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Abstract

Energy systems worldwide are changing considerably with the ongoing expansion of renew-
able energy sources. Forecasts are imperative, to ensure efficient operation and trade with
external entities in these complex decentralized energy systems. However, their inherent
uncertainty can lead to forecasting errors and consequently to suboptimal operational plans
and bidding behavior. One potential solution is to not only predict a single value, but to also
estimate the existing uncertainty using probabilistic forecasts. In this context, probabilistic
forecasts of generated photovoltaics (PV) power are particularly important, as its installed
capacity is the fastest growing of all renewable energies.

This thesis focuses on questions that still need to be addressed for a transition of probabilistic
PV power forecasts to an applied industrial use in decentralized energy systems. To this end,
the work of the author’s corresponding publications is extended and supplemented, while
establishing an overarching context. Four approaches (e.g., mixture density network (MDN),
generalized autoregressive model with conditional heteroscedasticity (GARCH)) that have
yielded good results in solar irradiation forecasts or other forecasting fields are adopted and
investigated in depth for PV power and compared to established methods.

Additionally, a simulation with 24 different initializations and different amounts of training
data is carried out in this thesis. Beforehand, there were no studies regarding the probabilistic
prediction quality of PV power forecasts with limited amount of data, although this is indis-
pensable for commissioning in practice. During the generation of the forecasts in this thesis,
no manual intervention is applied, as this would also not be feasible in practice. Instead,
several regularization methods are used. Furthermore, an automated time decomposition
approach is developed for the autoregressive models with exogenous input (ARX), followed
by a higher-level greedy search algorithm to determine the model order automatically. To
represent the influence of possibly suboptimal model structures, extensions for modeling the
epistemic uncertainty are implemented and analyzed for each approach.

The simulations are conducted on the basis of PV power measurements from three sites in
Central Europe spanning a period of around two years. The results indicate that even with
seven days of training data, nearly all the methods show better forecast accuracies than the
reference case of the complete history persistence ensemble. For all uncertainty representation
forms the ARX-based probabilistic predictions are outperforming their respective neural
network counterparts. Nevertheless, after six months of available days of training data, the
behavior reverses and neural network approaches perform better on average. In general,
the approaches with a continuous distribution have the best forecasting quality. Hence,
the GARCH model in combination with the ARX model is recommended over the entire
commissioning period, as it achieves excellent results both with a small (skill score: 31.4 %)
and large (skill score: 34.3 %) amount of available training data in comparison. However,
when provided with enough data, the MDN model surpasses the other methods in terms of
overall forecasting accuracy with an improvement over the benchmark of 39.8 %.
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Nomenclature

Remarks on nomenclature and notation

In this section all global variables and the mathematical notation are specified. For better
readability, variables are occasionally assigned multiple or different meanings, if confusion
can be ruled out by the context of use (e.g., in algorithms scopes). However, in these cases
the variables are introduced each time locally directly at the respective scope. Equations may
be repeated between chapters to avoid disrupting the reading flow.

If variables have multiple indices, they are separated by commas for a clearer legibility.
Furthermore, running indices are displayed in italics and indices with a fixed meaning in
roman. Accordingly, the symbol index does not include the variable notations of all the italic
indices that occur, but only their base form.

If the dimension of the used vectors and matrices is not significant for the understanding of
the equation (e.g., in generic axioms), no additional variable for the dimension is introduced
to improve readability. For instance, in some cases x ∈ R is used, although the dimension of
x could be greater than one.

The sets used in this work (e.g., bootstrapped training data set) are multi-sets and may
therefore contain duplicate elements.

While citations that refer to an entire paragraph are placed after the punctuation mark, citations
within a sentence refer directly to it.

Mathematical notation

Notation Meaning

x Scalar variable
x Vector
X Matrix

xT, XT Transpose of a vector or matrix
x ∈ RN Vector with the dimension N, whereby all elements are real numbers

x Mean value of x
x̂ Estimation of x
x̊ Variable of interest for signal x
x̃ Preprocessed form of x (e.g., stationarized, standardized)

(To be continued)
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Nomenclature

Notation Meaning

x∗ (Bootstrapped) sample of x
f (x) Function f of x

f (x; θ) Function f of x with fixed parameter θ
arg minθ f (x; θ) Value θ for which f (x) is minimal

maxi θi Maximum value of θi for all given i
max(x1, . . . , xN) Maximum value x among x1, . . . , xN

x[t] Value of the signal x at time t
xυ[t] Value of the quantile of the probability υ of x at time t
E[x] Expected value of x

Var(x) Variance of x; Var(x) = E
[
(x − E[x])2

]

p(x) Probability density function (PDF) of x
P(x) Cumulative distribution function (CDF) of x

P−1(x) Percentile function of x, inverse CDF of x
Pr(x) Probability of the event x

p(y | x) Conditional probability distribution of y given x
p(x)⌉ Upper bound of p(x)
p(x)⌋ Lower bound of p(x)
x ∼ p x is sampled from or distributed according to the distribution p
N

(
µ, σ2

)
Normal distribution with mean µ and standard deviation σ

{1, . . . ,N} A finite multi-set of the elements 1, 2, . . . ,N
#(S) Cardinality of the multi-set S{

xn, yn
}N
n=1 Abbreviation for

{
(xn, yn) : n ∈ {1, 2, . . . ,N}}

∪ Union of sets∑
i ∈S Sum over all elements of the set S
∧ Logical and

[i]T
i∈S Abbreviation for a vector where all elements of S are separated entries

exp(x) Exponential function, alternative notation for ex

log(x) Abbreviation for the natural logarithm loge(x)
∝ Proportional to
≈ Approximately equal to
∈ Is an element of

X ∈ RD1×D2
>0 The dimension of X is D1 ×D2 and its entries are element of positive R
∆ Difference
∥x∥2 Euclidean / ℓ2 norm; ∥x∥2 =

√∑N
n=1 x2

n, x ∈ RN

1(x) Heaviside function (unit step function) of x
[a, b] Closed interval [a, b] = {x | a ≤ x ≤ b}
h(l)

j For MLPs: variable h refers to the layer l and the perceptron j
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Nomenclature

Symbols

Symbol Meaning

b(l)
j Bias at layer l for perceptron j

C Number of used lead time steps
Calbedo Albedo value

CMax-norm Hyperparameter denoting the scaling value of the ℓ2 norm
Cper,1 Circumsolar brightening coefficient
Cper,2 Horizon brightening coefficient

Cϑ Temperature coefficient
D Number of used lags / time steps

Dar Number of used autoregressive time lags
DGHI Number of used lags from the GHI signal
Dres Number of used lags of the model residuals

DTamb Number of used lags the ambient temperature
Dv Number of used lags of the conditional variance
D Data set
Dcal Data set used for calibration
Dcal excl Data set used exclusively for calibration
Dposs cal Data set from which the calibration data is sampled from
Dposs val Data set from which the validation data is sampled from
Dtrain Data set used for training
Dval Data set used for validation

E Energy
F Number of used signals / features

Ghor,dir Direct irradiation on the horizontal plane
Ghor,diff Diffuse irradiation on the horizontal plane
GPOA,dir Direct irradiation on the plane of array
GPOA,diff Diffuse irradiation on the plane of array
GPOA,glob Global (total) irradiation on the plane of array
GPOA,ref Reflected irradiation on the plane of array

h Denomination the hour of the day
h(l)

j The output of the perceptron at layer l for perceptron j
i Running index
K Number components in a mixture model
k Denomination of a component in a mixture model
L Loss function
ℓ Likelihood
ℓ2 Euclidean norm

(To be continued)
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Nomenclature

Symbol Meaning

M Number of ensemble members
m Denomination of an ensemble member
N Number of data points / perceptrons
Np Number of parameters

NCRPSforecast NCRPS of the forecast
NCRPSref NCRPS of the reference forecast / benchmark

n A specific data point, running index for the number of data points
N The set of natural numbers, excluding zero
P Power

