
Science of Computer Programming 241 (2025) 103227

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Verification of forward simulations with thread-local, step-local 

proof obligations ✩

Gerhard Schellhorn, Stefan Bodenmüller, Wolfgang Reif
Institute for Software and Systems Engineering, University of Augsburg, Universitätsstraße 6a, Augsburg, 86159, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

Refinement

State-based concurrent systems

Thread-local proof obligations

Linearizability

Opacity

Interactive verification

KIV

This paper presents a proof technique for proving refinements for general state-based models 
of concurrent systems that reduces proving forward simulations to thread-local, step-local proof 
obligations. The approach has been implemented in our theorem prover KIV, which translates 
imperative programs to a set of transition rules and generates proof obligations accordingly. 
Instances of this proof technique should also be applicable to systems specified with ASM rules, 
B events, or Z operations. To exemplify the proof methodology, we demonstrate it with two case 
studies. The first verifies linearizability of a lock-free implementation of concurrent hash sets 
by showing that it refines an abstract concurrent system with atomic operations. The second 
applies the proof technique to the verification of opacity of Transactional Mutex Locks (TML), 
a Software Transactional Memory algorithm. Compared to the standard approach of proving a 
forward simulation directly, both case studies show a significant reduction in proof effort.

1. Introduction

Refinement-based development is a successful approach to the development of algorithms and software systems. An important 
subcase is the development of efficient, thread-safe concurrent implementations, where the abstract specification is often given as 
simple atomic operations.

We have developed two approaches for verifying such refinements. One is based on a program calculus, and the other on which 
we focus in this paper relies on translating programs to a state-based description. This approach requires just predicate logic for 
verification.

We have done case studies with algorithms that are hard to verify. In particular, some require backward simulation or were hard 
to reduce to thread-local reasoning [1]. Most cases, however, like the ones we consider in this paper, are simpler. We noted that their 
verification still results in much overhead when one tries to verify standard forward simulation conditions. There is much potential 
to reduce complex reasoning to simple verification conditions local to threads, exploiting symmetry (all threads execute the same 
operations). Furthermore, giving assertions reduces proofs to individual conditions for each step, which are easy to understand.

This paper presents an approach to prove forward simulations with proof obligations that are local to individual threads and steps 
of the programs. Generating these proof obligations has been implemented in our KIV theorem prover. It makes use of earlier work 

✩ Supported by the Deutsche Forschungsgemeinschaft (DFG), “Correct translation of abstract specifications to C-Code (VeriCode)” (grant RE828/26-1).

E-mail addresses: schellhorn@informatik.uni-augsburg.de (G. Schellhorn), stefan.bodenmueller@informatik.uni-augsburg.de (S. Bodenmüller), 
Available online 12 November 2024
0167-6423/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

reif@informatik.uni-augsburg.de (W. Reif).

https://doi.org/10.1016/j.scico.2024.103227

Received 7 December 2023; Received in revised form 21 October 2024; Accepted 1 November 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:schellhorn@informatik.uni-augsburg.de
mailto:stefan.bodenmueller@informatik.uni-augsburg.de
mailto:reif@informatik.uni-augsburg.de
https://doi.org/10.1016/j.scico.2024.103227
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2024.103227&domain=pdf
https://doi.org/10.1016/j.scico.2024.103227
http://creativecommons.org/licenses/by/4.0/


Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

[2] that developed a translation from programs to transition systems and defined local proof obligations for verifying invariants. We 
extend the technique to refinements by specifying local proof obligations for forward simulations.

We present two case studies to illustrate the proof technique. First, we exemplify the approach by proving the correctness of 
a simple, concurrent implementation of hash sets. Proving the case study was presented as a challenge at last year’s VerifyThis 
competition [3] for theorem provers. However, the case study turned out to be far too complex to verify in a 90-minute time frame 
(none of the participants got further than to verify just termination of a simplified sequential version). After we give an overview of 
the refinement-based approach we pursue in this paper in Section 2, we define the hash set algorithms in Section 3 and sketch their 
translation to a transition system. Section 4 defines the main invariant and summarizes the local proof obligations that are needed to 
establish it.

Section 5 defines the strategy for generating local proof obligations for a concurrent refinement showing linearizability [1] of the 
hash set implementation. The obligations are based on three mappings: one establishes a correspondence between the control states 
of each thread in the concrete and the abstract system. The second provides a mapping of steps that has some resemblance to the 
mapping used in Event-B refinements [4]. The third defines a relation between the local states of threads.

For the hash set case study, we achieve the desired effect: reasoning is reduced to the essential arguments showing that the 
programs have an atomic effect at one specific instruction.

As a second example, we show how the technique can be applied to the Transactional Mutex Lock (TML) algorithm [5], an 
implementation of Software Transactional Memory (STM). This case study was already proven correct in earlier work [6], not using 
step-local proof obligations. It has been adapted to use the technique presented in this paper, which resulted in a significant reduction 
of proof effort. The general idea of STMs and the TML algorithm as an instance of STM are introduced in Section 6. Section 7 describes 
the correctness criterion opacity [7] capturing the atomicity property of STM transactions.

Furthermore, the existing abstract automaton TMS2 [8], which is proven to be opaque, is given as an abstraction of transactional 
memory implementations. Thus, showing correctness of TML can be done by proving it to be a refinement of TMS2. Section 8

outlines this refinement proof, demonstrating how thread-local, step-local proof obligation simplify verification compared to non-

local reasoning. Finally, Section 9 gives related work and Section 10 concludes.

This paper extends the conference publication [9] by putting the work into context (Section 2) and by presenting TML as another 
case study (Section 6) to which the proposed methodology was applied successfully (Section 8). While the original paper focused on 
using refinement to prove linearizability, the additional case study demonstrates that the approach generalizes to other correctness 
criteria, such as opacity (Section 7).

2. Overview

This section gives an overview over the refinement-based approach used for the verification of concurrent algorithms that are 
executed by several threads and its specific realization in our theorem prover KIV.

Concurrent executions of such algorithms should typically satisfy certain atomicity constraints. These atomicity constraints are 
always specified as an abstract automaton. The abstract automaton can have internal steps, but it always has externally visible steps 
for a) the invocations of algorithms with information about inputs and for b) the responses of the algorithms, with return values. 
Invocations and responses (with inputs and outputs) are usually called events or actions.

The set of action sequences that are possible for the abstract automaton (its traces) then fixes the atomicity constraint that is 
imposed on the concrete operations: a set of algorithms satisfies the atomicity constraint iff its traces, i.e., sequences consisting of the 
invocations and responses when calling the concrete algorithms, are a subset of the ones allowed by the abstract automaton. This is 
formally specified as the criterion for refinement correctness.

There are abstract automata for various atomicity constraints (and one challenge is to find good ones for a new atomicity con-

straint). We will show two examples for the atomicity criteria of linearizability [1] (the standard criterion for concurrent libraries) 
and for opacity [7] (a strong form of serializability [10]) that is often used for implementations of Software Transactional Memory.

The approach requires to record the traces to be able to compare them. This can either be done using specific auxiliary state 
variables (often called history variables) that record a list of such actions/events. We prefer the I/O automaton approach which uses 
a labeled transition system, where the actions are modeled as labels. Then, traces are implicitly collected as the sequence of external 
labels.

The next sections will show two abstract automata that formalize the requirement of linearizability for concurrent libraries, and 
the requirement of opacity for implementations of STM.

It should be noted that refinement correctness is a pure safety criterion: An empty implementation that immediately deadlocks 
by having no transitions at all is correct, since it produces the empty set of traces, which is a subset of any set. Liveness properties, 
which imply that algorithms make progress, are not required for a correct refinement. They vary depending on the scenario, see [11]

for an overview of common conditions. They are a separate problem that is independent of the atomicity constraints specified by the 
abstract automaton.

We ignore liveness conditions in this paper since they are trivial for the case studies we look at. To prove deadlock-freedom 
(some thread must always be able to make progress, i.e., be able to finish its currently running operation, assuming fairness), we use 
a rely-guarantee calculus (see [12,13]) similar to the one described in [14]. For lock-freedom (some thread must be able to make 
progress, no fairness assumed) temporal logic conditions have been defined [15,16]. For starvation-freedom (all threads must be able 
2

to make progress, assuming fairness) we have derived conditions in [17].



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

This paper focuses solely on proving refinement and on reducing the proof effort as best as possible. Ideal are proof obligations 
that talk about single steps of one algorithm (are step-local) and care about the global state, which is shared by all threads, and about 
the single local state of the one thread executing a step (are thread-local) only. With such conditions, one can focus on the specific 
step where a proof obligation fails, to understand whether assertions are missing or too strong (since they are invalidated by other 
threads).

KIV implements two approaches: one is to use a temporal logic calculus for programs, the other is to encode programs as an 
automaton. The first approach has the advantage that liveness properties are easier to express. However, it – like Hoare’s calculus 
[18] or Rely-Guarantee calculus [19] – has to verify an algorithm as a whole (no step-locality).

The second approach is to translate to an automaton directly. This has the drawback that fairness and other liveness conditions are 
no longer part of program semantics (KIV’s programming language has a (weak) fair interleaving operator as well as a non-fair one), 
but must be explicitly stated. On the other hand, it has the advantage that refinement proofs can be reduced to step-local conditions. 
Both approaches can be combined since both start with the same abstract programs, although there are some restrictions when they 
can be used: the automata based approach currently only supports non-recursive programs, and labels have to be added to programs, 
which the direct program calculus does not need. On the other hand, the approach based on a program calculus is less flexible for 
refinement. It can not handle some difficult cases (in particular none that require backward simulation), while the automaton based 
approach is universal.

Formally, an I/O automaton [20] is defined as follows.

Definition 1. An Input/Output Automaton (IOA) is a labeled transition system 𝐴 with

• a type State of states,

• a predicate 𝚒𝚗𝚒𝚝(s) that fixes a subset of initial states s,
• a type Action of actions, and

• a step (or transition) predicate 𝚜𝚝𝚎𝚙(s, a, s′) defining steps of the automaton from state s to state s′, labeled by action a.

Actions can be viewed as parameterized ASM rules [21], as the names of Event-B events [4] parameterized by the values chosen 
in ANY . . . WHERE clauses, or as Z operations [22] with inputs/outputs. The type Action is partitioned into internal actions a satis-

fying 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕(a), which represent events of the system that are not visible to the environment, and external actions a satisfying 
𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕(a), which represent interactions of 𝐴 with its environment. In our scenario, the set of external actions comprises invoke

and return actions for each algorithm, representing their invoking and returning steps. Such events fix the calling thread as well as 
inputs and outputs.

An execution fragment 𝚏𝚛𝚊𝚐(s0a1s1a2s2a3… ) is a (finite or infinite) sequence of alternating states and actions such that 
𝚜𝚝𝚎𝚙(s𝑖, a𝑖+1, s𝑖+1). An execution 𝚎𝚡𝚎𝚌(s0a1s1a2s2a3… ) is additionally required to start with an initial state s0 satisfying 𝚒𝚗𝚒𝚝(s0). 
The set of all executions or fragments of an automaton 𝐴 is denoted exec(𝐴) and frag(𝐴), respectively. The trace of an execution is the 
projection of all its actions to the external ones, formally 𝚝𝚛𝚊𝚌𝚎(s0a1s1a2s2a3… ) = a1a2a3… ∣ {a𝑖 | 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕(a𝑖)}. The set traces(𝐴)
of all traces of an automaton 𝐴 represents its visible behavior to a client.

A correct refinement of an abstract automaton 𝐴 to a concrete automaton 𝐶 (written 𝐶 ≤𝐴) formally requires traces(𝐶) ⊆ traces(𝐴). 
Refinement correctness can be shown by verifying that a forward or a backward simulation exists (and together the approach is complete 
[23]). Formally, a forward simulation requires to prove:

Definition 2. A forward simulation from a concrete IOA 𝐶 to an abstract IOA 𝐴 is an abstraction relation 𝚊𝚋𝚜 ⊆ State × AState such 
that each of the following holds.

Initialisation

𝚒𝚗𝚒𝚝(𝑠) ⊢ ∃ as. 𝚊𝚒𝚗𝚒𝚝(as) ∧ 𝚊𝚋𝚜(s,as) (1)

External step correspondence

𝚊𝚋𝚜(s,as), 𝚜𝚝𝚎𝚙(𝑠, 𝑎, 𝑠′), 𝚎𝚡𝚝𝚎𝚛𝚗𝚊𝚕(𝑎) (2)

⊢ ∃ as′. 𝚊𝚋𝚜(s′,as′) ∧ 𝚊𝚜𝚝𝚎𝚙(as, 𝑎,as′)

Internal step correspondence

𝚊𝚋𝚜(s,as), 𝚜𝚝𝚎𝚙(s, 𝑎, s′), 𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕(𝑎) (3)

⊢ ∃ frag(𝐴)(as 𝑎1 as1 … 𝑎𝑛 as𝑛). 𝚊𝚋𝚜(s′,as𝑛) ∧ ∀ 𝑖 ≤ 𝑛. 𝚊𝚒𝚗𝚝𝚎𝚛𝚗𝚊𝚕(𝑎𝑖)

Backward simulation has a similar definition. If backward simulation is necessary, it is always possible to give an intermediate 
automaton such that the upper refinement (often a simple one) can be verified using backward simulation, while the lower one 
(usually the difficult one) is verified with a forward simulation. Therefore, we focus on forward simulation. The step correspondence 
conditions are step-local already since they focus on one step of the algorithm, but are not thread-local since they consider the whole 
3

state of the automaton. For algorithms translated to an automaton, the state consists of the global (shared) state as well as of all the 



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

local states and program counter values of all threads, as we will see in the example given in the next section, where we detail the 
translation.

The proof obligations for forward simulations are not fully modular: the step correspondence proof obligation can be restricted 
to consider only states s and as that are reachable from initial states. These can be characterized by invariants. We prefer to prove 
invariants of individual automata separately, although formally they can simply be added as conjuncts to the abstraction relation.

The next section will demonstrate the approach by giving a simple concurrent algorithm that implements hash sets. We will show 
the algorithms as specified in KIV and demonstrate how they are translated to an automaton. The algorithms are linearizable, so we 
have to prove invariants and prove a forward simulation to an abstract specification that specifies the constraint of linearizability. This 
essentially requires that, to an observer, the inputs and outputs of concurrently executed operations look like if they were executed 
sequentially. To do this proof, Section 4 first shows invariants for the algorithms, and how proving them can be reduced to thread-

local, step-local conditions. Section 5 shows an abstract automaton (called the canonical automaton) that characterizes linearizability. 
Again, we show how the global proof obligation of a forward simulation can be reduced to proof obligations that are thread-local.

3. Case study: concurrent hash sets

We use a challenge of the 2022 VerifyThis competition [3] held at ETAPS as a case study to illustrate our approach. The tasks of 
the challenge [24] revolved around verifying the correctness of a simple but thread-safe and lock-free implementation of hash sets. 
The implementation produces hash sets with a fixed capacity and only provides functionality for insertions and membership queries.

3.1. Implementation of the algorithms in KIV

The two main operations of the given algorithms can be executed concurrently by an arbitrary number of threads, and were 
translated into KIV programs using algebraic data types as a basis. For concurrent executions, we assume an interleaving semantics

where each program statement (such as assignments or evaluations of conditionals) is executed atomically, but atomic steps of 
different threads can interleave. The implementation uses a fixed-sized array ar ∶ Array(Elem) storing keys of a generic type Elem as 
a state variable. Each slot of ar is initialized with a designated key ⊥ ∶ Elem, used as a placeholder for empty slots. Note that the 
examples in this paper all use natural numbers (the type Nat in KIV) for numerical values, e.g., array indices or sizes (thus, values of 
variables n, n0, … are always non-negative).

