the experimental sessions.

NASA-TLX

The NASA-TLX questionnaire [Hart and Staveland, 1988] includes six sub-scales that cap-
ture workload factors: Mental Demand, Physical Demand, Temporal Demand, Frustration,
Effort, and Performance. Participants rate each sub-scale on a scale ranging from 1 (very
low) to 20 (very high). This questionnaire was selected due to its ability to assess the type
of task load experienced by participants. As highlighted in Section 7.2.3, prior studies in
the literature have primarily focused on tasks with high mental demands. However, in this
case, the increased production rate of the cobot is expected to result in a higher number
of completed assemblies. Therefore, it is anticipated that the task load will primarily be
attributed to physical and temporal demands.
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SAM

The SAM questionnaire [Bradley and Lang, 1994] is widely employed to assess emotional
responses and subjective experiences. It utilizes pictorial representations to assess three
dimensions of emotion: Valence, Arousal, and Dominance. Participants provide ratings on
9-point Likert scales reflecting these dimensions. The Valence scale ranges from positive to
negative, while the Arousal scale spans from excitement to calmness, and the Dominance
scale ranges from low to high control. This questionnaire is a non-linguistic alternative to
the Semantic differential tool used in the pilot study [Bradley and Lang, 1994].

ELoC

The ELoC questionnaire [Jang et al., 2016] is designed to assess an individual’s perception
of control over their experiences and circumstances. It consists of three sub-scales adapted
from the Internal Control Index tool [Duttweiler, 1984], which measures the locus of con-
trol of an individual. Each sub-scale is rated on a 5-point Likert scale, where 1 corresponds
to “Completely Disagree" and 5 to “Completely Agree". The total score obtained on the
ELoC questionnaire can range from 3 to 15, where a higher score indicates a stronger in-
ternal control. This questionnaire was included in the data collection process because the
sense of control is considered an important indicator of flow.

Sensors - Videos and ECG

The videos of participants were captured using a frontal camera, recording at a resolution
of 1920 × 1080 pixels and a frame rate of 25 fps. An SSI [Wagner et al., 2013] pipeline was
employed to capture and store the videos.

The participants were instructed to wear a Polar H10 chest band to record their ECG
signals at a rate of 130 Hz. This chest band was connected wirelessly to an Android phone
via Bluetooth, enabling the signals to be received and stored using an SSJ pipeline [Damian
et al., 2018].

7.6 Analysis of Questionnaires

The participants’ subjective workload and experience were measured using NASA-TLX,
SAM, and ELoC questionnaires. Table 7.4 summarizes the mean response values for the
components of the questionnaires across the three conditions.

7.6.1 NASA-TLX

The subjective workload factors experienced by participants were assessed using the
NASA-TLX questionnaire. Analysis (see Table 7.4) revealed that the Fast condition, re-
sulted in higher workload scores for Effort, Mental demand, Physical demand, and Tem-
poral demand. Conversely, the Slow condition yielded the lowest perceived workload in
these categories. The differences in perceived temporal demandwere the most pronounced
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Category Slow Fast Adaptive
NASA-TLX (max 20)

Mental demand 4.81 6.35 4.95
Physical demand 4.59 6.84 5.05
Temporal demand 4.73 10.54 6.08
Effort 5.16 7.76 5.65
Performance 7.30 6.81 6.81
Frustration 5.35 5.35 4.27

SAM (max 9)
Valence 4.29 4.03 3.84
Arousal 6.84 6.35 6.77
Dominance 7.19 7.00 7.03

ELoC (max 15)
ELoC total 9.48 9.58 9.52

Table 7.4: The average responses to the NASA-TLX (on a 20-point scale), SAM (on a 9-point
scale), and ELoC (total 3 - 15) questionnaires recorded after each conditions

across the three experimental conditions. This observation aligns with the initial expecta-
tions regarding temporal and physical demands being impacted by the cobot’s production
rate. However, it is noteworthy that the cobot’s influence extended to other workload
dimensions as well.

Despite completing the most assemblies in the Fast condition, participants reported the
highest perceived performance in the Slow condition. This suggests a potential trade-off
between speed and accuracy or perceived competence. Additionally, the Adaptive condi-
tion stood out with the lowest frustration score, indicating a potential benefit of tailoring
the cobot’s production rhythm to individual needs.

7.6.2 SAM and EloC

The SAM questionnaire assessed participants’ emotional valence, arousal, and dominance
across the three conditions (see Table 7.4). Notably, dominance scores remained high across
all conditions, suggesting participants generally felt in control of their emotional expe-
rience. This implies the sessions did not induce significant instances of low-dominance
emotions like anxiety or apathy. Furthermore, consistently elevated arousal levels were
observed across conditions. While the specific reason for this remains unclear, it poten-
tially reflects a certain level of task engagement among participants. Despite slightly lower
average valence scores, these fall close to the absolute scale midpoint, indicating a more
neutral state rather than any significant negative emotions.

Interestingly, the questionnaire responses revealed no considerable differences in emo-
tional ratings between conditions. This suggests that despite varying workloads induced
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by the cobot’s production rate, participants’ overall emotional experiences remained com-
parable.

Similarly, the ELoC scores exhibited no notable variations across conditions (see Ta-
ble 7.4). This indicates that the participants’ perceived control over their actions and the
task remained relatively stable regardless of the cobot’s rhythm.

While varying cobot assistance impacted workload perception, these findings suggest
that such influences may not have directly translated into strong changes in participants’
overall emotional state or perceived control during the task.

7.7 Analysis of Emotion Estimation

The recorded facial videos were analyzed to assess potential variations in emotional
responses across the three experimental conditions. This analysis employed an SSI
pipeline designed to process individual video frames and infer emotional states. First,
face regions were identified within each frame using MediaPipe’s BlazeFace detection
model [Bazarevsky et al., 2019]. Then, these detected regions were cropped and fed as
input to a deep-learning model trained for the emotion estimation task.

7.7.1 Emotion Estimation Model - Valence and Arousal

The analysis employed a convolutional neural network to estimate emotions based on par-
ticipants’ facial expressions. This model categorized images into seven discrete emotion
classes (Neutral, Happy, Sad, Surprise, Fear, Disgust, and Anger) and additionally provided
continuous valence and arousal scores ranging from -1 to 1.

Dataset

The model was trained on the AffectNet dataset, described in detail in Section 4.3.1. To en-
sure the reliability of data, the dataset underwent cleaning based on the pre-processing
techniques presented by Toisoul et al. [2021]. This process involved removing images
where the assigned emotion class did not align with the corresponding valence-arousal
values. This refined dataset contained around 220K images categorized into seven emo-
tion classes, along with valid valence-arousal values. The data was further split, with 85%
allocated for training the model and 15% reserved for evaluation.

Training

The model architecture leveraged a pre-trained VGG16 network followed by a fully con-
nected layer and three output layers. Each output layer utilized specific activation func-
tions: Softmax for classifying emotions into discrete categories, and Tanh for estimating
continuous valence and arousal scores. All images were resized to 224 × 224 pixels and
augmented through techniques such as width shift, height shift, zoom, and horizontal flip.

The model architecture and training approach were adapted from Section 4.3.1, due
to their demonstrated ability to learn facial action units, which are crucial for accurate
emotion recognition. The model was trained using Stochastic Gradient Descent (SGD)
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optimization with an initial learning rate of 0.001. This learning rate was dynamically
adjusted by reducing it by 10% after every 70,000 training steps. Themodel training utilized
focal loss [Lin et al., 2017] for emotion classification and shake-shake loss [Toisoul et al.,
2021] for valence and arousal predictions. To prevent overfitting during training, early
stopping with patience of five epochs was implemented. This technique halted training
when the validation loss stopped improving.

Evaluation

On the AffectNet test set, the model achieved an accuracy and F1-score of 76% for the dis-
crete emotion classification task. This performance aligns with previous studies utilizing
the AffectNet dataset, as reported by Mollahosseini et al. [2017] and Toisoul et al. [2021].

Concordance Correlation Coefficient (CCC), Root Mean Squared Error (RMSE), and
Sign Agreement (SAGR) were employed to assess the model’s ability to predict continuous
emotional dimensions, consistent with prior research. For valence prediction, the model
achieved a CCC of 0.852, RMSE of 0.266, and SAGR of 83.1%. Similarly, for arousal predic-
tion, the model achieved a CCC of 0.763, RMSE of 0.277, and SAGR of 81.2%. The model’s
performance on both valence and arousal prediction was comparable to state-of-the-art
methods.

Post-processing

The pre-trained emotion recognition model was applied to the recorded videos from each
experimental condition. This process generated a sequence of emotion estimations for
each frame, providing a nuanced characterization of emotional responses throughout each
session. To ensure the reliability of these estimations, frames where no face was detected
were excluded from further analysis. Additionally, as participants may require some time
to adjust to the robot’s behavior and fully engage in the task, emotion estimations from
the initial five minutes of each session were excluded.

7.7.2 Are Valence and Arousal Indicators of Flow?

This analysis focused primarily on valence and arousal values, as they offer amore nuanced
representation of dynamic emotional states compared to discrete categories. For each ex-
perimental condition, the mean valence and arousal were computed across all frames to
capture overall emotional trends. This session-wise mean valence and arousal were com-
puted for each participant.

Overall patterns

Averaged across participants, mean valence levels were lowest for the Slow condition (-
0.025) and highest for the Fast condition (-0.018). Similar trends were observed in mean
arousal levels, with Slow (0.053) being the lowest and Fast (0.074) being the highest. The
Adaptive condition (valence: -0.023, arousal: 0.071) exhibited intermediate values in both
dimensions.
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Statistical analysis

A repeated measures ANOVA test was conducted to determine statistically significant dif-
ferences in mean valence and arousal across conditions. Both measures satisfied the as-
sumptions of normality and homogeneity of variance. The analysis revealed a significant
difference in mean arousal (F = 8.23, p < 0.001) but not in mean valence.

Further pairwise comparisonswithHolm correction identified significant differences in
mean arousal between the Slow condition and both Fast (p= 0.012) andAdaptive (p= 0.015)
conditions. No significant difference was found between Fast and Adaptive conditions (p
= 0.884).

Interpretation

While significant differences were detected in arousal, it’s worth noting that the observed
mean values across all conditions fell within the neutral range (0 to 0.1). This observation
suggests that participant facial expressions might not necessarily be a reliable indicator of
perceived challenge levels in this case.

7.7.3 Insights and Discussion

The study anticipated negative emotions in participants for the Slow and Fast conditions
due to the imbalance in challenge and skill. Conversely, the Adaptive condition was ex-
pected to facilitate positive emotions associated with the flow state. However, analysis
revealed no significant difference in valence levels across the three conditions. Interest-
ingly, average valence and arousal across all conditions remained close to zero, indicating
a predominantly neutral emotional state throughout the experiment. This finding sug-
gests that the robot’s programmed behavior did not elicit strong negative emotions from
participants.

The results of the SAM questionnaire also revealed no significant differences in self-
reported valence, arousal, or dominance across the three challenge conditions (see Sec-
tion 7.6.2). This indicates that participants’ emotional experiences remained relatively
consistent throughout the experiment, regardless of the task difficulty level.

Burns and Tulip [2017] explored the use of facial emotion estimation (valence and
arousal) in a gaming context for dynamically adjusting the difficulty level of the game.
They observed that players’ facial expressions remained near neutral for extended periods,
with occasional brief spikes. This aligns with the findings of the current study, suggesting
limited emotional expression by participants. In line with Burns and Tulip, this study also
suggests that facial expressions alone might not be sufficient for dynamically adapting the
cobot’s behavior.

7.8 Analysis of HRV

This analysis leveraged the HRV features derived from participants’ ECG data collected
during the experimental sessions. The same set of 22HRV features (time domain, frequency
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domain, and Poincaré plots) detailed in Chapter 5 were extracted. All features extracted
from these domains were included in the analysis.

7.8.1 HRV Feature Extraction

To ensure accurate and reliable analysis, the ECG signals underwent the following series
of cleaning steps prior to feature extraction.

• Noise removal: A second-order Butterworth band-pass filter with a cut-off fre-
quency of 8-20 Hz was applied to remove noise in the signal, following recommen-
dations from previous research [Elgendi et al., 2010].

• Heartbeat detection: The ECG signals were segmented into 1-minute intervals us-
ing a sliding window with 1-second shifts. Heartbeats were identified within each
segment using the method proposed by Elgendi et al. [2010]

• Segment exclusion: Segments with missing beats, false detections (excessive beats),
or heart rates outside the range of 50-180 beats per minute were excluded. Segments
were deemed invalid if the time between consecutive beats exceeded 1200 millisec-
onds (indicating a heart rate less than 50 bpm). Similarly, segments with consecutive
beats occurring less than 333.33 milliseconds apart (indicating a heart rate greater
than 180 bpm) were also excluded.

Similar to emotion analysis from the previous section, data from the initial 5 minutes
of each session was excluded. Additionally, participants with less than 5 minutes of clean
ECG data in each session were excluded from further analysis. This criterion led to the
exclusion of nine participants.

7.8.2 Are HRV Features Indicators of Flow?

This section details the analysis procedure for HRV features using heart rate as a repre-
sentative example. Measured in beats per minute, heart rate is one of the commonly used
HRV features due to its established relationship with arousal levels [Rissler et al., 2020].
This analysis procedure was applied to each of the 22 HRV features.

Overall patterns

To account for inter-individual variability in physiological responses, the MinMax nor-
malization was applied to heart rate and HRV features for each participant. This ensured
that all features were scaled to a common range (0 - 1), mitigating potential biases due to
individual baseline differences.

