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Abstract: Real world datasets might contain duplicate or redundant attributes—or even pure noise—which may not be
filtered out by data preprocessing algorithms. This might be problematic, as it decreases the performance
of learning algorithms. Cartesian Genetic Programming (CGP) is able to choose its own input attributes by
design. Thus, we hypothesize that CGP should be able to ignore redundant or noise attributes. In this work,
we empirically show that CGP is indeed able to handle such problematic datasets. For this task, six different
datasets are extended with different kinds of redundancies: Duplicated-, duplicated and noised-, and pure
noise attributes. Different numbers of unwanted attributes are examined, and we present our results which
indicate that CGP is robust against additional redundant or noisy attributes in a dataset. We show that there is
no decrease in performance as well as no change in CGP’s convergence behaviour.

1 INTRODUCTION

Any kind of imperfection in a dataset might decrease
the final performance of a learning algorithm. Such
flaws might occur in real world datasets, as they could
contain inconsistencies, redundant-, noisy-, or dupli-
cate attributes. Preprocessing or data mining algo-
rithms try to improve the quality of a given dataset by
feature- or instance selection techniques, for example.
These algorithms reduce the dimensionality of data by
removing redundant or conflicting attributes respec-
tively (Garcı́a et al., 2015). However, most algorithms
assume independent and identically distributed data.
If this precondition is not given, unneeded attributes
might not be filtered out (Rong et al., 2019). This can
slow down the training time needed of machine learn-
ing algorithms (Hall and Smith, 1997) or decrease
their accuracy (Duangsoithong and Windeatt, 2009).
The other way around, redundant features might not
even impede machine learning algorithms. Duang-
soithong and Windeatt found that removing redundant
features can decrease the accuracy of ensemble learn-
ing methods (Duangsoithong and Windeatt, 2009).
Thus, choosing algorithms that remove every instance
of redundancy is not always the best choice.

We believe that Cartesian Genetic Programming
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(CGP) should be able to ignore unwanted attributes
through its representation and evolutionary mecha-
nisms. CGP consists of nodes in a grid which are
partially connected. By being able to evolve its con-
nections, it might learn to not connect to unwanted
attributes—which means that those inputs are ig-
nored. As a result, CGP might not be negatively af-
fected by duplicated or noisy attributes. This means
that CGP might be a great choice to consider for
datasets which could not be preprocessed perfectly.

Motivated by this hypothesis, we investigate the
effects of additional duplicated-, duplicated and
noised-, and pure noise attributes in datasets on CGP.
For this reason, six UCI (Kelly et al., ) datasets
are used and extended with different levels of artifi-
cial and unwanted attributes. We examine its effects
on CGP’s performance and behaviour by empirical
means and try to give an answer to our hypothesis.

Based on these goals, we provide a quick
overview of related work in the following Section 2.
Section 3 then reintroduces CGP. We also discuss
our hypothesis more in-depth. Afterwards, Section 4
presents the experimental design of this work. This
is followed by Section 5, where we report our results
and discuss our research questions as well as our hy-
pothesis. At last, Section 6 summarizes our findings
and discusses future research directions.
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2 RELATED WORK

Various previous works investigated the effects of re-
dundant data on algorithms. However, to the best of
our knowledge, we are the first to investigate its influ-
ence on CGP. Nevertheless, various other articles laid
out the foundation for this work.

The investigation of data preprocessing mecha-
nisms is a major research subject in the field of data
mining. There are numerous algorithms for different
kinds of preprocessing tasks (Garcı́a et al., 2015).

Feature selection is another important topic in the
realm of data mining, as the goal of these algorithms
is to reduce the dimensionality of data. This can be
achieved, among other things, by using genetic algo-
rithms (Tiwari and Singh, 2010; Xu et al., 2009). It is
also possible to use fuzzy genetic algorithms, as was
done by Fung et al. (Fung et al., 1997). Other pos-
sibilities include the application of differential evolu-
tion algorithms, as was done by Bidgoli et al. (Bidgoli
et al., 2019).

Instance selection is another technique that is used
in combination with feature selection. Here, the goal
is to remove faulty data. Again, genetic algorithms
can be considered. Tsai et al. used genetic algorithms
for both feature and instance selection (Tsai et al.,
2013). They also examined the effects of perform-
ing only instance-, or only feature selection, as well
as performing both. Both feature- and instance selec-
tion can also be performed simultaneously by using
genetic algorithms (Albuquerque et al., 2020).

3 CARTESIAN GENETIC
PROGRAMMING

Cartesian Genetic Programming is a supervised
learning algorithm invented in 1999 by Miller (Miller,
1999). In this section, we reintroduce CGP’s repre-
sentation, its standard evolutionary operators, and ex-
plain our hypothesis.

3.1 Representation

The standard CGP version we are using in this work
is represented by a directed, acyclic and feed-forward
graph. It is a grid which consists of partially con-
nected nodes. Originally, it was conceptualized with
a c×r grid with c∈N+ and r∈N+. However, today’s
standard consists of a CGP model with only one row
for most applications (Miller, 2011). Furthermore,
CGP’s representation allows for an arbitrary amount
of program inputs and outputs.

n0 :
INPUT

n1 :
INPUT

n2 :
ADD

n3 :
MUL

n4 :
SUB

n5 :
OUTPUT

Figure 1: Example graph defined by a CGP genotype. The
dashed node and connections are inactive due to not con-
tributing to the output.