Algorithm 1 lists the KIV implementation (ignore the with clauses and 𝐚𝐬𝐬𝐞𝐫𝐭𝐢𝐨𝐧𝐬 for the moment) of the Insert operation for 
adding keys to the set. The operation takes a key e ∶ Elem as input and signals via the output b ∶ Bool whether the requested key 
was inserted (or was already included in the set).1 First, the algorithm calculates the hash value n0 ∶ Nat for the key e using the 
function 𝚐𝚎𝚝𝚑𝚊𝚜𝚑 (line 𝙸𝟶𝟸).2 The function returns a value in the range [0, sz), where sz is set to the size of ar (written #ar). Then, 
the algorithm uses linear probing to find a free slot in ar, i.e., it searches for the closest following unoccupied location in ar starting 
from n0. For this, the while loop (𝙸𝟶𝟻 - 𝙸𝟸𝟶) incrementally checks the entries of ar (accessing a location n ∶ Nat of an array ar is 
written ar[n]).

Depending on the value e0 of the slot currently considered, different situations must be handled. If the slot already contains the 
requested key e, nothing has to be inserted and the operation returns 𝚝𝚛𝚞𝚎 (𝙸𝟶𝟽 - 𝙸𝟶𝟿). When the slot is occupied, i.e., e0 is neither 
e nor ⊥, the search must be continued at the next slot (𝙸𝟷𝟶 - 𝙸𝟷𝟷). For this, the current index n is incremented for the next loop 
iteration (note that the search continues at index 0 when the upper bound of the array is reached).

If a free slot was found (e0 = ⊥), the algorithm tries to insert the element atomically using a CAS (compare-and-swap) operation 
(𝙸𝟷𝟸). In KIV, this is modeled using the if* construct, which performs the evaluation of its condition and the first statement of the 
chosen branch as one atomic step. Since the version of CAS used in the challenge description returns the value stored in the target 
(here ar[n]) after the operation, this value is assigned to the local variable e0 in both the then and the else branches. In case the CAS 
was successful, the element was successfully added and operation returns with 𝚝𝚛𝚞𝚎 (𝙸𝟷𝟹 - 𝙸𝟷𝟻). Note that insertion is also successful 
if another thread has inserted the same element e into this slot (then the else branch of 𝙸𝟷𝟸 is executed but the condition e0 = e of 
𝙸𝟷𝟹 is true nevertheless). Otherwise, some thread interfered and occupied the slot with an element other than e, so the search must 
be continued (𝙸𝟷𝟼). Finally, insertion is aborted if the search went one full round and no free slot was found. Then the array is full, 
and the operation returns 𝚏𝚊𝚕𝚜𝚎 (𝙸𝟷𝟽 - 𝙸𝟷𝟿).

Analogously, Algorithm 2 shows the implementation of the Member operation for checking whether a key e has been inserted 
into the set. The result b is again determined by traversing ar using linear probing (𝙼𝟶𝟻 - 𝙼𝟷𝟽) until the searched element was found 
(𝙼𝟶𝟽 - 𝙼𝟶𝟿). The search is aborted and the operation returns 𝚏𝚊𝚕𝚜𝚎 when either the complete array was checked (𝙼𝟷𝟺 - 𝙼𝟷𝟼) or a ⊥
was reached (𝙼𝟷𝟶 - 𝙼𝟷𝟸).

Note that the KIV implementations of both operations slightly differ from the pseudo-code given in the challenge description (see 
[24]) as it uses do-while loops, which are currently not supported by the programming language of KIV.

1 KIV procedures currently do not have return values. Instead, the parameters of a procedure are partitioned into input, reference, and output parameters, which 
are separated by semicolons.
4

2 The program construct let x = t in 𝛼 introduces a local variable x that is initialized with t and has scope 𝛼.



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

Algorithm 1 Hash Set Insertion Operation in KIV.

𝚒𝚍𝚕𝚎: Insert(e; ; b)

𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧: e ≠ ⊥

𝐩𝐨𝐬𝐭𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧: b ↔ ∃ n. n < #ar ∧ ar[n] = e
𝙸𝟶𝟷: let sz = #ar in

𝙸𝟶𝟸: let n0 = 𝚐𝚎𝚝𝚑𝚊𝚜𝚑(e, sz) in

𝙸𝟶𝟹: let n = n0 in {

𝙸𝟶𝟺: b := 𝚏𝚊𝚕𝚜𝚎;

𝙸𝟶𝟻: while ¬ b do {

𝙸𝟶𝟼 with (ar[n] = e ⊃ 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(t,𝚝𝚛𝚞𝚎) ; 𝜏):
let e0 = ar[n] in { // atomic load

𝙸𝟶𝟽 /* e0 ≠ ⊥→ e0 = ar[n] */:

if e = e0 then {

𝙸𝟶𝟾 /* e0 = e ∧ e = ar[n] */:

b := 𝚝𝚛𝚞𝚎; // return 𝚝𝚛𝚞𝚎 if the element is already there

𝙸𝟶𝟿: return𝚒𝚍𝚕𝚎;

} else

𝙸𝟷𝟶: if e0 ≠ ⊥ then

𝙸𝟷𝟷: n := (n + 1) mod sz // slot is occupied, try next slot

else {

𝙸𝟷𝟸 with (ar[n] = ⊥ ∨ ar[n] = e ⊃ 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(t,𝚝𝚛𝚞𝚎) ; 𝜏):
if* ar[n] = ⊥ // CAS (returns the new value in e0)

then e0 := e, ar[n] := e else e0 := ar[n];
𝙸𝟷𝟹: if e0 = e then {

𝙸𝟷𝟺: b := 𝚝𝚛𝚞𝚎; // return 𝚝𝚛𝚞𝚎 if the element was inserted

𝙸𝟷𝟻: return𝚒𝚍𝚕𝚎;

} else

𝙸𝟷𝟼: n := (n + 1) mod sz // slot is occupied, try next slot

} };

𝙸𝟷𝟽: if n = n0 then {

𝙸𝟷𝟾 with 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(t,𝚏𝚊𝚕𝚜𝚎):
b := 𝚏𝚊𝚕𝚜𝚎; // return 𝚏𝚊𝚕𝚜𝚎 if the array is full

𝙸𝟷𝟿: return𝚒𝚍𝚕𝚎;

} else

𝙸𝟸𝟶: skip; // continue with next loop iteration

} };

𝙸𝟸𝟷: return𝚒𝚍𝚕𝚎; // never reached

𝐚𝐬𝐬𝐞𝐫𝐭𝐢𝐨𝐧𝐬
𝙸𝟶𝟹→ 𝙸𝟸𝟶 ∶ n0 = 𝚐𝚎𝚝𝚑𝚊𝚜𝚑(e,#ar);
𝙸𝟶𝟺→ 𝙸𝟷𝟼 ∶ 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕(ar,n0,n, e,𝚏𝚊𝚕𝚜𝚎);
𝙸𝟷𝟽 ∶ 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕(ar,n0 ,n, e,𝚝𝚛𝚞𝚎);
. . .

3.2. Translation to a state-based transition system

KIV provides functionality to automatically translate algorithms like the one given above to an IO-Automaton.

The set of external actions is constructed as invoke and return actions for each non-atomic operation, representing their invoking 
and returning steps and fixing the calling thread as well as the inputs and outputs. For example, the actions 𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(t, e) and 
𝚛𝚎𝚝𝙸𝚗𝚜𝚎𝚛𝚝(t, b) represent the respective steps for the Insert operation (analogously, 𝚒𝚗𝚟𝙼𝚎𝚖𝚋𝚎𝚛 and 𝚛𝚎𝚝𝙼𝚎𝚖𝚋𝚎𝚛 for Member).

The set of traces for the resulting now shows the visible behavior to a client. The example trace

𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(t1, e1) 𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(t2, e2) 𝚛𝚎𝚝𝙸𝚗𝚜𝚎𝚛𝚝(t1, 𝚝𝚛𝚞𝚎) 𝚒𝚗𝚟𝙼𝚎𝚖𝚋𝚎𝚛(t1, e2)

shows a situation where thread t1 has inserted element e1 successfully and is currently running a test for membership of e2, while an-

other thread t2 is concurrently running an insertion of the same element e2 . Concurrent execution might add both 𝚛𝚎𝚝𝙼𝚎𝚖𝚋𝚎𝚛(t1, 𝚝𝚛𝚞𝚎)
or 𝚛𝚎𝚝𝙼𝚎𝚖𝚋𝚎𝚛(t1, 𝚏𝚊𝚕𝚜𝚎) as the next action, depending on whether thread t2 manages to insert the element before the check of thread 
t1 or not.

In the following, we outline how the translation is performed for the hash set implementation; a more detailed description is given 
in [2].

The states of the automaton are constructed from three components: the global state gs ∶ GS, the local state function lsf ∶ Tid → LS, 
and the program counter function pcf ∶ Tid → PC. The combined state is written as the tuple 𝚖𝚔𝚜𝚝𝚊𝚝𝚎(gs, lsf , pcf ) of type State.

In KIV, states are given by (the values of) one or several (typed) state variables. The global state gs is the tuple of the state 
variables that can be accessed by all threads. For the hash set case study, this only includes the array ar, which can be accessed via 
the selector gs.𝚊𝚛. The local state function lsf stores local variables used by threads in the programs of the system. This includes 
5

all locally introduced variables in operations, e.g., sz or n in Algorithm 1, as well as the parameters of operations, e.g., e and b in 



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

Algorithm 2 Hash Set Member Operation in KIV.

𝚒𝚍𝚕𝚎: Member(e; ; b)

𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧: e ≠ ⊥

𝐩𝐨𝐬𝐭𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧: b → ∃ n. n < #ar ∧ ar[n] = e
𝙼𝟶𝟷: let sz = #ar in

𝙼𝟶𝟸: let n0 = 𝚐𝚎𝚝𝚑𝚊𝚜𝚑(e, sz) in

𝙼𝟶𝟹: let n = n0 in {

𝙼𝟶𝟺: b := 𝚏𝚊𝚕𝚜𝚎;

𝙼𝟶𝟻: while ¬ b do {

𝙼𝟶𝟼 with (ar[n] = e ∨ ar[n] = ⊥ ∨ (n + 1) mod sz = n0 ⊃ 𝚍𝚘𝙼𝚎𝚖𝚋𝚎𝚛(t) ; 𝜏):
let e0 = ar[n] in// atomic load

𝙼𝟶𝟽: if e = e0 then {

𝙼𝟶𝟾: b := 𝚝𝚛𝚞𝚎; // return 𝚝𝚛𝚞𝚎 if the element was found

𝙼𝟶𝟿: return𝚒𝚍𝚕𝚎;

} else

𝙼𝟷𝟶: if e0 = ⊥ then {

𝙼𝟷𝟷: b := 𝚏𝚊𝚕𝚜𝚎; // return 𝚏𝚊𝚕𝚜𝚎 if empty entry was found

𝙼𝟷𝟸: return𝚒𝚍𝚕𝚎;

} else {

𝙼𝟷𝟹: n := (n + 1) mod sz; // slot is occupied, try next slot

𝙼𝟷𝟺: if n = n0 then {

𝙼𝟷𝟻: b := 𝚏𝚊𝚕𝚜𝚎; // return 𝚏𝚊𝚕𝚜𝚎 if array is full and element not in

𝙼𝟷𝟼: return𝚒𝚍𝚕𝚎;

} else

𝙼𝟷𝟽: skip; // continue with next loop iteration

} } };

𝙼𝟷𝟾: return𝚒𝚍𝚕𝚎; // never reached

Algorithm 1. The function stores a local state tuple ls ∶ LS for each thread t ∶ Tid, where selectors for the individual fields are defined 
again. For example, the value of sz for a thread t is selected via lsf (t).𝚜𝚣.

The function pcf stores the program counter (control state) for each thread, which defines the current step of a thread within a 
program. For this, each atomic step in a KIV program is augmented with a unique label (𝙸𝟶𝟷, 𝙸𝟶𝟸, . . . , 𝙸𝟸𝟷 for Insert, and 𝙼𝟶𝟷, 𝙼𝟶𝟸, 
. . . , 𝙼𝟷𝟾 for Member). The type PC is defined as an enumeration type containing a constant for each program label together with 
𝚒𝚍𝚕𝚎 for a thread that is in between operation calls (of Insert or Member).

For the 𝚜𝚝𝚎𝚙 predicate, a generic axiomatic definition is generated.

𝚜𝚝𝚎𝚙(𝚖𝚔𝚜𝚝𝚊𝚝𝚎(gs, lsf ,pcf ),a,𝚖𝚔𝚜𝚝𝚊𝚝𝚎(gs′, lsf ′,pcf ′))

↔ ∃ t, ls′,pc′. 𝚕𝚜𝚝𝚎𝚙(gs, lsf (t),pcf (t),a,gs′, ls′,pc′)

∧ lsf ′ = lsf (t ∶= ls′) ∧ pcf (t ∶= pc′)

𝚕𝚜𝚝𝚎𝚙(gs, ls,pc,a,gs′, ls′,pc′)

↔ 𝚙𝚛𝚎(gs, ls,pc,a)

∧ gs′ = 𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls,pc,a)

∧ ls′ = 𝚕𝚜𝚝𝚎𝚙𝚏(gs, ls,pc,a)

∧ pc′ = 𝚙𝚌𝚜𝚝𝚎𝚙𝚏(gs, ls,pc,a)

The definition breaks down a step of the full automaton to a local step 𝚕𝚜𝚝𝚎𝚙 of one thread t by restricting changes of lsf and 
pcf to affect the parts of t only (the term f (k ∶= v) yields the function f where the value of f (k) is updated to v). Steps of one 
thread are further split into three step functions 𝚐𝚜𝚝𝚎𝚙𝚏, 𝚕𝚜𝚝𝚎𝚙𝚏, and 𝚙𝚌𝚜𝚝𝚎𝚙𝚏 that calculate the next global and local state and 
the next program counter of this thread from the previous ones if the precondition predicate 𝚙𝚛𝚎 holds. These step functions and 
the precondition predicate are defined by axioms for each individual program counter, which are generated directly from algorithms 
specified in KIV, like Algorithm 1 and Algorithm 2. Note that this axiomatization scheme was chosen because it is beneficial for 
proving the step-local proof obligations we generate, where an obligation is specific to one concrete program counter (cf. Sec. 4 and 
Sec. 5).

The 𝚙𝚛𝚎 predicate determines whether a step with a certain action a can be executed. The Action type contains values for all invoke 
and return steps of the automaton (the external actions, see above). Internal steps of non-atomic programs are typically mapped to the 
default action 𝜏 . However, internal steps can also be mapped to user-defined actions using a with clause. This is necessary to correlate 
concrete and abstract steps when proving refinement: we will assign actions representing (potential) linearization points, i.e., steps 
where an operation “takes effect” (cf. Sec. 5).