Ppeak, daily Mean maximum daily produced power of the PV panel
PPV PV power

PPV,csp PV power under clear sky conditions
P̂PV,day ahead[t] Estimated PV power of the day ahead at times t

Prated Rated power of the PV panel
Prdrop Dropout probability
Prmt Marginal probability threshold
PL Pinball loss
P Population
Q Number of used time steps
R Number of residual ensemble members
R Real number

S (·) Scoring function
S Set
SS Skill score
T Sample Time
t Time / point in time
Tar Set of used autoregressive time lags
TTamb Set of used time lags of the ambient temperature
TGHI Set of used time lags of the GHI signal

u Additional (exogenous) input signal
v Parameter defining the kurtosis of the skewed-t distribution
Xf Input matrix to generate the forecast
x Model or function input signal

xGHI GHI signal
xTamb Ambient temperature signal

y Model or function output signal (e.g., PV power)
ycal Model or function output of the calibration data set
ytest Model or function output of the test data set

(To be continued)
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Nomenclature

Symbol Meaning

yυ Model or function output for the quantile υ
Zcal Z-score of the calibration data set
z(l)

j Dropout variable at layer l for perceptron j
Z Integer number
α Specified confidence level for an interval
αS Azimuth of the sun
αPAO Azimuth of the plane of array
βm Exponential decay rate of δm

βs Step size
βv Exponential decay rate of δv

Γ Gamma function
γS Elevation of the sun
γtilt Incident angle of the sunlight on the tilted plane
γPAO Elevation of the plane of array
δm Estimate of the 1st moment (mean) of the gradient
δv Estimate of the 2nd moment (uncentered variance) of the gradient
ε Model residual
ζ Auxiliary variable in equations (e.g., for better readability)

ηDC→AC Efficiency factor of the inverter
ηloss Efficiency factor due to losses
Θ Model order
θ Parameter
θar Parameter of an autoregressive lag
θc Parameter representing the intercept
θGHI Parameter of the GHI signal
θres Parameter of past model residuals
θTamb Parameter of the ambient temperature signal
θv Parameter of past conditional variance

ϑpanel Temperature of the panel
κ Clear sky index
λ Parameter defining the skewness of the skewed-t distribution
µ Mean value, mean forecast
Ξ Distribution of a calculated statistic (e.g., mean, median)
ξBP Cost per kWh from the backup provider

ξLEM,ic Internal price premium or discount for non-compliant bids of the local
energy market after consolidation

ξLEM,s Benefit per kWh for selling to the local energy market
ξLEM,s⌋ Necessary minimum price per kWh to prevent losses over long periods

(To be continued)
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Nomenclature

Symbol Meaning

ξp Penalty costs per kWh for non-compliance to a previous bid
ξrel Additional costs due to forecast inaccuracies in the reliability

ξWEM,b Cost per kWh for buying from the wholesale energy market
ξWEM,s Benefit per kWh for selling to the wholesale energy market
ϱ Patience counter

ϱMAX Maximum value of the patience counter
σ Standard deviation
σcal Standard deviation of the calibration data set
σtest Standard deviation of the test data set
σ∆κt Solar variability
τ Time lag denoting the forecast horizon

τlag,endo Lag time of an endogenous signal
τlead,endo Lead time of an endogenous signal
τexo Lead or lag time of an exogenous signal
υ Quantile and percentile
ϕ(l)

j Activation function at layer l for perceptron j
φ Weighting factor of a mixing component
χ (Random) noise
Ψ Kernel function
ψ Lag of an ARX model
ω(l)

i, j Model weight from perceptron i at layer (l− 1) to perceptron j at layer l

Acronyms and abbreviations

Abbreviation Meaning

AR Autoregressive (model)
ARIMA Autoregressive integrated moving average (model)
ARMA Autoregressive moving average (model)

ARMAX Autoregressive moving average (model) with exogenous input
ARX Autoregressive (model) with exogenous input
a. u. Arbitrary unit
CCF Cross correlation function
CDF Cumulative distribution function

CH-PeEn Complete-history persistence ensemble
CRPS Continuous ranked probability score

(To be continued)
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Nomenclature

Abbreviation Meaning

CRUDE Calibrating regression uncertainty distributions empirically
DES Decentralized energy system
EU European Union

GARCH Generalized autoregressive conditional heteroscedasticity
GMM Gaussian mixture model
GHI Global horizontal irradiance
LEM Local energy market

LSTM Long short-term memory
NN Neural network
MA Moving average

MAE Mean absolute error
MAPE Mean absolute percentage error

MC Monte Carlo
MDN Mixture density network
MLP Multi-layer perceptron
MPC Model predictive control
MSE Mean squared error

NCRPS Normalized continuous ranked probability score
NWP Numerical weather predictions
OLS Ordinary least square
PACF Partial autocorrelation function
PDF Probability density function

PIAW Prediction interval average width
PICP Prediction interval coverage probability
POA Plane of array
PV Photo voltaic

RMSE Root mean squared error
Ref. Reference

SARIMA Seasonal autoregressive integrated moving average model
SS Skill score

VRE Variable renewable energy
WEM Wholesale energy market
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“Solar PV’s installed power capacity is
poised to surpass that of coal by 2027,
becoming the largest in the world.”

International Energy Agency [109]

1
Introduction

1.1 Motivation

To achieve the global pursuit of carbon neutrality, energy systems worldwide are subject to
a rapid transformation. The share of variable renewable energy (VRE) of gross electricity
consumption has grown, for instance in Germany, from 10.3 % in 2005 to 46.2 % in 2022
[74]. Moreover, according to the Renewable Energy Sources Act of 2022, it is expected to
reach at least 80 % by 2030, which indicates an even faster acceleration of expansion [29].
Globally, simulations by the International Renewable Energy Agency estimate that the VRE
share must be around 86 % by 2050 to meet the set two-degree target [181].

However, VREs are dependent on the weather condition and therefore, as the name suggests,
highly volatile. They are a considerable burden for the power system, which requires a
balance between consumption and generation to maintain stable 50 Hz grid operation. To
cope with the volatile generation, regulatory frameworks and economic incentives are being
established to stimulate a more grid-friendly consumption behavior. For example, according
to EU Directive 2019/944 Article 11, end customers are able to demand time-based electricity
prices [70]. Local energy markets, where so-called prosumers trade energy locally with each
other, is another concept currently being explored [95].

In addition, as a technical compensation strategy, the power grid is also being expanded and
coupled with networks of other forms of energy (e.g., heating and cooling networks) along

1



1.1 Motivation

with the installation of buffer capacities. This leads in combination with additional assets
installed for CO2 reduction to complex multi-modal decentralized energy systems (DESs)
(see Figure 1.1).