These aforementioned nodes can be categorized
into input-, output-, and computational nodes. The
first type, input nodes, directly receive the program
input to relay them to other nodes. Output nodes redi-
rect the output of an input- or computational node.
Both types—input and output nodes—do not change
their respective ingoing value. As for the last cate-
gory: Computational nodes do change their inputs.
They are represented by one function- and a connec-
tion genes, with a ∈ N+ being the maximum arity
of one function in the whole function set. Function
genes encode the function of a node, while the con-
nection genes define the nodes respective input. This
is done by defining a path between a previous and the
current node.

Another important distinction is the difference be-
tween active and inactive nodes—both input- and
computation nodes can be grouped into one of these
two categories. On the one hand, active nodes are
part of a path to one or multiple output nodes. Be-
cause of that, they contribute to the program’s final
output. On the other hand, inactive nodes are not part
of a path to output nodes. Hence, they do not con-
tribute to the program’s final output. While there are
methods to enforce all nodes to be active, the exis-
tence of inactive nodes contributes to an improvement
in CGP’s evolutionary search. This allows for neu-
tral genetic drift (Miller and Smith, 2006; Turner and
Miller, 2015), which may lead to better fitness values
and/or faster convergence.

An illustrative example of a graph defined by CGP
can be seen in Figure 1. It depicts the genotype with
two input-, three computational- and one output node.
Active nodes are drawn with a solid line, while inac-
tive nodes are marked by dashed lines. The first two
nodes are input nodes, which correspond to a respec-
tive input attribute. They are followed by three com-
putational nodes, and one output node at the end. In
this example, only the first input is used to calculate
an output. The first attribute is taken and added to it-
self at node n2. Afterwards, this result is taken and
multiplied by the first attribute—with its outcome be-
ing the result of this program. Input node n1 and com-
putational node n4 are not part of a path to an output
node. As a result, they do not contribute to the pro-
grams final output and are classified as inactive.

To simplify the description of a CGP configura-
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tion in the following work: When we mention a graph
defined by CGP with n ∈ N+ nodes, this graph will
have only one row and n computational nodes. Fur-
thermore, it also contains additional input- and output
nodes corresponding to the given learning task.

3.2 Evolutionary Algorithms

In this work, we use an elitist (µ+λ) evolution strat-
egy (ES) with µ = 1 and λ = 4, as is standard in
most CGP variants (Miller, 2020). In addition, neu-
tral search is included into the (1+4)-ES to improve
CGP’s convergence time and fitness value (Yu and
Miller, 2001; Turner and Miller, 2015). That means:
When an offspring has the same or better fitness value
than the parent, this offspring is always chosen as the
next parent. This leads to neutral drift, which enables
a better exploration of different genotypes (Miller,
2020).

As for the mutation operator, we use one proposed
by Goldman and Punch called Single (Goldman and
Punch, 2013). It works by selecting and mutating ran-
dom nodes until one active node is mutated. This has
the benefit that a change in CGP’s phenotype is en-
forced. When a standard point or probabilistic muta-
tion strategy is used, it is possible that only inactive
genes are mutated (Goldman and Punch, 2013; Gold-
man and Punch, 2015). As a consequence, the qual-
ity of the newly mutated individual cannot be eval-
uated. This might lead to more training iterations
needed as well as being stuck at local optima. By en-
forcing a change in CGP’s phenotype with Single, no
wasted evaluations are performed. It also has the ben-
efit that it does not rely on a mutation rate (Goldman
and Punch, 2013).

CGP does not profit from standard crossover oper-
ators (Miller, 2011; Cai et al., 2006; Kalkreuth et al.,
2017). This is why we also do not include it in this
work.

3.3 Ignoring Redundant Attributes

As already mentioned in Section 1, real world datasets
might contain duplicate attributes (Hernández and
Stolfo, 1998) or unimportant ones (Kumar and
Chaurasiya, 2019). This can negatively affect learn-
ing algorithms.

We believe that CGP should be able to handle
some amount of unnecessary attributes in a dataset.
As already mentioned in Section 3.1, the nodes used
in CGP are able to mutate their ingoing connection
genes. Therefore, the differentiation between ac-
tive and inactive nodes are important—because some
input- or computational nodes are not part of a path

to any output nodes (see Figure 1). Because of that,
an inactive input node means that its corresponding
attribute is not used to generate an output. This is
why we believe that CGP should handle redundant at-
tributes well. Some nodes may obtain their inputs by
being connected to unwanted attributes. Via CGP’s
evolutionary mechanisms, a node should be able to
mutate such connections to use more meaningful in-
puts. Over time, input nodes corresponding to these
unwanted attributes should become inactive. Thus,
they do not contribute to the program’s output—and
do not affect its final fitness value.

4 EXPERIMENTAL DESIGN

In this section, our whole experimental setup is de-
scribed. We present the datasets used as well as meth-
ods to add redundancies into them. Afterwards, a
brief introduction into Bayesian data analysis and a
description of our hyperparameter study is given.