For example, in Algorithm 1, no action is assigned to step 𝙸𝟶𝟻, so it is mapped to 𝜏 , while steps 𝟶𝟼 and 𝙸𝟷𝟾 of are specified with 
the action 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝, recording the current thread t and a boolean value determining whether the operation successfully inserted 
6

the element. The assignment of these actions can be conditional, i.e., depend on the current states gs and ls: the action of 𝙸𝟶𝟼 is 



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(t, 𝚝𝚛𝚞𝚎) only if ar[n] = e holds at that point, otherwise it is 𝜏 . In the algorithm, the notation 𝜑 ⊃ 𝑎0 ; 𝑎1 is used as an 
abbreviation for an expression that computes 𝑎0 if 𝜑 is true and 𝑎1 otherwise. Thus, the following axioms specify the cases for steps 
𝙸𝟶𝟻, 𝙸𝟶𝟼, 𝙸𝟷𝟾 and 𝚒𝚍𝚕𝚎 of 𝚙𝚛𝚎, using the respective selectors to access the global and local state vars.3

𝚙𝚛𝚎(gs, ls,𝙸𝟶𝟻,a)↔ a = 𝜏

𝚙𝚛𝚎(gs, ls,𝙸𝟶𝟼,a)↔ a = (gs.𝚊𝚛[ls.𝚗] = ls.𝚎 ⊃ 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(ls.𝚝𝚒𝚍,𝚝𝚛𝚞𝚎) ; 𝜏)

𝚙𝚛𝚎(gs, ls,𝙸𝟷𝟾,a)↔ a = 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(ls.𝚝𝚒𝚍,𝚏𝚊𝚕𝚜𝚎)

𝚙𝚛𝚎(gs, ls,𝚒𝚍𝚕𝚎,a)↔ ∃e. a = 𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(ls.𝚝𝚒𝚍, e) ∧ e ≠ ⊥

∨ a = 𝚒𝚗𝚟𝙼𝚎𝚖𝚋𝚎𝚛(ls.𝚝𝚒𝚍, e) ∧ e ≠ ⊥

The last example is when the thread is 𝚒𝚍𝚕𝚎 and can invoke both the Insert as well as the Member program. The predicate is defined 
in this case to include the preconditions of the algorithms. State updates are also specified by individual axioms for the functions 
𝚐𝚜𝚝𝚎𝚙𝚏 and 𝚕𝚜𝚝𝚎𝚙𝚏 for each program counter. For example, the let-statement at 𝙸𝟶𝟼 introduces a new local variable e0 and thus 
updates the corresponding field of the local state, while the global state is not modified.4

𝚕𝚜𝚝𝚎𝚙𝚏(gs, ls,𝙸𝟶𝟼,a) = (ls.𝚎𝟶 ∶= gs.𝚊𝚛[ls.𝚗])

𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls,𝙸𝟶𝟼,a) = gs

In the case study, the global state is only updated by a successful CAS statement at 𝙸𝟷𝟸.5

𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls,𝙸𝟷𝟸,a) = (gs.𝚊𝚛[ls.𝚗] = ⊥ ⊃ gs.𝚊𝚛 ∶= gs.𝚊𝚛[ls.𝚗 ∶= ls.𝚎] ;gs)

Finally, the program counter step function 𝚙𝚌𝚜𝚝𝚎𝚙𝚏 is defined based on the algorithm’s control flow, e.g., the program counter of a 
thread is moved to 𝙸𝟶𝟽 after the statement at 𝙸𝟶𝟼 was executed. If the control flow can take different branches, the result of 𝚙𝚌𝚜𝚝𝚎𝚙𝚏
is conditional. For example, after evaluating the if-condition at 𝙸𝟶𝟽, the program counter is either set to 𝙸𝟶𝟾 or 𝙸𝟷𝟶.

𝚙𝚌𝚜𝚝𝚎𝚙𝚏(gs, ls,𝙸𝟶𝟼,a) = 𝙸𝟶𝟽

𝚙𝚌𝚜𝚝𝚎𝚙𝚏(gs, ls,𝙸𝟶𝟽,a) = (ls.𝚎 = ls.𝚎𝟶 ⊃ 𝙸𝟶𝟾 ;𝙸𝟷𝟶)

While the action a is irrelevant for the axioms for internal steps of 𝚙𝚌𝚜𝚝𝚎𝚙𝚏, 𝚕𝚜𝚝𝚎𝚙𝚏, and 𝚐𝚜𝚝𝚎𝚙𝚏 (as shown in the examples above), 
it is required for defining the steps of external actions. For example, a step with action 𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(t, e1) determines the thread t it 
changes the program counter of (from 𝚒𝚍𝚕𝚎 to 𝙸𝟶𝟷) as well as the input e1 that is written to the local state of t with the invocation. 
Thus, the corresponding axioms for 𝚙𝚌𝚜𝚝𝚎𝚙𝚏 and 𝚕𝚜𝚝𝚎𝚙𝚏 are generated as follows.

ls.𝚝𝚒𝚍 = t → 𝚙𝚌𝚜𝚝𝚎𝚙𝚏(gs, ls,𝚒𝚍𝚕𝚎,𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(t, e1)) = 𝙸𝟶𝟷

ls.𝚝𝚒𝚍 = t → 𝚕𝚜𝚝𝚎𝚙𝚏(gs, ls,𝚒𝚍𝚕𝚎,𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(t, e1)) = (ls.𝚎 ∶= e1)

4. Local proof obligations for invariants

To prove the refinement of the hash set implementation (see Sec. 5), an invariant constraining the reachable states of the automaton 
is necessary. This invariant typically contains general consistency properties of the global state (independent of the local states of any 
thread, thus called global invariants) as well as various assertions for different control points of the algorithm (called local invariants

as they also refer to the local states of threads).

The global invariant is given as a predicate 𝙶𝙸𝚗𝚟(gs). For the case study, it ensures that the array ar, in which the elements of the 
set are stored, has a valid size (it can store at least one element) and that its slots are filled correctly.

𝙶𝙸𝚗𝚟(ar)↔ #ar ≠ 0 ∧ 𝚌𝚘𝚗𝚜(ar)

The latter property is expressed by the predicate 𝚌𝚘𝚗𝚜,6 which is defined using the auxiliary predicates 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕 and 𝚋𝚎𝚝𝚠𝚎𝚎𝚗.

𝚌𝚘𝚗𝚜(ar)↔ ∀ n. n < #ar ∧ ar[n] ≠ ⊥

→ 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕(ar,𝚐𝚎𝚝𝚑𝚊𝚜𝚑(ar[n],#ar),n,ar[n],𝚏𝚊𝚕𝚜𝚎)

𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕(ar,n0,n, e,b)↔ ∀ m. 𝚋𝚎𝚝𝚠𝚎𝚎𝚗(n0,m,n,b) ∧ m < #ar

→ ar[m] ≠ e ∧ ar[m] ≠ ⊥

3 To access the identifier of thread t, it is stored as a 𝚝𝚒𝚍-field in its local state. An invariant ensures that threads store the correct identifier, i.e., lsf (t).𝚝𝚒𝚍 = t.
4 The term (x.𝚜𝚎𝚕 ∶= y) yields x where the field 𝚜𝚎𝚕 is updated to y.
5 The term ar[n ∶= e] yields the array ar where slot n is updated to e.
7

6 In the actual KIV models, the predicate 𝚌𝚘𝚗𝚜 is called 𝚑𝚝𝚘𝚔, like “hash table okay”.



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

𝚋𝚎𝚝𝚠𝚎𝚎𝚗(n0,m,n,b)↔ n0 = n ∧ b

∨ (n < n0 ⊃ m < n ∨ n0 ≤ m; n0 ≤ m ∧ m < n)

The predicates encode that ar was filled by linear probing: any non-⊥ element ar[n] in the array requires that all slots m between the 
element’s hash value (calculated by 𝚐𝚎𝚝𝚑𝚊𝚜𝚑) and the slot n it is stored in are “full”, i.e., are occupied by other non-⊥ elements. Since 
the search for a free slot continues at the first slot when the end of the array is reached (cf. Algorithm 1), the definition of 𝚋𝚎𝚝𝚠𝚎𝚎𝚗
must consider both the case of n0 ≤ n and the case of n < n0 (expressed using the 𝜑 ⊃ 𝑡0; 𝑡1 notation). Note that the definitions just 
consider slots m ∈ [n0, n) when the flag b is 𝚏𝚊𝚕𝚜𝚎, which is the case for the global invariant 𝚌𝚘𝚗𝚜. The predicates are used with 
b ↔ 𝚝𝚛𝚞𝚎 only in local invariants to express that the array is filled completely (when all slots are considered, i.e., n0 = n). Analogous 
to the algorithms, the predicates use natural numbers as arguments, so the definitions are formulated without any non-negativity 
conditions.

Instead of giving a local invariant formula directly, KIV generates a predicate definition from thread-local assertions for the individ-

ual program points. This approach facilitates tackling larger algorithms as the resulting formula becomes vast quite quickly (typically 
several pages of text, even for small case studies like the one presented in this paper). Thus, manually defining and maintaining this 
formula is very error-prone.

An assertion 𝙻𝙸𝚗𝚟pcval(gs, ls) can be given for every label 𝑝𝑐𝑣𝑎𝑙 ∈ PC. In KIV, assertions can be encoded as a comment /* 𝜑 */

at the respective label (cf. lines 𝙸𝟶𝟽 and 𝙸𝟶𝟾 of Algorithm 1). Since typically assertions hold for ranges in the code, they can also 
be given separately. For example, the assertions given at the bottom of Algorithm 1 encode the progress of linear probing: in every 
iteration of the loop, all slots between the hash value 𝚐𝚎𝚝𝚑𝚊𝚜𝚑(e, #ar) of the element and the current index n are occupied (𝙸𝟶𝟺→ 𝙸𝟷𝟼
is a shorthand for the range 𝙸𝟶𝟺, 𝙸𝟶𝟻, … , 𝙸𝟷𝟻, 𝙸𝟷𝟼). The critical step here is from 𝙸𝟷𝟼 to 𝙸𝟷𝟽, where the index n is incremented. At 
this point, the boolean flag of 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕 is toggled from 𝚏𝚊𝚕𝚜𝚎 to 𝚝𝚛𝚞𝚎 because n may have been incremented to n0 when ar
has been fully searched.

From the given assertions, KIV generates the definition of a local invariant predicate 𝙻𝙸𝚗𝚟(gs, ls, pc), which is then lifted to a full 
invariant definition 𝙸𝚗𝚟(gs, lsf , pcf ) for the automaton.

𝙻𝙸𝚗𝚟(gs, ls,pc)↔
⋀

𝑝𝑐𝑣𝑎𝑙∈PC
(pc = 𝑝𝑐𝑣𝑎𝑙→ 𝙻𝙸𝚗𝚟pcval(gs, ls))

𝙸𝚗𝚟(gs, lsf ,pcf )↔ 𝙶𝙸𝚗𝚟(gs) ∧ ∀ t. 𝙻𝙸𝚗𝚟(gs, lsf (t),pcf (t))

Since the steps of threads can interleave, the given thread-local assertions must be stable over the steps of other threads for the 
invariant to hold. In order to avoid the combinatorial explosion of explicitly reasoning over all possible interleavings, a rely predicate 
𝚛𝚎𝚕𝚢(t, gs, gs′) is used to abstract from the concrete modifications other threads can make. All steps that are not executed by thread t
should satisfy this predicate when they start in global state gs and end with gs′. Thread t relies on other threads to change the global 
state according to 𝚛𝚎𝚕𝚢. For the case study, the following rely predicate is sufficient, enforcing that no thread resizes the array and 
that no thread overwrites a slot at which an element has been inserted before.

𝚛𝚎𝚕𝚢(t,ar0,ar1)

↔ #ar0 = #ar1 ∧ ∀ n. n < #ar0 ∧ ar0[n] ≠ ⊥→ ar1[n] = ar0[n]

Note that for this particular case, there are no thread-specific rely conditions required (the parameter t is irrelevant in the formula), 
but often there is the necessity to give such conditions. For example, when locks are used or some kind of ownership properties are 
relevant (which can be added to the algorithms using auxiliary/ghost state variables), the 𝚛𝚎𝚕𝚢 predicate typically includes conditions 
like “a lock acquired by thread t remains locked by t”, or “the part of the state that is owned by t is unchanged”.

With these definitions, proof obligations (POs) are generated that ensure that the predicate 𝙸𝚗𝚟(gs, lsf , pcf ) is actually an invariant 
of the automaton. The obligations are formulated in sequent notation: a sequent Γ ⊢Δ abbreviates the formula ∀x. 

⋀
Γ →

⋁
Δ where 

Γ (the antecedent) and Δ (the succedent) are lists of formulas, and x is the list of all free variables in Δ and Γ.

step-pcval-pcval′: For every step from label 𝑝𝑐𝑣𝑎𝑙 to 𝑝𝑐𝑣𝑎𝑙′ with action a

𝙻𝙸𝚗𝚟pcval(gs, ls), 𝙶𝙸𝚗𝚟(gs), 𝚙𝚛𝚎(gs, ls, 𝑝𝑐𝑣𝑎𝑙,a)

⊢ 𝙻𝙸𝚗𝚟pcval′ (𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls, 𝑝𝑐𝑣𝑎𝑙,a),𝚕𝚜𝚝𝚎𝚙𝚏(gs, ls, 𝑝𝑐𝑣𝑎𝑙,a))

∧ 𝙶𝙸𝚗𝚟(𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls, 𝑝𝑐𝑣𝑎𝑙,a))

rely-pcval: For every step from label 𝑝𝑐𝑣𝑎𝑙

𝙻𝙸𝚗𝚟pcval(gs, ls), 𝙶𝙸𝚗𝚟(gs), 𝚙𝚛𝚎(gs, ls, 𝑝𝑐𝑣𝑎𝑙,a), ls.𝚝𝚒𝚍 ≠ t

⊢ 𝚛𝚎𝚕𝚢(t,gs,𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls, 𝑝𝑐𝑣𝑎𝑙,a))

stable-pcval: For every label 𝑝𝑐𝑣𝑎𝑙
8

𝙻𝙸𝚗𝚟pcval(gs, ls), 𝙶𝙸𝚗𝚟(gs), 𝚛𝚎𝚕𝚢(t,gs,gs′) ⊢ 𝙻𝙸𝚗𝚟pcval(gs′, ls)



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

𝚒𝚍𝚕𝚎 ∶ InvInsert(𝑒)
𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 ∶ e ≠ ⊥

𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚒𝚗𝚟𝙸𝚗𝚜𝚎𝚛𝚝(𝑡, 𝑒) {
𝑙𝑒 := 𝑒;
return 𝚒𝚗𝚟𝙸𝚗𝚜

}

𝚒𝚗𝚟𝙸𝚗𝚜 ∶ DoInsert(do)
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚍𝚘𝙸𝚗𝚜𝚎𝚛𝚝(𝑡,do) {

𝑙𝑏 := do;
if do then 𝑠𝑒𝑡 := 𝑠𝑒𝑡 ∪ {𝑙𝑒};
return 𝚛𝚎𝚝𝙸𝚗𝚜

}

𝚛𝚎𝚝𝙸𝚗𝚜 ∶ RetInsert(; ;𝑏)
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚛𝚎𝚝𝙸𝚗𝚜𝚎𝚛𝚝(𝑡, 𝑏) {

𝑏 := 𝑙𝑏;
return 𝚒𝚍𝚕𝚎

}

𝚒𝚍𝚕𝚎 ∶ InvMember(𝑒)
𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 ∶ e ≠ ⊥

𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚒𝚗𝚟𝙼𝚎𝚖𝚋𝚎𝚛(𝑡, 𝑒) {
𝑙𝑒 := 𝑒;
return 𝚒𝚗𝚟𝙼𝚎𝚖

}

𝚒𝚗𝚟𝙼𝚎𝚖 ∶ DoMember()
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚍𝚘𝙼𝚎𝚖𝚋𝚎𝚛(𝑡) {

𝑙𝑏 := 𝑙𝑒 ∈ 𝑠𝑒𝑡;
return 𝚛𝚎𝚝𝙼𝚎𝚖

}

𝚛𝚎𝚝𝙼𝚎𝚖 ∶ RetMember(; ;𝑏)
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚛𝚎𝚝𝙼𝚎𝚖𝚋𝚎𝚛(𝑡, 𝑏) {

𝑏 := 𝑙𝑏;
return 𝚒𝚍𝚕𝚎

}

Fig. 1. Canonical automaton for set operations.

The first PO (step-pcval-pcval′) guarantees that each step of a thread establishes the thread-local assertion at the following statement 
and preserves the global invariant. The other two POs ensure that steps of other threads do not invalidate assertions. This is split into 
showing that all such steps are rely steps (rely-pcval) and that all assertions are stable over the rely (stable-pcval).