An efficient coordination of energy conversion, storage, and use in these complex systems, as
well as coupling with external entities while considering their possible volatility, is no longer
feasible with a traditional heuristic operational control. Instead, higher-level model-based
control strategies, which incorporate forecasts of the volatile influences, are necessary for an
efficient operation.

multi-modal decentralized energy system

Today and (expected) future
• Coupling of electricity, cooling

and heating networks towards
multi-modal decentralized
energy system

• Integration of renewable energy
sources and consequently energy
storage units

• Flexible electrical load
(e.g., electric vehicles)

• Volatility of external influences
(e.g., dynamic energy prices)

• Increased interaction with
external entities (e.g., trading
via a local energy market)

oil or gas
supply

dynamic energy
prices

CO2

t

e / MWh

e

t

e / MWh

local energy
market

power & heat
generator

flexible elec-
trical load

electrical load

heat storages

heating load

batteries

cold
storage

heat
generator

cooling
load

chiller

renewable energy
sources

E

E

E

_

+ −
+ −

_

^

In the past
• Individual considerations / rule

based supervisory control of the
different forms of energy (e.g.,
cyclic loading of the storage
units, heat-led or power-led
management of power and heat
generators)

oil or gas
supply

static energy
prices

cooling networkheating network

power & heat
generator

electrical load

heat
storage

heating
load

cold
storage

cooling
load

chiller

E

E

_ _

^

Developement of decentralized
energy systems over time

Electricity Heat Cold Oil/Gas

Figure 1.1: Development of decentralized energy systems (e.g., building complexes, airports, production sites)
over time. The increasing complexity leads to higher demands on the operational management, as e.g., forecasts
of the volatile influences (such as generated photovoltaic (PV) power) have to be created and incorporated.
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1.1 Motivation

Photovoltaic (PV) power forecasts, in particular, are receiving increasing attention, after being
declared the most immature area of energy forecasting by world-renowned energy forecasters
back in 2016 [100]. A particularly strong increase in grid penetration is expected for PV
systems, since they have a higher acceptance compared to other VREs [73]. Furthermore, their
costs are steadily decreasing1, and they can be installed decentrally2 close to the consumers.
In 2021, for instance, PV systems accounted for the largest share of investment in renewable
energy systems in Germany with more than one-third [11]. This is also necessary, as the
installed PV capacity in Germany is set to increase 4.5-fold to 345.4 GW till 2037, based on
its current grid expansion plan [30].

However, the inherent uncertainty of forecasts can lead to forecasting errors and consequently
suboptimal operation schedules. This is particularly likely to occur at the local level due to the
lack of spatial aggregation effects. A potential solution is to estimate the existing uncertainty
using probabilistic forecasts. These provide not only a single forecasted value, but also e.g.,
a probability distribution, which enables superior operation planning3 [15] and enhanced
market bidding strategies [51]. Thereby, the systems exploit that the existing uncertainty is not
constant. For instance, a forecast of the expected PV power on a cloudy and windy day is very
likely associated with a higher uncertainty than on a cloudless day. In both cases, however,
classical deterministic forecasts only estimate the expected arithmetic mean. This neglects
valuable information for risk assessment which could be used to reduce ensuing opportunity
costs of (conservative) operating strategies. An example of probabilistic forecasting of PV
power, together with a comparison of the estimated uncertainty of a day with higher and
lower volatilities, is illustrated in Figure 1.2.

Given these advantages, the organizer of the recurring global energy forecasting competition
has stated that “the transition from a deterministic to a probabilistic view [...] [is] probably
the most important step in the recent history of energy forecasting” [101]. In addition, the
authors in Ref. [221] concluded that “probabilistic modeling of solar power and probabilistic
power system operations are expected to become the norm in the future”.

However, although quantifying uncertainty is critical for the future, there is comparatively
little research in this area, as most PV power forecast research still focuses on the deterministic
prediction accuracy [2].

1The cost per installed kW capacity of solar energy has decreased by about 15%̇ yearly over the last ten years
[79], which is significantly more than for wind power [110].

2In Germany, for example, wind offshore plants require a significantly larger expansion of the transmission
grid infrastructure due to the high concentration of distribution in the north, which in turn is associated with
increased costs and time expenditure [73].

3A majority of grid operators e.g., are already exploring probabilistic load flow simulations which in turn
requires the probabilistic distributions of the solar and load forecasting errors [221].
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Figure 1.2: Comparison between probabilistic forecast for a day with high and low volatility. The two outer
images show the probabilistic forecast for one of the two days, while the centre graph illustrates the respective
estimated probability density functions for the period from 14:00 to 14:15. The measured value and the
deterministic prediction in the probability density function (PDF) have thereby the form of a Dirac delta
distribution with a width close to zero and a height close to infinity. While the deterministic forecast does not
provide any information about the uncertainties, the probabilistic forecast clearly exhibits a wider prediction
interval with a smaller peak on the more volatile day. Moreover, it is apparent that the relative error of the
deterministic forecast is larger for the time step of the day with higher uncertainty.

1.2 Objective and structure of this thesis

Probabilistic PV power forecasts, enable more efficient management of distributed energy
systems and lower-risk trading with external markets. Although considerable research has
been done in the recent years, there are still some gaps remaining for the transition to an
applied industrial use. As the current leading author in the field of solar forecasting notes
in Ref. [219]: “solar forecasters in academia tend to overlook the importance of operational
solar forecasting”.

The objective of this work is to advance the field of probabilistic PV power forecasting, by
focusing on questions that still need to be addressed for a practical use in multi-modal DESs.
For this purpose, the structure summarized in Figure 1.3 is used.

First, Chapter 2 starts with an introduction to the necessary fundamentals for time series
prediction as well as the physical background of PV power generation. Subsequently, on
the basis of possible applications and characteristic qualities of PV forecasts, their practical
requirements for on-site energy systems are determined to further refine the scope of this
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thesis. Following these requirements, the specific scientific gaps considered in this work are
defined.

Afterwards, Chapter 3 presents an overview of the analysis framework used in this thesis.
Therefore, the data preparation and the creation of individual simulated forecast initializations
are presented first, followed by the introduction of methods and metrics for the evaluation of
the probabilistic forecasting algorithms. In this context, a distinction is also made between
the value and accuracy of a forecast, which should be kept in mind when considering forecast
results. Finally, the benefits of increasing the accuracy of probabilistic prediction are discussed
with the example use case of local energy markets.

Chapter 4 subsequently introduces the underlying deterministic forecasting methods and
elaborates on how they are tailored for a (semi) automated commissioning for PV power
forecasting in this thesis. Afterwards, the adapted and newly developed probabilistic methods
are explained in detail.

An analysis of the forecasting performance of the different algorithms is provided in Chapter
5. Given the diversity of probabilistic methods used in this work, as well as the first-time

Theoretical
fundamentals

Literature
review

Introduction of practical use cases
for the use of probabilistic forecasts

Scope refinement based on derived practical needs
from PV power forecasts in DES & gap analysis

Detailed objective of this thesis

2. Background & analysis

Data sets used and
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Simulation setup and
forecast evaluation
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Development of
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frameworks

Ensemble methods

Approaches with a continuous
probability distribution

Non parametric (quantile) methods

4. Methodology (applied
probabilistic forecasting methods)3. Evaluation

framework

Individual analysis of each probabilistic forecasting
method, including considered variants and extensions

Cross comparison of all models with
the respective best specification

5. Results

6. Summary & outlook

1. Introduction

Figure 1.3: Overall structure of this thesis.
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application of certain methods for PV power forecasting, they are first analyzed in detail.
Then, an overall evaluation with the respective best model specifications for each approach is
performed.

Finally, Chapter 6 summarizes the results of this work and provides an overview of remaining
questions and possible further research opportunities.

A complete list of publications generated as part of this work, including related research
topics, can be found in Appendix A.1.
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“Probably the most important step in the
recent history of energy forecasting is the
transition from a deterministic to a
probabilistic view.”

Tao Hong [101]
(Founder of the Global Energy Forecasting Competition and

the IEEE working group on energy forecasting)

2
Background & analysis

This chapter analyzes the state of the art of probabilistic PV power forecasting to further focus
the scope of this thesis and to identify related research gaps.

Therefore, Section 2.1 first provides a general overview of time series forecasting. Afterwards,
Section 2.2 introduces the underlying physical principles of PV systems to provide the
domain knowledge necessary for the development of the forecasts. The different use cases
for PV power forecasts described in Section 2.3 are then used to derive the specific technical
requirements for applications in practice.

Section 2.4 provides an overview of the state of the art of deterministic PV predictions, which
are often used as a starting point for probabilistic forecasts. Based on the information and
the collected requirements, two deterministic approaches, the first based on a statistical time
series model and the second based on a neural network, are selected as underlying forecasting
structures for this thesis.