4.1 Problem Sets

As we try to answer our hypothesis empirically, the
choice of the right datasets is important. Six classi-
fication datasets downloaded from the UCI Machine
Learning Repository (Kelly et al., ) were chosen ac-
cording to the recommendations from the genetic pro-
gramming community (White et al., 2013). We in-
clude: Abalone, Credit Approval (Credit), Statlog
Shuttle (Shuttle), Breast Cancer Wisconsin Diagnosis
(Cancer), Page Blocks Classification (Page Blocks),
and Waveform Version 1 (Waveform) (Kelly et al., ).
They were chosen to cover different number of in-
stances, number of attributes, and number of classes
to predict. These specific values, among others, are
shown in Table 1.

Concerning the pre-processing of the datasets, we
standardized each one. In addition, entries with miss-
ing values were removed—as was the case for Credit,
for example.

In order to answer our hypothesis, we must gauge
CGP’s ability to deal with redundant data. There-
fore, redundant data is added incrementally to ob-
serve CGP’s performance differences. The number
of additional data is added with respect to the datasets
number of attributes. This means that we increase the
dataset’s size by a fixed, predefined percentage: 20 %,
40 %, · · · , 100 %. These values were chosen in or-
der to gain significant insight into CGP’s behaviour
without cluttering our results (e.g. using a percentual
step size of 10 %) or having too unrealistic values
(e.g. more than 100 % redundancies). For example:
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Given a dataset with 10 attributes and an increase in
its size by 40 %. That means, 4 additional redundant
attributes are added, increasing the datasets total num-
ber of attributes to 14.

Please note that we do not include symbolic re-
gression benchmarks such as Korns-12, which is also
one of the recommended benchmarks to use for eval-
uation purposes (White et al., 2013). Its peculiarity
is that five input variables are defined but only two
variables are used to generate an output. The goal of
Korns-12 is to test if an algorithm is able to ignore
unimportant variables. While it fits our scenario, we
believe that using it would distort our results. There
is also no proposed method to remove or add unim-
portant variables. As we cannot remove variables, it
is not possible to create a baseline without any un-
used variables. In addition, as additional unimpor-
tant variables cannot be added, different magnitudes
of unimportant variables can also not be examined.
This would strongly limit our evaluation, as we could
not compare it to anything.

4.2 Adding Redundancies into Datasets

In this work, three different ways of adding redundan-
cies are examined: Duplicating attributes, duplicat-
ing attributes and noising them, and adding pure noise
drawn from a Gaussian distribution. Please note: In
order to avoid repetitions, phrases like unwanted at-
tributes, redundancies, etc. are used synonymously.

4.2.1 Duplicate Attributes

The first method randomly copies attributes and in-
serts them into random positions without changing
them. This operation leads to attributes that should
be easily detected and removed without repercussion
during the data pre-processing phase of training a
model. Thus, this method should be viewed as a sec-
ond baseline—next to CGP trained without any added
redundancies—to evaluate CGP’s ability to handle at-
tribute redundancies.

To give a more formal expression of copying ran-
dom attributes and inserting them into random posi-
tions: Let D ∈Dn×a := (di j) i=1,··· ,n

j=1,··· ,m
be a dataset con-

taining n entries and a attributes. Furthermore, D is
a set of numbers or a set of categorical values. Addi-
tionally, we introduce a parameter r ∈ R+ which de-
fines the percentage of additional attributes added to
bloat the dataset. This means, we increase the size of
a dataset D by s := ⌈a · r⌉.

Expanding D works by drawing random in-
dices u1, · · · ,us at first, with uk ∈ {1,2, · · · ,a} for
k = 1, · · · ,s. These indices u1, · · · ,us define which

Algorithm 1: First redundancy method: Duplicate and
insert random attributes.

Data: Dataset D, percentage of additional
attributes r ∈ R+

t← 0;
s← ⌈|a · r⌉;
D′←Clone(D);
U ←{u1, · · · ,us} random indices from
{1,2, · · · ,a};

foreach u ∈U do
d′← D[ : ,u];
v← randomly drawn number from
{1,2, · · · ,a+ t};

expand D′ by shifting all elements after v
one dimension to the right and inserting
d′ into D[ : ,v];

t← t +1;
end
return D′

attribute columns in D will be copied. In order to fi-
nally expand our dataset, we must first create a copy
of D called D′, which we will expand upon and add re-
dundancies. Then, for each index uk with k = 1, · · · ,s,
we copy a set d′uk

=
{

d1,uk , · · · ,dn,uk

}
∈ Dn. At last,

we draw a random index v∈ {0, · · · ,a′} and insert d′uk
into the vth column of D′, with a′ being D′’s current
number of attributes. That means, we copy the ukth
attribute column in D, shift all elements after a ran-
dom column position v to the right, and insert it into
position v in D′. To further clarify our approach, we
include its pseudocode in Algorithm 1.

4.2.2 Duplicate Attributes and Add Noise

Our second method works by duplicating attributes
and adding noise before inserting them into the
dataset. This method is a more realistic version of re-
dundant attributes in a dataset. Sensor readings might
drift and/or fluctuate. Due to this reason, for exam-
ple by placing two sensors close to each other, their
readings should not lead to the exact same value.

To perform this second method, similar steps com-
pared to Algorithm 1 have to be performed. We only
differ at the last steps: For each index uk with k =
1, · · · ,s, we copy a set d′uk

=
{

d1,uk , · · · ,dn,uk

}
∈ Dn.