Often, a significant amount of the generated obligations can be omitted. Many steps do not update the global state (when 
𝚐𝚜𝚝𝚎𝚙𝚏(gs, ls, 𝑝𝑐𝑣𝑎𝑙, a) = gs), and so the rely-pcval POs can be dropped for these steps as it is enforced that the 𝚛𝚎𝚕𝚢 predicate 
is reflexive.7 In fact, only the rely-I12 PO is generated for the case study since the CAS at 𝙸𝟷𝟸 is the only step of the algorithm 
that modifies ar. Furthermore, if two assertions 𝙻𝙸𝚗𝚟pcval and 𝙻𝙸𝚗𝚟pcval′ of different labels 𝑝𝑐𝑣𝑎𝑙 ≠ 𝑝𝑐𝑣𝑎𝑙′ are syntactically the same 
formula, the obligations stable-pcval and stable-pcval′ are identical, so only one is generated.

In summary, 28 stable and 48 step proof obligations were verified with 65 interactions (including lemmas). Together they establish 
the invariant 𝙸𝚗𝚟 of the IOA. A proof of the soundness of this thread-local proof technique is given in [2].

5. Local proof obligations for refinement

While invariants ensure general consistency properties of a system, they do not ensure that each operation has a desired effect. 
For the hash set case study, the invariants guarantee that the array ar is always in a consistent state, but they do not imply that, for 
example, insert adds at most the element given as input and deletes nothing.

5.1. Correctness of concurrent libraries by refinement

In a sequential setting simply augmenting the proof with suitable postconditions would be sufficient. In a concurrent setting this 
is not possible, as the postcondition can be invalidated by other threads. Instead one must show that the program behaves like an 
atomic operation. This is typically verified by giving abstract atomic descriptions of program behavior.

For concurrent libraries like the one we have presented in Sec. 3, the standard correctness notion is linearizability [1], which – in 
addition to atomicity – requires that the effect of each operation happens between its invocation and its return. In contrast to other 
criteria, linearizability has the advantage that it is compositional: using several linearizable libraries is correct already if each library 
is correct.

The effect of a linearizable operation can be expressed directly as the whole code of each operation executing sequentially without 
any interleaving. This is done in model checking approaches, which automatically check that all possible interleavings of a fixed 
(usually very small) number of threads and operations has the same effect than executing them in some suitable sequential order. A 
more common approach in interactive proofs is to express the effect using simple operations of an abstract data type, like we do here.

Many of the atomicity criteria can be expressed as refinement correctness with respect to an abstract automaton. A correct 
refinement from an abstract automaton 𝐴 to a concrete automaton 𝐶 in general requires that the externally visible invoking and 
returning steps (i.e., the external actions of 𝐴 and 𝐶 that show their inputs/outputs) must be preserved, cf. Sec. 2.

For linearizability, the abstract specification 𝐴 that has to be refined by the automaton 𝐶 constructed from the algorithms is 
particularly simple and called the canonical automaton. Other criteria require different abstract automata, another one will be shown 
for the other case study in Section 7.

The canonical automaton has a state consisting of a data structure, for the hash set case study, this is a 𝑠𝑒𝑡 of elements (all different 
from ⊥). For each operation available for the abstract data type (here: checking for membership and adding an element), it has three 
atomic steps. These are shown in Fig. 1 using KIV’s general specifications of atomic steps of threads, indicated by the keyword atomic

followed by the action of the step. Again, these can generally be arbitrary programs, although we only need simple assignments here.
9

7 Reflexivity is a standard property of relies. We also generate a respective PO, which can typically be proven automatically.



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

𝑎𝑠

𝑠

𝚊𝚋𝚜 =

ags

gs

𝙶𝙰𝚋𝚜 +

ags,alsf (𝑡),apcf (𝑡)

gs, lsf (𝑡),pcf (𝑡)

⋀
𝑡∈Tid

𝙻𝙰𝚋𝚜

𝙰𝙶𝙸𝚗𝚟 𝙰𝙻𝙸𝚗𝚟

𝙶𝙸𝚗𝚟 𝙻𝙸𝚗𝚟

Fig. 2. Splitting the abstraction relation of an abstract automaton 𝐴 with state 𝑎𝑠 and a concrete automaton 𝐶 with state 𝑠.

The first of the three steps for each operation is an invoking step, that changes the program counter of the thread from 𝚒𝚍𝚕𝚎 to an 
invoked state (𝚒𝚗𝚟𝙸𝚗𝚜 or 𝚒𝚗𝚟𝙼𝚎𝚖, given after the return keyword). This step just copies the input to a local variable (here: 𝑙𝑒). The 
second step is a Do step that executes the operation, modifies the data structure, and computes its result in a local variable (here: 𝑙𝑏). 
The Do step changes the state of the thread to a returning state (𝚛𝚎𝚝𝙸𝚗𝚜 or 𝚛𝚎𝚝𝙼𝚎𝚖 respectively), from which the Return step returns 
a result (by making it visible in its action) resetting the program counter to 𝚒𝚍𝚕𝚎. For the insert operation, the Do is nondeterministic: 
it can either insert the element or refuse to do so, abstracting from the two possibilities of the insert algorithm. The nondeterminism 
is resolved by an additional boolean input do that is also present in the action executed.

Like for the algorithms of Sec. 3, thread-local atomic steps accessing a global (here: 𝑠𝑒𝑡) and a thread-local state (here: the variables 
𝑙𝑒 and 𝑙𝑏) are translated to predicate logic with preconditions 𝚊𝚙𝚛𝚎 and step functions 𝚊𝚐𝚜𝚝𝚎𝚙𝚏, 𝚊𝚕𝚜𝚝𝚎𝚙𝚏, 𝚊𝚙𝚌𝚜𝚝𝚎𝚙𝚏. The resulting 
canonical automaton 𝐴 still allows operations of different threads to run concurrently, but insists that all operations have a simple, 
atomic effect described by the Do step that happens while the operation runs.

5.2. Proving a forward simulation with local proof obligations

Finding a forward simulation between 𝐴 and 𝐶 essentially requires finding the specific internal step of 𝐶 where the effect of 
the operation happens. In general, finding a correct linearization point (LP) can be very difficult, e.g., it is possible that the LP of an 
operation is not a step of the thread executing it, but a step of another thread: one case is that thread t makes an offer, and another 
thread t′ in a step that accepts the offer executes the LP of both threads (the elimination stack [25] and queue [26] are two instances). 
This case requires a forward simulation where one concrete step matches two Do-steps of the abstract specification.

The local proof obligations we give in this paper are tailored towards the most common case, which is that a specific step in the 
code of the thread executing an algorithm is its LP, which corresponds to the abstract Do step of the running operation. All other 
steps of an operation “refine skip”, i.e., their proof obligation reduces to a 1:0 diagram. For this case, we give a mapping that singles 
out the step, and gives the matching abstract Do step. This is done efficiently by exploiting that we can fix actions using the with

clauses in the algorithms.

As shown in Fig. 2, the abstraction relation is again split into a global part 𝙶𝙰𝚋𝚜 and a thread-local part 𝙻𝙰𝚋𝚜 to allow the definition 
of thread-local and step-local proof obligations.

• The global abstraction relation 𝙶𝙰𝚋𝚜(gs, ags) specifies how global states correspond.

• A local abstraction relation 𝙻𝙰𝚋𝚜(gs, ls, pc, ags, als, apc) that gives the correspondence between program counters and local input 
and output values stored in ls, pc and als, apc, respectively (the relation may depend on the global states gs and ags). Like for 
the assertions used in invariants, we give these as assertions for certain ranges of program counters of the concrete algorithm. 
In the proof obligations below, we refer to the formula that holds at a specific 𝑝𝑐 value pcval as 𝙻𝙰𝚋𝚜pcval(gs, ls, ags, als, apc). The 
full 𝙻𝙰𝚋𝚜-formula is defined as the conjunction of implications pc = 𝑝𝑐𝑣𝑎𝑙→ 𝙻𝙰𝚋𝚜pcval(gs, ls, ags, als, apc) for all pc values 𝑝𝑐𝑣𝑎𝑙, 
similar to the local invariant.

The full simulation relation includes the both global and local invariants as well as the global and local abstractions.

𝚊𝚋𝚜(gs, lsf ,pcf ,ags,alsf ,apcf ) (4)

↔ 𝙶𝙸𝚗𝚟(gs) ∧ 𝙰𝙶𝙸𝚗𝚟(ags) ∧ 𝙶𝙰𝚋𝚜(gs,ags)

∧ ∀ t. 𝙻𝙰𝚋𝚜(gs, lsf (t),pcf (t),alsf (t),apcf (t))

∧ 𝙻𝙸𝚗𝚟(gs, lsf (t),pcf (t)) ∧ 𝙰𝙻𝙸𝚗𝚟(ags,alsf (t),apcf (t))

Based on the invariants 𝙻𝙸𝚗𝚟, 𝙶𝙸𝚗𝚟 and 𝙰𝙻𝙸𝚗𝚟, 𝙰𝙶𝙸𝚗𝚟 for the concrete resp. abstract specification (which are established by the proof 
obligations given in Sec. 4), we can now define thread-local, step-local proof obligations (POs) for a refinement. All POs share a 
number of common preconditions 𝑃𝑟𝑒𝑐.
10

𝑃𝑟𝑒𝑐 ≡ 𝑝𝑐𝑣𝑎𝑙 = pcf (𝑡), 𝚙𝚛𝚎(gs, lsf (𝑡), 𝑝𝑐𝑣𝑎𝑙, 𝑎),



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

𝑝𝑐𝑣𝑎𝑙′ = 𝚙𝚌𝚜𝚝𝚎𝚙𝚏(gs, lsf (𝑡), 𝑝𝑐𝑣𝑎𝑙, 𝑎),

gs′ = 𝚐𝚜𝚝𝚎𝚙𝚏(gs, lsf (𝑡), 𝑝𝑐𝑣𝑎𝑙, 𝑎), ls′ = 𝚕𝚜𝚝𝚎𝚙𝚏(gs, lsf (𝑡), 𝑝𝑐𝑣𝑎𝑙, 𝑎),

𝙶𝙸𝚗𝚟(gs), 𝙻𝙸𝚗𝚟pcval(gs, lsf (𝑡)),

𝙰𝙶𝙸𝚗𝚟(ags), 𝙰𝙻𝙸𝚗𝚟(ags,alsf (𝑡),apcf (𝑡)),

𝙶𝙰𝚋𝚜(gs,ags), 𝙻𝙰𝚋𝚜pcval(gs, lsf (𝑡),ags,alsf (𝑡),apcf (𝑡)),

∀ 𝑡′. 𝑡′ ≠ 𝑡→ 𝙻𝙸𝚗𝚟(gs, lsf (𝑡′),pcf (𝑡′)) ∧ 𝙰𝙻𝙸𝚗𝚟(ags,alsf (𝑡′),apcf (𝑡′))

∧ 𝙻𝙰𝚋𝚜(gs, lsf (𝑡′),pcf (𝑡′),ags,alsf (𝑡′),apcf (𝑡′))

These refer to a concrete and an abstract state consisting of gs, lsf , 𝑝𝑐𝑣𝑎𝑙 and ags, alsf , apcf related by 𝚊𝚋𝚜, and to a thread 𝑡, that 
modifies the global state, the local state and the 𝑝𝑐 to gs′, ls′, and 𝑝𝑐𝑣𝑎𝑙′. The preconditions include a quantified formula that asserts 
the local invariants and local abstraction for other threads. For the hash set case study, this quantified precondition is not required 
for the verification of the POs defined below. There are however case studies where a specific thread (e.g., a thread that has set a 
lock) influences another, where instantiating the quantifier is necessary.

Definition 3 (Thread-local, step-local proof obligations). Each step from 𝑝𝑐𝑣𝑎𝑙 to 𝑝𝑐𝑣𝑎𝑙′ of the concrete algorithm that executes action 
𝑎 under condition 𝜑 has two proof obligations. These depend on whether the action of the step is matched to an abstract action or 
not.

Case 1) The action 𝑎 is also executed by the abstract system.

PO-pcval-pcval′-same

𝑃𝑟𝑒𝑐, 𝜑, ags′ = 𝚊𝚐𝚜𝚝𝚎𝚙𝚏(ags,alsf (𝑡),apcf (𝑡), 𝑎),

als′ = 𝚊𝚕𝚜𝚝𝚎𝚙𝚏(ags,alsf (𝑡),apcf (𝑡), 𝑎),

apc′ = 𝚊𝚙𝚌𝚜𝚝𝚎𝚙𝚏(ags,alsf (𝑡),apcf (𝑡), 𝑎)

⊢ 𝚊𝚙𝚛𝚎(ags,alsf (𝑡),apcf (𝑡)) ∧ 𝙶𝙰𝚋𝚜(gs′,ags′)

∧ 𝙻𝙰𝚋𝚜pcval′ (gs′, ls′,ags′,als′,apc′)

PO-pcval-pcval′-other

𝑃𝑟𝑒𝑐, 𝜑, 𝑡 ≠ 𝑡′, 𝙻𝙸𝚗𝚟(gs, lsf (𝑡′),pcf (𝑡′)), 𝙰𝙻𝙸𝚗𝚟(ags,alsf (𝑡′),apcf (𝑡′)),

ags′ = 𝚊𝚐𝚜𝚝𝚎𝚙𝚏(ags,alsf (𝑡),apcf (𝑡), 𝑎),

𝙻𝙰𝚋𝚜(gs, lsf (𝑡′),pcf (𝑡′),ags,alsf (𝑡′),apcf (𝑡′))

⊢ 𝙻𝙰𝚋𝚜(gs′, lsf (𝑡′),pcf (𝑡′),ags′,alsf (𝑡′),apcf (𝑡′))

Case 2) The action 𝑎 is not an abstract action.

PO-pcval-pcval′-same

𝑃𝑟𝑒𝑐, 𝜑 ⊢ 𝙶𝙰𝚋𝚜(gs′,ags) ∧ 𝙻𝙰𝚋𝚜pcval′ (gs′, ls′,ags,alsf (𝑡),apcf (𝑡))

PO-pcval-pcval′-other

𝑃𝑟𝑒𝑐, 𝜑, 𝑡 ≠ 𝑡′, 𝙻𝙸𝚗𝚟(gs, lsf (𝑡′),pcf (𝑡′)), 𝙰𝙻𝙸𝚗𝚟(ags,alsf (𝑡′),apcf (𝑡′))

𝙻𝙰𝚋𝚜(gs, lsf (𝑡′),pcf (𝑡′),ags,alsf (𝑡′),apcf (𝑡′))

⊢ 𝙻𝙰𝚋𝚜(gs′, lsf (𝑡′),pcf (𝑡′),ags,alsf (𝑡′),apcf (𝑡′))

Fig. 3 depicts the commuting diagrams for the proof obligations of Definition 3. In each commuting diagram the initial abstract 
(left hand side) and the concrete step (bottom transition) are assumed (essentially these assumptions are the formula 𝑃𝑟𝑒𝑐). The state 
in the upper right corner is determined by the initial abstract state and the executed action, so it remains to prove the abstraction 
relation at the right hand side of the diagram.

Note that the with clauses in the algorithms fix the condition 𝜑 of the POs under which a step executes a specific abstract action 
(for the case study, if it is a linearization point). Given that a thread t executes a step with action a in the concrete system 𝐶 , case 1)

gives a corresponding step of the abstract system 𝐴 if a is also an abstract action. When a is not an abstract action, case 2) ensures 
that the abstraction is stable over a step of 𝐶 while 𝐴 stutters. The two POs of each case further distinguish between preserving the 
abstraction for the thread t that executes the concrete step itself (same-POs, left-hand side of Fig. 3) and all other threads t′ ∈ Tid ⧵{t}
11

(other-POs, right-hand side of Fig. 3; the obligations generalize to all threads by considering an arbitrary thread t′ ≠ t).