The following Section 2.5 summarizes the state of the art of probabilistic forecasts and
outlines how they can be generated. A brief introduction and justification of the selected
probabilistic methods for this thesis can be found in Section 2.6.

Finally, Section 2.7 summarizes the identified gaps in the scientific literature and presents the
resulting specified scope of this thesis.

7



2.1 Fundamentals of time series forecasting

2.1 Fundamentals of time series forecasting

2.1.1 Process of time series forecasting

Time series forecasting is build on the assumption that, the future of a time series can be
estimated based on knowledge about the past and present by identifying systematic patterns
[168]. Generally, the steps shown in the Figure 2.1 are recommended for the creation of a time
series forecast [107, 150]. These steps are briefly1 explained below along with a reference to
the respective sections of this thesis in brackets:

• 1. Defining the use case and need – Depending on the specific application, the detailed
requirements (e.g., forecast horizon, sample time, computational resources) must be defined
first (Section 2.4.2). Based on these, the necessary data and the methods to be used can
often be derived. In addition, it should be established what the user regards as a good or
sufficient forecast (Section 3.3.1 and Section 3.3.3).

1. Defining the use case and need
• Scoping the forecasts specifics based on the requirements

(e.g., forecast horizon, spatial aggregation level, sample time)

2. Creating a baseline and/or a benchmark
• E.g., current forecasting method, benchmark from

the state of the art

3. Gathering information
• Aquiring domain knowledge
• Collecting necessary data

4. Analyzing the data
• Exploratory analysis e.g., regarding time

patterns and correlations between signals

5. Preprocessing the data
• Deleting erroneous data, resampling, filling gaps
• Generating model features

6. Creating and training the forecasting model
• Setting up different forecasting algorithms
• Hyperparameter optimization

7. Evaluating the forecasts
• Use qualitative and quantitive analysis
• Compare with benchmark

8. Deploying & monitoring the developed forecast
• Integrating the forecast into the overall system
• Setting up forecast monitoring and adaption in case of changes

Figure 2.1: Common steps of a forecasting process.

1For a deeper introduction into the general theory of time series forecasting, the book [107] by Hyndman and
the review paper [168] are recommended.
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2.1 Fundamentals of time series forecasting

• 2. Creating a baseline or a benchmark – For the evaluation of the forecast, in addition
to the sole quantification via metrics, a comparison with other methods is often helpful in
order to be able to assess the quality of the forecast. For this purpose, it is useful to select
a rudimentary forecasting algorithm as benchmark (Algorithm 1 on p. 50) or the currently
implemented approach.

• 3. Gathering information – Subsequently, the relevant data have to be collected, and
domain knowledge has to be acquired in order to understand the causal relationships of the
underlying system (Section 2.2). The latter enables a more efficient selection of methods
and input data for forecasting.

• 4. Analyzing the data – In this step, time series plots should be created and analyzed,
e.g., in terms of trends or cyclic patterns, as these are important for the preprocessing and
modeling.

• 5. Preprocessing the data – For successful forecasting, the data must be cleaned before-
hand (e.g., deleting incorrect data, resampling, filling of gaps) (Section 3.1). Furthermore,
depending on the algorithm, features may have to be developed, or the time series may
have to be stationarized (Section 4.1).

• 6. Creating and training the forecasting model – In this step, the optimal model structure
and the corresponding model parameters are determined usually for several forecasting
algorithms (Chapter 4).

• 7. Evaluating the forecasts – Subsequently, the individual algorithms are compared
according to the previously defined quality criteria (Chapter 5).

• 8. Deploying & monitoring the developed forecast – Finally, the forecast will be de-
ployed on the target system and integrated into the overall concept (e.g., energy manage-
ment system). In addition, the quality of the forecast should be continuously assessed
in order to ensure that it is still accurate during operation. A direct deployment into a
productive environment is not part of this work. However, especially the commissioning
and the change during the ongoing operation of the forecast is one of the focus points of
this thesis.

It should be emphasized that the process is usually very iterative in an academic setting
or when forecasts are generated manually. Especially for the determination of the optimal
forecasting algorithm and its model structure, the fifth to seventh step are usually repeated
with continuous adjustments. At the same time, however, this leads to a time-consuming
commissioning process which is often infeasible in industrial applications.

2.1.2 Mathematical concept of time series forecasting

Mathematically, time series forecasting can be viewed as a regression problem whereby one
or more dependent variables, in this context the signal to be forecasted, are estimated by
means of a set of predictor variables.

9



2.1 Fundamentals of time series forecasting

Regression problems are based on the following principle: for a given data set
D = {

xn, yn
}N
n=1 = (X,Y) consistent of N ∈ Z≥0 observations pairs of the model out-

put y ∈ RC and the model input2 x ∈ RD, there is an unknown function y = f (x),3 which
can be sufficiently estimated by f̂ [153]. In the context of time series forecasting the model
output is denoted as:

y ∈
{
y
[
t + τlead,endo,c

]}C

c=0
(2.1)

with y[t] ∈ R being the to be forecasted signal y at time t ∈ R and C ∈ Z≥0 defining the
number of lead times τlead,endo ∈ Z≥0 in the future a forecast is desired for. The model inputs
are either univariate or multivariate. For the former, an autoregressive, also often called
endogenous, approach is followed by attempting to predict the time series only with past data
of the time series itself, resulting in

x ∈
{
y
[
t − τlag,endo,d

]}D

d=1
(2.2)

with D ∈ N defining the number of used time steps τlag,endo ∈ N in the past. In the multivariate
case, an additional number F ∈ N of exogenous input signals u f ∈ R often called features
are used, leading to

x ∈
{{

y
[
t − τlag,endo,d

]}D

d=1
∪

{
u f

[
t − τexo, f ,q

]}F,Q

f=1,q=1

}
(2.3)

with Q ∈ N defining the used time steps τexo, f ∈ N of the exogenous signal in the past. Not
to be neglected in the formulation ofD, is the necessity that the training data set reflects the
overall behavior, or at least the expected future operating range behavior, of the system being
predicted. Otherwise, even if f̂ coincides with f , the forecast accuracy may still be low.

The precise formulation and the estimation process of f̂ depend in particular on the used
forecasting algorithm. However, the common approach for deterministic forecasts with
parametric algorithms is to determine the model parameters θ ∈ R by minimizing a loss
function of the model residuals [133]

ε = y − f̂ (x; θ). (2.4)

The quadratic loss is thereby usually used as minimization objective, which penalizes large val-
ues more. Averaged over all residuals of the data set, this leads to determining the parameters
by minimizing the mean squared error (MSE) [133]:

θ̂ = arg min
θ

1
N

N∑

n=1

(
yn − f̂ (xn; θ)

)2
. (2.5)

2Often the synonyms features, covariates and predictors are also used for the model input.
3For a better understanding, a probabilistic formulation is not used at this point and will rather be introduced
later in Section 2.5.
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2.1 Fundamentals of time series forecasting

2.1.3 Bias-variance tradeoff

The central objective of the forecast generation is that the estimated model does not only
depict the training data set, but more importantly the underlying true behavior of the system.
The deviation of the forecast from this ground truth is often called the generalization error.
As the ground truth is in practice not known, the generalizing error is instead estimated by
applying the forecasting model to a previously not observed data set, referred to as test data.
Afterwards a metric e.g., the MSE is used to determine the resulting error terms. [135, 168]

During the generation of the forecast, there are two primary contributing factors that can
be optimized in order to keep the generalization error as low as possible. In addition to the
previously mentioned representative selection of the training data set, the selection of the
model architecture and its expressive capacity4 is decisive [154]. For a closer look at the
influence of the model capacity on the generalization error, it is useful to analyze the error
components of the MSE. The MSE of a test set can be decomposed into the three terms, bias,
variance, and noise [111, 135]:

MSE = E(Y − Ŷ)2

=

Reducible error︷                                  ︸︸                                  ︷(
E[Ŷ] − Y

)2

︸         ︷︷         ︸
Bias2

+E
[(

Ŷ − E[Ŷ]
)2
]

︸              ︷︷              ︸
Variance

+

Irreducible error︷  ︸︸  ︷
Var(ε)
︸ ︷︷ ︸

Noise

.
(2.6)

Thereby Var(ε) represents the irreducible error, caused e.g., by random noise ε ∈ R in
the system behaviour. It is the absolute lower error bound one can achieve and can not be
minimized or reduced by different model structures [111]. The bias and variance, on the other
hand, can be influenced by the model structure. However, their dependence on the model
capacity is contradictory which leads to the so-called bias-variance tradeoff.