The normalized heart rate data for the three experimental conditions (Slow, Fast, Adap-
tive) are presented in Figure 7.6 (top) as box plots. The Fast condition exhibits the highest
average normalized heart rate (mean = 0.554), followed by the Adaptive condition (mean
= 0.485), and lastly, the Slow condition (mean = 0.402).
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Figure 7.6: Box plots of the normalized mean heart rates (top) and normalized mean HRV
(bottom) in the three conditions. Each box plot summarizes the distribution within a condition.
The dotted line represents the mean of the distribution.
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Figure 7.7: Box plots of the normalized mean LF (top) and normalized mean HF (bottom) in
the three conditions. Each box plot summarizes the distribution within a condition. The dotted
line represents the mean of the distribution.
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Other commonly studied HRV features, including mean HRV, LF, and HF components,
were also analyzed and are presented in Figures 7.6 (bottom), 7.7 (top), and 7.7 (bottom),
respectively. The trends in these figures align with the established literature, demonstrat-
ing an increase in heart rate and a decrease in HRV with increasing challenge levels. As
expected, the Adaptive condition, characterized by balanced challenge and skill, exhibited
a relatively moderate heart rate and HRV. Both LF and HF components followed a decreas-
ing trend with increasing challenge, with the Slow condition showing the highest values
and the Fast condition showing the lowest.

Statistical analysis

Feature ANOVA Post hoc C1 vs. C2 C1 vs. C3 C2 vs. C3
Time domain features

HR < 0.001 ∗ = 0.002 ∗ < 0.001 ∗ = 0.038 ∗ = 0.056
Mean NN < 0.001 ∗ = 0.002 ∗ < 0.001 ∗ = 0.038 ∗ = 0.054
SD NN = 0.017 ∗ = 0.231
CV NN = 0.553 = 0.553
Med NN < 0.001 ∗ < 0.001 ∗ < 0.001 ∗ = 0.018 ∗ = 0.027 ∗

Mad NN < 0.001 ∗ = 0.018 ∗ < 0.001 ∗ = 0.046 ∗ = 0.052
RMSSD = 0.123 = 0.862
SDSD = 0.121 > 0.99
IQR NN = 0.005 ∗ = 0.082
pNN50 = 0.026 ∗ = 0.255
pNN20 < 0.001 ∗ = 0.005 ∗ < 0.001 ∗ = 0.146 = 0.012 ∗

TI NN = 0.552 > 0.99
TI < 0.001 ∗ = 0.002 ∗ < 0.001 ∗ = 0.002 ∗ = 0.595

Table 7.5: Significance test results (p-values) for the time domain HRV features. The ∗ symbol
next to the p-values indicates that the result is considered statistically significant (< 0.05).

Similar to the analysis approach adopted for emotion estimation, a repeated-measures
ANOVA was conducted on the average normalized heart rate values across the three ex-
perimental conditions. Before the analysis, checks were conducted to ensure the data met
the assumptions of homogeneity of variance and normality.

The ANOVA test revealed a statistically significant difference between at least two of
the experimental conditions (F= 10.59, p< 0.01), indicating a considerable impact of condi-
tion on normalized heart rate values. Subsequent post hoc pairwise t-tests with Holm cor-
rection identified a significant difference between the Slow condition and both theAdaptive
(p = 0.038) and Fast conditions (p < 0.001). Notably, the difference in average heart rate
between the Fast and Adaptive conditions only obtained a p-value of 0.056, suggesting a
potential trend.
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Feature ANOVA Post hoc C1 vs. C2 C1 vs. C3 C2 vs. C3
Frequency domain features

LF = 0.017 ∗ = 0.216
HF = 0.020 ∗ = 0.221
LF/HF = 0.334 > 0.99
LF/Total = 0.411 > 0.99
HF/Total = 0.262 > 0.99

Poincaré plot features
SD1 = 0.121 = 0.968
SD2 = 0.012 ∗ = 0.183
SD1/SD2 = 0.285 > 0.99
S (Area) = 0.018 ∗ = 0.217

Table 7.6: Significance test results (p-values) for the frequency domain and non-linear
(Poincaré plots) HRV features. The ∗ symbol next to the p-values indicates that the result
is considered statistically significant (< 0.05).

Tables 7.5 and 7.6 systematically present the outcomes of the statistical analysis ap-
plied to each HRV feature. The pair-wise testing was conducted only if the results were
significant after the Holm correction.

Interpretation

The analysis of heart rate and HRV aligns with observations from previous studies (see
Section 7.2.2) that primarily investigated mentally demanding tasks. This observation sig-
nifies that heart rate is a good indicator of flow even in other types of workloads.

Notably, several HRV features, especially those derived from the temporal domain, ex-
hibited statistically significant differences across experimental conditions even after apply-
ing the Holm correction for multiple comparisons within the ANOVA test. These findings
suggest that HRV features are promising indicators of perceived challenge levels within
the context of human-robot collaboration tasks.

7.8.3 Insights and Discussion

The statistical results obtained for HRV in this study are consistent with those reported
by Keller et al. [2011]. In their study, Keller et al. found a significant difference in mean
HRV between the low-challenge (boredom) and higher-challenge (fit, anxiety) conditions.
Similar to the findings here, their study found a trend-level significant (p < 0.1) difference
between the Fit and Anxiety conditions.

Furthermore, the plots presented for LF and HF components resonate with the findings
of Tozman et al. [2015] regarding participants’ physiological responses during the three
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driving conditions (boring, fit, anxiety). The observed decrease in HF, typically associated
with parasympathetic activity (relaxation), was anticipated.

Regarding LF, interpretations vary. Some studies associate it solely with sympathetic
activation (arousal), while others view it as a combined measure of both branches [Malik
et al., 1996]. Adopting the latter interpretation, the decreasing LF trend suggests a re-
duction in relaxation with increasing challenge. This aligns with the Adaptive condition
exhibiting moderate levels of relaxation and arousal.

While Tozman et al. distinguished between three challenge levels using LF and HF
components of HRV, the current analysis did not find statistical differences between all
conditions. This discrepancy might be attributed to the differing methods used to induce
challenge. Tozman et al. incorporated social evaluation as a stressor in the anxiety con-
dition, likely triggering intensified physiological responses. In contrast, this study solely
manipulated challenge through the robot’s behavior, avoiding the introduction of external
stressors.

7.9 Models For Challenge Adaptation

Recognizing participants’ perceived challenge levels during human-robot collaboration is
crucial for optimizing interaction and promoting flow experiences. While traditional meth-
ods often rely on self-reported data, physiological measures like HRV provide a continuous
and non-obtrusive assessment of the operator’s response to task demands [Peifer, 2012;
Irshad et al., 2023]. This section explores the potential of HRV features in predicting chal-
lenge levels.

7.9.1 Challenge Prediction

The previous section revealed promising relationships between HRV features and the ex-
perimental conditions designed to manipulate the perceived challenge level. Building upon
these findings, this chapter implementedmachine learningmodels for predicting challenge
levels from HRV data. This section presents two challenge prediction scenarios:

• Multi-class prediction: This model was trained to classify HRV data into three
classes (Slow, Adaptive, Fast).

• Binary-class prediction: This model was developed to distinguish the Slow con-
dition from the other two conditions. This approach was motivated by the non-
significant differences observed in previous analyses (see Table 7.5) suggesting lim-
ited discernible variations in HRV responses between the Fast and Adaptive condi-
tions. The data from both Fast and Adaptive conditions were merged for training the
binary-class prediction model.

7.9.2 Training and Evaluation

The challenge prediction models followed a simple feed-forward neural network archi-
tecture. The network started with an input layer that received the pre-processed HRV
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Model Accuracy F1-score
Baseline Multi-class (predicting one class) 0.333 0.167
Multi-class (low vs. fit vs. high challenge) 0.493 0.459

Baseline Binary-class (predicting majority class) 0.667 0.533
Binary-class (low vs. fit + high challenge) 0.707 0.661

Table 7.7: The average accuracy and F1 score achieved by binary-class and multi-class chal-
lenge prediction models during LOSO evaluation. The performance of baseline classifiers that
always predict one class is also provided for comparison.

features. This was followed by two hidden layers, each containing 12 and 6 nodes respec-
tively. To prevent overfitting and improve generalization, a dropout layer with a 10% rate
was added after the input layer. This technique randomly dropped out a portion of neurons
during training. The final output layer, depending on the prediction scenario (multi-class
or binary-class), contained either 2 or 3 nodes. The Softmax activation function is applied
in this layer.

Training of the models occurred in mini-batches of 128 samples using an SGD opti-
mizer with a learning rate of 0.01. To ensure the models performed well on unseen data,
a LOSO method was adopted for training and evaluating the models. The performances
of these challenge prediction models were assessed in terms of accuracy and F1-score, and
are presented in Table 7.7.

7.9.3 Insights and Discussion

The binary-class challenge predictionmodel outperformed themulti-classmodel. This out-
come aligns with the HRV analysis in the previous section, suggesting potential challenges
in distinguishing Fast and Adaptive conditions due to the similarity in their elicited physi-
ological responses. Although the accuracy of the binary-class model might seem moderate
for a binary classifier, it is comparable to existing binary flow detection models from the
literature (see Section 7.2.3). In other words, the performance is similar to scenarios with
mentally demanding tasks, indicating that moderate accuracy is not due to the physical or
temporal demands of the HRC task. This implies that using HRV features to distinguish
between low and high challenge levels in HRC settings is a viable approach.

Interestingly, the pilot study revealed that participants tended to adapt to faster cobots
by adjusting their pace, potentially explaining the lack of significant differences between
Fast and Adaptive conditions. Conversely, slower cobots led to distraction and assembly
mistakes. It is critical to avoid assembly mistakes as they can significantly impact the
production output [Klein et al., 2024]. This highlights the importance of detecting low-
challenge situations in industrial settings to adapt the cobot’s behavior accordingly. The
binary-class model presents a promising step towards this goal.
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7.10 Reflections and Remarks

This chapter addresses the topic of human-centered dynamic workload adaptations in in-
dustrial HRC. Specifically, it attempts to answer the question: Is it possible to detect if an
operator feels under-challenged or over-challenged during an HRC task? Ideally, the task
challenge is balanced to the skill level of the operator, a working condition conducive to
the experience of flow.

While previous research has studied how the flow state manifests in mentally demand-
ing tasks, there is a lack of studies investigating the flow experience in the HRC context.
This investigation is necessary because an industrial HRC task often involves physical
or temporal demands, rather than pure mental load. This chapter manipulated physical
and temporal demands by varying a cobot’s production rate, simulating under-challenged,
over-challenged, and balanced “fit" conditions in an industrial HRC setting. During pilot
testing, a crucial disadvantage of challenge-skill imbalance became evident: low-challenge
conditions often led to distractions and eventually, assembly errors.

This chapter explored the potential of facial expressions and HRV features as indicators
of perceived challenge level. Notably, HRV features were found to be reliable indicators of
perceived challenge level. Subsequently, a model was trained to automatically detect the
challenge level, which holds the potential to dynamically adapt the cobot’s behavior.

It’s worth noting that HRV features were previously employed for stress detection in
Chapter 5. This chapter builds upon that work by demonstrating the extended utility of
HRV features for detecting the perceived challenge level. Given that both stress and flow
states can occur in industrial scenarios, the development of a combined model becomes a
desirable future direction.
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Chapter 8

Gaze to Initiate Collaboration in
Industrial HRC

Figure 8.1: A comic strip illustration of an operator communicating with the cobot using nat-
ural and intuitive gaze cues in an industrial scenario. During the task, the cobot recognizes
the gaze cues of the operator and responds by performing the expected actions. This leads to
a seamless collaboration between the cobot and the operator.
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8.1 Overview

In industrial settings, cobots are transitioning from tools to collaborative partners. To
achieve seamless collaboration, robots must not only be efficient, but also understand nat-
ural human cues, including gestures, voice commands, and even gaze patterns [Bauer et al.,
2008; Glasauer et al., 2010; Buss et al., 2011; Gleeson et al., 2013; Mutlu et al., 2016; Romat
et al., 2016; Campeau-Lecours et al., 2018]. An example industrial scenario is illustrated
as a comic strip in Figure 8.1. Cobots equipped to understand natural communication can
improve user acceptance and trust [Villani et al., 2018; Strazdas et al., 2020; Andronas et al.,
2021; Kalatzis et al., 2023]. When a cobot can interpret human communicative cues like ges-
tures and gaze, it can respond in ways that are more natural and expected. Such responses
make the interaction more comfortable and lead to cobots being perceived as trustworthy
partners. Furthermore, intuitive interactions reduce the cognitive load on human oper-
ators, allowing them to focus better and feel less mentally strained [Villani et al., 2018;
Hasnain et al., 2013; Kalatzis et al., 2023]. This, in turn, can lead to increased efficiency,
reduced errors, and ultimately, a more positive and productive work environment.

A key aspect of industrial Human-Robot Collaboration (HRC) is a physical joint activity
involving simultaneous manipulation of an object by a cobot and a human operator. Dur-
ing human-human collaborations, specific gaze patterns emerge, serving as crucial com-
munication cues that synchronize their actions and ensure seamless collaboration [Admoni
and Scassellati, 2017]. While these human gaze patterns can also be observed in human-
robot collaborations involving humanoid robots [Mehlmann et al., 2014; Kurylo and Wil-
son, 2019; Palinko et al., 2016], it remains unclear whether these gaze patterns emerge
when collaborating with a robot without human-like features. Consequently, the potential
of utilizing gaze-based cues for a natural, intuitive, and seamless collaboration between
human operators and cobots remains largely unexplored. This chapter investigates these
research questions using two experiments. The contents of this chapter expand upon the
research previously published in:

∗ P. Prajod, M. L. Nicora, M. Mondellini, G. Tauro, R. Vertechy, M. Malosio, and E. An-
dré. Gaze detection and analysis for initiating joint activity in industrial human-robot
collaboration. arXiv preprint arXiv:2312.06643, 2023b

[ I contributed significantly to the study design and formulation of the hypotheses. I also
performed data processing and developed the machine learning models. Furthermore, I
conducted the analysis and derived insights. ]

∗ M. Lavit Nicora, P. Prajod,M.Mondellini, G. Tauro, R. Vertechy, E. André, andM.Mal-
osio. Gaze detection as a social cue to initiate natural human-robot collaboration in
an assembly task. Frontiers in Robotics and AI, 11:1394379, 2024

[ This is a follow-up paper to the above paper. I trained machine learning models and
developed the real-time detection pipeline. ]
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8.2 Background Literature and Previous Works

Although verbal communication is the most direct way of conveying information, the po-
tential of employing speech in industrial settings is often limited because of the noisy en-
vironment. Hence, it is essential to explore other modalities and social cues to enhance the
industrial HRC experience through natural and intuitive communication. In addition to
speech, humans employ many natural non-verbal cues including facial expressions, ges-
tures, etc., to convey information. Gaze is one such non-verbal channel of communica-
tion that conveys valuable information not only in human-human interactions but also
in human-robot interactions. This section presents background literature on the role of
gaze in human-human interactions, followed by a brief discussion on the previous works
investigating human gaze in human-robot collaborations.