However, before we insert d′uk
into the new dataset

D′, it must be noised. In this work, noising each at-
tribute means that it is value changes by increasing or
decreasing it by up to ten percent. Hence, for each
value in d′uk

, we draw a uniformly distributed value
xi ∼ U[−0.1,0.1] for i = {0, · · · ,n}. Afterwards, noise
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Table 1: The full name of datasets used in this work, the dataset’s size (Size), number of classes to predict (# Classes), number
of attributes (# Attrib.), and its number of additional attributes given a specific percentage of redundancy (x %).

Dataset Size # Classes # Attrib. 20 % 40 % 60 % 80 % 100 %
Abalone 4,177 28 8 +2 +4 +5 +7 +8
Breast Cancer Wisconsin Diag. 569 2 30 +6 +12 +18 +24 +30
Credit Approval 690 2 15 +3 +6 +9 +12 +15
Page Blocks Classification 5,473 5 10 +2 +4 +6 +8 +10
Statlog (Shuttle) 58,000 7 9 +2 +4 +6 +8 +9
Waveform Version 1 5,000 3 21 +5 +9 +13 +17 +21

Algorithm 2: Second redundancy method: Duplicate
attribute and add noise.

Data: Dataset D, percentage of additional
attributes r ∈ R+

t← 0;
s← ⌈|a · r⌉;
D′←Clone(D);
U ←{u1, · · · ,us} random indices from
{1,2, · · · ,a};

foreach u ∈U do
d′← D[ : ,u];
v← randomly drawn number from
{1,2, · · · ,a+ t};

foreach d′i ∈ d′ do
x∼U[−0.1,0.1];
d′i ← d′i +d′i · x;

end
expand D′ by shifting all elements after v
one dimension to the right and inserting
d′ into D[ : ,v];

t← t +1;
end
return D′

is added for each d′i,uk
:

d′i,uk
← d′i,uk

+d′i,uk
· xi

This noised attribute set is then inserted into D′ into
a random attribute index v after all elements after v
are shifted to the right. Again, to further clarify our
approach, we refer to Algorithm 2.

4.2.3 Add Pure Noise

For our last method to evaluate our hypothesis, we
only add Gaussian distributed noise as redundant at-
tributes. As already mentioned in Section 4.1, we
standardize our data. That means, each dataset has
a mean of zero and a standard deviation of one. Thus,
we are able to draw from a Gaussian distribution with
a mean of zero and standard deviation of one. As a
result, we generate truly redundant attributes—which

Algorithm 3: Third redundancy method: Insert random
noise-attributes.

Data: Dataset D, number of D’s attributes a,
percentage of additional attributes
r ∈ R+

t← 0;
s← ⌈a · r⌉;
D′←Clone(D);
repeat s times

v← randomly drawn number from
{1,2, · · · ,a+ t};

p = {p1, · · · , pn} with pi ∼N (0,1) and
i = {1, · · · ,n};

expand D ′ by shifting all elements after v
to the right and inserting p into D[ : ,v];

end
return D ′

would be equivalent of using faulty or wrongly con-
figured sensors, for instance.

Adding redundant attributes needs similar steps to
Algorithm 1. Again, we must define similar param-
eters and sets: Our dataset D, parameter r to define
the percentage of a datasets increase in attributes, and
a cloned dataset D′. We differ from the first two ap-
proaches as we do not rely on D to generate our re-
dundant data. Instead, we insert pure noise. For this
approach, a noise vector p is generated by drawing
from a Gaussian distribution: p = {p1, · · · , pn} with
pi∼N (0,1) and i= {1, · · · ,n}. Please note that each
value in p is drawn independently. Then, a random in-
dex v is drawn. It represents the position of D′, into
which our noise vector p is added. At last, p is added
into D′ at the attribute position v. This works by shift-
ing all elements after v to the right and inserting p
into the position v. Again, Algorithm 3 depicts this
process for further clarification.

4.3 Bayesian Data Analysis

In order to gauge the effects of redundant data, our
results must be ranked according to their respective
final fitness value. As this number cannot be neg-
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ative, common statistical tests—such as Student’s t-
test, which uses a Student’s t-distributions—should
not be used. The reason is that such distributions
cannot be expected to model the data well (Kruschke,
2013). On that account, we perform a Bayesian data
analysis for the posterior distributions of our results.
The model to compare the algorithms is based on the
Plackett-Luce model described by Calvo et al. (Calvo
et al., 2018). It allows the computation of a set of
ranked options by estimating the probabilities of each
of the options to be the one with the highest rank. For
this task, we use the Python library cmpbayes (Pätzel,
2023) for all statistical models. As is standard prac-
tice, prior sensitivity analyses were conducted to en-
sure the robustness of all models. For more informa-
tions regarding the models, we refer to Kruschke (Kr-
uschke, 2013) and Pätzel (Pätzel, 2023).

4.4 Configuration of CGP and Its
Training

In our experiments, we used a standard CGP configu-
ration. That means: No crossover, a modified (1+4)-
ES as described in Section 3, and Single (Goldman
and Punch, 2013) mutation. The only hyperparam-
eter that must be optimized in our setting is CGP’s
number of computational nodes n. In order to have a
fair comparison, n was optimized for each combina-
tion of: Dataset; no redundant attributes, or additional
redundant attributes with respect to one of the three
redundancy types introduced in this work and given a
specific percentage of redundancy.