The bias describes the systematic deviation of the forecast and is caused by a misspecified
model, i.e. a model that does not match the true behaviour of the system. This behaviour is also
often labeled underfitting in the machine learning context. With increasing model capacity,
the systematic bias decreases, as the model is able to represent a larger and more complex
variety of mathematical functions. Hence, one objective in the modeling process involves
granting the model sufficient flexibility. e.g., the necessary amount of parameters5 and model
structure. However, the declining behavior is not linear, as the influence of additional model
capacity on the bias error decreases (see Figure 2.2a).

4In the literature, the synonyms model expressiveness, flexibility, capacity, and complexity are also frequently
used in this context.

5The number of parameters is a very significant measure of model complexity, but not the only one. For
instance, although y = θ1 · x + θ2 and y = θ1 · eθ2 ·x have the same number of parameters the latter possesses a
higher complexity due to the differences in functional form. One approach to quantify complexity is e.g.,
the geometric model complexity, which quantifies the number of distinguishable probability distributions a
model can account for. [112, 154]
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Figure 2.2: The dependence of the individual error components of the MSE on the model capacity differs.

The variance, on the other hand, characterises the deviation from the ground truth caused by
the specific sampling of the observations the model has been trained on [89]. For instance,
if two different data sets are used to train a model, the resulting predictions may also differ,
even though they are supposed to represent the same data gernerating process. This effect
amplifies with increasing model complexity, as the noise and small fluctuations of the training
data set are also modeled. This results in the so-called overfitting (see Figure 2.2b) [153].
Thereby the variance error is proportional to the system noise and the ratio of the number of
parameters Np ∈ N to the number of training data N ∈ N [190]:

E
[(

Ŷ − E[Ŷ]
)2
]
∝ Var(ϵ)

Np

N
. (2.7)

Hence, the variance error can be decreased by reducing the model capacity. Additional,
different regularisation methods should be used [153]. Nevertheless, the model capacity
should be adjusted so that the sum of the two types of error is minimal (see Figure 2.2a) [89,
153]. In practice, however, an additional aspect must be considered during commissioning.
First, the optimal model capacity shifts depending on the available amount of data (see (2.7)).
As can be seen in Figure 2.3, the accuracy of the complex function for the test data is similar
to the accuracy of the underlying function with a sufficient amount of data. Second, a manual
adjustment for each forecast is not always feasible. This challenge will be discussed in more
detail in Section 2.4.2, since this aspect is often neglected in the current literature on PV
power forecasting.
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Figure 2.3: Error of estimated models for the test and training data set vs. amount of training data for different
model orders. To generate the data sets a model order of degree two was used. Depending on the number of
available training data, either the lower order model or the higher order model has a smaller MSE for the test
data.
For instance, the accuracy of the complex function for the test data is similar to the accuracy of the underlying
function with a sufficient amount of data. Therefore, only the irreducible part of the error due to noise is
present at this point. In addition, the number of data points is sufficient to significantly reduce the variance
error component. The behavior of the first-order model is exactly the opposite. The MSE does not decrease
significantly as the number of training data increases because the variance component is already small. Instead,
the bias error component is high due to the insufficient order of the model. Adapted and modified from Ref.
[153].

2.2 Physical principle of a PV system

To successfully develop a forecast for a system, it is generally beneficial to build up domain
expertise by e.g., comprehending its underlying physical principles. Therefore, the physical
modeling chain from the global horizontal irradiance (GHI) to the generated PV power,
summarized in Figure 2.4, is elaborated briefly in the following.

The GHI denotes the total amount of hemispheric irradiance received from the sun by a
surface horizontal to the ground. It can be either simply measured locally on the ground by a
pyranometer or estimated using geostationary weather satellites together with clear sky and
cloud models. For the latter, several environmental factors such as aerosols (e.g., dust, salt),
water content in the air, and solar geometry are considered [10]. To convert the GHI into the
irradiance on the (tilted) plane of array (POA) multiple steps are necessary.

Initially, the GHI is decomposed by a separation model6 into its elements the direct irradiance
Ghor,dir ∈ R≥0 and the diffuse irradiance Ghor,diff ∈ R≥0, because their conversion to the POA
differs (see also Figure 2.5a, p. 15) [177]. Subsequently, the conversion for these individual
components is performed using transposition models. For the direct irradiance, this is often

6The interested reader is guided to [217], which provides an overview and comparison of several separation
models.

13



2.2 Physical principle of a PV system

Measured solar
irradiance (e.g.,

via pyranometer)
Separation

model
Transposition

model
Physical

PV model
(with inverter)

K
Ambient
temperature

GHI Components
of GHI Irradiance on

tilted POA
Generated
PV power

Global
horizontal
irradiance (GHI)

Direct
irradiance

Diffuse
irradiance

Tilted plane
of array (POA)

P

E

Figure 2.4: Physical modeling chain from GHI to the generated PV power.

done in a straightforward manner based on the geometric orientation between the sun and the
POA as follows:

GPOA,dir = Ghor,dir ·max
(
0,

cos γtilt

sin γS

)
, (2.8a)

with γtilt = arccos(− cos γS · sin γPOA · cos(αS − αPOA) + sin γS · cos γPOA), (2.8b)

whereby γS ∈ [0◦, 180◦] and αS ∈ [0◦, 360◦] are the elevation and azimuth of the sun, γPOA ∈
[0◦, 180◦] and αPOA ∈ [0◦, 360◦] the elevation and azimuth of the POA and γtilt ∈ [0◦, 180◦]
the incident angle of the sunlight on the tilted plane (see also Figure 2.5b) [64, 177].

In contrast, the conversion of the diffusive irradiance is rather complex and not yet mature
[214]. However, in multiple reviews the Perez translation model outperformed others and is
therefore considered state of the art [214]. It is defined as:

GPOA,diff = Ghor,diff


(1 + cos γPOA)

(
1 −Cper,1

)

2
+

Cper,1 ·max(0, cos γtilt)
max(0.087, sin γS)

+Cper,2 · sin γPOA

,

(2.9)
where the circumsolar brightening coefficient Cper,1 ∈ R and the horizon brightening coef-
ficient Cper,2 ∈ R are functions depending on the location, solar position and atmospheric
clearness class [166, 177]. In addition to the direct and diffuse irradiance, the reflected
irradiance from the ground is also part of the POA’s global irradiance:

GPOA,ref =
GHI ·Calbedo · (1 − cos γPOA)

2
, (2.10)

where the Albedo value Calbedo ∈ R≥0 depends on the reflective characteristics of the ground
[177]. Hence, the total irradiance on the PV panel is

GPOA,glob = GPOA,dir +GPOA,diff +GPOA,ref. (2.11)

The PV panel converts this irradation based on the photoelectric effect into electrical power.
As can be seen from the characteristic curve field in Figure 2.6, additional factors such as the
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Figure 2.5: To estimate the irradiance on POA, the irradiance must be decomposed into its components and
afterwards converted using the present trigonometric relations.

cell temperature must be also taken into account for the modeling. A simplified possibility to
calculate the output power is:

P = Prated ·
GPOA,glob

1000W/m2 · ηDC→AC · ηloss ·
(
1 +Cϑ ·

(
ϑpanel − 25K

))
, (2.12a)

whereby Prated ∈ R≥0 is the rated power of the PV panel, ηloss ∈ R≥0 the losses of the
panel caused by e.g., dirt, shading and aging, ηDC→AC ∈ R≥0 the inverter loss, Cϑ ∈ R≤0 the
temperature coefficient and ϑpanel ∈ R the temperature of the panel [162, 184]. The latter can
be e.g., modeled by a polynomial depending on the windspeed, ambient temperature and cell
specific parameters [6, 162]. An overview and comparison of multiple physical PV models
can be found in Refs. [80, 141, 162].
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Figure 2.6: Exemplary characteristic power-voltage curve of a solar cell. The colors represent different input
light irradiance levels and the line types illustrate the divergence of the characteristic curve at different panel
temperatures. Adopted and modified from Ref. [66].
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2.3 Applications of PV power forecasts in decentralized energy systems

2.3 Applications of PV power forecasts in decentralized
energy systems

To manage the energy system at the level of a whole building complex (e.g., aiport, university
campus, industrial site) in general, a supervisory control is required, which is used to optimize
the set-points of the controllers of individual assets (e.g., PV power inverter, compression
chiller, battery) at the process level. For a better understanding of the architecture at hand,
Figure 2.7 depicts the automation pyramid known from industrial manufacturing in the
context of decentralized energy systems.

In the past, heuristic rule-based controllers were often used for predefined scenarios. These
can also be combined with predictions (e.g., of the generated PV power) to better compensate
occurring volatility or utilize them in case of electricity prices. However, these so-called
"model free" approaches have their limits due to the sheer complexity of the system and the
possible use cases. As an alternative, in particular model predictive control (MPC) approaches
are being studied and used, as they have already proven themselves in other application
areas (e.g., process automation) for the higher-level operational control of base-automated
sub-processes [53].

Taking into account forecasts and specified boundary conditions, an MPC determines the
optimal dispatch scheduling of the individual assets of the energy system with respect to a
specified cost function. For example, a minimization of the absolute energy costs and the
CO2 emission can be the objective (see Figure 2.8).

Figure 2.9 (p. 18) illustrates a selection of three possible business cases for the operation of
DESs. These can be implemented or supported with a MPC and are explained briefly in the
following:

• Peak shaving (demand side management) – From a purchased capacity of 100 MWh
per year, a distinction is usually drawn between an energy rate and a capacity charge for
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Figure 2.7: Diagram of an automation pyramid and the classification of supervisory control in the context of
multi-modal decentralized energy systems.
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Step 1: Mathematical models of the underlying subproces-
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Step 2: With regard to a defined cost function criterion the
performance of the different possible process se-
quences is evaluated for a set prediction horizon.
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Subsequently, the process starts again from Step 1.
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Figure 2.8: Block diagram and concept of an MPC in the context of multi-modal distributed energy systems.
Steps 1-3 are generally carried out by solving an optimization problem.

the purchase of electrical power [28]. This means that not only the total purchased power
(energy rate) is considered, but also the highest peak (capacity charge) which occurred
during the billing period. Accordingly, demand side management attempts to maintain a
constant level of purchased power to minimize the total costs. However, incorrect forecasts
and planning mistakes resulting therefrom can lead to an one-time peak that nullifies most
economic savings and greatly increases the overall costs.

• Participating in local electricity markets – A currently studied concept is the trading of
DESs at local energy market (LEM), where they can provide surplus power. However, both
simulations [185] and practical investigations with real participants in the field [95] have
shown that the possible profit depends heavily on the accuracy of the predicted generated
energy as well as the consumption. For instance, losses may occur if not enough energy
is provided and thus the difference has to be purchased from a backup provider e.g., the
wholesale energy market. A more detailed description of the use case is also provided in
Section 3.3.3, when the benefits of increasing the accuracy of probabilistic prediction and
a necessary accuracy baseline are discussed.

• Providing flexibility via tertiary control reserve market – At the tertiary control re-
serve, short-term negative and positive energy reserves are provided at the request of the
transmission system operator in order to compensate for power fluctuations in the grid.
Participation in the tertiary control reserve market is possible for DES after a prequalifica-
tion procedure. However, if there is an actual need and the DES is not able to provide its
offered energy, there could be high fines and possibly additional contractual penalties [52].

Incorrect forecasts and resulting inefficient operational management can lead to economic
losses in all of these use cases, though this can be particularly high when interacting with
external markets. Therefore, in practice, additional buffers are usually included in some form
within the planning, if possible [15]. In order to keep the costs of opportunity as low as
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Figure 2.9: Illustrations of exemplary potential business cases in decentralized energy systems. In particular, the
trading with external parties leads to higher profits, but is also associated with higher penalties if the promised
energy is not provided. Data Refs.: [31, 52, 194], illustrations adopted and modified from Refs. [12, 32, 95].

possible, probabilistic forecasts can support the risk assessment. Consequently various studies
(see e.g. review paper [14] for an overview) have shown, that the use of probabilistic forecasts
is more efficient and economically beneficial.

The most straightforward way to incorporate probabilistic forecasts into energy management
systems is to use a quantile forecast7 instead of the deterministic average forecast. This is
especially interesting for PV systems, as the economic penalty of the forecast error is not
symmetric. Surplus power can generally be dissipated, while a lack of energy cannot be easily
compensated. The advantage in this case is that deterministic energy management structure
can be kept. However, not all probabilistic information is taken into account which in turn re-
sults in opportunity costs. Further integration possibilities for probabilistic predictions are the
consideration of different probabilistic scenarios or the integration in stochastic optimizations.
The latter considers the entire probabilistic distribution and therefore commonly requires a
continuous representation of the cumulative distribution function (CDF) [128].

An overview of implemented use cases as well as methodological approaches for the in-
tegration of probabilistic solar forecasting methods can be found in the review paper Ref.
[128].

7An example quantile forecast would be a point forecasts denoting with a predicted 60%̇ probability that at
least this amount of power will be generated. In Section 2.5.3 and Section 4.3 this quantile representation
form is discussed in detail.
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2.4 Scope refinement – generating PV power forecasts
for decentralized energy systems

There are several forecasting algorithms which are used for the prediction of PV power.
Their selection and specification is significantly influenced by the specific requirements and
constraints of the respective use case. For a better overview, the essential characteristics of PV
forecasts are summarized in Figure 2.10. In the following, these characteristics are explained
in more detail and a short review of the state of the art is given. In addition, the scope is
further refined based on the deduced requirements for the practical applications in DES .
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Figure 2.10: Sunburst diagram summarizing a selection of the various characteristics and decisions that need to
be considered when developing a PV power forecast.
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2.4.1 Forecast type selection

For PV power prediction, a distinction is generally made between two different types or
approaches: A direct approach and an indirect one. While in the direct approach, as the name
suggests, the PV power is predicted directly with the help of a dynamic model, in the indirect
approach the irradiance at the respective location is predicted first. Then, either with the
physical modeling chain described in Section 2.2 or with the help of a static black box model,
the conversion into PV power is done [220]. In the scientific literature, the indirect approach
is predominantly used. To quote the review paper [220, p.13] written by 33 scientists of the
solar forecasting community: “most researchers would take [the indirect] two-step procedure
to forecast solar power output”. Presumably, this is partly related to the historical context of
this domain, as many experts come from the field of weather forecasting. Furthermore due to
the spatial low pass filtering of widespread free-field PV systems the PV power is easier to
predict than the irradiance value at one specific point [220].8 However, as already mentioned,
forecasters in academia occasionally show a tendency of not paying enough consideration to
practical operational issues and requirements [219]. Especially for relatively small building
installions, the indirect PV power forecasting approach offers several disadvantages, which
are discussed in the following:

• Difficulty to parametrize the physical model chain – The necessary technical PV parame-
ters for the installation (e.g., orientation, angle) are not always known to the commissioning
engineer. For instance, subcontractors are often entrusted with this task, while the doc-
umentation is not always well maintained and at hand. This is especially the case for
roof top and building installations if differently oriented PV systems are connected to the
same power inverter. At the same time, the installation parameters are essential for the
conversion of the irradiance to the inclined PV system, as illustrated in Section 2.2.