8.2.1 Gaze in Human-Human Interactions

From infancy, humans utilize gaze as a fundamental communication signal. Even seem-
ingly simple acts like looking at someone or an object involve coordinated movements
of the eyes, head, and body [Rosander, 2020]. As cognitive development progresses, gaze
evolves into a powerful tool for intentional communication [Camaioni, 1992], playing a
critical role in establishing social cues [Hamilton, 2016].

Investigations into the neural correlates of gaze reveal its intricate connection to social
behavior. Senju and Johnson [2009] propose that perceived eye contact activates brain
regions associated with social interaction. This emphasizes the relationship between eye
contact and social actions, not only at the behavioral level but also from a neurobiological
perspective.

Several researchers have highlighted the significance of gaze in initiating interaction.
Research by Cary [1978] analyzing video recordings of strangers in a waiting room re-
vealed that eye contact consistently preceded conversations. Furthermore, Senju and Csi-
bra [2008] investigated the relationship between eye contact and gaze following in infants,
specifically demonstrating that eye contact can act as a strong cue for infants to pay atten-
tion and initiate gaze following behavior. Similar gaze-initiation behaviors are mimicked
in robots so that they can establish and respond to eye contact during scenarios such as
conversations, collaboration, and narration [Admoni and Scassellati, 2017].

Ferri et al. [2011] conducted experiments where a participant offered food to another
person sitting across the table. Their findings indicated that the information about the re-
ceiver’s gaze influenced the effectiveness of the feeding gesture, suggesting that gaze plays
a crucial role in conveying social affordance. Similarly, Innocenti et al. [2012] investigated
the impact of gaze on a more subtle requesting gesture – experimenter grabbing an empty
glass while the participant lifted a juice bottle to pour the juice. Even in the absence of
any verbal communication, the study demonstrated that the receiver’s gaze behavior in-
fluenced the effectiveness of the gesture. These studies point to the potential of gaze in
communicating requests, which has been exploited in HRC designs(e.g., work by Palinko
et al. [2016]).

The role of gaze has been widely investigated in the context of human-human con-
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versations [Kendrick and Holler, 2017; Degutyte and Astell, 2021]. The seminal work by
Kendon [1967] identified two functions of gaze direction in dyadic interactions: monitor-
ing and turn regulation. His analysis suggests that the listener tends to look at the speaker
for long with few instances of gaze aversion, whereas the speaker displayed both gaze at
listener and gaze aversion equally. Specifically, the speaker averted their gaze in the begin-
ning of the round, likely for focusing and planning their speech, and looked at the listener
for monitoring the attention and yielding their turn. However, later studies like Rossano
et al. [2009] suggest that Kendon’s findings may not extend to interactions that require
multiple sequences to complete (e.g., question-answer). In these scenarios, gazing at the
partner may be used as a cue to initiate and coordinate sequences.

8.2.2 Human Gaze in HRC

The field of human-robot interaction often seeks inspiration from human-human interac-
tions to create more natural and intuitive experiences. One research direction, inspired by
this approach, explores the concept of robots mimicking human gaze behavior [Boucher
et al., 2012; Moon et al., 2014; Stanton and Stevens, 2017; Hayashi and Mizuuchi, 2017;
Faibish et al., 2022]. However, this typically requires robots to possess eye-like features
and the ability to convey subtle cues like gaze direction and blinks. In industrial settings,
cobots often lack such features, and attempts to anthropomorphize them often involve
adding hardware like glasses or tablets [Fischer et al., 2015; Kühnlenz et al., 2020; Terzioğlu
et al., 2020; Onnasch et al., 2023]. This chapter, however, focuses on understanding the pat-
terns in human gaze behavior when collaborating with a robot.

To gain insights from the existing literature on how humans use gaze during collab-
orative tasks with robots, a literature survey was conducted using the Scopus database.
However, to maintain the focus on the collaboration aspect, the review excluded studies
(e.g,. Chadalavada et al. [2018]; Paul et al. [2023]; Weber et al. [2023]) that did not involve
physical collaborative tasks, which encompass situations where humans and robots work
together physically (e.g., assembling an object). Additionally, studies [Paletta et al., 2019;
Upasani et al., 2023; Galvani et al., 2023] using gaze information to detect aspects like stress
or task load were excluded as these aspects are not specific to collaboration.

A crucial aspect to consider in HRC studies is the nature of the shared task, particularly
whether it is cooperative or collaborative. Several classifications and definitions exist for
collaboration and cooperation [Kolbeinsson et al., 2019; Onnasch and Roesler, 2021]. For
clarity, this chapter adopts a distinction commonly used in the HRC literature [Schmidtler
et al., 2015; Bütepage and Kragic, 2017; Simões et al., 2022]. Cooperation is defined as the
setting where the robot and the human work in a shared workspace at the same time, but
on physically separate sub-tasks. Collaboration, on the other hand, involves joint manipu-
lation of the same object, in addition to the aspects of cooperation (shared workspace and
simultaneous work). While these terms are often used interchangeably, it is important to
differentiate them because not all tasks with shared goals require the same level of inter-
dependence between humans and robots. This distinction can lead to differences in how
people use gaze during interaction. Tasks where humans and robots work on completely
separate sub-tasks might not involve any gaze cues, unlike scenarios requiring frequent

224



CHAPTER 8. GAZE TO INITIATE COLLABORATION IN INDUSTRIAL HRC

interaction between the human and robot. For example, an object handover task requires
fine-grained coordination regarding the timing and location of handover [Strabala et al.,
2013; Moon et al., 2014], which can be achieved through gaze cues. On the other hand, a
task designed in the style of a conveyor belt - where one partner places the object on one
side and the other partner picks it up - may not require either of the partners to perceive
the other’s gaze cues.

In addition to the nature of shared tasks, two aspects relating to gaze-based interac-
tion - implicit/explicit and gaze requirement - shape gaze behaviors during HRC sessions.
According to Ju [2015], implicit human-agent interactions occur when the agent possesses
some level of agency and performs actions without explicit communication or knowledge
of the user. In the context of gaze-based HRC interactions, implicit interactions may in-
volve the robot monitoring and responding to the user’s gaze behavior. However, the user
is unaware of the gaze trigger for specific robot actions. On the other hand, explicit inter-
action studies inform the participants about the underlying gaze trigger mechanism and
they communicate with the robot using these pre-defined gaze signals. For example, a
pick-and-place scenario can be designed to utilize implicit or explicit gaze of the operator.
In this case, implicit gaze interactionmay involve the operator verbally communicating the
selection but the robot monitors the operator’s gaze to anticipate the choice (e.g., Huang
and Mutlu [2016]). The same task can be designed to be explicit and solely gaze-based
interaction if the operator is informed that the selection can be made by looking at the
desired object for a few consecutive seconds (e.g., Shi et al. [2019]).

Regarding the aspect of gaze requirement, some studies require the participants to ex-
hibit certain gaze behaviors to complete the task, whereas others utilize gaze to improve
the interaction (e.g., reducing reaction time). In the previous pick-and-pack example, the
implicit interaction does not have a gaze requirement as the task can be completed through
verbal communication. However, the explicit interaction would inevitably require the op-
erator to look at an object to complete the task. Although there is a huge overlap between
explicit interactions and gaze requirements, implicit interactions can also involve gaze re-
quirements. For instance, the study by Palinko et al. [2016] (described later) required the
participants to exhibit a pre-defined gaze sequence to complete the task but they were
not informed about the gaze sequence. The idea behind this type of interaction design is
that the expected gaze behaviors are intuitive and occur naturally during the interaction,
and hence, all the participants could complete the task even if they are unaware of the
requirement.

Mehlmann et al. [2014] investigated gaze behavior in a cooperative puzzle game in-
volving a humanoid robot (Nao) assisting a human participant in sorting puzzle pieces. To
instruct the participant on where to move the pieces, the robot used a combination of gaze,
speech, and pointing gestures. The gaze interactions were implicit and participants were
not required to exhibit any specific gaze pattern. While their primary focus was the robot’s
social and referential gaze, they observed specific patterns in participant gaze as well. No-
tably, participants frequently employed mutual gaze (looking directly at the robot’s face)
to signal the robot that they were ending their turn. This finding highlights the potential
role of gaze in turn-taking during robot-assisted tasks.

To explore implicit gaze-based communication, Palinko et al. [2016] devised a collabo-
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rative tower-building task with a humanoid robot (iCub). The robot held a block in each
hand, and participants needed to trigger the robot to offer a block. To accomplish this,
the participants had to look at the robot’s face and then a specific hand (or vice versa).
Importantly, participants were unaware of this trigger mechanism. They attempted vari-
ous communication methods, including speech, gaze, and pointing. Notably, participants
achieved an average success rate of 95%, with unsuccessful attempts attributed to failures
in gaze detection. Despite being unaware of the specific trigger, participants achieved high
success rates, suggesting that gaze is a natural and intuitive mode of communication.

A study by Ivaldi et al. [2017] investigated how personal characteristics like negative
attitudes towards robots influence gaze patterns during collaborative tasks. In their study,
participants worked with a humanoid robot (iCub) to assemble two cylindrical rolls. The
participants first instructed the robot to hold the rolls, then guided its hands for proper
alignment, and finally completed the assembly by taping them together while the robot
held the rolls steady. Their results revealed correlations between negative attitudes to-
wards robots and gaze behavior. Participants with higher negative attitudes exhibited a
tendency to spend more time looking at the robot’s hands and less time looking at its face.
The study investigated implicit gaze behaviors with respect to personal characteristics and
did not require gaze behaviors to complete the task.

Building upon the work of Mehlmann et al., Kurylo and Wilson [2019] analyzed gaze
patterns during a collaborative medication sorting task involving a humanoid robot (Nao).
Similar to the previous study, participants communicated with the robot using speech,
gaze, and pointing gestures. Since their analysis was conducted on video recordings, the
interactions were implicit and there were no pre-defined gaze requirements. Their research
identified four distinct gaze patterns that emerged throughout the task: mutual gaze, con-
firmatory gaze, referential gaze, and looking away. Notably, they found that mutual gaze
was often used when participants required assistance, similar to human-human interac-
tions. Their findings provide further evidence that humans extend their natural gaze cues
to interact effectively with humanoid robots.

In their study, Oliveira et al. [2018] investigated gaze behavior in a 4-player cooperative
card game played in teams of two. Two humans and two robots with facial features (EMYS)
participated in three sessions with rotating pairings. One robot was programmed to be
supportive, while the other was competitive. The authors observed the gaze behaviors
of the participants to derive insights about the implicit gaze behaviors during the game
and the study did not mandate any gaze patterns. Among all partner configurations, the
participants looked at the supportive robot more often than the competitive robot or the
other human player. On the contrary, among all opponent configurations, the participants
looked at the competitive robot more often than the supportive robot or human players.
Their findings suggest that humans extend their natural tendency in social interactions to
robots fulfilling similar roles.

Recent research has begun to explore interactions with non-humanoid mechanical
robots, which are typically robotic arms. This distinction is crucial, as the absence of
human-like features, such as faces, can potentially influence human behavior during in-
teraction.

For example, Oka and Uchino [2016] explored cooperative conveyance using a special-
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ized mechanical robot (LIEN) capable of performing nine object manipulation actions. In
this study, the participants communicated their desired actions through voice commands
while facing the robot, then looked away while the action was executed. The participants
were explicitly informed on how to control the robot through gaze and speech (both signals
were required). The participants successfully completed 95% of the tasks, with two low-
margin failures (robot activated slightly late). Based on this performance and participants’
feedback, the authors concluded that their proposed strategy, leveraging the combination
of speech and gaze, was both effective and easy to learn.

Huang and Mutlu [2016] investigated the use of gaze information to enhance efficiency
in HRC settings. They designed a cooperative smoothie-making scenario where a cobot
(Kinova MICO robot arm) picked blocks representing fruits selected by the participant act-
ing as the customer. While participants verbally communicated their choices, the study
also monitored their gaze behavior. This gaze data was used by the cobot to anticipate the
participant’s selection, allowing it to grasp the chosen fruit block faster. As mentioned be-
fore, this study represents implicit gaze interaction, without any mandatory gaze patterns.
However, it is important to note that the overall interaction cannot be considered implicit
as the participants were instructed to communicate their choice through verbal commands.

Extending the research by Huang and Mutlu, Shi et al. [2019] employed a cobot (UR10)
to pick up various office supplies lying on a table. In this study, the selection was commu-
nicated solely through the gaze of the participant. Similarly, Scalera et al. [2021] demon-
strated gaze-based control of a cobot (UR5) for teleoperated artistic drawing tasks. These
studies showcase the potential of gaze-based interfaces for controlling cobot actions. Both
studies informed the participants on the gaze-based control (explicit interaction) and in-
volved mandatory gaze behaviors for successful interaction.

Newman et al. [2020] further explored the potential of gaze for anticipatory robot ac-
tions in a handover game. In each round, the participant selected an item from three op-
tions, which the cobot (Kinova MICO) then picked and handed over. While the selection
was communicated through button presses, they monitored participants’ natural gaze be-
haviors to generate implicit anticipatory movement. Their findings suggest that gaze data
collected shortly before the button press was most the most reliable indicator of partici-
pant’s choices, compared to data collected throughout the entire round.

Table 8.1 summarizes the key information from the previously mentioned studies. No-
tably, the table reveals a predominance of cooperative tasks compared to collaborative tasks
in the analyzed research. Furthermore, the table highlights an interesting trend: studies
analyzing implicit human gaze tend to utilize robots with human-like features.