We investigated n ∈ {50,100, · · · ,2000} for each
aforementioned combination. As the datasets men-
tioned in Section 4.1 do not contain a train/test split,
k-fold cross-validation with k = 5 was employed to
generate a training- and a test dataset. Each configura-
tion was tested 20 times with independent repetitions
and completely random seeds. Afterwards, to find the
best n, we ranked them according to the Plackett-Luce
model described by Calvo et al. (Calvo et al., 2018)
with respect to their final test fitness value. Please
note: The final hyperparameters found and used are
listed in our results.

Because all datasets can be categorized as classifi-
cation tasks, we use the same fitness metric during the
training of all datasets. We chose the Balanced Accu-
racy, which should be used for imbalanced datasets.
It is defined by calculating the average of recall ob-
tained on all classes. The reason is that some datasets
(e.g. Shuttle) are heavily unbalanced. As a result, a
standard accuracy metric would not reflect CGP’s fit-
ness accurately.

A single run has a budget of 100,000 iterations.

That means, a run is stopped after the given budget.
Additionally, a run is stopped preliminary when the
fitness value of the training data reaches a value less
than 0.01. In this case, we classify a dataset as solved.

To generate our final results, each configuration
used the best n found. The tests were run again for
50 times, again, with independent repetitions and dif-
ferent random seeds. Furthermore, a standard 5-fold
cross-validation was used to generate the test fitness
values.

5 EVALUATION

In order to find the effects of unnecessary attributes in
datasets on CGP, we conducted an empirical study1.
We try to answer the following three research ques-
tions to find a solution to our hypothesis:

Q1: How does having redundant attributes in a
dataset affect CGP? Especially regarding its

• Number of iterations until a solution is found
(I2S),

• Fitness value, and
• Number of active nodes.

Q2: Does CGP manage to ignore redundant at-
tributes?

Q3: How do unnecessary attributes affect CGP’s be-
haviour?

To increase readability, we will introduce the
following abbreviations: A CGP model trained on
a dataset without noise will be called baseline; a
CGP model trained on a dataset with duplicated at-
tributes (see Section 4.2.1) will be called CGP+DA;
a CGP model trained on a dataset with duplicated
and noised attributes (see Section 4.2.2) will be called
CGP+DA&NOISE; and finally, a CGP model trained
on a dataset that has additional Gaussian distributed
noise (see Section 4.2.3) is called CGP+NOISE.

5.1 Results of Redundant Attributes on
CGP

We show our results in the Appendix in Table 2,
Table 3 and Table 4. They show the results for
CGP+DA, CGP+DA&NOISE and CGP+NOISE re-
spectively on all datasets, as well as their baselines.
We show the percentage of additional attributes (%
Add.), the number of nodes (Nodes), number of mean

1Implementation and datasets can be found at: https:
//github.com/CuiHen/redundant attributes with CGP
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active nodes (Active), the mean and standard devia-
tion of iterations until a dataset is solved or stopped
(I2SMean± Std), the mean and standard deviation of
achieved test fitness (Fit Mean ± Std), the mean per-
centage of redundant attributes that are used to gener-
ate an output (% Red), and the probability of a solu-
tion being the best per dataset with respect to its test
fitness (p(best)).

Regarding the I2S, all datasets except Cancer
are not classified as solved—because they all were
stopped after 100,000 iterations. Hence, only the
Cancer dataset can be solved with the given budget.
In most cases, the mean I2S is relatively equal. Thus,
regarding the effect of redundant attributes on CGP—
given the Cancer dataset—there is the trend that this
has no effect on CGP’s time to solution. However, as
this conclusion is drawn by evaluating only a single
dataset, this outcome should be treated with reserva-
tions.

Similarly, there is no clear correlation between
levels of noise and computational nodes needed. This
statement also applies to the mean number of active
nodes.

As for CGP’s fitness values, a similar conclusion
can be drawn. For a given dataset, the mean fit-
ness values and their standard deviations are relatively
similar. This is also reflected in their probabilities of
being the best solution per dataset. There is no clear
winner, given the calculated probabilities. All prob-
abilities are relatively similar, with no configuration
dominating over the other. That means that adding
redundant attributes into a dataset will probably not
affect CGP’s fitness value.

Please note: For better readability and understand-
ability, our three methods of adding unwanted at-
tributes are separated into three tables respectively.
However, all three redundancy methods are com-
pared/ranked against the same baseline. On all three
methods, similar results can be seen. This means:
These three types of additional noise do probably not
affect CGP’s I2S or fitness value, regardless of their
percentage of additional attributes.