• Challenges in the calibration and creation of data driven models – Measuring devices
for local irradiance (e.g., pyranometers) are seldom installed at rooftop systems, which
inhibits the calibration and parameter identification of the respective on-site irradiance
forecast and the ensuing submodels.

• Increased model complexity – Shading aspects occur more frequently with rooftop instal-
lation than with open space solar power plants. Consequently they have to be considered
and modeled as well.

• Incorporation of the additional sources of uncertainty – For a probabilistic represen-
tation of the forecast uncertainty, the additional uncertainty caused by the performed
conversion would also have to be incorporated. More research is needed for this transfor-
mation, as for instance, the first publication on probabilistic transposition models did not
occur until 2020 [175].

8This effect, nevertheless, is only valid for larger PV plants. For smaller systems (e.g., rooftop installations),
the spatial aggregation is still comparatively low. As a consequence, the volatility is higher on the inclined
plane than on the horizontal plane due to the impact of the installation angle [220].
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Given the mentioned drawbacks and the fact that potential users of the probabilistic forecasts
are grid operators and plant owners, this thesis focuses on the direct prediction of PV power
and its probability distribution. For this purpose, several methods and approaches from the
state of the art of solar irradiance forecasting will also be modified in this work to adapt them
for the direct forecasting of PV power.

2.4.2 Use case specification

Temporal properties

For the temporal specification of PV power forecasts, three parameters are of particular
importance: The forecast horizon, the forecast resolution and the forecast interval. In this, the
forecast horizon describes the time span between forecast generation and the forecast value
that lies furthest in the future. Accordingly, with increasing forecast horizon, the difficulty
of the forecast and consequently the forecast error [156] increases. The PV forecasting
community generally distinguishes between three primary categories of forecast horizons [2]:

• Intra-hour – This includes forecasts from a few seconds in the future, up to an hour,
which are used in particular for peak load management and grid stability (e.g., monitoring
for real-time electricity dispatch) [46].

• Intra-day – The forecast horizon spans several hours of the day and is primarily used for
the control of energy system e.g., with regard to unit commitment and economic dispatch
[221]

• Day-ahead – This forecast extends over the next day and is especially important for the
long term planning of energy systems as well as the participation in external markets [2].

The choice of the forecast horizon always influences the selection of the signals to be
considered for the forecast. For very short time horizons, the correlation between proximate
time points of PV power dominates, which can be depicted by an autoregressive model
approach. At longer horizons (e.g., greater than four hours), however, this influence decreases,
while the present physical characteristics and thus the importance of external meteorological
input signals and models increases. [180]

This thesis investigates the forcast quality for the intra-day use case with focus on the next
six hours, as this time span is needed to also include the scheduling of the thermal side (e.g.,
thermal storage, heat pumps) in the optimal dispatch calculation of multimodal onsite energy
systems [15].

The time resolution describes the sample time of the forecast. With decreasing sample time,
the difficulty of the forecast increases, as volatile moments are no longer compensated by the
temporal aggregation [156]. A large number of current numerical weather predictions (NWP)
models and consequently also of studies on PV power generation consider an hourly resolution
[219]. However, since January 1st, 2021 (with some granted derogations until 2024) the
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harmonized imbalance settlement period and therefore predominantly billing resolution in the
European Union is 15 minutes [71]. Consequently, this temporal resolution is also used in this
thesis. The last temporal parameter, the forecast update rate, describes the time between two
consecutive forecast generations. Analogous to the sample time, 15 minutes is also assumed
for this parameter in this thesis.

Spatial resolution

Analogous to the temporal component, the spatial resolution of the forecasts has an influence
on the prediction quality, as local deviations can compensate each other by aggregation [156].
Hence, smaller local rooftop systems are used in this work to cover the boundary cases with
respect to volatility. This is especially important since according to the EU-wide European
Solar Roof Initiative, all new residential, public and commercial buildings will be required to
install PV roof systems by 2029, leading to a significant increase of smaller local PV systems
[72].

Available computing power

The available computing power for the generation of the forecasts could range from local
edge devices to the use of cloud hyperscaler architectures. The latter scales the available
resources based on current demand, preventing computing power from being a restricting
factor. However, the required cloud infrastructure and communication technologies are com-
paratively expensive and a redundant local solution is often required in practice anyway to
ensure reliable operation (e.g., in the event of network communication issues). In contrast,
purely local solutions have the cost advantage that they can be used both for managing the
energy system and for generating forecasts. Given their significant restrictions in terms of
computing power, local edge devices often do not allow the training of forecasting models
that are very complex (see, for example, the technical specification of a SICAM A8000 unit
in Figure 2.11). To allow a comparison of the solutions for these two situations with low and
high available computing power, both cases are considered in the selection of the prediction
algorithms in the next chapter.

Available data

The consideration of the available amount of (limited) data is an important aspect for prac-
tical applications, which is often neglected in scientific studies. A majority of publications
often use a relatively large amount of data, e.g., more than half a year, when generating
and evaluating their forecasts. To the best of the author’s knowledge, a comparison with
different numbers of training days is made only in [127], where also not less than 60 days of
training data were studied. Especially for newly installed plants, however, only limited data
is available. Accordingly, model approaches must be chosen that can cope with little data
during initialization.
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(a) Siemens SICAM A8000 CP-8000 [189]

Processor
Dual-core ARM

Cortex-A9 MPCore
Clock speed 800 Mhz
Memory DDR3 RAM 512 MB

(b) Technical specification [188]

Figure 2.11: Example edge device (a) including its main technical specifications (b). When considering the
computing capacity, it should be noted that other applications often run parallel on the device, so that in practice
only a part can be used.

One objective of this work is to identify such approaches. For this purpose, the algorithms in
this thesis are investigated for both an initialization operation period with little data (7 days)
and for a regular operation period (six months of data / 182 days).

In addition to local measurements on site, external weather forecasts should also be included
in the forecasting process, as they tend to improve the forecast quality considerably [180].
For this purpose, there are a number of services (e.g., Meteoblue [144], Solcast [191]) that
provide the necessary data the day before, e.g., via an application programming interface
(API).

Commissioning process

As explained in Section 2.1.3, there is a bias-variance trade off when building forecast
models. This dilemma is further amplified by the varying amount of training data during the
commissioning process. On one hand, with limited data, the model complexity should not
be too high in order to avoid overfitting and consequently poor forecasts. On the other hand,
after a longer period of time and thus a sufficient number of training data, a suitable model
complexity should be available to ensure forecasting quality as high as possible.

It should also be noted that, contrary to the scientific context, where the model structures
and hyperparameter settings are often optimized manually [119], the commissioning effort
in practice must be as low as possible and if possible without manual intervention. This
is, firstly, due to the effort to keep the costs as low as possible and, secondly, caused by
the fact that the average commissioning engineer does not have the necessary expertise to
make individual adjustments [160]. For instance, the relatively time-consuming process of
modeling and identification (approx. 50% of commissioning time [45]) is often cited as one

23



2.4 Scope refinement – generating PV power forecasts for decentralized energy systems

of the main reasons why model-based control in the context of multimodal distributed energy
systems has so far been predominantly applied only in feasibility studies and special solutions
[196]. Hence, this thesis investigates (semi) automated forecast generation as well as the
feasibility of updating the forecasting algorithms with as little manual intervention as possible
throughout the entire commissioning process.

2.4.3 Algorithm specification

General overview of deterministic PV power forecasting methods

There are a variety of forecasting algorithms for PV power, ranging from physical and
statistical approaches to more complex neural networks. Figure 2.12 provides an overview of
established methods. In the following, they are briefly introduced and references are provided
to related solar forecasting studies.