8.2.3 Research Gaps

This thesis focuses on industrial HRC scenarios which typically deploy cobots. As reflected
in Table 8.1, existing research on gaze behavior in HRC settings involving cobots predom-
inantly focuses on cooperative tasks rather than collaborative tasks involving joint object
manipulation. This observation forms the foundation for this chapter, which aims to ad-
dress the following research gaps:

• Gaze-based Joint Activity Initiations: While existing research analyzing human
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Paper Task Task type Gaze Interaction
Mehlmann et al. [2014] Sorting Cooperative I, NR
Palinko et al. [2016] Assembly Cooperative I, R
Ivaldi et al. [2017] Assembly Collaborative I, NR
Kurylo and Wilson [2019] Sorting Cooperative I, NR

SO
CI
A
L
RO

BO
T

Oliveira et al. [2018] Game Cooperative I, NR
Oka and Uchino [2016] Conveyance Cooperative E, R
Huang and Mutlu [2016] Pick&place Cooperative I, NR
Shi et al. [2019] Pick&place Cooperative E, R
Scalera et al. [2021] Drawing Cooperative E, R
Newman et al. [2020] Pick&place Cooperative I, NR
Prajod et al. [2023b]* Assembly Collaborative I, NR

CO
BO

T

Lavit Nicora et al. [2024]* Assembly Collaborative I, R

Table 8.1: An overview of the literature studying human gaze in HRC settings. ‘I’ stands
for implicit interaction and ‘E’ for explicit interaction. ‘R’ indicates that gaze was required
for interaction and ‘NR’ indicates gaze was not required for completing the task. The entry
marked with * is expanded in the subsequent sections of this chapter.

gaze in HRC primarily focuses on cooperative tasks, it’s valuable to consider insights
from studies exploring robot’s gaze in collaborative tasks, such as object handover.
These tasks, often inspired by human-human interaction, involve joint object ma-
nipulation and investigate aspects like initiating joint activity [Strabala et al., 2013;
Moon et al., 2014]. When humans collaborate with robots with facial features (eyes or
a face), their gaze behavior may resemble human-human interactions. However, the
question remains: what gaze patterns emerge when the robot lacks such features?
Specifically, how might the participants initiate joint activities, and could gaze play
a role in their strategies? To determine if this potential gaze behavior is natural,
it’s crucial to investigate it in settings that do not require specific behaviors for task
completion. This allows for observation of natural gaze patterns and their potential
use in initiating collaboration with robots lacking human-like features.

• Automatic gaze-based cobot triggering: Studies presented in Section 8.2.2 that re-
quire gaze for controlling the robot’s actions often explicitly inform participants
about the control mechanism. This approach prioritizes demonstrating the feasi-
bility and usability of the system. An exception is the work by Palinko et al., who
aimed to demonstrate the naturalness and intuitiveness of their system by allowing
the participants discover the control mechanism on their own. However, they em-
ployed a humanoid robot with clear facial features. Whether a natural and intuitive
gaze-based control system is feasible when collaborating with cobots lacking facial
characteristics remains an open question.
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8.3 Analyzing Gaze Behavior in HRC

The importance of gaze as a social cue in human-human collaboration is well-established,
with mutual gaze and joint attention frequently observed in such interactions [Green et al.,
2008; Pfeiffer et al., 2013; Admoni and Scassellati, 2017; Cañigueral and Hamilton, 2019;
D’Angelo and Schneider, 2021]. Many studies have explored introducing gaze behavior in
humanoid robots to improve collaboration [Srinivasan and Murphy, 2011; Ruhland et al.,
2015; Admoni and Scassellati, 2017; Ajoudani et al., 2018]. However, in industrial HRC set-
tings, cobots are typically robotic arms lacking human-like features for conveying social
cues. While some studies have investigated anthropomorphizing cobots (e.g., Fischer et al.
[2015]; Kühnlenz et al. [2020]; Terzioğlu et al. [2020]; Onnasch et al. [2023]), this chap-
ter examines whether certain gaze behaviors observed in human-human interaction also
manifest in HRC, even in the absence of added human-like characteristics.

Gaze-based social cues are essential for facilitating collaboration in human-human in-
teractions. These cues, such as making eye contact and looking in a certain direction, play
a key role in conveying intention and coordinating actions. For instance, participants may
look at their collaborating partner to signal readiness or intend to collaborate. However, it
is not knownwhether humans exhibit the same gaze cues observed in human-human inter-
action when collaborating with a cobot that lacks human-like features. This section aims
to address this research question by analyzing the natural gaze behavior of participants
working with a cobot on a collaborative assembly task.

8.3.1 Assembly Task

This analysis leverages the video data collected in Chapter 7. As described in the previ-
ous chapter, the HRC assembly task involved a participant and a cobot working together
to build a 3D-printed planetary gearbox. The assembly process consisted of two distinct
phases:

1. Individual Assembly Phase: Participant gathered components from the nearby box
and produced a sub-assembly following the assembly steps. Meanwhile, the cobot
performed a scanning motion over the pre-assembled sub-assemblies.

2. Joint Activity: The cobot delivered a pre-assembled sub-assembly to a designated
collaboration area. After this, the cobot and participant collaborated by meshing the
gears of their respective sub-assemblies, completing the gearbox.

8.3.2 Setup and Dataset

This analysis focuses on the “Adaptive" condition from Chapter 7, a “Wizard of Oz" setup
where the joint activity occurred based on the participant’s production rate. The experi-
menter (acting as the “wizard") triggered the cobot when the participant neared assembly
completion, ensuring synchronized production rates. Since the participants were unaware
of the trigger mechanism, they exhibited natural behavior and social cues, assuming the
cobot was capable of synchronized collaboration. Importantly, the wizard controlled the
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cobot using sub-assembly completion information, not participant gaze. Therefore, par-
ticipants were not required to exhibit specific gaze patterns for task completion. Video
recordings from this condition were analyzed to identify participants’ gaze patterns dur-
ing collaborative assembly, particularly how they initiated the joint activity.

Figure 7.3 from Chapter 7 depicts the experimental setup. The experimental layout
comprised three distinct areas: two individual workstations for the cobot and the opera-
tor to independently assemble their sub-assemblies, a shared workspace for collaborative
joining of sub-assemblies (joint activity), and the wizard’s workstation. The wizard’s ta-
ble is positioned opposite the cobot’s workspace. This layout allows clear identification
and distinction of the participant’s gaze directed towards the wizard, their assembly table,
or the cobot itself. Additionally, the wizard had a clear view of the participant’s activity,
ensuring timely cobot triggers.

This analysis utilized video recordings captured by frontal cameras from 37 partici-
pants. Each video lasted approximately 15 minutes, resulting in a total of 555 minutes of
video material. These recordings captured the participants’ upper body and face, allow-
ing for analysis of their gaze direction. The cobot’s wrist was occasionally visible in the
videos, primarily during brief movements towards or away from the participant and dur-
ing the joint activity phase of the production cycle. An example from the video samples is
presented in Figure 8.2.

8.3.3 Annotations

The analysis focuses on whether participants utilize specific gaze behaviors to initiate the
joint activity phase with the cobot. Two key pieces of information were required for this
analysis: participant gaze direction and the start of joint activity.

Gaze Annotations

This analysis focuses on gaze areas rather than precise gaze estimation. Three key areas
were identifiedwithin the environment: the cobot, the participant table (while assembling),
and other locations (clock, window, etc.). Consequently, the annotation scheme employed
three labels: 1 for gaze at table, 2 for gaze at cobot, and 0 for other directions.

Gaze direction labels were obtained through an attention recognition model described
in Chapter 3. This model, trained using transfer learning, maps gaze estimations to des-
ignated areas of interest. Given face images as input, the model classifies gaze direction
into one of the three labels. This approach significantly reduces the manual labeling efforts
involved in annotating the entire video.

The training process utilized a transfer learning technique, leveraging the weights of an
existing gaze estimationmodel. First, a convolutional neural network (VGG16 architecture)
was trained on the ETH-XGaze face image dataset [Zhang et al., 2020] to estimate gaze
direction in terms of pitch and yaw. Subsequently, the model’s prediction layers were fine-
tuned to map gaze onto the three defined areas of interest. Fine-tuning involved collecting
volunteer images in a guided gaze setting mirroring the current study’s setup. This process
achieved an accuracy of 94.3% and an F1-score of 94%. To demonstrate robustness, the
model was further validated in a non-guided setting. Additional details regarding training
procedures and validation are available in Chapter 3.
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Figure 8.2: The front and side views of a participant during the individual assembly phase and
joint activity of a production cycle. Only the front view is annotated for the gaze behavior
analysis. The copyright remains with the authors [Prajod et al., 2023b].
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Figure 8.3: A snap of NOVA interface: gaze recognition predictions are displayed in the top
track, while red lines in the bottom track mark the start of joint activities. The copyright
remains with the authors [Prajod et al., 2023b].
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Joint Activity Annotations

The participant activities involve: assembling their own sub-assembly and jointly meshing
sub-assemblies with the cobot. This analysis focuses on the few seconds leading up to the
joint activity. Therefore, the frame where the cobot reaches the participant (i.e., stops in
front of them) for the joint activity was annotated for each assembly cycle. The participant
gaze behavior in the few seconds preceding this point was analyzed.

The video annotation process utilized the NOVA tool [Baur et al., 2013]. This tool
facilitated not only annotating the relevant frames but also visualizing the predictions from
the attention recognitionmodel as an annotation stream. A total of 585 joint activities were
labeled, with an average of 15.8 activities per participant.

8.3.4 Analysis Procedure

Visual Inspection

As a starting point, NOVA visualizations were utilized to examine participant gaze patterns
relative to the joint activity start. An example visualization is presented in Figure 8.3. The
bottom track displays the annotated joint activity starting points, while the top track shows
the predicted gaze annotations with values of 0, 1, or 2 corresponding to different gaze
directions.

The analysis specifically focuses on instances where the predicted class is 2, indicating
that the gaze was directed towards the cobot. A promising trend is observed in the top
track, with spikes (class = 2) appearing in the few seconds preceding the joint activity.
This pattern suggests that participants might be looking at the cobot to potentially initiate
the collaborative phase.

Quantitative Analysis

This part of the analysis aimed to quantify how often participants used gaze towards the
cobot to plausibly initiate joint activities and to distinguish these intentional gazes from
occurrences unrelated to the joint activity phase. To this end, the following multi-step
procedure was devised.

1. Time window: The analysis calculated the number of participant gazes towards the
cobot within 15 seconds before each joint activity. This timeframe considered the
cobot’s movement time: 10-12 seconds to reach the part, grab it, and pick it up, and
3 seconds to move to the collaborative joining position.

2. Cobot gaze instances: Predictions from the attention recognition model were
smoothed using a three-point moving window to reduce jitters in continuous pre-
dictions. A peak detection algorithm identified instances where the smoothed data
indicated participant gaze towards the cobot. To ensure sustained gaze andminimize
spurious detections, only peaks spanning at least five frames (at 25 fps) were con-
sidered, indicating the participant looked at the cobot for at least five consecutive
frames.
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Figure 8.4: Box plots illustrating the distribution of pGazeJoint and pUnexpectedGaze values
across all participants. The horizontal line in the middle of the box represents the median
value, while the “X" symbol denotes the mean value for each distribution.

3. Gaze-preceded joint activities (pGazeJoint): Using identified gaze peaks and an-
notated joint activity start points, the analysis calculated the percentage of joint ac-
tivities preceded by participant gaze towards the cobot. A joint activity was deemed
“gaze-preceded" if the participant looked at the cobot at least once within the 15-
second window before its start. This metric (expressed as a percentage) represents
the proportion of gaze-initiated joint activities compared to the total number of joint
activities in a session.

4. Unexpected gazes to cobot (pUnexpectedGaze): The analysis expected participants
to gaze at the cobot for two primary reasons - initiating joint activity and during the
activity itself, which typically lasted 20-25 seconds. Therefore, any gaze towards the
cobot outside this timeframe is considered “unexpected" and potentially unrelated
to the collaborative task. To quantify this unexpected gaze behavior, a metric called
pUnexpectedGaze is calculated. This metric, expressed as a percentage, represents the
ratio of unexpected gazes towards the cobot to the total number of gazes towards the
cobot.

8.3.5 Analysis Results

Figure 8.4 presents boxplots displaying the distribution of pGazeJoint and pUnexpectedGaze
values obtained from all the participants. The mean pGazeJoint value is 83.74%, indicating
that, on average, 83.74% of collaborative joining activities were preceded by a gaze towards
the cobot. This suggests a strong association between looking-at-cobot behavior and joint
activity initiation.

Meanwhile, the mean pUnexpectedGaze is only 9.67%, signifying that very few gazes to-
wards the cobot occurred outside the expected timeframe associated with the joint activity.
This finding further supports the conclusion that looking-at-cobot behavior primarily oc-
curs around the collaborative joining phase.
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8.3.6 Insights

The analysis results revealed a tendency for participants to look at the cobot when they
were ready for joint activity, evidenced by the high pGazeJoint. This behavior, reminiscent
of human-human interaction, potentially serves as a social cue to initiate joint activity,
promoting more natural and intuitive human-robot collaboration.

Furthermore, the analysis indicates that gaze directed towards the cobot typically oc-
curs around the collaborative joining activity timeframe, supported by the low pUnex-
pectedGaze value. Interestingly, longer joining times were identified as a contributor to
unexpected gazes. During some assembly cycles, participants took more time than an-
ticipated to align sub-assemblies, leading to a collaborative joining process exceeding the
estimated duration. Additionally, unexpected software behaviors or delays in the cobot’s
performance contributed to unexpected gazes. In some cases, the cobot did not immedi-
ately initiate the subsequent assembly cycle after completing the previous one, leading to
a few unforeseen seconds of delay before the next cobot movement. This delay captured
the participants’ attention and prompted them to look towards the cobot to monitor the
situation.

While not formally analyzed in the previous chapter, valuable insights emerged from
participants’ comments. All comments were originally in Italian and are presented here in
translation. One of the participants (Participant 3) mentioned: “I noticed that the robot was
synchronized with me and I thought it might be because of the camera, so I tried looking
at it to see what would happen". Another participant (Participant 37) said: “In some cases,
I was surprised by how slow the robot was, so I tried looking at it in the hope of making
it faster". These participants believed their gaze influenced the cobot’s behavior, when in
reality, the wizard controlled it based on their sub-assembly completion. These comments
highlight the intuitive nature of gaze as a communication tool and its potential role in
collaborative interactions.