Another interesting fact is that CGP should be
able to ignore redundant attributes. Considering the
Waveform dataset, when attributes are duplicated, or
duplicated and noised, CGP is able to ignore most of
unwanted attributes. Only 2 % to 7 % of redundant
attributes are used. In the case of CGP+NOISE, it
will only use 8 % to 13 % of noise to calculate an out-
put, given the Shuttle dataset. As there is little to no
difference in their respective fitness values, we can
conclude that CGP should be able to ignore redun-
dant attributes. However, this is not the case for all
datasets. Given the Shuttle dataset, for example, the
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Figure 2: Convergence plots for all three types of data re-
dundancy on the Credit dataset.

percentage of duplicate input attributes of CGP+DA
and CGP+DA&NOISE are up to 42 %. Still, rela-
tively high fitness values are achieved for this dataset.
Another more prominent example is given in Table 4,
when CGP+NOISE is considered. Given the Credit
dataset, CGP’s inputs are up to 50 % pure Gaussian
noise. Thus, depending on the given learning prob-
lem, CGP may include redundant information into
calculating its final program output with no obvious
effect. A reason might be that the redundant informa-
tion are not meaningfully included into the calculation
of the output. Such might happen when, for exam-
ple, a noise attribute is added to another value during
an intermediate step but subtracted immediately after-
wards. This noise attribute is then listed as used but
it does not actually contribute to the programs final
output.
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5.2 Convergence Behaviour

To better understand the convergence behaviour of
CGP, convergence plots for all three types of data
redundancy were considered. We also classified
the different behaviours according to Stegherr et
al. (Stegherr. et al., 2023). On that account, we in-
vestigate the progression of the mean fitness value of
the train split.

Our experiments show that each configuration de-
picts the same convergence behaviour: Fast to Slow.
CGP’s fitness improves drastically during the first it-
erations. However, its progression slows down and
high numbers of iterations are needed for small per-
formance increases. Interestingly, this behaviour
can be seen for the baseline as well as CGP+DA,
CGP+DA&NOISE, and CGP+NOISE. Furthermore,
the percentage of added attributes do not affect CGP’s
convergence. This leads us to the following conclu-
sion: A bloated dataset does not affect CGP’s conver-
gence behaviour.

An illustrative example of CGP’s convergence on
all three types of redundancy is depicted in Figure 2.
We only exemplarily show the Credit dataset. The
reason is that the other datasets depict the exact same
behaviour.

6 CONCLUSION

In this work, we investigated the effects of additional
duplicated-, duplicated and noised-, and purely noise
attributes in datasets on CGP. Six different datasets
and five levels of noise were examined. They were
also compared against a baseline, which describe a
CGP model trained on a dataset without any type of
additional artificial redundancy.

Considering these three types of additional at-
tributes, we found that they do not affect CGP’s
achieved fitness values in our testing. In addition,
there is also no effect on CGP’s convergence be-
haviour. We classified CGP’s behaviour according
to Stegherr et al. (Stegherr. et al., 2023) and found,
that each configuration shows the same convergence
behaviour: Fast to slow. When we examine CGP’s
number of iterations until a solution is found (I2S),
no clear answer can be given. Five out of six datasets
could not be classified as solved within its given bud-
get. Thus, they cannot be used to answer this research
question. Still, in one case, it can be seen that addi-
tional attributes do not effect CGP’s I2S.

Another research question is: Does CGP manage
to ignore redundant attributes? In some cases, CGP is
able to almost completely ignore them. This suggests

that CGP is indeed able to use only relevant informa-
tion to generate an output. However, there are also
cases where 50 % of inputs are purely noise—without
an effect on its fitness value.

Furthermore, these results are valid for all levels
of additional attributes. Thus, we can conclude that
CGP is robust to additional duplicated-, duplicated
and noised-, and purely noise attributes in datasets.
These types of additional, unwanted attributes do not
affect CGP’s performance or behaviour.

As for future work, there are still various differ-
ent settings that could be examined to further investi-
gate CGP. More datasets and different types of addi-
tional attributes could be investigated. Another possi-
bility is to integrate different preprocessing methods.
A dataset can be extended with attributes that are not
filtered out by said preprocessing methods. This adds
another level of difficulty, as the additional attributes
can truly not be distinguishable from the real data. In-
cluding such data might or might not influence CGP.

In addition, our bloated datasets should be eval-
uated with various other learning algorithms. These
results should then be compared with our findings to
show if CGP is a valuable choice on noised datasets.
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APPENDIX

Results for Duplicated Attributes

Table 2 shows our results for all datasets when at-
tributes are duplicated, according to Algorithm 1.

Results for Duplicated and Noised
Attributes

Table 3 shows our results for all datasets when at-
tributes are duplicated and then noised, according to
Algorithm 2.

Results for Adding Pure Noise

Table 4 shows our results for all datasets when the
additional attributes are pure noise, according to Al-
gorithm 3.
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Table 2: Our results for all datasets when attributes are duplicated. We show the percentage of additional attributes (% Add.),
the number of nodes (Nodes), number of mean active nodes (Active), the mean and standard deviation of iterations until a
dataset is solved or stopped (I2SMean ± Std), the mean and standard deviation of achieved test fitness (Fit Mean ± Std), the
mean percentage of redundant attributes that are used to generate an output (% Red), and the probability of a solution being
the best per dataset with respect to its test fitness (p(best)). Results are ranked according to p(best).