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

ags,alsf (t),apcf (t)

gs, lsf (t), 𝑝𝑐𝑣𝑎𝑙

𝙶𝙰𝚋𝚜
𝙻𝙰𝚋𝚜(t)

ags′ ,als′,apc′

gs′, ls′, 𝑝𝑐𝑣𝑎𝑙′

𝙶𝙰𝚋𝚜
𝙻𝙰𝚋𝚜(t)

a
𝚊𝚕𝚜𝚝𝚎𝚙(t)

a
𝚕𝚜𝚝𝚎𝚙(t)

ags,alsf (t′),apcf (t′)

gs, lsf (t′),pcf (t′)

𝙻𝙰𝚋𝚜(t′)

ags′ ,alsf (t′),apcf (t′)

gs′, lsf (t′),pcf (t′)

𝙻𝙰𝚋𝚜(t′)

a
𝚊𝚕𝚜𝚝𝚎𝚙(t)

a
𝚕𝚜𝚝𝚎𝚙(t)

ags,alsf (𝑡),apcf (𝑡)

gs, lsf (𝑡), 𝑝𝑐𝑣𝑎𝑙 gs′, ls′, 𝑝𝑐𝑣𝑎𝑙′

𝙶𝙰𝚋𝚜
𝙻𝙰𝚋𝚜(t)

𝙶𝙰𝚋𝚜
𝙻𝙰𝚋𝚜(t)

a
𝚕𝚜𝚝𝚎𝚙(t)

ags,alsf (t′),apcf (t′)

gs, lsf (t′),pcf (t′) gs′, ls(t′),pcf (t′)

𝙻𝙰𝚋𝚜(t′) 𝙻𝙰𝚋𝚜(t′)

a
𝚕𝚜𝚝𝚎𝚙(t)

Fig. 3. Thread-local, step-local proof obligations for a refinement of an abstract automaton 𝐴 to a concrete automaton 𝐶 . The upper half depicts the PO-pcval-pcval′-

same and PO-pcval-pcval′-other obligations for Case 1), the respective obligations for Case 2) are shown in the lower half.

This distinction allows the proof obligation generator to drop other-POs when steps do not change the global state since the local 
state (as well as the program counter) can only change for the executing thread t (thus, the obligations become trivial). When the 
global state changes, the two 𝙻𝙰𝚋𝚜-formulas must be expanded by their definition (and the proof obligation generator already does 
this), which results in quite large conjunctions over all assertions given.

It is easy to show that these proof obligations actually imply a forward simulation as defined by Definition 2, i.e., that Theorem 1

holds.

Theorem 1. The local proof obligations together with the initialization condition of forward simulation imply that 𝚊𝚋𝚜 as defined by (4) is a 
forward simulation between the concrete and the abstract system.

Proof. Except for the specific choice of 𝚙𝚛𝚎, 𝜑, and a, which fixes one of the possible steps the concrete system has available, all 
preconditions of the thread-local POs are implied by the assumption that 𝚊𝚋𝚜 holds for the initial states in the forward simulation 
conditions (2) and (3). 𝚊𝚋𝚜 in the postcondition of (2) and (3) follows by looking at each individual predicate it consists of: it was 
already verified that the global and local invariants hold again for each of the two automata 𝐶 and 𝐴 individually by the POs of 
Sec. 4. Predicate 𝙶𝙰𝚋𝚜 is established by the same-PO, and 𝙻𝙰𝚋𝚜 is established by the same-PO for thread t itself and by the other-PO 
for all other threads t′ ∈ Tid ⧵ {t}. Combining the same- and other-POs for Case 1) yields the commuting diagram for (2) as shown 
in Fig. 4 at the top, and the combined POs for Case 2) yield the commuting diagram for (3) (with 𝑛 = 0), as shown in Fig. 4 at the 
bottom. □

5.3. Proving refinement for the hash set case study

To prove that the hash set library is a refinement of the canonical set automaton given in Fig. 1, linearization points of the Insert

and Member algorithms (see Algorithm 1 and Algorithm 2) must be found first.

For Insert, there are three steps which can be the LPs: the obvious one is a successful CAS at line 𝙸𝟷𝟸. However, a failed CAS at 
this line can also be a linearization point when the algorithm recognizes that the element is already present. For the same reason, the 
step at 𝙸𝟶𝟼 that loads ar[n] is another LP when the loaded value is the element e that should be inserted. Finally, 𝙸𝟷𝟾 is an LP for the 
case where no element is inserted because the array is full.

For Member, only loading a value at 𝙼𝟶𝟼 can be an LP. It is one in three cases: First, when the element e checked to be in the set 
is loaded (Member will return 𝚝𝚛𝚞𝚎). Second, Member will return 𝚏𝚊𝚕𝚜𝚎 if ⊥ is loaded. Note that while there is often some freedom 
to choose an LP between several program steps, in this case, the loading step is the only one that is correct. Any step executed later 
will not work since another thread might have inserted e between executing the load and this step, and the abstract Do step would 
already return 𝚝𝚛𝚞𝚎 rather than 𝚏𝚊𝚕𝚜𝚎 as the algorithm does. Finally, the step is also an LP when the array slot checked is the last 
one, i.e., when (𝑛 + 1) mod 𝑠𝑧 = 𝑛0. In this case Member will return 𝚏𝚊𝚕𝚜𝚎.

As global abstraction relation, 𝚊𝚋𝚜𝚜𝚎𝚝(gs.𝚊𝚛, ags.𝚜𝚎𝚝) is used, determining that the non-⊥ elements stored in ags.𝚜𝚎𝚝 must be 
identical to those in ags.𝚜𝚎𝚝.

𝚊𝚋𝚜𝚜𝚎𝚝(ar, set)↔
(
∀ 𝑒. 𝑒 ∈ 𝑠𝑒𝑡↔ ∃ 𝑛. 𝑛 < #ar ∧ 𝑒 = ar[n] ∧ 𝑒 ≠ ⊥

)

12

For the local abstraction relation, various assertions are given. Some examples are:



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

ags,alsf (𝑡),apcf (𝑡)

gs, lsf (𝑡),pcf (𝑡)

𝙶𝙰𝚋𝚜 ∧
⋀
𝑡∈Tid

𝙻𝙰𝚋𝚜

Case 1)

ags′,alsf ′(𝑡),apcf ′(𝑡)

gs′, lsf ′(𝑡),pcf ′(𝑡)

𝙶𝙰𝚋𝚜 ∧
⋀
𝑡∈Tid

𝙻𝙰𝚋𝚜

a
𝚊𝚜𝚝𝚎𝚙

a
𝚜𝚝𝚎𝚙

𝑎𝑠 𝑎𝑠′

𝑠 𝑠′

Case 2)

ags,alsf (𝑡),apcf (𝑡)

gs, lsf (𝑡),pcf (𝑡) gs′, lsf ′(𝑡),pcf ′(𝑡)

𝙶𝙰𝚋𝚜 ∧
⋀
𝑡∈Tid

𝙻𝙰𝚋𝚜 𝙶𝙰𝚋𝚜 ∧
⋀
𝑡∈Tid

𝙻𝙰𝚋𝚜

a
𝚜𝚝𝚎𝚙

𝑎𝑠

𝑠 𝑠′

Fig. 4. Constructing commuting diagrams for a forward simulation 𝚊𝚋𝚜 between an abstract automaton 𝐴 and a concrete automaton 𝐶 from thread-local, step-local 
proof obligations.

𝙸𝟻 ∶ apc = (𝑏 ⊃ 𝚛𝚎𝚝𝙸𝚗𝚜 ;𝚒𝚗𝚟𝙸𝚗𝚜) ∧ (𝑏→ ¬ 𝑙𝑏)

𝙸𝟽 ∶ apc = (e = e0 ⊃ 𝚛𝚎𝚝𝙸𝚗𝚜 ;𝚒𝚗𝚟𝙸𝚗𝚜) ∧ (e = e0 → 𝑙𝑏);

At 𝙸𝟻, the abstract program counter apc is before/after the Do-step, depending on the value of 𝑏, and the local variable 𝑙𝑏 of the 
abstract specification is true when variable 𝑏 used in the algorithm is true. Similarly at 𝙸𝟽, apc is after the Do-step if the value e0 just 
loaded (at 𝙸𝟼) is equal to the value e to be inserted, and thus, the 𝑙𝑏 flag is set to true. Otherwise, apc is still before the Do-step at 
𝚒𝚗𝚟𝙸𝚗𝚜.

Using local proof obligations leads to a significant reduction in proof effort. The main reduction is that the proof obligation 
generator already handles

• all the case splits over available steps,

• the relevant quantifier reasoning for threads,

• the reduction of 𝙻𝙸𝚗𝚟 and 𝙻𝙰𝚋𝚜 to the assertions 𝙻𝙸𝚗𝚟pcval and 𝙻𝙰𝚋𝚜pcval that hold at a specific 𝑝𝑐𝑣𝑎𝑙,
• and dropping all trivial proof obligations.

For the case study, this results in 49 proof obligations of type same and 15 of the other type. All but 5 are proven automatically by 
the simplifier.

The main difficult proof obligation is the one for the step that linearizes the member operation at 𝙼𝟼. It requires showing that, 
based on the invariant 𝚌𝚘𝚗𝚜 and the assertion 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕 that holds at this point, linearization is correct for all three possible 
cases: the first is that the value loaded is ⊥. In this case, we need the lemma

𝚌𝚘𝚗𝚜(𝑎𝑟), 𝑎𝑟[𝑛] = ⊥, 𝑒 ≠ ⊥,

𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕(𝑎𝑟,𝚐𝚎𝚝𝚑𝚊𝚜𝚑(𝑒,#ar), 𝑛, 𝑒,𝚏𝚊𝚕𝚜𝚎)

⊢ (∀ 𝑚. 𝑚 < #ar → ar[m] ≠ 𝑒)

The second case is that the last slot is loaded ((𝑛 + 1) mod 𝑠𝑧 = 𝚐𝚎𝚝𝚑𝚊𝚜𝚑(𝑒, #ar) holds) and is not 𝑒. This needs some quantifier 
reasoning for the 𝚊𝚕𝚕𝚜𝚕𝚘𝚝𝚜𝚏𝚞𝚕𝚕-predicate to assert that the 𝚋𝚎𝚝𝚠𝚎𝚎𝚗 range encompasses all array elements, implying the element 𝑒
cannot be in the array. The third case, where 𝑒 itself is loaded, is simple.

The other step that needs a lemma is the CAS step when inserting an element at 𝙸𝟷𝟸. For the successful case a lemma is needed 
that asserts that updating both the array and the set preserves 𝚊𝚋𝚜𝚜𝚎𝚝. Formulated as a rewrite rule
13

𝑛 < #ar ∧ 𝑎𝑟[𝑛] = ⊥ ∧ 𝚊𝚋𝚜𝚜𝚎𝚝(𝑎𝑟, 𝑠𝑒𝑡)



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

→ (𝚊𝚋𝚜𝚜𝚎𝚝(ar[n ∶= e], 𝑠𝑒𝑡 ∪ {𝑒})↔ 𝑒 ≠ ⊥)

the lemma is applied automatically, and just one interaction is needed that does a case split on whether the CAS succeeds.

Most of the effort in verifying the simulation now lies in fixing linearization points, and in defining suitable assertions based on 
this choice. Only 12 interactions were needed to prove the thread-local proof obligations. Verifying these was significantly simpler 
than proving the invariant of the concrete system.

6. Software transactional memory and TML

The development of thread-local proof obligations for refinement was motivated and first tested with an earlier case study [6]

on the correctness of Software Transactional Memory (STM) implementations. In this section, we will explain the basic concepts of 
STMs and give the simple implementation of TML (Transactional Mutex Lock). The general correctness criterion of opacity for STMs 
and how it is mapped to refinement correctness will be discussed in the two next sections.

The use of STMs is motivated by the difficulties of getting concurrent multi-threaded programs right. The standard technique used 
most of the time is to use locks (e.g., mutexes or reader-writer locks). Getting their use right is difficult, in particular when several 
shared data structures must be updated that are protected with different locks. Bugs are often hard to find since unwanted behavior 
(e.g., a deadlock) can usually only be observed non-deterministically and is hard to reproduce.

Software Transactional Memory (STM) offers a uniform alternative by offering the simple concept of transactions for programs, 
see [27] for a comprehensive overview. Using an STM is often somewhat less efficient than an optimized solution, but relieves the 
programmer from reasoning in detail about possible data races or deadlocks.

All the programmer has do is to put the relevant code into an atomic block:

boolean success:= tryatomic { ⟨code⟩ }

The implementation of STM then guarantees that all threads that execute such atomic blocks can be thought of as executing the 
blocks in some sequential order. A trivial implementation would use a single global lock that would indeed enforce all code to execute 
sequentially.

Like for database transactions, an efficient STM implementation will however execute code concurrently and only check that an 
illegal interleaving of two executions, that would violate the view of the programmer of the two executing sequentially (a “conflict”), 
does not happen. In particular, if two atomic code blocks update different parts of memory (e.g., different data structures), the STM 
implementation will notice that the code can be executed concurrently without any conflict.

An efficient STM implementation will therefore execute code concurrently and just check for conflicts. If none is found, the 
transaction is successful, and variable success is set to true. Otherwise the transaction aborts, and the STM implementation guarantees 
that the aborted transaction behaves as if nothing was executed at all: all data structures in memory are unchanged.

The standard reaction of programs to an aborted transaction is to retry it, so implementations of STMs also offer to just write

atomic { ⟨code⟩ }

to retry the transactional code until it succeeds.

To ensure that checks for conflicts are possible, STM implementations use a routine TMBegin to start and a routine TMEnd to 
finish an atomic code block. Reads and writes to shared memory locations within the code are replaced with calls to routines TMRead

and TMWrite, respectively.

In many implementations of STMs, the replacement does not need to be programmed. Instead the compiler transforms (“instru-

ments”) the code within atomic blocks automatically. As an example, the compiler will instrument the statement

success := tryatomic { i := i + 1 }

as

TMBegin;

locali := TMRead(& i);
TMWrite(& i, locali + 1);

success := TMEnd

where ‘& i’ is the address (location) at which shared variable i is stored in memory. The STM implementation will make sure that it 
cannot happen that two threads first load variable i and then both write i + 1. Instead, two executions of the atomic block will (when 
both succeed) be guaranteed to have done two increments.

Implementations of STMs (just like implementations of database transactions) differ in when they check for conflicts. It is possible 
to already check for conflicts early (in TMRead and TMWrite; then these may already abort the transaction) or to delay checks until

TMEnd (pessimistic vs. optimistic strategy). There are also two strategies for writing: the eager strategy uses TMWrite to directly write 
14

to main memory. It then has to maintain an “undo log”, which is used when the transaction must abort to undo any changes. The 



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

Algorithm 3 The Transactional Mutex Lock (TML).

Init: glb = 0

TMBegin:

𝙱𝟷: loc := glb;

𝙱𝟸: while (loc & 1) do

𝙱𝟹: loc := glb;

𝙱𝟺: return 𝚘𝚔;

TMRead(addr):

𝚁𝟷: val := ∗ addr;

𝚁𝟸: if (glb = loc)

𝚁𝟹: return val;
𝚁𝟺: else return 𝚊𝚋𝚘𝚛𝚝;

TMEnd:

𝙴𝟷: if (loc & 1)

𝙴𝟸: glb := loc + 1;

𝙴𝟹: return 𝚌𝚘𝚖𝚖𝚒𝚝;

TMWrite(addr, val):
𝚆𝟷: if (loc & 0)

𝚆𝟸: if (!CAS(&glb, loc, loc + 1))

𝚆𝟹: return 𝚊𝚋𝚘𝚛𝚝;

𝚆𝟺: else loc++;

𝚆𝟻: ∗ addr := val;
𝚆𝟼: return 𝚘𝚔;

alternative is the lazy strategy. In this strategy, writes are not done in TMWrite. Instead, TMWrite just stores them in a thread-local 
write set. Main memory is then updated in TMEnd only, where a succeeding transaction applies all updates together, while an aborting 
transaction just discards the write set.