Moreover, Participant 15 suggested that “adding eyes" to the cobot could make it more
expressive. This suggestion, while outside the scope of this work due to its focus on anthro-
pomorphism, underscores the potential for gaze-based communication to enhance natu-
ralness and intuitiveness in HRC.

8.4 Towards Gaze-based Triggers in HRC

Building on the gaze analysis in Section 8.3, this study aims to pilot a fully integrated
augmented collaborative cell where joint actions are automatically triggered based on the
participant’s detected gaze behavior. The study objective extends beyond technical feasi-
bility, investigating whether a cobot aware of gaze cues fosters a more natural and intuitive
collaboration experience.

Inspired by Palinko et al. [2016], natural and intuitive collaboration is defined as the
ability of participants to successfully complete the task without explicit instructions about
the trigger mechanism. In other words, participants must discover how to initiate joint
activity through their own interaction experience.
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Figure 8.5: The layout of the experimental setup for automatic gaze-based cobot triggering
system. The layout is same as Chapter 7, except the addition of the side camera (near the
experimenter)

8.4.1 Experimental Setup

While Section 8.3 demonstrated a specific gaze behavior (looking at the cobot) preceding
joint activities, it is crucial to acknowledge that the data was not originally collected for this
chapter’s specific research questions. Therefore, a dedicated study is necessary to assess
the feasibility of an automatic gaze-based cobot triggering system.

The participant’s task remained identical to Section 8.3.1. However, the cobot’s be-
havior during the individual assembly phase differed slightly, as detailed in Section 8.4.2.
Notably, due to the implementation of automatic gaze-based triggering (see Section 8.4.3),
the “wizard" role became obsolete. Although absent in the triggering process, an experi-
menter remained present to address any potential technical issues.

For the subsequent analysis, a broader view of the setup including the participant and
the cobot was required. Hence, an additional camera was installed near the experimenter’s
table, capturing the entire scene as shown in Figure 8.5. While the front camera facilitated
automated triggers, the primary data for the analysis were video recordings from this side
camera.
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8.4.2 Cobot Operating Modes

Following the three experimental sessions described in Chapter 7, a few participants re-
ported that the cobot’s scanning motion during the individual assembly phase was noisy
and distracting. To investigate if this motion influenced participant behavior, two experi-
mental conditions were implemented:

• Scanning: This condition replicated the previous cobot behavior (Section 8.3.1),
where the cobot scanned over the pre-assembled parts during the individual assem-
bly phase while waiting for the trigger. However, unlike the previous setup, the
trigger was now automatically generated based on the participant’s gaze behavior.

• Still: In this condition, the cobot remained stationary above the pre-assembled com-
ponents instead of performing the scanning motion. Upon receiving the gaze-based
trigger, the cobot moved to a specific pre-assembly, picked it, and brought it to the
participant for the joint activity.

These two conditions were designed to determine if the scanning motion influenced
the participants’ behavior. Additionally, the Still condition is expected to potentially facili-
tate the participant’s understanding of the gaze-based trigger mechanism. Since the cobot
wouldn’t initiate any action until the participant looked at it, this condition might provide
clearer cues about the role of gaze in initiating the joint activity.

8.4.3 Real-time Implementation

To automatically trigger the cobot in real-time, this study utilizes two sub-systems: auto-
matic gaze recognition and generating cobot triggers. The overall cobot behavior, including
movement and interaction control, was implemented using the Robot Operating System
(ROS) Noetic [Quigley et al., 2009].

Gaze Detection

This sub-system leveraged the same attention recognition model employed for automatic
annotations in Section 8.3.3 to detect participant gaze direction in real-time. It was imple-
mented as a pipeline within the SSI framework [Wagner et al., 2013], a Windows-based
platform designed specifically for recording, processing, and analyzing social signals. The
sub-system operated in four steps:

1. Input: Upper-body video captured by the front camera served as the initial input for
the sub-system. Each frame of the video was processed separately in the pipeline.

2. Face detection: MediaPipe’s face detectionmodel Bazarevsky et al. [2019]was used to
crop the input frame and focus solely on the participant’s face region. The cropped
facial images were scaled to 224 × 224 pixels (default VGG16 dimensions). As dis-
cussed in Chapter 6, participants occasionally exit the camera’s field of view to re-
trieve additional boxes or bend down to pick up pieces. In these instances, face
detection fails and the missing frames are replaced by a default, solid-colored image.
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3. Gaze classification: The cropped and scaled face images were fed into the previously
mentioned attention recognition model, allowing for real-time classification of the
participant’s gaze direction (cobot, table, elsewhere). Upon receiving a solid-colored
image (indicating face detection failure) from the face detection module, this module
classifies the individual’s gaze direction as “elsewhere".

4. Output: The classification results for each frame were transmitted to the cobot-
triggering sub-system via UDP sockets for further processing.

Cobot Triggers

The cobot triggering sub-system utilizes the VSM framework [Gebhard et al., 2012] to
execute the task logic designed for the experiment. VSM communicates with the ROS
master (communication hub) through topics and services, allowing for external control of
the cobot.

Figure 8.6: An illustration of the cobot triggering sub-system in both the previousWizard-of-Oz
setting (top) and Real-time implementation (bottom). In the “wait" state, the cobot performs
the individual assembly actions (scanning or still) until it receives the trigger signal. Upon
receiving the trigger, the cobot enters the “joint activity" state until the participant presses the
foot pedal. The action returns the cobot to the “wait" state for the next production cycle.

In the previously utilized “Adaptive" condition (see Section 8.3.2), VSM listened for a
specific keyboard press before triggering the cobot’s movement for the joint activity (refer
to Figure 8.6 for a simplified illustration). However, for the current study, the triggering
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logic was modified to rely on the participant’s gaze data received from the automatic gaze
recognition sub-system.

The VSM program received the gaze classification data from the SSI framework. In
line with the analysis presented in Section 8.3.4, a valid trigger was generated only if the
participant’s gaze was detected towards the cobot for more than five consecutive frames.
To achieve this, a counter was implemented in VSM to track the number of consecutive
frames where the participant’s gaze was directed towards the cobot. If the gaze direction
changed, the counter was reset. The trigger for joint activity was sent to ROS only when
the counter exceeded the predetermined threshold of five consecutive frames.

8.4.4 Data Collection and Annotations

Participants

A total of 10 volunteers participated in the current study. The group was demographically
balanced with 5 male and 5 female participants, and an age range of 18 to 30 years (mean =

23.8, SD= 5.14). All participants were Italian and predominantly students from a university
near the National Research Council of Italy - Lecco campus.

Importantly, the study included one participant with high-functioning ASD, while the
remaining nine participants were neurotypical. This inclusion aimed to explore the fea-
sibility of the gaze-based cobot system outside the behavioral patterns established by the
entirely neurotypical group analyzed in Section 8.3. Previous research (Chapter 6) suggests
differences in gaze behavior between neurotypical individuals and those with ASD during
collaborative assembly tasks.

Study Protocol

Participants were initially informed about data treatment procedures and provided signed
consent forms. They then underwent a brief training session to practice assembling gear-
boxes. Importantly, none of the participants had prior experience with the cobot, and they
were not informed about the gaze-based automatic triggering system.

The study employed a within-group experimental design (Figure 8.7). Each participant
interacted with the cobot under both the Scanning and "Still" conditions. Each condition
lasted for the time required to assemble 10 complete gearboxes, with a short break between
sessions. The order of the conditions was randomized and counterbalanced to control for
any potential effects of experiencing one condition before another.

Following the second experimental session, participants were asked to share their im-
pressions of the system. Their responses were recorded in Italian and later translated into
English. Finally, the participants were debriefed about the automatic gaze-based triggering
system and the overall goals of the study. This part of the study was also covered by the
ethical approval from Commissione per l’Etica e l’Integrità nella Ricerca of the National
Research Council of Italy (protocol n. 0085720/2022 of 23/11/2022)
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Figure 8.7: An overview of the experimental protocol consisting of two conditions (Scanning,
Still). Each participant completed both conditions, but the order was alternated and counter-
balanced across participants.

Annotations

In this study, a production cycle is said to be “successful" if the participant triggers the cobot
for joint activity at the appropriate time (right before or immediately after completing their
sub-assembly) andwithin a reasonable timeframe. Specifically, the triggermust be initiated
within a maximum of 5 seconds after completing their sub-assembly, a threshold inspired
by the work of Eldardeer et al. [2021].

To track the interaction timings and analyze the trigger dynamics, the following frames
were annotated:

• Assembly Completion: The moment the participant finishes their individual sub-
assembly.

• Cobot Trigger: The moment the cobot receives the trigger and begins moving to-
wards its sub-assembly.

8.4.5 Analysis

Successful Initiations

The initial production cycle in each condition was excluded due to the potential influence
of the researcher’s start signal. Analyzing successful interactions (triggered within 5 sec-
onds), the system achieved an overall success rate of 91.53% (88.64% for Scanning, 94.38%
for Still).

While participants looked at the cobot and triggered joint activity in every cycle, some
interactions exceeding the 5-second threshold were not classified as successful. Notably,
the success rate in both conditions exceeded the gaze-preceded joint activities ( pGazeJoint)
observed in Section 8.3.4 (83.74%), indicating successful system implementation.

Waiting Time

Figure 8.8 presents the average waiting times of each participant in the Scanning and Still
conditions. The green circle on Participant 8 indicates that the participant was character-
ized by ASD. In the Scanning condition, participants waited an average of 3.63 seconds
after finishing their part to trigger the cobot. Notably, the Still condition led to shorter
average waiting times of 2.73 seconds, likely due to not needing to wait for the ongoing
scanning motion to complete.
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Figure 8.8: Bar graphs showing the average duration (in seconds) for which each participant
waited for the joint activity to begin. For each participant, the first bar (magenta) represents
the waiting time in the Scanning condition, while the second bar (blue) represents the waiting
time in the Still condition. Participant 8, highlighted by a green circle, has been diagnosed
with ASD.

Early Activations

Figure 8.9 shows the average duration of early activations in both conditions, i.e., instances
where the cobot received the trigger before the participant finished their assembly task.
The green circle indicates the average for the ASD participant. Overall, this occurred in
19.21% of interactions, with an average early-trigger time of 2.19 seconds.

This observation suggests that some participantsmay have learned the role of gaze over
time, and began looking at the cobot before finishing to reduce waiting times. This hypoth-
esis is supported by the higher average percentage of early activations observed among
participants who reported understanding the gaze-based mechanism (58.82%) compared to
those who did not. Excluding the ASD participant, around 90.91% of the early activation
instances were triggered by the participants who commented that their gaze influenced
the cobot’s timing.

ASD Participant Behavior

Interestingly, the ASD participant exhibited a unique gaze pattern compared to the rest of
the group. Unlike others, they often looked towards the cobot and triggered it before start-
ing a new sub-assembly, as shown in Figure 8.10. This behavior resulted in a considerably
high average early-trigger time of 15.50 seconds compared to the rest of the group.
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Figure 8.9: Bar graphs visualizing the average duration (in seconds) of early cobot triggers
by each participant. Two bars represent the data of each participant: the first bar (magenta)
represents the Scanning condition, while the second bar (blue) represents the Still condition.
Participant 8, diagnosed with ASD, is highlighted with a green circle.

8.4.6 Insights

The fully integrated gaze-based cobot triggering system achieved a success rate of 91.53%,
demonstrating the viability of using participants’ gaze as a natural cue for triggering col-
laborative activities with a cobot. Most participants reported a positive collaboration ex-
perience, supporting the hypothesis that leveraging natural gaze behavior can enhance
human-robot collaboration. However, Participant 1 commented: “The noise and the wait-
ing times of the robot were irritating", highlighting the importance of considering all en-
vironmental factors for optimal working conditions.

As anticipated, most participants recognized that some aspect of their actions triggered
the cobot’s movement. This awareness was further supported by the observed early acti-
vations. Participants often reported feeling a greater sense of control over the system in
the Still condition compared to the Scanning condition. For instance, Participant 2 said: “I
think that during the scanning session, the robot had a fixed time before coming towards
me. While in the still session, it came when I was done with my part". This suggests that
the scanning motion may have masked the immediate responsiveness of the cobot, making
the cause-and-effect relationship between their actions and the cobot’s actions less obvi-
ous. Notably, four out of ten participants (40%) accurately identified their gaze behavior
as the triggering mechanism. The remaining participants attributed the cobot’s response
to either a pre-defined schedule or alternative factors, such as their body position or the
action of lifting the sub-assembly.
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Figure 8.10: A participant with ASD triggering the cobot for joint activity through their gaze.
The participant is about to drop the completed assembly into the box for completed assem-
blies. The area typically used for individual assembly is empty, showing that the partici-
pant triggered the cobot before assembling their part. The copyright remains with the au-
thors [Lavit Nicora et al., 2024].

A majority of participants expressed a preference for the Still condition, where the
cobot didn’t perform a scanning motion. They felt the cobot reacted more quickly and
was better synchronized with their actions. This preference aligns with the shorter aver-
age waiting times observed in the Still condition. In the Still condition, the cobot started
movement towards the sub-assembly immediately upon receiving the gaze trigger. Con-
versely, in the Scanning condition, any trigger required the cobot to first interrupt its scan-
ning motion before moving towards the sub-assembly, introducing a slight delay. Despite
this difference in perceived responsiveness, participants successfully initiated joint activ-
ity with the cobot in both conditions. This observation indicates that while the scanning
motion may have affected user preference, it did not influence the natural gaze behavior
for triggering joint actions.

A unique pattern emerged when piloting the system with the participant diagnosed
with ASD. The cobot was often triggered significantly earlier, resulting in the cobot wait-
ing for the participant to complete the joint activity. This pattern was more pronounced
in the Still condition. One possible explanation is that the cobot’s stillness may have been
unconsciously perceived by the participant as a potential malfunction, prompting them
to monitor the cobot’s status. This attention towards the cobot generated the trigger for
the cobot’s joint activity behavior, after which the participant resumed their task. Interest-
ingly, the participant reported no perceived difference between the two conditions, stating,
“I felt smooth working with the robot during both conditions". While this early triggering
did not cause discomfort or hinder task completion, it underscores the importance of con-
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sidering diverse needs and potential behavioral variations when designing human-robot
collaboration systems.