Dataset % Add. Nodes Active I2SMean ± Std Fit Mean ± Std % Red. p(best)

Abalone

60 1,800 371 100k ± 0k 0.15 ± 0.02 0.28 0.2
Baseline 900 289 100k ± 0k 0.14 ± 0.02 - 0.19
80 2,000 395 100k ± 0k 0.14 ± 0.02 0.21 0.19
100 1,500 352 100k ± 0k 0.14 ± 0.02 0.17 0.15
40 1,850 381 100k ± 0k 0.14 ± 0.02 0.27 0.15
20 1,400 331 100k ± 0k 0.14 ± 0.03 0.56 0.12

Cancer

20 1,400 49 72k ± 36k 0.95 ± 0.02 0.07 0.2
Baseline 850 42 70k ± 31k 0.95 ± 0.02 - 0.19
40 1,400 47 74k ± 33k 0.94 ± 0.03 0.03 0.17
100 1,450 42 80k ± 29k 0.94 ± 0.02 0.01 0.15
60 1,700 39 85k ± 27k 0.94 ± 0.02 0.02 0.14
80 950 38 79k ± 30k 0.95 ± 0.02 0.01 0.14

Credit

20 1,200 65 100k ± 0k 0.86 ± 0.02 0.25 0.23
40 1,600 71 100k ± 0k 0.86 ± 0.03 0.13 0.19
80 1,150 68 100k ± 0k 0.85 ± 0.03 0.06 0.17
Baseline 1,900 68 100k ± 0k 0.85 ± 0.03 - 0.15
60 1,050 75 100k ± 0k 0.85 ± 0.02 0.09 0.13
100 1,650 73 100k ± 0k 0.85 ± 0.03 0.06 0.12

Page Blocks

60 950 93 100k ± 0k 0.72 ± 0.04 0.18 0.19
Baseline 1,500 96 100k ± 0k 0.72 ± 0.03 - 0.18
100 1,700 98 100k ± 0k 0.73 ± 0.04 0.12 0.18
20 1,400 99 100k ± 0k 0.72 ± 0.05 0.4 0.18
40 1,000 89 100k ± 0k 0.72 ± 0.04 0.27 0.14
80 1,600 100 100k ± 0k 0.72 ± 0.03 0.14 0.13

Shuttle

100 1,250 110 100k ± 0k 0.82 ± 0.04 0.12 0.2
40 300 78 100k ± 0k 0.82 ± 0.06 0.2 0.18
Baseline 1,550 116 100k ± 0k 0.82 ± 0.06 - 0.18
60 1,300 109 100k ± 0k 0.81 ± 0.06 0.15 0.17
20 550 89 100k ± 0k 0.81 ± 0.06 0.42 0.15
80 1,650 124 100k ± 0k 0.81 ± 0.06 0.14 0.12

Waveform

Baseline 1,650 50 100k ± 0k 0.6 ± 0.01 - 0.19
40 600 40 100k ± 0k 0.6 ± 0.01 0.05 0.19
100 1,450 42 100k ± 0k 0.6 ± 0.01 0.03 0.18
60 950 38 100k ± 0k 0.6 ± 0.01 0.03 0.16
20 1,750 48 100k ± 0k 0.6 ± 0.01 0.1 0.16
80 950 40 100k ± 0k 0.6 ± 0.01 0.03 0.12
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Table 3: Our results for all datasets when attributes are duplicated and then noised. We show the percentage of additional
attributes (% Add.), the number of nodes (Nodes), number of mean active nodes (Active), the mean and standard deviation
of iterations until a dataset is solved or stopped (I2SMean ± Std), the mean and standard deviation of achieved test fitness
(Fit Mean± Std), the mean percentage of redundant attributes that are used to generate an output (% Red), and the probability
of a solution being the best per dataset with respect to its test fitness (p(best)). Results are ranked according to % Add.

Dataset % Add. Nodes Active I2SMean ± Std Fit Mean ± Std % Red. p(best)

Abalone

100 1,750 369 100k ± 0k 0.14 ± 0.02 0.2 0.22
60 2,000 401 100k ± 0k 0.14 ± 0.03 0.25 0.18
Baseline 900 289 100k ± 0k 0.14 ± 0.02 - 0.17
20 1,150 328 100k ± 0k 0.14 ± 0.02 0.47 0.15
40 1,400 345 100k ± 0k 0.14 ± 0.02 0.27 0.15
80 1,250 327 100k ± 0k 0.13 ± 0.03 0.19 0.14

Cancer

Baseline 850 42 70k ± 31k 0.95 ± 0.02 - 0.2
100 1,050 34 79k ± 32k 0.95 ± 0.02 0.01 0.18
40 1,200 38 74k ± 32k 0.95 ± 0.02 0.03 0.18
20 550 34 70k ± 32k 0.95 ± 0.02 0.05 0.17
80 950 37 79k ± 30k 0.95 ± 0.02 0.01 0.16
60 1,500 41 79k ± 28k 0.94 ± 0.03 0.02 0.11

Credit

100 1,400 64 100k ± 0k 0.87 ± 0.02 0.05 0.26
20 1,150 63 100k ± 0k 0.86 ± 0.02 0.2 0.18
Baseline 1,900 68 100k ± 0k 0.85 ± 0.03 - 0.15
40 1,350 68 100k ± 0k 0.85 ± 0.03 0.12 0.14
60 1,500 66 100k ± 0k 0.85 ± 0.03 0.08 0.14
80 1,750 71 100k ± 0k 0.85 ± 0.03 0.06 0.12