The case study where thread-local proof obligations for refinement were developed verifies a simple STM implementation called 
TML (“Transactional Mutex Lock”) [5]. The implementation is efficient when there are few writes but many reads. There are other, 
more sophisticated implementations like TL2 [28] and NOrec [29], which perform better when there are lots of writes (and therefore 
more conflicts). The implementation of TML is shown in Algorithm 3.

The implementation is eager (it updates main memory directly during writes). It allows only a single concurrent transaction that 
has done any writes (the writer), while a lot of transactions (readers) that have not (yet) done any writes can run concurrently. When 
there is no writer, a transaction that is so far a reader can become the writer. Having a single writer that never aborts its transaction 
allows to avoid the use of an undo log, which is usually necessary for the eager strategy.

The code uses a single shared variable8 called glb, that is initialized to 0. An odd value in glb signals that there currently is a 
writer, while an even value indicates that there is no writer. All transactions initially load glb into a local variable loc. To ensure that 
they can read consistent values, they wait until there is no writer, i.e., until the loaded value is even (check at 𝙱𝟸).

A transaction that wants to become a writer (by doing its first write) atomically tries to increment glb from an even to an odd 
value: The CAS at line 𝚆𝟸 succeeds if glb still equal to the even loc as loaded at the start of the transaction in TMBegin. If the value 
has changed, then some other transaction has already become a writer (and probably changed memory), so the transaction is aborted 
(line 𝚆𝟹). If the CAS succeeds, it sets glb to the odd value of loc + 1. Then loc is incremented too (line 𝚆𝟺), and the odd value signals 
that the transaction now is the writer. All further writes of the transaction then see that they already have an odd loc value (line 𝚆𝟷), 
so they can directly do the actual write to main memory (line 𝚆𝟻).

The algorithm uses the pessimistic strategy for resolving conflicts: when reading recognizes that a new writer has started (test at 
𝚁𝟸), the transaction is aborted. Note that for the writer, the check at 𝚁𝟸 will always succeed since both glb and loc are odd in this case, 
and no other transaction will then change an odd glb, so the writer will indeed never abort. When a transaction finishes, it checks 
whether it is the writer (line 𝙴𝟷). If so, if increments the odd glb back to an even value.

Note that using a boolean for signaling whether a writer exists would not be sufficient to ensure correctness of the algorithm: then, 
the CAS at 𝚆𝟸 could succeed for transaction 𝑡1, even if another transaction 𝑡2 became the writer, modified memory, and finished, 
since the boolean is false again. In this case, 𝑡1 becoming the writer would be incorrect since its earlier reads could have read values 
before the updates of 𝑡1, while further reads and writes would read/write updated values, violating atomicity.

7. Opacity and TMS2

In the previous section we have defined correctness of an STM implementation informally: the calling program with its concurrent 
should observe behaviors that look as if successful transactions execute in some sequential order, which is the criterion of serializability. 
A natural restriction is that if a transaction 𝑡1 finishes before a transaction 𝑡2 starts, then 𝑡1 should occur before 𝑡2 in the sequential 
order, which leads to strict serializability [10].

Serializability just requires that aborting transactions should not have any effect. A subtle question there is whether aborting 
transactions should be added to the sequential order. (Strict) serializability makes no such requirement, while the stronger criterion 
of opacity [7] requires that even aborting transactions read values from one consistent memory snapshot between two successful 
transactions. The difference is more important for STMs than databases, since database queries typically do not execute code that 
may contain infinite loops or throw exceptions. However, such code is possible in STMs, and corresponding behavior may result. As 
a simple example, consider a shared memory storing two integers 𝑥 and 𝑦 where transactions must preserve the invariant 𝑥 = 𝑦 + 3. 
A transaction that preserves this invariant is

𝑡1 = tryatomic { y := y + 3; x := x + 3 }
15

8 A counter that is used as described is usually called a sequence lock.



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

The following second transaction with local variables 𝑙𝑥 and 𝑙𝑦 would then potentially get stuck in an infinite loop:

𝑡2 = tryatomic {
lx := x; ly := y;

while ly + 1 ≠ lx do ly := ly + 1
}

To understand this, consider the following concurrent run from an initial state where 𝑦 = 0 and 𝑥 = 3. First, 𝑡2 loads 𝑙𝑥 = 3. Then, 
transaction 𝑡1 starts and increments 𝑦 to 3, after which 𝑡2 loads this value into 𝑙𝑦. Having read values from two different memory 
snapshots implies that 𝑡2 must abort. If, however, the implementation of the STM follows the optimistic strategy of checking for 
consistency at the end of the transaction, 𝑡2 will execute an infinite loop and never return. For the same reason, a transaction 𝑡3 that 
replaces the loop body of 𝑡2 with a division by 𝑙𝑥 − 𝑙𝑦 may attempt to divide by zero.

Both behaviors are impossible when a simple global lock is used to protect transactions. In other words, behavioral refinement is 
violated. Opacity repairs this defect: it requires that transactional code can always rely to execute on consistent memory (where the 
invariant 𝑥 = 𝑦 + 3 holds), even when the transaction is aborted at the end. In the example, the STM implementation must ensure, 
that the attempt to load 𝑦 by 𝑡1 will either abort or will not yet see the updated value 3 and still load 0.

Opacity can be formalized by defining histories. These are sequences of events, where events are either read or write events for 
memory locations or transactional events for starting, (successfully) committing, or aborting a transaction. Informally, a history is 
opaque if it can be reordered into a history where transactions execute sequentially with the same results. A formal definition can be 
found in [6].

Since we are interested in thread-local proof obligations, we immediately give a sufficient criterion formalized as: the implemen-

tation must refine the TMS2 automaton given in Fig. 5.9

TMS2 formalizes the idea that any successful transaction (that has done any writes) creates a new memory snapshot when com-

mitting, and that other transactions can only read from a single memory snapshot. Therefore, TMS2 stores all memory snapshots 
created so far in a list memories ∶ List(𝐿 → 𝑉 ), where each memory is assumed to map locations from 𝐿 to values from 𝑉 . A new 
memory is attached to the end of the list when a transaction commits successfully.

TMS2 assumes that the implementations of operations TMBegin, TMRead, TMWrite, and TMEnd are not atomic. So like in the 
canonical automaton (cf. Fig. 1 for set operations), TMS2 splits each of them into three steps: an invoking step, where the operation 
starts, a do-step which is similar to a linearization point, where the effect of the operation is observed, and a return step, when the 
operation finishes. The program counter pct ensures that a transaction 𝑡 (starting with pct = 𝚗𝚘𝚝𝚂𝚝𝚊𝚛𝚝𝚎𝚍) must first execute TMBegin, 
then (when pct = 𝚛𝚎𝚊𝚍𝚢) can do any number of reads and writes, and finally must execute a TMEnd, finishing in pct = 𝚌𝚘𝚖𝚖𝚒𝚝𝚝𝚎𝚍.

In contrast to linearizability, however, all four operation may also abort the transaction at any point: RetAbort can be executed 
before or after any do-step, while one of the four operations is running. An aborted transaction finishes with pct = 𝚊𝚋𝚘𝚛𝚝𝚎𝚍.

Reading and writing are done on transaction-local variables rdSett ∶ 𝐿 → 𝑉 and wrSett ∶ 𝐿 → 𝑉 . Both store finite maps (partial 
functions) from locations 𝐿 to 𝑉 that have been observed/written so far (thus, both maps are initially empty for all transactions 𝑡). 
Note that they also use transaction-local auxiliary variables lloc ∶ 𝐿 and lval ∶ 𝑉 for storing inputs and outputs (analogously to the 
canonical automaton of Fig. 1).

Writing is done in DoWrite by adding to wrSett , and a nonempty write set leads to a new memory snapshot at the end of a 
successful transaction in DoCommitWriter. Both steps use an operation ⊕ that overwrites (when the location already has a value) 
or adds (when the map is finite and has no entry for the location).

Reading is more complex since it must be assured that a transaction only reads from a single valid memory snapshot. To ensure 
strict serializability, this snapshot cannot be older than the last one that was created before the transaction started. It can however 
be a newer one, that is created while the transaction is running (e.g., another transaction may commit before the transaction does 
any reading). Therefore, when TMBegin is executed, the transaction remembers the index of the last memory snapshot (the length 
of memories minus one) that is currently available in beginIdxt . Since this is all TMBegin has to do, InvTMBegin and DoTMBegin are 
combined into InvTMBegin.

As long as a transaction reads values only (i.e., when dom(wrSett) = ∅) it can be serialized right after its start, so even if many 
new memory snapshots are committed while the transaction is running, the read values may be from memories(beginIdxt). They can 
also be from any of the new memory snapshots that have been created so far. Therefore, DoRead can choose any index 𝑛 that is at 
least beginIdxt and less than the number of snapshots created at the time of reading (determined by the precondition 𝚟𝚊𝚕𝚒𝚍𝙸𝚍𝚡(𝑡, 𝑛)). 
Reading is then done from memories(𝑛) checking that all values read earlier are those of stored in memories(𝑛) as well (check that 
rdSett ⊆ memories(𝑛)).

The situation is different for transactions that do reads and writes. First, a transaction that writes a value val to a location loc and 
then reads this location, must return val and not the value of the snapshot it otherwise reads from. This results in the extra case for 
lloc ∈ dom(wrSett) in DoRead which requires no consistency check for the read set.

Second, when such a transaction commits, it adds a new snapshot and must be serialized after all transactions that have committed 
so far.10 Therefore, its reads must be consistent with the last memory snapshot available, for which the do-step of TMEnd is split 

9 There is an automaton TMS1 [8] equivalent to opacity, but no practically relevant STM implementation that needs this generalized version has been found so far.
16

10 Note that transactions may still finish in a different order since the order of RetTMEnd may be different.



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

𝚗𝚘𝚝𝚂𝚝𝚊𝚛𝚝𝚎𝚍 ∶ InvTMBegin()
𝐚𝐭𝐨𝐦𝐢𝐜 {

beginIdxt := #memories − 1;
return 𝚋𝚎𝚐𝚒𝚗𝙿𝚎𝚗𝚍𝚒𝚗𝚐

}

𝚛𝚎𝚊𝚍𝚢 ∶ InvTMRead(loc)
𝐚𝐭𝐨𝐦𝐢𝐜 {

lloc := loc;
return 𝚒𝚗𝚟𝚁𝚎𝚊𝚍

}

𝚛𝚎𝚊𝚍𝚢 ∶ InvTMWrite(loc, val)
𝐚𝐭𝐨𝐦𝐢𝐜 {

lloc := loc, lval := val;
return 𝚒𝚗𝚟𝚆𝚛𝚒𝚝𝚎

}

𝚛𝚎𝚊𝚍𝚢 ∶ InvTMEnd()
𝐚𝐭𝐨𝐦𝐢𝐜 {

return 𝚒𝚗𝚟𝙲𝚘𝚖𝚖𝚒𝚝
}

𝚛𝚎𝚊𝚍𝚢 ∶ InvCancel()
𝐚𝐭𝐨𝐦𝐢𝐜 {

return 𝚌𝚊𝚗𝚌𝚎𝚕𝙿𝚎𝚗𝚍𝚒𝚗𝚐
}

𝚒𝚗𝚟𝙲𝚘𝚖𝚖𝚒𝚝 ∶ DoCommitReadOnly(n)
𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧

dom(wrSett) = ∅ ∧ 𝚟𝚊𝚕𝚒𝚍𝙸𝚍𝚡(𝑡, 𝑛)
𝐚𝐭𝐨𝐦𝐢𝐜 {

return 𝚛𝚎𝚝𝙲𝚘𝚖𝚖𝚒𝚝
}

𝚒𝚗𝚟𝚁𝚎𝚊𝚍 ∶ DoRead(n)
𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧

lloc ∈ dom(wrSett) ∨ 𝚟𝚊𝚕𝚒𝚍𝙸𝚍𝚡(𝑡, 𝑛)
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚍𝚘𝚁𝚎𝚊𝚍(t) {

if lloc ∈ dom(wrSett) then {
lval := wrSett(lloc)

} else {
lval := memories(𝑛)(lloc);
rdSett := rdSett ⊕ {lloc → lval};

};
return 𝚛𝚎𝚝𝚁𝚎𝚊𝚍

}

𝚋𝚎𝚐𝚒𝚗𝙿𝚎𝚗𝚍𝚒𝚗𝚐 ∶ RetTMBegin()
𝐚𝐭𝐨𝐦𝐢𝐜 {

return 𝚛𝚎𝚊𝚍𝚢
}

𝚛𝚎𝚝𝚁𝚎𝚊𝚍 ∶ RetTMRead(; ; val)
𝐚𝐭𝐨𝐦𝐢𝐜 {

val := lval;
return 𝚛𝚎𝚊𝚍𝚢

}

𝚛𝚎𝚝𝚆𝚛𝚒𝚝𝚎 ∶ RetTMWrite()
𝐚𝐭𝐨𝐦𝐢𝐜 {

return 𝚛𝚎𝚊𝚍𝚢
}

𝚛𝚎𝚝𝙲𝚘𝚖𝚖𝚒𝚝 ∶ RetTMEnd()
𝐚𝐭𝐨𝐦𝐢𝐜 {

return 𝚌𝚘𝚖𝚖𝚒𝚝𝚝𝚎𝚍
}

ℝ ∶ RetAbort()
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚛𝚎𝚝𝙰𝚋𝚘𝚛𝚝(t) {

return 𝚊𝚋𝚘𝚛𝚝𝚎𝚍
}

𝚒𝚗𝚟𝙲𝚘𝚖𝚖𝚒𝚝 ∶ DoCommitWriter()
𝐩𝐫𝐞𝐜𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧

rdSett ⊆ memories.𝚕𝚊𝚜𝚝
𝐚𝐭𝐨𝐦𝐢𝐜 {

let mem = memories.𝚕𝚊𝚜𝚝⊕ wrSett in

memories := 𝚊𝚝𝚝𝚊𝚌𝚑(memories,mem);
return 𝚛𝚎𝚝𝙲𝚘𝚖𝚖𝚒𝚝

}

𝚒𝚗𝚟𝚆𝚛𝚒𝚝𝚎 ∶ DoWrite()
𝐚𝐭𝐨𝐦𝐢𝐜 𝐰𝐢𝐭𝐡 𝚍𝚘𝚆𝚛𝚒𝚝𝚎(t) {

wrSett := wrSett ⊕ {lloc → lval};
return 𝚛𝚎𝚝𝚆𝚛𝚒𝚝𝚎

}

ℝ ≡ {𝚋𝚎𝚐𝚒𝚗𝙿𝚎𝚗𝚍𝚒𝚗𝚐, 𝚌𝚊𝚗𝚌𝚎𝚕𝙿𝚎𝚗𝚍𝚒𝚗𝚐, 𝚒𝚗𝚟𝚁𝚎𝚊𝚍, 𝚒𝚗𝚟𝚆𝚛𝚒𝚝𝚎, 𝚒𝚗𝚟𝙲𝚘𝚖𝚖𝚒𝚝, 𝚛𝚎𝚝𝚁𝚎𝚊𝚍, 𝚛𝚎𝚝𝚆𝚛𝚒𝚝𝚎}
𝚟𝚊𝚕𝚒𝚍𝙸𝚍𝚡(𝑡, 𝑛) ≡ beginIdxt ≤ 𝑛 < #memories ∧ rdSett ⊆ memories(𝑛)

Fig. 5. The TMS2 automaton.

into two cases: One for a transaction that has done some writes (DoCommitWriter) where the write set is nonempty, and one for a 
transaction that has done reads only (DoCommitReadOnly).