8.5 Reflections and Remarks

This chapter investigated the potential of utilizing natural gaze patterns for a more nat-
ural and intuitive HRC in industrial settings, particularly when working with cobots that
lack human-like features. This investigation was carried out in two complementary exper-
iments.

Leveraging data from the previous chapter, the first experiment examined natural, un-
forced gaze behavior during an HRC task. Analysis revealed a distinct “look-at-cobot" gaze
behavior employed by participants to initiate joint activity. Building upon this observation,
the second experiment implemented a real-time gaze-based communication system. This
system triggered the cobot to initiate joint activity based on the participants’ gaze behav-
ior. The gaze-based cobot-triggering system successfully achieved seamless collaboration
with a very high success rate in initiating joint activity.

While participants reported positive collaboration experiences, the influence of the sys-
tem on specific aspects like well-being and trust requires further investigation. Addition-
ally, human activity recognition alongside gaze-based triggering could potentially further
enhance the collaboration experience. By understanding the participant’s progress with
their task and tailoring the cobot’s actions accordingly, the collaboration can become more
seamless and efficient.

This chapter demonstrates the versatility of gaze information. The attention recogni-
tion model presented in Chapter 3, originally designed for distraction detection, was suc-
cessfully repurposed here to initiate joint activity based on participants’ attention towards
the cobot. However, the study revealed an interesting difference in how one participant
characterized by ASD interacted with the real-time system. This highlights the need for
further research to explore how such gaze-based systems can be adapted to respond natu-
rally to users with diverse needs and abilities.
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Chapter 9

Summary and Contributions

9.1 Key Takeaways

This thesis explored a range of worker states and developed machine learning models to
predict these states. Building upon the foundation established in Part 1, the chapters in
Part 2 investigated specific states: attention/distraction (Chapter 3), pain (Chapter 4), and
stress (Chapter 5). While each chapter addressed specific research questions related to
individual states based on existing literature gaps, this section revisits the overarching
research questions from Chapter 1 regarding model applicability in real-world scenarios.
Insights from each chapter are leveraged to answer these questions below.

The first overarching question explored the applicability of models across contexts:
Can models trained on datasets from different contexts be effectively applied to indus-
trial Human-Robot Collaboration (HRC) settings? Or are these models specific to the
training context?

▶ Attention Recognition: The attention recognition models are not expected to be
applicable to various settings as the areas of interest are tied to the work cell lay-
out. Chapter 3 demonstrated that models trained on data from a specific layout with
guided gaze can be applied to images from industry-like HRC sessions with the same
layout. However, a limitation was identified in an assumption regarding distraction,
which considered looking at non-assembly areas as a primary manifestation of dis-
traction during down-time. It was observed that, during non-assembly periods par-
ticipants sometimes looked at assembly components or even fidgeted them without
actively assembling them. This observation highlights the need for models incor-
porating additional data like proximity to the assembling space and body pose for
improved accuracy.

▶ Pain Detection: Chapter 4 showed that a model trained on one of the pain datasets
demonstrated applicability to other contexts. Notably, although eye closure is often
associated with pain expression, this dataset did not exclusively exhibit eye closure
in pain images. This variation is realistic as eye closure is not always an indicator
of pain (e.g., blinks). Consequently, pain predictions relied more heavily on other
facial features like grimaces. These findings suggest that detecting pain in industrial
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settings using models trained on datasets from different contexts is a feasible goal,
provided the chosen datasets have realistic variations.

▶ Stress Detection: The research presented in Chapter 5 suggests that Heart Rate Vari-
ability (HRV) models trained on datasets involving the same type of stressor demon-
strate robustness across different contexts, even with differences in the intensity of
experienced stress. So, for developing stress models applicable to industrial HRC
settings, it is essential to select training datasets that match the type of stressor that
occur frequently in such settings.

The second overarching question centered on assessing the learned features: Are the
features learned by the model generic and applicable to real-world scenarios, or are
they specific to the limited data available? This question is crucial when the size of the
dataset is small.

▶ Attention Recognition: Due to the limited size of the dataset collected for a spe-
cific layout, transfer learning was employed to train deep neural networks for atten-
tion recognition. A large image-based gaze estimation dataset was used to train the
source model. Here, only the final layers were fine-tuned to map gaze direction to an
area of interest. This approach preserved the features learned for gaze estimation,
making them independent of the target dataset. The effectiveness of these features in
predicting attention in two different scenarios indicates their potential applicability
across various situations.

▶ Pain Detection: Two pain detection models (trained on separate datasets) utilized
transfer learning to leverage features learned by an emotion recognition model.
The investigation of learned representations using Explainable Artificial Intelligence
(XAI) techniques revealed that the models relied on patterns typical associated with
pain expressions rather than being dataset-specific. However, the relative impor-
tance of these features for pain prediction varied across datasets.

▶ Stress Detection: The stress datasets were not very small compared to the attention
and pain datasets. So, transfer learning techniques were not employed in training
stress detection models. Deep learning models based on Electrocardiogram (ECG)
achieved good performance on the training dataset but struggled to predict stress
in a different dataset. This suggests that these models likely learned dataset-specific
features because of overfitting. In contrast, HRV features exhibited better perfor-
mance across datasets. Moreover, the HRV models demonstrated good cross-dataset
performance on social stress datasets recorded in different contexts, indicating that
the data was sufficient to train generic social stress detection models.

This section has thus far discussed the applicability of models trained for states that are
relatively quick to manifest. The third overarching question addressed the long-term expe-
riences: What other relevant worker states might manifest during long-term industrial
HRC? To address this question, a week-long study was conducted in a lab work cell that
mimicked an industrial HRC scenario. Participants with Autism Spectrum Disorder (ASD)
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were also included in this study to draw insights applicable to a wider population. By ana-
lyzing observations from the study through both quantitative and qualitative methods, the
following patterns were identified and further explored:

▶ Flow States: Both neurotypical and ASD participants showed patterns of tiredness
and boredom, with these manifestations increasing over time. Interestingly, the neu-
rotypical participants exhibited a tendency to prioritize joint activity with the cobot
over their ongoing tasks, seemingly to avoid delays for the cobot. Furthermore, they
demonstrated adaptations in their workflow to better synchronize with the cobot’s
arrival for collaborative tasks. These behaviors were observed less frequently in the
ASD participants. These patterns can be viewed from the perspective of the flow
theory. In this framework, the cobot’s production rate can be seen as the challenge
level for the worker. When the cobot operates slower than the participant, waiting
periods lead to boredom. Conversely, when the cobot is unexpectedly faster, partic-
ipants adapt their activities to meet the increased challenge. For facilitating a flow
experience, the cobot should ideally adapt to the worker’s pace rather than the other
way around. While the study did not identify clear manifestations of anxiety, further
investigation into this area is warranted.

▶ Gaze Cues: Both neurotypical and ASD participants looked towards the cobot while
waiting for it to complete its tasks. However, neurotypical participants tended to
maintain gaze contact with the cobot for longer durations. Conversely, gazes towards
the cobot were minimal while participants were actively assembling components.
These observations suggest that gaze patterns may provide valuable social cues that
can be leveraged by the cobot as a communication modality.

Building on the insights from the long-term study, a follow-up question was: Can ma-
chine learning models be applied to detect these newly identified states? To address this
question, data collection was necessary to capture the identified state manifestations. The
cobot’s behavior was adapted to elicit these manifestations within shorter experimental
sessions. Beyond training new models for these states, Chapters 7 and 8 explored whether
the models or features developed in Part 2 could be leveraged for detection purposes.

▶ Flow States: The previously trained emotion recognition model and HRV feature
extraction techniques from the stress detection research were explored for their ap-
plicability in detecting flow states. The analysis revealed that HRV features exhibited
promising capabilities in differentiating between boredom, anxiety, and flow states.
These findings led to the development and training of flow detection models specif-
ically using HRV features. This demonstrates the applicability of HRV features in
detecting not only stress but also flow states.

▶ Gaze Cues: One specific gaze cue identified as potentially informative was the act
of looking at the cobot. This cue could be effectively detected using the attention
recognition model developed in Part 2, which classified gaze direction as towards
the cobot, table, or indicating distraction. Analysis of gaze behavior revealed that
participants primarily looked at the cobot when theywere ready for the joint activity.
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This suggests that gaze cues can serve as triggers for initiating collaborative actions
between the operator and the cobot. A system leveraging the attention recognition
model to automatically trigger the cobot for joint activity was developed and tested.
All participants successfully collaborated with this system. Interestingly, the sole
participant with ASD consistently triggered the cobot much earlier than just-in-time
for the joint activity, deviating from the behavior of the neurotypical participants.
This suggests that although both groups exhibited similar gaze cues, the underlying
intentions behind these behaviors might differ.

9.2 Contributions

This thesis addressed various questions pertaining to the applicability of specific machine
learning models to industrial HRC settings. The contributions of this thesis include data
collection, development and deployment of models, and insights about the relevant worker
states. These insights is broadly classified as analytical or demonstrative, based on the type
of presented observations. This section presents a brief account of the various contribu-
tions of this thesis.

9.2.1 Data Acquisitions

While some of the models were trained on publicly available datasets, others relied on data
collected in specialized scenarios presented in this thesis. Excluding very small datasets
collected for fine-tuning a fewmodels, there were primarily three datasets collected as part
of this thesis:

▶ Social Stress Dataset: The need for a social stress dataset which does not use a stan-
dardized stress inducing test was outlined in Chapter 5. To address this need, the
chapter presented a multimodal social stress dataset that utilized a simulated job
interview scenario to elicit social stress.

▶ Long-term Industry-like HRC Dataset: A key need for assessing applicability
stemmed from the lack of long-term studies in industrial HRC settings. Chapter 6
addressed this research gap by designing an HRC work cell in the lab, which mim-
icked an industrial scenario. This setup was used to collect video clips and other
observational data intermittently from the week-long study. This setup facilitated
the natural occurrence of states such as distractions and boredom. Moreover, it fa-
cilitated the analysis of behavioral patterns in neurotypical and ASD participants
and how they evolve over time.

▶ Flow in Industry-like HRC Dataset: The insights from the long-term study hinted
at the need for detecting flow-related states, plausibly induced by the production
rate of the cobot. This led to the collection of a multimodal dataset that recorded the
responses of participants during three cobot production rate conditions (Slow, Fast,
and Adaptive).
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9.2.2 Implementations

This thesis presented various machine learning models for detecting mental well-being
states relevant in industrial HRC. The contribution in the development and deployment of
these models can be clubbed into the following three steps:

▶ Pre-processing: For models based on images, the pre-processing steps were fairly
straight forward and involved face-crop and scaling to the input dimensions of the
neural network. Appropriate data augmentation methods (e.g., rotation, horizontal
flip) were applied to improve variations in input data.

For physiological signals, noise removal techniques (e.g., frequency filter) were im-
plemented based on the literature. Additionally, relevant features were extracted for
training shallow models. To mitigate the influence of person-specific characteristics
of physiological responses, feature-wise MinMax normalization was implemented.

▶ Training Models: Image-based deep learning models (VGG16) were implemented
for attention recognition, emotion recognition, and pain detection. ECG-based deep
learning models (e.g., DeepECGNet) were trained for detecting stress. HRV-based
shallow models (e.g., simple feed-forward neural network) were developed for pre-
dicting stress and flow states. The hyper parameters for eachmodel were determined
through empirical evaluations.

▶ Real-time Detection: Plugins were developed to incorporate the pre-processing
steps and the trained models into the SSI framework. This enabled creating SSI
pipelines which facilitated the prediction of these states in real-time.

9.2.3 Analysis-based Insights

Each chapter from Part 2 and 3 of this thesis presented insights based on the findings of the
corresponding studies that contributed to the research in the field. Some of these insights
were obtained often through quantitative analyses and are listed below:

▶ XAI-based Learned Feature Representation Comparison: Chapter 4 presented a
XAI-based approach to compare the learned feature representations of two image-
based deep learningmodels. This approach was demonstrated in two use cases. First,
it was used to identify the features forgotten while transfer learning pain detection
from emotion recognition model. Analysis showed that the forgotten features were
facial regions that do not occur on prototypical pain expression patterns. Second, the
approach was used to identify differences in expressions of clinical and experimental
pain with the help of automatically learned feature representations. Although there
were no distinguishing features, the relevance of features varied depending on the
pain dataset.

▶ Behavioral Patterns of Neurotypical and ASD Participants: Chapter 6 presented
the qualitative and quantitative analyses conducted on the long-term HRC dataset,
which resulted in insights about the behavioral patterns exhibited by neurotypical
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and ASD participants. While some behavioral patterns (e.g., manifestations of tired-
ness/boredom) were similar in both groups, they differed in other aspects such as
prioritizing cobot, duration of gaze towards cobot, and assembly routine. Some of
the behavioral patterns inASD participantswere akin to social interactions, although
industrial HRC cannot be considered an obvious social scenario.

▶ Relationship between Flow States and Facial/Physiological Responses: In Chap-
ter 7, the flow in industry-like HRC dataset was analyzed to determine if facial emo-
tion estimation and HRV features differed significantly during different flow-related
states (boredom, anxiety, flow). Features like heart rate and mean HRV showed sig-
nificant differences, with trends similar to existing studies on flow during mentally
demanding tasks.

▶ Gaze Cues for Initiating Joint Activities: Chapter 8 analyzed the gaze behaviors of
participants, especially around the joint activity phase of an industrial HRC task. The
participants showed a tendency to look at the cobot when they were nearly ready
for the joint activity, making it a potential cue for initiating joint activities.

▶ Differences inGaze Cues of Neurotypical andASD Participants: Akey insight from
Chapter 8 was regarding the differences between neurotypical and ASD participants
interacting with a cobot with automatic gaze-based triggers. The ASD participant
frequently triggered the cobot considerably early, before they were ready for the
joint activity. This observation led to a hypothesis that ASD participants might not
utilize gaze to initiate joint activity but for a different purpose (e.g., for monitoring
the status of the cobot). However, further research is required for verifying this
hypothesis.