Page Blocks

80 1,100 86 100k ± 0k 0.73 ± 0.03 0.13 0.21
20 1,900 110 100k ± 0k 0.72 ± 0.04 0.36 0.18
40 1,050 88 100k ± 0k 0.73 ± 0.04 0.2 0.18
Baseline 1,500 96 100k ± 0k 0.72 ± 0.03 - 0.16
100 1,900 114 100k ± 0k 0.72 ± 0.04 0.11 0.13
60 1,150 87 100k ± 0k 0.72 ± 0.04 0.16 0.13

Shuttle

20 200 66 100k ± 0k 0.82 ± 0.05 0.26 0.21
80 750 96 100k ± 0k 0.83 ± 0.04 0.11 0.21
40 1,650 120 100k ± 0k 0.81 ± 0.05 0.26 0.15
60 1,950 127 100k ± 0k 0.82 ± 0.08 0.14 0.15
Baseline 1,550 116 100k ± 0k 0.82 ± 0.06 - 0.14
100 1,750 129 100k ± 0k 0.81 ± 0.06 0.12 0.14

Waveform

20 600 37 100k ± 0k 0.6 ± 0.01 0.07 0.19
80 650 31 100k ± 0k 0.6 ± 0.01 0.02 0.19
40 1,150 48 100k ± 0k 0.6 ± 0.01 0.05 0.18
Baseline 1,650 50 100k ± 0k 0.6 ± 0.01 - 0.17
100 1,400 38 100k ± 0k 0.6 ± 0.01 0.02 0.11
60 500 32 100k ± 0k 0.6 ± 0.01 0.03 0.15
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Table 4: Our results for all datasets when the additional attributes are pure noise. We show the percentage of additional
attributes (% Add.), the number of nodes (Nodes), number of mean active nodes (Active), the mean and standard deviation
of iterations until a dataset is solved or stopped (I2SMean ± Std), the mean and standard deviation of achieved test fitness
(Fit Mean± Std), the mean percentage of redundant attributes that are used to generate an output (% Red), and the probability
of a solution being the best per dataset with respect to its test fitness (p(best)). Results are ranked according to % Add.

Dataset % Add. Nodes Active I2SMean ± Std Fit Mean ± Std % Red. p(best)

Abalone

Baseline 900 289 100k ± 0k 0.14 ± 0.02 - 0.27
20 700 260 100k ± 0k 0.13 ± 0.02 0.63 0.24
40 400 207 100k ± 0k 0.13 ± 0.03 0.76 0.19
60 1,050 301 100k ± 0k 0.12 ± 0.03 0.8 0.15
80 950 284 100k ± 0k 0.11 ± 0.03 0.84 0.09
100 2,000 396 100k ± 0k 0.11 ± 0.03 0.86 0.07

Cancer

Baseline 850 42 70k ± 31k 0.95 ± 0.02 - 0.26
40 1,500 43 85k ± 25k 0.94 ± 0.02 0.2 0.19
20 1,400 42 79k ± 29k 0.94 ± 0.03 0.2 0.18
60 800 41 81k ± 27k 0.94 ± 0.02 0.2 0.14
80 1,600 41 85k ± 27k 0.94 ± 0.03 0.18 0.13
100 1,600 43 91k ± 19k 0.94 ± 0.03 0.16 0.1

Credit

20 1,750 78 100k ± 0k 0.85 ± 0.03 0.53 0.21
Baseline 1,900 68 100k ± 0k 0.85 ± 0.03 - 0.19
100 1,200 72 100k ± 0k 0.85 ± 0.04 0.5 0.18
40 1,250 74 100k ± 0k 0.85 ± 0.03 0.53 0.16
60 1,000 75 100k ± 0k 0.85 ± 0.02 0.55 0.15
80 1,300 71 100k ± 0k 0.84 ± 0.03 0.5 0.12

Page Blocks

80 1,100 83 100k ± 0k 0.72 ± 0.04 0.24 0.2
Baseline 1,500 96 100k ± 0k 0.72 ± 0.03 - 0.18
20 1,850 103 100k ± 0k 0.72 ± 0.04 0.29 0.17
60 1,550 96 100k ± 0k 0.72 ± 0.04 0.27 0.17
100 1,550 91 100k ± 0k 0.71 ± 0.05 0.3 0.14
40 2,000 106 100k ± 0k 0.71 ± 0.05 0.31 0.13

Shuttle

100 1,600 108 100k ± 0k 0.83 ± 0.06 0.13 0.19
20 250 71 100k ± 0k 0.83 ± 0.05 0.08 0.18
40 250 68 100k ± 0k 0.84 ± 0.06 0.08 0.17
60 800 93 100k ± 0k 0.82 ± 0.05 0.13 0.16
80 950 94 100k ± 0k 0.83 ± 0.05 0.13 0.16
Baseline 1,550 116 100k ± 0k 0.82 ± 0.06 - 0.13

Waveform

40 1,100 43 100k ± 0k 0.6 ± 0.01 0.19 0.25
Baseline 1,650 50 100k ± 0k 0.6 ± 0.01 - 0.19
80 1,500 44 100k ± 0k 0.6 ± 0.01 0.17 0.16
60 1,450 40 100k ± 0k 0.6 ± 0.01 0.16 0.14
100 500 31 100k ± 0k 0.6 ± 0.01 0.11 0.14
20 1,150 42 100k ± 0k 0.6 ± 0.01 0.16 0.13
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