Choosing an index 𝑛 and checking rdSett ⊆ memories(𝑛) is not strictly necessary in the latter case (the index can be chosen identical 
to the one of the last read), but makes clear where in the sequential order the transaction should be placed: in between the transaction 
that created memories(𝑛) and the one that created memories(𝑛 + 1).

Proving that TML is a refinement of TMS2, such that the invoke and return steps match, is sufficient to prove opacity. Like for 
linearizability, it is possible in this proof to use the thread-local proof obligations.

8. Proof obligations for the refinement from TMS2 to TML

The original proof that TML refines TMS2 was done in Isabelle and is described in [6] together with an alternative approach that 
is somewhat more complex, since it needs to formalize histories to prove opacity directly. The Isabelle refinement proofs were then 
ported to KIV. Both the proofs in Isabelle and in KIV instantiate a formalization of forward simulation for IO Automata.

Originally, the case study involved a lot of overhead to translate programs to predicate logic definitions of automaton transitions 
and to instantiate the global proof obligations for forward simulation with formulas that talk about all threads and the full state. This 
motivated the development of a translation from programs to automata in KIV and the development of thread-local rely-guarantee 
17

proof obligations for invariants as described in [6], allowing to verify durable linearizability of a complex queue implementation. 



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

Algorithm 4 The Transactional Mutex Lock (TML) in KIV.

𝚗𝚘𝚝𝚂𝚝𝚊𝚛𝚝𝚎𝚍: TMBegin()

𝙱𝟷: loc := glb;

𝙱𝟸: while 𝚘𝚍𝚍(loc) do

𝙱𝟹: loc := glb;

𝙱𝟺: return𝚒𝚍𝚕𝚎;

𝚒𝚍𝚕𝚎: TMWrite(l, v)

𝚆𝟷: if 𝚎𝚟𝚎𝚗(loc) then {

𝚆𝟸: if* loc = glb then {

glb := loc + 1, w := 𝚂𝚘𝚖𝚎(t)
} else {

skip;

𝚆𝟹 with 𝚛𝚎𝚝𝙰𝚋𝚘𝚛𝚝(t):
return𝚊𝚋𝚘𝚛𝚝𝚎𝚍;

};

𝚆𝟺: loc := loc + 1
};

𝚆𝟻 with 𝚍𝚘𝚆𝚛𝚒𝚝𝚎(t):
mem := mem(l ∶= v);

𝚆𝟼: return𝚒𝚍𝚕𝚎;

𝚒𝚍𝚕𝚎: TMEnd()

𝙴𝟷 with (𝚎𝚟𝚎𝚗(loc) ⊃ 𝚍𝚘𝙲𝚘𝚖𝚖𝚒𝚝𝚁𝙾(t); 𝜏):
if 𝚘𝚍𝚍(loc) then

𝙴𝟸 with 𝚍𝚘𝙲𝚘𝚖𝚖𝚒𝚝𝚆𝚛𝚒𝚝𝚎𝚛(t):
glb := loc + 1, w := 𝙽𝚘𝚗𝚎

𝙴𝟹: return𝚌𝚘𝚖𝚖𝚒𝚝𝚝𝚎𝚍;

𝚒𝚍𝚕𝚎: TMRead(l; ; v)

𝚁𝟷: v := mem(l);
𝚁𝟸 with (loc = glb ⊃ 𝚍𝚘𝚁𝚎𝚊𝚍(t); 𝜏):

if loc = glb then

𝚁𝟹: return𝚒𝚍𝚕𝚎;

else

𝚁𝟺 with 𝚛𝚎𝚝𝙰𝚋𝚘𝚛𝚝(t):
return𝚊𝚋𝚘𝚛𝚝𝚎𝚍;

𝐚𝐬𝐬𝐞𝐫𝐭𝐢𝐨𝐧𝐬
𝚁𝟸 ∶ loc = glb → mem(l) = v;

𝚆𝟺,𝚆𝟻 ∶ w = 𝚂𝚘𝚖𝚎(t);
𝚆𝟺 ∶ 𝚎𝚟𝚎𝚗(loc) ∧ glb = loc + 1;

. . .

For this, some extensions were necessary, e.g., the addition of global system transitions that model crashes or flushing memory from 
volatile to persistent memory, which are also discussed in the paper.

Thread-local invariant proof obligations reduced the effort to specify the TML and TMS2 automata of the case study considered 
here as well. However, the refinement proof still used a global forward simulation, and lemmas had to be defined to lift local simulation 
conditions to a global simulation and fix which steps of TML refine a specific step of TMS2 (or the empty step).

The support for thread-local proof obligations now allows to formalize only the essential aspects required to do a formal proof:

• For the verification, it is crucial to know which thread is currently the writer, if there is one. Therefore, an auxiliary global variable 
w is added to the code (cf. the KIV version of TML in Algorithm 4), that is set to 𝚂𝚘𝚖𝚎(𝑡) when thread t becomes the writer by 
incrementing glb to an odd value with a successful CAS in line 𝚆𝟸. The auxiliary variable is reset to its initial value 𝙽𝚘𝚗𝚎 when 
the writer increments glb back to an even value at the end of the transaction in line 𝙴𝟸. The assertions of a thread have access to 
w as well as to their thread id t, so they can check whether the thread is currently the writer with w = 𝚂𝚘𝚖𝚎(t).

• Global and thread-local invariants, rely conditions and assertions for the two automata must be given. For TML, the global 
invariant is that writer w is 𝙽𝚘𝚗𝚎 iff glb is even. A crucial condition is the rely condition: Every thread that is currently the writer 
can rely on memory mem, glb, and w being unchanged by steps of other threads. If the thread is not the writer, it can at least rely 
on glb not getting smaller. There is no thread-local invariant for TML, but several simple assertions hold for most program points. 
Two examples are: loc is never bigger than glb, except when loc has not been set, which is the case when the program counter 
is either 𝚒𝚍𝚕𝚎 or at 𝙱𝟷; if a thread is not the writer, then it always has an even loc, except when its program counter is at 𝙴𝟹. 
Finally, there are a few simple assertions for specific program points, e.g., that loc is even at 𝚆𝟸. For TMS2, the global invariant 
simply states that memories is never empty. The only assertion needed is that beginIdxt < #memories holds whenever a transaction 
is not in its initial state 𝚗𝚘𝚝𝚂𝚝𝚊𝚛𝚝𝚎𝚍, where beginIdxt is not specified. TMS2 needs no rely condition since all its steps are atomic.

• For refinement, the essential information needed is to fix the steps of TML that refine specific do-steps of TMS2 (that the external 
invoke and return steps of TML must refine the corresponding steps of TMS2 is clear). Like for Algorithm 1, this information is 
given in Algorithm 4 by annotating the relevant steps of TML with the corresponding abstract action using a with clause:

– a successful check that glb = loc at 𝚁𝟸 refines 𝚍𝚘𝚁𝚎𝚊𝚍 of TMS2 (a negative check refines skip).

– Writing a value to memory at 𝚆𝟻 refines 𝚍𝚘𝚆𝚛𝚒𝚝𝚎.

– Aborting at 𝚁𝟺 or at 𝚆𝟹 refines 𝚛𝚎𝚝𝙰𝚋𝚘𝚛𝚝 of TMS2.

– Finally, the check that loc is odd at 𝙴𝟷 refines 𝚍𝚘𝙲𝚘𝚖𝚖𝚒𝚝𝚁𝙾 when it is negative, and incrementing glb back to an even value 
at 𝙴𝟸 refines 𝚍𝚘𝙲𝚘𝚖𝚖𝚒𝚝𝚆𝚛𝚒𝚝𝚎𝚛.

• For refinement, we finally need to relate global/local states of TML to global and local states of TMS2 with the local and global 
abstraction relation. This consists of a simple part that e.g. asserts that program counters of TML map to the corresponding ones 
of TMS2: all values of TML before the step that refines the do-Step of TMS2 (e.g., 𝚆𝟷 to 𝚆𝟻 for writing) are mapped to the single 
program counter value before the do-step of TMS2 (here: 𝚒𝚗𝚟𝚆𝚛𝚒𝚝𝚎), all after this step (here: 𝚆𝟼) are mapped to the value after 
the step (here: 𝚛𝚎𝚝𝚆𝚛𝚒𝚝𝚎). The interesting part for correctness are the following three properties for thread t:

– If there is currently no writer in TML, then the current memory mem of TML has the same content as the last snapshot 
memories.last of TMS2.

– If t is the writer, then the memory of TML is identical to the result of applying the write set wrSett of t to the last memory 
18

snapshot memories.𝚕𝚊𝚜𝚝 of TMS2. If t is not the writer in TML, its write set in TMS2 is empty.



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

– If loc is even, then wrSett is empty.

– While a transaction is running (pct is not one of 𝚒𝚍𝚕𝚎, 𝙱𝟷, 𝚌𝚘𝚖𝚖𝚒𝚝𝚝𝚎𝚍, 𝚊𝚋𝚘𝚛𝚝𝚎𝚍, or 𝙴𝟹) the following holds: if glb = loc
or pct = 𝚆𝟺, the values read so far are from the last snapshot: rdSett ⊆ memories.𝚕𝚊𝚜𝚝; otherwise the read set is from some 
snapshot 𝑛 with beginIdxt ≤ 𝑛 < #memories: rdSett ⊆ memories(𝑛).

With these properties given, KIV generates 49 proof obligations for the correctness of the refinement. 41 of them are proven 
automatically, the remaining 8 required 42 interactions. This should be contrasted with the proofs for the earlier version which 
proved a global forward simulation and needed 245 interactions, as well as manual definitions of lemmas, that are very similar to 
the thread-local proof obligations we generate now.

The most complex proof obligations result from the step where a thread becomes a writer with a successful CAS that changes glb
to an odd value at 𝚆𝟸, and from the step at 𝙴𝟸 where a writer commits and TMS2 executes the corresponding DoCommitWriter. 
These needed 9 and 14 interactions for the “other” proof obligations that shows that another thread is not affected by the now odd 
glb resp. the new memory snapshot created by DoCommitWriter.

To check that the generated thread-local proof obligations are correctly computed, the case study available at [30] also includes the 
(rather tedious) proof that the proof obligations of the case study imply a global forward simulation. Such a proof is now unnecessary 
in further case studies.

9. Related work

Our approach is based on standard interleaving semantics used by many other formalisms. The more general semantics of con-

current ASMs [31] allows several threads (called agents) to make steps at the same time at the cost of considering clashes. In our 
hash table implementation successful CAS instructions could then have clashes since two of them could be enabled with different 
new values at the same time, so an additional synchronization mechanism would be required. Since the algorithms we investigate 
cannot have clashes, we prefer a relational model for transitions. Using a weak memory model would make reasoning more realistic 
but also more complex.

Our translation from programs to state-based transitions is influenced by Manna-Pnueli’s work [32] and the translation of plusCAL 
[33] to TLA+. The thread-local proof obligations for invariants are influenced by rely-guarantee calculus [34,35]. However, because 
of symmetry, we need a 𝚛𝚎𝚕𝚢 predicate only, while the guarantee could be inferred as the conjunction of the 𝚛𝚎𝚕𝚢’s for all other 
threads.

Our systems are usually step-deterministic, i.e., for a state s and a specific action a there is at most one state s′ with 𝚜𝚝𝚎𝚙(s, a, s′). 
The mapping between actions therefore allows to mimic a useful feature of the simulation conditions of Event-B refinement: these 
fix the choice of parameters for the ANY-clause of an abstract event (cf. [4], p. 251) avoiding the need for instantiation in the proof.

Most interactive theorem provers (Event-B is an exception) instantiate verified refinement theories and prove a simulation based 
on this, and we also follow that approach (a theory of IO Automata refinement is part of the web presentation [36]). Our work here 
resulted from the observation that for concurrent algorithms, the proof that shows sufficiency of thread-local proof obligations often 
constitutes a significant part of the work that can be avoided.

Our approach to thread-local proof obligations has some similarities to [37]. There, the proof obligations are specialized to 
linearizability and inferred on paper. An algorithm infers and verifies intermediate assertions automatically. The definition of a rely 
condition is avoided, instead the approach weakens assertions minimally (using decidable fragments of Separation Logic) to be stable 
over all the transitions of other threads.

A survey on verification methods for linearizability can be found in [38]. For an overview of work on verifying STM implementa-

tions, see for example [39,40]. More recent work often uses model checking to verify properties like deadlock- or starvation-freedom, 
e.g., [41] based on CSP or [42] based on Timed Automata. The technique presented in this paper is closely related to the approach of 
Lesani et al. [43,44], who also used I/O Automata and simulation proofs to verify the NOrec and TL2 algorithms with PVS [45]. In 
[46], Lesani presents labeled synchronization logic (LSL), a first-order logic based on execution and linearization orders for reasoning 
about transaction algorithms. There, LSL is used for an alternative PVS proof for TL2, avoiding the translation of the algorithm to a 
transition system.

10. Conclusion

We have defined an approach to verifying concurrent threaded systems that reduces simulation proofs to thread-local, step-local 
proof obligations for a forward simulation. We found that this reduces the effort for verification significantly and allows us to focus on 
the core predicates and assertions needed to verify concurrent implementations. We illustrated the approach using two case studies, 
showing that it is not specific to linearizability but also generalizes to other correctness criteria, such as opacity. All KIV specifications 
and proofs for these case studies can be found online: [36] for hash sets and [30] for TML.

In recent work [47], we applied the methodology to verify FliT [48], a persistency library for non-volatile memory (NVM). Using 
multiple refinements, we proved FliT to work correctly on a realistic weak memory model (PTSO [49], the persistent version of the 
TSO memory model of Intel’s x86 processor [50]). In contrast to this work, the proof also includes a refinement using non-atomic 
19

programs as abstract specification (as an intermediate step, we consider FliT on a simpler, sequential consistent memory model).



Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

A comparison to the program calculus we alternatively use (cf. for example [51]) is beyond the scope of this paper. In future work, 
we plan to extend the approach further, e.g., with progress conditions. Finally, it would also be interesting to see how incremental 
development of concurrent algorithms using several refinements could benefit.

CRediT authorship contribution statement

Gerhard Schellhorn: Writing – review & editing, Writing – original draft, Software, Methodology, Investigation, Conceptu-

alization. Stefan Bodenmüller: Writing – review & editing, Writing – original draft, Software, Methodology, Formal analysis, 
Conceptualization. Wolfgang Reif: Supervision, Resources, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Stefan Bodenmueller reports financial support was provided by German Research Foundation. If there are other authors, 
they declare that they have no known competing financial interests or personal relationships that could have appeared to influence 
the work reported in this paper.

References

[1] M. Herlihy, J.M. Wing, Linearizability: a correctness condition for concurrent objects, ACM Trans. Program. Lang. Syst. 12 (3) (1990) 463–492.

[2] J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, H. Wehrheim, Verifying correctness of persistent concurrent data structures: a sound and complete method, 
Form. Asp. Comput. 33 (4–5) (2021) 547–573.

[3] VerifyThis Program Verification Competition Series, https://www .pm .inf .ethz .ch /research /verifythis .html.

[4] J.-R. Abrial, Modeling in Event-B: System and Software Engineering, Cambridge University Press, 2010.

[5] L. Dalessandro, D. Dice, M. Scott, N. Shavit, M. Spear, Transactional mutex locks, in: Euro-Par 2010 - Parallel Processing, Springer, 2010, pp. 2–13.

[6] J. Derrick, S. Doherty, B. Dongol, G. Schellhorn, O. Travkin, H. Wehrheim, Mechanized proofs of opacity: a comparison of two techniques, Form. Asp. Comput. 
30 (5) (2018) 597–625.