9.2.4 Performance-based Insights

Some of the insights were obtained by evaluating model performances (e.g., accuracy, F1-
score) and are presented below:

▶ Source Datasets for Transfer Learning: Chapter 3 demonstrated the potential of
gaze estimation as a source model for transfer learning attention recognition. This
was demonstrated through two separate datasets, where the models yielded high
performances. Similarly, Chapter 4 demonstrated emotion recognition as a source
model for transfer learning pain detection.

▶ Need for Natural Distractions: Chapter 3 presented the results of cross-dataset eval-
uation of models trained on a dataset with guided gaze when applied to images of
participants performing industry-like HRC task. The slight drop in the recall of dis-
traction class indicates the need for additional modalities. Moreover, it emphasizes
the importance of evaluating attention recognition models using natural manifesta-
tions of distraction instead of posed distraction.

▶ Lack of Generalizability of ECG-based Deep Learning Stress Models: A notable
observation in Chapter 5 was the lack of generalization capabilities of deep learning
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stress models trained on ECG signals. Moreover, increasing training data by com-
bining datasets resulted in a slight reduction in performance compared to individual
dataset models. These observations point to a plausible reliance of these models on
the recording hardware.

▶ Factors Influencing Generalizability of Stress Models: One of the findings in Chap-
ter 5 centered around the factors that influence the generalization capabilities of a
HRV-based stress models. Through multiple cross-dataset evaluations, the impact
of factors such as stress eliciting technique, intensity, and sensor hardware were as-
sessed. Stressor type was found to be an important factor in developing generalizable
HRV models that can be applied to other contexts.

253





Chapter 10

Outlook

While this thesis investigated the development of models applicable to industrial Human-
Robot Collaboration (HRC) settings, the states considered (attention/distraction, pain,
stress, flow) are by no means an exhaustive list. Other states, such as fatigue and trust,
have been identified in the literature as relevant in industrial HRC scenarios. For instance,
Coronado et al. [2022] highlights the importance of detecting fatigue for worker safety,
while Baltrusch et al. [2022] discusses the role of trust in HRC scenarios. These states
are equally important for improving worker well-being, and similar challenges regard-
ing model applicability and generalizability of features are likely to be encountered when
exploring their detection using machine learning. Hence, there is a need to extend the
investigations presented in this thesis to these states as well.

The realization of well-being-friendly cobots extends beyond model development. The
findings of this thesis contribute to laying a foundation for worker state detection in in-
dustrial HRC settings. A few potential avenues for future work utilizing these models are
discussed below.

10.1 Applying Models in Actual Factories

The industrial HRC studies presented in this thesis were conducted in a laboratory setting.
The laboratory setup enabled the inclusion of ASD participants, but it does not address the
applicability of findings to actual factories. Although the task and scenarios were designed
to closely mimic an industrial workcell, certain aspects such as environmental and orga-
nizational factors could not be effectively simulated in a lab. For instance, actual factories
may have higher noise levels as there are multiple robots or workcells operating simulta-
neously. The elevated noise levels may act as a stimuli (e.g., stress stimuli) that influences
the workers’ state. Moreover, a real-life factory worker’s experience profile and skills are
likely different from the participants from the studies. The participants were neither fa-
miliar with cobots nor had experience with manufacturing jobs.

Given the limitations of the lab setup, there is an evident need for investigating real-
life worker experiences. As a first step, a focus group interview was conducted to obtain
the perspectives of different stakeholders of a company. The interview involved three
employees - a cobot worker (male), a learning&development manager (female), and an er-
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gonomics&health manager (male) - from a car manufacturing company in Germany. The
interviewwas conducted following the story interviewmethod outlined byMackay [2023].
This method involves asking the participant to provide a walk-through of a recent experi-
ence followed by specific questions to delve deeper into certain aspects of the experience.

The interview took place at the AI production network facility in Augsburg, Germany.
While the story interview method typically focus on real-life events and experiences, this
focus group interview investigated the effectiveness of challenge-skill balance (associated
with flow) in an HRC task. This choice aimed to elicit a variety of states (boredom, stress,
flow), rather than a specific single state (e.g., pain, distraction). Since participants’ factory
does not have the flowmodel that controls cobot behavior, a lab setupwas utilized to enable
the participants to experience varying cobot behavior. To this end, a modified version of
the setup described in Chapter 7 was devised at the facility in Augsburg. The HRC scenario
was scripted to include a slow (low cobot production speed), fast (high cobot production
speed), and adaptive (cobot production speed adjusted to operator) conditions at specific
intervals.

After the participants engaged in the scripted scenario, they participated in the fo-
cus group interview. The story interview explored their experience with the task, their
impressions of the HRC system, and their perspectives on similar situations within their
factory setting. The participants’ responses (originally in German) were transcribed (using
Whisper1) and translated (using DeepL2) for analysis.

The participants reported that the monotonous nature of the task mimicked real-world
scenarios, which made the task feel realistic (ergonomics&health manager: “[...] it was
realistic because that’s really how a production could be"). The cobot worker, in particular,
expressed a desire for a feature that allows the cobot to operate at different production
rates – something currently unavailable in their existing cobot system. Moreover, all par-
ticipants agreed that a slow cobot could lead to mind wandering and distraction (cobot
worker: “ [...] when you’re working on something like [this monotonous job] you’re not fo-
cused"). They suggested that the cobot system could monitor such states and recommend
breaks or job rotations to maintain worker engagement. Unlike the participants from the
study in Chapter 7, the fast condition, which resulted in cobot waiting for operator to finish
assembly, did not lead to the cobot worker feeling pressured or anxious.

The insights from the focus group interview support the validity of the setup used
in the studies presented in Part 3 of this thesis. Some of the findings may directly be
applicable to actual factories, while others may need further investigation and refinement
before deploying in real-world industrial HRC settings. Nevertheless, there is a need for
further investigations conducted in actual factories involving cobot workers.

10.2 Cobot Adaptations

One promising avenue for utilizing the worker state detection models lies in automatic
cobot adaptations. The adaptations would be triggered by the model predictions, allowing

1https://github.com/openai/whisper
2https://www.deepl.com/translator
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the cobot to adjust its behavior in real-time to promote worker well-being. A few cobot
adaptations were explored conceptually in Chapters 5, 7, and 8 through illustrative cartoon
strips. Chapter 8 further demonstrated the feasibility of this approach by implementing a
system that leveraged the attention recognition model to trigger the cobot for joint activity
based on the operator’s cues. Ideally, future cobots should be capable of responding to a
broader range of worker cues for enhanced collaboration.

A critical step in developing adaptive cobot systems involves designing suitable cobot
behaviors for each detected state. For instance, how should a cobot respond if it detects
operator stress? The optimal response likely depends on the context and specific task
characteristics. If the cobot’s proximity causes stress, an appropriate action might involve
adjusting the cobot’s trajectory to maintain a more comfortable distance. However, this
adaptation needs to consider the specific task requirements and work cell layout. Never-
theless, designing adaptive cobot behaviors for workerwell-being requires further research
through user studies to explore optimal responses for various detected states.

A practical consideration for cobot adaptations based on real-time worker state predic-
tions is identifying the appropriate adaptation window. As noted by Nunnari et al. [2023],
while models predict a state at a high frequency, cobot behavior adjustments should occur
at a suitable rate. If adaptations happen too frequently, they can disrupt the smoothness of
interaction. Conversely, infrequent adaptations might lead to missed opportunities to ad-
dress the worker state. Finding the right balance between responsiveness and smoothness
is crucial for effective cobot adaptation.

For promoting an inclusive work environment, the machine learning models need to
be validated for a diverse population. For example, individuals with Autism Spectrum Dis-
order (ASD) may exhibit blunted stress responses to social evaluation compared to neu-
rotypical individuals [Corbett et al., 2019]. This raises important questions: Can models
trained on data from neurotypical individuals be applied to ASD workers? Is there a need
for separate models tailored to detecting worker states in ASD populations? Furthermore,
cobot adaptations themselves need to be designed with inclusivity in mind. As Chapter 8
demonstrated, adaptations designed for a neurotypical population might not be suitable
for ASD workers. Further research is necessary to tailor cobot adaptations based on the
individual needs of workers.

10.3 Cobot Interventions

In recent years, digital well-being interventions have gained significant traction across
various settings [Armaou et al., 2020; Ferrari et al., 2022]. For example, Howe et al. [2022]
designed a chatbot-based intervention system to mitigate stress in the workplace. In an
industrial HRC setting, cobots equipped with worker-state detection models could poten-
tially deliver targeted interventions to address negative states. Imagine a scenario where
a cobot detects that a worker is experiencing boredom. The cobot could then offer to take
over some repetitive tasks, potentially reducing boredom. Examples of such interventions
were conceptually explored in Chapters 3 and 4 using illustrative scenarios.

Like cobot adaptations, designing suitable interventions targeted at specific negative
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states is crucial. Additionally, determining the timing and method of intervention delivery
is equally important. Howe et al. investigated the effectiveness of scheduled versus adap-
tive intervention timings for stress reduction. While their study did not reveal a signifi-
cant difference in stress reduction, participants preferred having some agency in schedul-
ing interventions over fully automated approaches. Beyond timing, the communication
medium also needs careful consideration. Industrial environments can be noisy, making
audio-based communication challenging. Therefore, it is essential to explore alternative
intervention modalities suited for industrial settings.

The research regarding model applicability to diverse populations is equally relevant
for cobot interventions. Furthermore, just as with cobot adaptations, interventions should
be designed with inclusivity in mind to accommodate the needs of individual workers. For
example, interventions that rely on color-coded information (e.g., red lights signifying a
stop command) might not be suitable for workers with color blindness. Future research
should explore methods for personalizing cobot interventions to ensure effectiveness for a
broad range of users.

10.4 Explainable AI

The widespread use of machine learning models in industrial HRC raises concerns about
their interpretability. These models are often criticized for being “black boxes", where
users struggle to understand how the model arrives at its decisions [Hassija et al., 2024].
In industrial HRC settings, explainable AI (XAI) techniques are valuable tools in not only
developing robust models but also enhancing the collaboration experience.

One key benefit of XAI is its ability to help identify and address potential biases within
the models. In Chapter 4, for instance, XAI techniques were used to identify biases in a
pain detection model that stemmed from behavioral differences in the training datasets.
However, bias can also arise from a lack of variation within the data. For example, dataset
biases could lead to a pain detection model learning wrinkled faces (a common sign of
aging) as an indicator of pain due to dataset bias. Such a model would be biased against
older workers. By leveraging XAI techniques, model developers can select training datasets
and parameters that promote fairness and mitigate bias.

Beyond bias detection, XAI plays a significant role in building trust in cobot technology,
which could lead to improved user acceptance among workers. As highlighted by Wang
et al. [2018], simple explanations involving the prediction confidence of the model are suf-
ficient to increase the user’s trust in the prediction. Furthermore, XAI can help alleviate
concerns about perceived unpredictability caused by changes in cobot behavior. For ex-
ample, a cobot that adjusts its speed based on the operator’s proximity might be perceived
as erratic or unpredictable. The operator might then feel the need to constantly monitor
the cobot’s movements, increasing their cognitive load. However, the cobot explaining
its reason for adaptation (e.g., “I am adjusting my speed because your stress levels appear
elevated at higher speeds") can potentially reduce perceived unpredictability.

Furthermore, XAI can foster a greater willingness to accept interventions [Kuhl et al.,
2020]. Imagine a scenario where the cobot suggests a change in its configuration due to
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a detected pain state in the operator during a joint activity. The operator might be more
receptive to this suggestion if the cobot explains the reasoning behind its recommendation.

It is also necessary to consider how these explanations can be tailored for cobot work-
ers, potentially using visualizations or simplified language to enhance understanding for
users who may not have a technical background.

10.5 Virtual Characters

As discussed in Chapter 1, the introduction of cobots can lead to a reduction in human-
human interaction within the work cell. One approach for mitigating this effect involves
leveraging virtual characters to recreate some aspects of social interaction. Virtual charac-
ters have been successfully employed in various applications to represent social roles, such
as well-being coaches [El Kamali et al., 2020], tutors [Armando et al., 2022], and training
partners [Bosman et al., 2019]. For instance, Arora et al. [2022] proposes a socially aware
virtual character that acts as a physical therapy assistant, motivating patients during at-
home exercise routines.

In an industrial HRC scenario, a virtual cobot companion can serve as a social interface
for the physical cobot, making it feel more like a teammate. Research by Nicora et al.
[2023] supports this concept, demonstrating that participants attributed social presence to
a virtual character introduced into a collaborative work cell, even assigning it social roles
like colleague or supervisor.

The concept of social presence is often linked with the social facilitation effect [Park
and Catrambone, 2007]. Social facilitation describes the phenomenon where individuals
perform better on well-learned or easy tasks when in the presence of others. Conversely,
social inhibition occurs when the presence of others hinders performance on complex or
novel tasks. Research has shown that social facilitation can also be observed in the presence
of virtual characters, not just humans [Sterna et al., 2019]. As evidenced by the results
presented in Table 7.4, a typical HRC assembly task is perceived as less demanding and
low-effort. Moreover, in a real industrial scenario, the workers often get well-versed in
their tasks over time. So, introducing a virtual character has the potential to improve
worker productivity through social facilitation.

The models developed in this thesis can be leveraged to control the virtual character’s
behavior, further enhancing social presence and potentially amplifying the social facilita-
tion effect [von der Pütten et al., 2010]. For example, when the model detects the operator
looking at the cobot, the virtual character could establish eye contact to acknowledge the
operator’s cue. Further research is necessary to explore how the virtual character’s be-
havior should be adapted based on specific detected states to optimize social presence and
enhance social facilitation.

Beyond social facilitation, virtual characters can also play a valuable role in communi-
cating interventions and explaining the cobot’s decisions related to adaptations and rec-
ommended actions. Imagine a scenario where the model detects boredom in the operator.
The cobot might adapt its work pace to increase the challenge level of the task. However,
an unexpected change in the cobot’s behavior could be confusing or lead to the perception
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of an unpredictable cobot. In this situation, the virtual character could inform the operator
that the cobot is adjusting its work pace to make the task more engaging.

10.6 Ethical Considerations

Sense, Plan, and Act are the fundamental elements of AI in an HRC scenario [Murphy,
2019; Neupane et al., 2024]. This thesis focuses on the sensing aspect, centering around
collecting data from human participants and training machine learning models to improve
HRC. Since human data is involved, it is necessary to address the ethical concerns and best
practices for this area of research. The existing literature has proposed various dimensions
of ethical considerations involving AI models [Greene et al., 2019; Lo Piano, 2020; Batliner
et al., 2020; Ximenes and Ramalho, 2021]. This section leverages some of the commonly
discussed principles to guide the discussion within the context of human data collection
and well-being-friendly cobots.

• Beneficence and Non-Maleficence: These two interconnected principles are funda-
mental to ethical research. Beneficence emphasizes using data for benefitting the
user (e.g., improving well-being), while non-maleficence refers to ensuring the data
and resulting technologies do not cause harm. For instance, usingworker state detec-
tion results (e.g., fatigue, stress) to make employment decisions (e.g., job termination,
promotions) would violate both principles by reducing workers’ mental well-being
and harming their livelihood.

In this thesis, the training datasets were collected from participants in a laboratory
environment and not from actual workers. Moreover, the pipelines employing these
models facilitate controlling the cobot’s behavior in real-time, with no provision for
storing the detection results.

• Privacy and Data Protection: Ensuring user privacy and protecting confidential
information is paramount when working with human data. The typical ethical
practices to address these concerns include data anonymization measures (e.g.,
pseudonymization) and compliance with relevant data protection regulations, such
as the General Data Protection Regulation (GDPR). Cloud-based storage and com-
puting are becoming increasingly popular with large amounts of data and intensive
computations. This further necessitates anonymization and GDPR compliance as the
data gets uploaded to an external server.

To address the privacy concerns, the data collected in this thesis are shared by strictly
following the permissions granted through informed consent. Additionally, to pro-
tect the identities of the ASD participants, their facial images are blurred (both in
this thesis and associated publications).

• Transparency and Explainability: With the growing complexity of machine learn-
ing models, understanding the rationale behind a model’s prediction becomes in-
creasingly challenging. Simpler models like Random Forest Classifiers and Support
Vector Machines rely on extracted features, making feature importance calculations
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relatively straightforward. Feature importance indicates which features have the
most significant influence on the model’s decision. However, in deep learning mod-
els, the features are learned during training and may not be readily available. To
address this challenge, researchers have developed XAI techniques to generate vi-
sualizations that aid in interpreting the learned features and their contribution to
specific model decisions.

Overall, incorporating explanations in industrial HRC settings has multiple benefits.
Some of these benefits were discussed with examples in the previous section (see
Section 10.4).

• Bias and Fairness: One significant advantage of employing XAI techniques is their
ability to help identify potential biases within the models. Biased models can lead
to discriminatory decision-making that disproportionately affects certain groups.
These biases often stem from biases inherent in the training data. So, to mitigate
biases in the models, it is crucial to utilize diverse datasets that represent a broader
demographic.

The datasets utilized in this thesis have limitations in terms of diversity. While the
male-female gender ratio might be acceptable in most cases, the datasets lack suf-
ficient representation of non-binary individuals. Additionally, participant recruit-
ment primarily occurred through universities or academic institutions, limiting the
age range and potentially introducing educational bias. Furthermore, the participant
population is predominantly European nationals. However, it is worth highlighting
that the inclusion of participants with ASD in the long-term study represents a pos-
itive step towards a more diverse dataset.

• HumanAutonomy: In the context of AI models and HRC, human autonomy refers to
respecting the worker’s decision-making authority over the AI’s suggestions, even
if the model suggests a seemingly “optimal" choice. Worker autonomy should be
prioritized, even if it hinders autonomous cobot behaviors. For instance, a cobot
system might recommend a break when it detects worker fatigue. However, the
worker’s decision to continue working should be respected, even if taking a break
could improve productivity.

Another aspect of autonomy to consider is the ability of the user to opt out of engag-
ing with the AI technology. A good ethical practice would be letting workers control
what data they share with the system. This could involve options to opt out of spe-
cific data collectionmodalities (e.g., physiological data, facial expressions) or entirely
from the cobot’s AI-driven interventions. For instance, a worker who prefers self-
directed fatigue management might choose not to receive break suggestions from
the cobot.

This thesis did not delve deeply into exploring methods for facilitating human au-
tonomy. A basic version of opting out was practiced during data acquisition, where
the participants could withdraw from the study at any point and request to delete
their data.
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This section discussed a few good ethical practices and how they can be incorporated
into industrial HRC scenarios. For a comprehensive overview of best practices in develop-
ing AI models, refer to the works of Lo Piano [2020], Batliner et al. [2020], and Ximenes
and Ramalho [2021].
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Questionnaires

A.1 Flow Short Scale

1. I feel just the right amount of challenge

2. My thoughts/activities run fluidly and smoothly

3. I don’t notice time passing

4. I have no difficulty concentrating

5. My mind is completely clear

6. I am totally absorbed in what I am doing

7. The right thoughts/movements occur of their own accord

8. I know what I have to do each step of the way

9. I feel that I have everything under control

10. I am completely lost in thought
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A.2 NASA-TLX Task Load Questionnaire

Mental Demand How much mental activity was required?

Very low Very high

0 20

Physical Demand How much physical activity was required?

Very low Very high

0 20

Temporal Demand
How much time pressure did

you feel due to the task’s pace?

Very low Very high

0 20

Performance How successful were you in accomplishing the task?

Very low Very high

0 20

Effort How hard did you work to achieve your performance?

Very low Very high

0 20

Frustration
How insecure, discouraged, irritated,

stressed, and annoyed were you?

Very low Very high

0 20
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A.3 SAM Emotion Questionnaire

Note: The pictorial representations are adapted from Bradley and Lang [1994] with per-
mission from the publisher.

A.4 ELoC Locus of Control Questionnaire

I worked hard to achieve the performance I wanted

Completely
Disagree

Completely
Agree

1 5

If I did a good performance, it was because of me

Completely
Disagree

Completely
Agree

1 5

I did the task because I felt like doing it and not because I was asked to do it

Completely
Disagree

Completely
Agree

1 5
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Appendix B

Usage of AI and Third-Party Content

• Some elements (e.g., top-view of the cobot) of Figures 3.7, 6.4, 7.3, and 8.5 were gen-
erated using Hugging Face1 text-to-image models.

• Some elements (e.g., cobot icon) of Figures 2.5, 3.1, 3.7, 4.1, 4.7, 5.1, 5.5, 6.4, 7.1, 7.3,
8.1, and 8.5 use icons from Flaticon2, which are available for free.

• The contents of this thesis were written without any use of generative AI. However,
the original sentences were slightly rephrased using online large language models -
ChatGPT3 and Gemini4. I manually verified the rephrased content before incorpo-
rating them into the thesis.

• I used Grammarly5 to check for grammatical errors.

1https://huggingface.co/
2https://www.flaticon.com/
3https://chatgpt.com/
4https://gemini.google.com/app
5https://app.grammarly.com/
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Appendix C

Academic Activities

C.1 Publications

1. P. Prajod, D. Schiller, T. Huber, and E. André. Do deep neural networks forget facial
action units?—Exploring the effects of transfer learning in health related facial ex-
pression recognition. AI for Disease Surveillance and Pandemic Intelligence: Intelligent
Disease Detection in Action, 1013:217, 2022b

2. P. Prajod, T. Huber, and E. André. Using explainable AI to identify differences be-
tween clinical and experimental pain detection models based on facial expressions.
In International Conference on Multimedia Modeling, pages 311–322. Springer, 2022a

3. R. Arora, M. L. Nicora, P. Prajod, D. Panzeri, E. André, P. Gebhard, and M. Malosio.
Employing socially interactive agents for robotic neurorehabilitation training. arXiv
preprint arXiv:2206.01587, 2022

4. P. Prajod and E. André. On the generalizability of ECG-based stress detection mod-
els. In 2022 21st IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 549–554. IEEE, 2022

5. A. Heimerl, P. Prajod, S. Mertes, T. Baur, M. Kraus, A. Liu, H. Risack, N. Rohleder,
E. André, and L. Becker. ForDigitStress: A multi-modal stress dataset employing a
digital job interview scenario. arXiv preprint arXiv:2303.07742, 2023

6. P. Prajod, M. Lavit Nicora, M. Malosio, and E. André. Gaze-based attention recog-
nition for human-robot collaboration. In Proceedings of the 16th International Con-
ference on PErvasive Technologies Related to Assistive Environments, pages 140–147,
2023a

7. M. Mondellini, P. Prajod, M. L. Nicora, M. Chiappini, E. Micheletti, F. A. Storm,
R. Vertechy, E. André, and M. Malosio. Behavioral patterns in robotic collabora-
tive assembly: Comparing neurotypical and autism spectrum disorder participants.
Frontiers in Psychology, 14, 2023

8. F. Nunnari, M. L. Nicora, P. Prajod, S. Beyrodt, L. Chehayeb, E. André, P. Gebhard,
M. Malosio, and D. Tsovaltzi. Understanding and mapping pleasure, arousal and
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dominance social signals to robot-avatar behavior. In 2023 11th International Confer-
ence onAffective Computing and Intelligent InteractionWorkshops andDemos (ACIIW),
pages 1–8. IEEE, 2023

9. S. Beyrodt, M. L. Nicora, F. Nunnari, L. Chehayeb, P. Prajod, T. Schneeberger, E. An-
dré, M. Malosio, P. Gebhard, and D. Tsovaltzi. Socially interactive agents as cobot
avatars: Developing a model to support flow experiences and well-being in the work-
place. In Proceedings of the 23rd ACM International Conference on Intelligent Virtual
Agents, pages 1–8, 2023

10. M. Mondellini, M. L. Nicora, P. Prajod, E. André, R. Vertechy, A. Antonietti, and
M. Malosio. Exploring the dynamics between cobot’s production rhythm, locus of
control and emotional state in a collaborative assembly scenario. In 2024 IEEE 4th
International Conference on Human-Machine Systems (ICHMS), pages 1–6. IEEE, 2024

11. P. Prajod, M. L. Nicora, M. Mondellini, G. Tauro, R. Vertechy, M. Malosio, and E. An-
dré. Gaze detection and analysis for initiating joint activity in industrial human-robot
collaboration. arXiv preprint arXiv:2312.06643, 2023b

12. P. Prajod, M. Lavit Nicora, M. Mondellini, M. M. Falerni, R. Vertechy, M. Malosio, and
E. André. Flow in human-robot collaboration—Multimodal analysis and perceived
challenge detection in industrial scenarios. Frontiers in Robotics and AI, 11:1393795,
2024a

13. P. Prajod, B. Mahesh, and E. André. Stressor type matters!–Exploring factors influ-
encing cross-dataset generalizability of physiological stress detection. arXiv preprint
arXiv:2405.09563, 2024b

14. R. Arora, P. Prajod, M. L. Nicora, D. Panzeri, G. Tauro, R. Vertechy, M. Malosio, E. An-
dré, and P. Gebhard. Socially interactive agents for robotic neurorehabilitation train-
ing: Conceptualization and proof-of-concept study. arXiv preprint arXiv:2406.12035,
2024

15. M. Lavit Nicora, P. Prajod,M.Mondellini, G. Tauro, R. Vertechy, E. André, andM.Mal-
osio. Gaze detection as a social cue to initiate natural human-robot collaboration in
an assembly task. Frontiers in Robotics and AI, 11:1394379, 2024

16. P. Prajod, D. Schiller, D. W. Don, and E. André. Faces of experimental pain: Trans-
ferability of deep learned heat pain features to electrical pain. arXiv preprint
arXiv:2406.11808, 2024c

C.2 Awards

• Winner of AI4Pain Grand Challenge at 12th International Conference on Affective
Computing and Intelligent Interaction Workshops and Demos (ACIIW) 2024
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C.3 Reviews

• ACM International Conference on Multimodal Interaction (ICMI 2024) – 2 papers

• International Conference on Affective Computing and Intelligent Interaction (ACII
2024) – 2 papers

• International Journal of Social Robotics, ISSN: 1875-4791 (2023) – 2 articles

• IEEE International Conference on Robot and Human Interactive Communication
(RO-MAN 2020) – 1 paper

C.4 Talks

• Studying User Experiences in HRC at MindBot Public Event, CNR-Lecco, Italy
(September 2023)

• Using AI to Promote Good Mental Health and Well-being in Industry 5.0 at KI-
Produktionsnetzwerk, Augsburg, Germany (June 2023)

• Integrating People Characterized by ASD to Industry 5.0 at Seminar in University of
Augsburg, Germany (November 2022)

C.5 Press Coverage

• Cobots of the Future – Promoting Mental Health in the Workplace in Research in
Bavaria Website (February 2024) 1

• Kollege Roboter: Uni Augsburg untersucht Zusammenarbeit von Menschen und Cobots
(Robot Colleague: University of Augsburg Investigates Collaboration between Humans
and Cobots) in Aichacher Zeitung (January 2024) 2

• Forschung an der Universität: Künstliche Intelligenz soll Schmerzen erkennen (Research
at the University: Artificial Intelligence to Detect Pain) in Augsburger Allgemeine
(April 2022) 3

• Mit künstlicher Intelligenz zum gesünderen Arbeitsplatz? (Using Artificial Intelligence
to Create Healthier Workplace?) in University Presse (February 2022) 4

1https://www.research-in-bavaria.de/de/future-of-work/cobots-and-mental-health
2https://www.aichacher-zeitung.de/kollege-roboter-uni-augsburg-untersucht-zusammenarbeit-von-menschen-und-cobots/

cnt-id-ps-6a0b87d3-3aa7-45d0-9e3d-2c1a6030386d
3https://www.augsburger-allgemeine.de/augsburg/augsburg-forschung-an-der-universitaet-kuenstliche-intelligenz-soll-schmerzen-erkennen-id62118771.

html
4https://www.uni-augsburg.de/de/campusleben/neuigkeiten/2022/02/25/5850/
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