[7] R. Guerraoui, M. Kapalka, On the correctness of transactional memory, in: Proc. of Symposium in Principles and Practice of Parallel Programming (PPoPP), 2008, 
pp. 175–184.

[8] S. Doherty, L. Groves, V. Luchangco, M. Moir, Towards formally specifying and verifying transactional memory, Form. Asp. Comput. 25 (5) (2013) 769–799.

[9] G. Schellhorn, S. Bodenmüller, W. Reif, Thread-Local, step-local proof obligations for refinement of state-based concurrent systems, in: Proc. of Rigorous State-

Based Methods (ABZ), in: LNCS, vol. 14010, 2023, pp. 70–87.

[10] C.H. Papadimitriou, The serializability of concurrent database updates, J. ACM 26 (4) (1979) 631–653.

[11] M. Herlihy, N. Shavit, On the nature of progress, in: OPODIS, in: LNCS, vol. 7109, Springer, 2011, pp. 313–328.

[12] G. Schellhorn, S. Bodenmüller, J. Pfähler, W. Reif, Adding concurrency to a sequential refinement tower, in: Proc. of International Conference on Rigorous 
State-Based Methods (ABZ), in: LNCS, vol. 12071, Springer, 2020, pp. 6–23.

[13] S. Bodenmüller, G. Schellhorn, M. Bitterlich, W. Reif, Flashix: modular verification of a concurrent and crash-safe flash file system, in: Logic, Computation and 
Rigorous Methods: Essays Dedicated to Egon Börger on the Occasion of His 75th Birthday, in: LNCS, vol. 12750, Springer, 2021, pp. 239–265.

[14] Q. Xu, W.-P. de Roever, J. He, The rely-guarantee method for verifying shared variable concurrent programs, Form. Asp. Comput. 9 (2) (1997) 149–174, https://

doi .org /10 .1007 /BF01211617.

[15] A. Gotsman, B. Cook, M. Parkinson, V. Vafeiadis, Proving that nonblocking algorithms don’t block, in: POPL, ACM, 2009, pp. 16–28.

[16] B. Tofan, G. Schellhorn, W. Reif, Formal verification of a lock-free stack with hazard pointers, in: Proc. of ICTAC, in: LNCS, vol. 6916, Springer, 2011, pp. 239–255.

[17] G. Schellhorn, O. Travkin, H. Wehrheim, Towards a thread-local proof technique for starvation freedom, in: Integrated Formal Methods IFM 2016, in: LNCS, 
vol. 9681, Springer, 2016, pp. 193–209.

[18] C. Hoare, An Axiomatic Basis for Computer Programming (1969), Commun. ACM 576–580.

[19] C.B. Jones, Specification and design of (parallel) programs, in: Proceedings of IFIP’83, North-Holland, 1983, pp. 321–332.

[20] N.A. Lynch, M.R. Tuttle, Hierarchical correctness proofs for distributed algorithms, in: Proc. of ACM Symposium on Principles of Distributed Programming 
(PODC), ACM, 1987, pp. 137–151.

[21] E. Börger, R.F. Stärk, Abstract State Machines — A Method for High-Level System Design and Analysis, Springer, 2003.

[22] J. Derrick, E. Boiten, Refinement in Z and in Object-Z: Foundations and Advanced Applications, Formal Approaches to Computing and Information Technology 
(FACIT), Springer, 2001, second, revised edition 2014.

[23] N. Lynch, F. Vaandrager, Forward and backward simulations – part I: untimed systems, Inf. Comput. 121 (2) (1995) 214–233.

[24] VerifyThis 2022: Challenge 3 - The World’s Simplest Lock-Free Hash Set, https://ethz .ch /content /dam /ethz /special -interest /infk /chair -program -method /pm /
documents /Verify %20This /Challenges2022 /verifyThis2022 -challenge3 .pdf, 2022.

[25] D. Hendler, N. Shavit, L. Yerushalmi, A scalable lock-free stack algorithm, in: Proc. of Parallelism in Algorithms and Architectures (SPAA), ACM, 2004, 
pp. 206–215.

[26] M. Moir, D. Nussbaum, O. Shalev, N. Shavit, Using elimination to implement scalable and lock-free FIFO queues, in: Proc. of Parallelism in Algorithms and 
Architectures (SPAA), ACM, 2005, pp. 253–262.

[27] T. Harris, J.R. Larus, R. Rajwar, Transactional Memory, Synthesis Lectures on Computer Architecture, Morgan &, 2nd edition, Claypool Publishers, 2010.

[28] D. Dice, O. Shalev, N. Shavit, Transactional locking II, in: Proc. of International Symposium on Distributed Computing (DISC), 2006, pp. 194–208.

[29] L. Dalessandro, M.F. Spear, M.L. Scott, NOrec: streamlining STM by abolishing ownership records, in: Proc. of Symposium on Principles and Practice of Parallel 
Programming (PPoPP), 2010, pp. 67–78.

[30] Verification of Opacity of a Transactional Mutex Lock with KIV and Isabelle, http://www .informatik .uni -augsburg .de /swt /projects /Opacity -TML .html, 2016.

[31] E. Börger, K.-D. Schewe, Concurrent abstract state machines, Acta Inform. 53 (2016) 469–492.

[32] Z. Manna, A. Pnueli, Temporal Verification of Reactive Systems – Safety, Springer, 1995.

[33] L. Lamport, The PlusCal algorithm language, in: Proc. of Theoretical Aspects of Computing (ICTAC), Springer, 2009, pp. 36–60.

[34] C.B. Jones, Tentative steps toward a development method for interfering programs, Trans. Program. Lang. Syst. 5 (4) (1983) 596–619.

[35] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers, Concurrency Verification: Introduction to Compositional and Noncom-

positional Methods, Cambridge Tracts in Theoretical Computer Science, vol. 54, Cambridge University Press, 2001.
20

[36] Verification of Linearizability of Hash Sets with Local Proof Obligations with KIV, http://www .informatik .uni -augsburg .de /swt /projects /HashSets .html, 2023.

http://refhub.elsevier.com/S0167-6423(24)00150-3/bibE1EA5C54FB6E099090DBA74FF5EFA23Cs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib6DEBF8C2AE99B0BDC5386EA475B70A91s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib6DEBF8C2AE99B0BDC5386EA475B70A91s1
https://www.pm.inf.ethz.ch/research/verifythis.html
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib93ECF98A0D8B89227912658A6DA8DF2Es1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib94B002A2B1ADDD3806DF5D916B943EA4s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1465D6C5788339BF06CB60443B6B4137s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib9F0EE2C9C60C2257FA988566FF1F3785s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib9F0EE2C9C60C2257FA988566FF1F3785s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibAC6FD35D876933E5B54461D4A4B0A9F0s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibAC6FD35D876933E5B54461D4A4B0A9F0s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib6AB68A4BFF62D3A7174C46417ACF5BCFs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib5288F4C707E0792228A814BF27811515s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib5288F4C707E0792228A814BF27811515s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibD4F60C709943812C1B992409BB3184D7s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1B8542A9145A58C1B8871CFD206DCC3Ds1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibDADD08DEF69C9EC6E97A7E46D745140Es1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibDADD08DEF69C9EC6E97A7E46D745140Es1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib972C9DC5EEE0BC64329E10B567B4420As1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib972C9DC5EEE0BC64329E10B567B4420As1
https://doi.org/10.1007/BF01211617
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibE75953CCEB2D53C68B605B7408D69408s1
https://doi.org/10.1007/BF01211617
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibE75953CCEB2D53C68B605B7408D69408s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib0E8DAED0444D9AA166AE4FD20C0FFC19s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibCA1778725311F87DC3B5809E62CCDD91s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibC1F9D702CAEC68F20AD70FDF63E03383s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibC1F9D702CAEC68F20AD70FDF63E03383s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibFC09CC6AF8A8E95741C8A04E8E7DEED5s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib273818684B0ABEE3F30F2820D5940118s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibF624A2696E580E1AC8CFA17913EDDA93s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibF624A2696E580E1AC8CFA17913EDDA93s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1DDE292678730D33A2A0B782F27A9B29s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib7DF2A0A4C68271F363069DB302EAC798s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib7DF2A0A4C68271F363069DB302EAC798s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibE5887FD02ACF6F4753CBAF98715C6B91s1
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib21F691AF7938A9D3E92AA30AF8357EBBs1
https://ethz.ch/content/dam/ethz/special-interest/infk/chair-program-method/pm/documents/Verify%20This/Challenges2022/verifyThis2022-challenge3.pdf
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib21F691AF7938A9D3E92AA30AF8357EBBs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib0893DA3EE1F9B4F7BDC2960A195D860As1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib0893DA3EE1F9B4F7BDC2960A195D860As1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibA2AE9EE1CB2AC00E40052F3FF02BD229s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibA2AE9EE1CB2AC00E40052F3FF02BD229s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib6B5C1C585A54C0332251D4E309F3C76Ds1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib694EB84E8397FC010B2A9B6E7A3D9210s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibB140D9704C31EF6D1B3ECC92D969A87Bs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibB140D9704C31EF6D1B3ECC92D969A87Bs1
http://www.informatik.uni-augsburg.de/swt/projects/Opacity-TML.html
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib7DD3574704EC722BA4CC33B1977791B8s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibD054CD9BBC846A09423BE613CC511D23s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibAB781B5323F95AACCC7A017CAC424520s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib753DD00DA80BFFCDAF9A05646EA03310s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib02D9D9F52897B36B1E3F2D83C8263754s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib709DDDC1539075EDDE11D1D734C2AA7As1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib709DDDC1539075EDDE11D1D734C2AA7As1
http://www.informatik.uni-augsburg.de/swt/projects/HashSets.html
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib09C17663C72E988DA524E79A10AECF7Ds1


Science of Computer Programming 241 (2025) 103227G. Schellhorn, S. Bodenmüller and W. Reif

[37] V. Vafeiadis, Automatically proving linearisability, in: Proc. of Computer Aided Verification (CAV), in: LNCS, vol. 6174, Springer, 2010, pp. 450–464.

[38] B. Dongol, J. Derrick, Verifying linearisability: a comparative survey, ACM Comput. Surv. 48 (2) (2015).

[39] M. Lesani, On the Correctness of Transactional Memory Algorithms, Ph.D. thesis, University of California, Los Angeles (UCLA), 2014.

[40] A. Cristal, B.K. Ozkan, E. Cohen, G. Kestor, I. Kuru, O.S. Unsal, S. Tasiran, S.O. Mutluergil, T. Elmas, Verification tools for transactional programs, in: Transactional 
Memory. Foundations, Algorithms, Tools, and Applications, in: LNCS, vol. 8913, 2015, pp. 283–306.

[41] C. Xu, X. Wu, H. Zhu, M. Popovic, Modeling and verifying transaction scheduling for software transactional memory using CSP, in: Proc. of International 
Symposium on Theoretical Aspects of Software Engineering (TASE), 2019, pp. 240–247.

[42] B. Kordic, M. Popovic, S. Ghilezan, Formal verification of python software transactional memory based on timed automata, Acta Polytech. Hung. 16 (7) (2019) 
197–216.

[43] M. Lesani, V. Luchangco, M. Moir, A framework for formally verifying software transactional memory algorithms, in: Proc. of International Conference on 
Concurrency Theory (CONCUR), Springer, 2012, pp. 516–530.

[44] M. Lesani, J. Palsberg, Decomposing opacity, in: Proc. of International Symposium on Distributed Computing (DISC), in: LNCS, vol. 8784, Springer, 2014, 
pp. 391–405.

[45] S. Owre, J.M. Rushby, N. Shankar, PVS: a prototype verification system, in: D. Kapur (Ed.), Proc. of International Conference on Automated Deduction (CADE), 
in: LNCS, vol. 607, Springer, 1992, pp. 748–752.

[46] M. Lesani, Transaction protocol verification with labeled synchronization logic, in: Proc. of NASA Formal Methods (NFM), in: LNCS, vol. 11460, Springer, 2019, 
pp. 280–297.

[47] S. Bodenmüller, J. Derrick, B. Dongol, G. Schellhorn, H. Wehrheim, A fully verified persistency library, in: Proc. of International Conference on Verification, 
Model Checking, and Abstract Interpretation (VMCAI), in: LNCS, 2024, pp. 26–47.

[48] Y. Wei, N. Ben-David, M. Friedman, G.E. Blelloch, E. Petrank, FliT: a library for simple and efficient persistent algorithms, in: Proc. of Symposium in Principles 
and Practice of Parallel Programming (PPoPP), ACM, 2022, pp. 309–321.

[49] A. Khyzha, O. Lahav, Taming x86-TSO persistency, Proc. ACM Program. Lang. 5 (POPL) (2021) 47:1–47:29.

[50] A. Raad, J. Wickerson, G. Neiger, V. Vafeiadis, Persistency semantics of the intel-x86 architecture, Proc. ACM Program. Lang. 4 (POPL) (2020) 11:1–11:31.

[51] G. Schellhorn, S. Bodenmüller, M. Bitterlich, W. Reif, Software & system verification with KIV, in: The Logic of Software. A Tasting Menu of Formal Methods: 
21

Essays Dedicated to Reiner Hähnle on the Occasion of His 60th Birthday, in: LNCS, vol. 13360, Springer, 2022, pp. 408–436.

http://refhub.elsevier.com/S0167-6423(24)00150-3/bib7DCBEC68074CFBB12507679565E9FB48s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib71F0E8D5016D19D43FC25D608A529791s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib0952719CB0234F3CF0B3E639327A3900s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib20FCB0F6526E7FA82F5185077A835C4Ds1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib20FCB0F6526E7FA82F5185077A835C4Ds1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib3E42CB2AC92850538AE444CF53016483s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib3E42CB2AC92850538AE444CF53016483s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1B1B23C1FC4A0FC8DFADE506C0C7909Cs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1B1B23C1FC4A0FC8DFADE506C0C7909Cs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibBA6C5E35AFF62520395861D1217B6C8Es1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibBA6C5E35AFF62520395861D1217B6C8Es1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib613A70DD3DD049F0A3F1A3A1F12B425Ds1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib613A70DD3DD049F0A3F1A3A1F12B425Ds1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib8C197A92E545FA5DA2EB34E6823D3A88s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib8C197A92E545FA5DA2EB34E6823D3A88s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib8E43649F8317A9E38901E87EAEC5B1BFs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib8E43649F8317A9E38901E87EAEC5B1BFs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1B33B6626EC4466C46EAE4F33399F50Fs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib1B33B6626EC4466C46EAE4F33399F50Fs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibC5B0B87AFC1D2EC183A406897976D04Bs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibC5B0B87AFC1D2EC183A406897976D04Bs1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bibC39AC678A7951605E9D07F2CACA23C52s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib7D918A1305559B9D1032504411CC04F2s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib77A02961DB73950CCA7BFBE6B6D9D589s1
http://refhub.elsevier.com/S0167-6423(24)00150-3/bib77A02961DB73950CCA7BFBE6B6D9D589s1

	Verification of forward simulations with thread-local, step-local proof obligations
	1 Introduction
	2 Overview
	3 Case study: concurrent hash sets
	3.1 Implementation of the algorithms in KIV
	3.2 Translation to a state-based transition system

	4 Local proof obligations for invariants
	5 Local proof obligations for refinement
	5.1 Correctness of concurrent libraries by refinement
	5.2 Proving a forward simulation with local proof obligations
	5.3 Proving refinement for the hash set case study

	6 Software transactional memory and TML
	7 Opacity and TMS2
	8 Proof obligations for the refinement from TMS2 to TML
	9 Related work
	10 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