The so-called naïve forecasting methods are, as the name suggests, rudimentary approaches,
which are commonly used as benchmarks for other methods. Their forecasting accuracy is
often used to quantify the overall predictability of a time series, which can subsequently be
incorporated, for instance, in the form of a skill score. The simplest approach is the persistence
model, where the last measured value is taken as the prediction [9]. Given a sample time
T ∈ R>0, this results in:

y[t] = y[t − T ]. (2.13)

An benchmark extension of this is the smart persistence [75, 149], where the average over N
values of the last days at the same time is taken:

y[t] =
1
N

N∑

i=1

y
[
t − i

24h
T

]
. (2.14)
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Figure 2.12: A classification of deterministic PV power forecasting methods with selected examples.
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Other naïve forecasting approaches include simple linear regression model approaches.

The physical approaches use gray or white box models [80, 162] to describe the underlying
process behaviour. On the one hand, this can be done by converting irradiance into the gener-
ated electrical power as described in Section 2.2. In this case, the actual forecast is performed
by NWP , which are mostly based on the physical laws of motion and thermodynamics [108].
The disadvantages of these indirect approaches for practical applications were described in
Section 2.4.1. Another physical approach to improve the forecasts quality is to incorporate
and model cloud motions. For this purpose, satellite images [69, 197] or local sky imagers
[165] (e.g., digital cameras) are used.

The statistical time series approaches include in particular the autoregressive integrated
moving average (ARIMA) [179] model family, which was proposed by Box and Jenkins [21]
as early as 1970 in their seminar textbook and has since become the most widely used time
series forecasting method [218]. The model family comprises a large number of submodels
or model components which can be combined with each other. The respective algorithm
acronym is then composed of the acronyms of the individual components. One of the basic
forms is the autoregressive (AR) [13] model approach where the future is described as a
linear combination of lagged values of the same signal. Combining the latter for instance
with a moving average (MA) [130] component of the model errors results in ARMA [42, 137,
138, 151] models. The additional linear incorporation of lags of an eXogenous input (X), for
instance from NWP, in turn lead to ARX [7, 13] or ARMAX [130] models. Both have shown
significantly improved prediction quality compared to their counterparts without additional
signals [13, 16, 130, 202]. Other possible extensions are, for example, the differentiation of
the time series for stationarization using a so-called integrated (I) part, leading to ARIMA
[163] models and the linear consideration of a seasonal (S) component leading to SARIMA
[20, 202] models.

Other commonly used statistical time series forecasting methods are exponential smoothing
models [62], where exponentially decreasing weights are applied to past observations for the
estimation of different decomposed model componensts (e.g., trend) [107].

Machine learning approaches were introduced in the mid-20th century and constitute the
majority of new publications by now [218]. Furthermore, they have shown the greatest relative
progress in forecast performance in recent years [156], due to methodological improvements
and advances in computational power. Nevertheless, several comparative studies have not
found superior forecast quality from machine learning models compared to the classical
statistical time series forecasting models [48, 156].

The most common machine learning approach is based on artificial neural networks [9].
These include, for example, classic multi-layer perceptrons (MLPs), which have a feedforward
structure and estimate their parameters using backpropagation. In addition, classic recurrent
neural networks (RNN) and long short-term memory (LSTM) models are also adopted,
which possess internal states (memory) and therefore dynamical behaviour due to an internal
feedback.
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Other machine learning approaches used for PV power forecasts are, for instance, k-Nearest
Neighbors [163], where based on e.g., the Euclidian distance of several features, similar past
observations are found for the prediction. Another appraoch are support vector regression ma-
chines [44, 178], where nonlinear model formulation are achieved by mapping the predictors
with kernel functions into a higher-dimensional feature space [9]. In addition, random forest
models are also applied, which average the prediction of several regression tree models.

New methods for the general forecasting of time series are continuously being developed
and adapted. For example, Neural Basis Expansion Analysis for Time Series (NBEATS) has
outperformed previous forecasting competition winners by 3 % [159].

Besides the presented forecasting models, hybrid approaches are often adopted, where meth-
ods are used either in series or in parallel (also called model stacking) to foster their individual
strengths. For the latter e.g., a weighting based on the forecasting accuracy of the test set is
carried out. In many studies, the use of a broad set of forecasting techniques has increased
the robustness and, consequently, the forecast quality over a longer period of time [218].

The selection of the algorithm used should be made according to the use case. To quote Hong
et. al: "It is very important for researchers and practitioners to understand that a universally
best technique simply does not exist" [99].

Comparison difficulties between studies and algorithms

Although there are a large number of publications on forecasting methods of PV power, a
comparison between different papers and the methods used in them is almost unfeasible [9,
215, 220]. This can be attributed to the following issues:

• Different data sets and use cases – There are a large number of different use cases
and thus different temporal and spatial characteristics of PV forecasts and the data sets
used. These characteristics in turn have a considerable influence on the predictability of
the time series. Depending on the local climatic settings, the weather conditions may be
predominantly fluctuating or predominantly steady. Furthermore, a reduced sample rate and
a longer forecast horizon complicate the forecast accuracy. As a result, direct comparison
of methods from papers with different data sets is difficult [15, 220]. At the same time,
both data and used code are rarely shared [215]. Moreover, the prediction quality of each
algorithm also depends on the use case, as Ref. [213] concluded after analyzing data sets
with seven different climate zones in the United States. In the study, different machine
learning approaches were preferable depending on the weather conditions.

• No standardized error metric – Unfortunately, no standard metric for quantifying fore-
casting quality has been established in the scientific literature yet. As a result, a number
of different metrics such as root mean squared error (RMSE), mean absolute percentage
error (MAPE), mean absolute error (MAE) or Pearson’s coefficients are e.g., used for
deterministic forecasts. Moreover, the respective normalization of the metrics varies, as
papers use the range, the maximum value, the installed capacity, or the mean value of
the measured values as demoninator [220]. Thus, without numerical specification of the
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normalization quantity – which is often missing – even a comparison between papers with
the same data set may be difficult. In addition, none of the metrics mentioned above take
into account the variability and uncertainty of the data, which again supports the previous
bullet point.

• Different pre- and postprocessing methods – The preprocessing method also influences
the prediction quality. For example, it can be decisive how data gaps are filled and whether
night time values and times with low solar irradiance are also taken into account during
training or for the calculation of the metrics. The latter entail smaller errors caused by the
small measurements and therefore distort the overall reported error metric value. [9]

• Conscious or unconscious manipulation by researchers – A relative improvement in
the forecast accuracy by a new proposed method is nearly always expected by journal
reviewers and editors. Occasionally, this can lead to a conscious or unconscious manipu-
lation of data sets and results [213]. For instance, test data may be deliberately selected
where the methods under investigation show good results while comparatively poor per-
formance benchmarks are chosen [101]. In a cross comparison of papers, the authors
in Ref. [156] found, for instance, that studies with smaller test sets also often proclaim
smaller forecast errors on average. Furthermore, several papers – also due to the mentioned
aspect – shy away from a direct comparison with classically established models or state
of the art approaches [101]. As a consequence, many papers show only the superiority of
single methods and not its weaknesses. This makes it difficult to draw a generalization, as
cross paper comparisons are necessary, which as mentioned above is challenging.

A common subconscious error is that several models or hyperparameter sets are tested and
only the best method is published afterwards [98]. This compromises the "out of sample
testing", as the chosen solution is not tested again on a neutral test data set.

Furthermore, some data are used as input or for preprocessing (e.g., clear sky recorded
by satellites [48]) which are not available in real time and therefore distort the prediction
quality for practical applications.

Several points can be concluded from the points listed above. On the one hand, the establish-
ment of and compliance with a standard is necessary, especially with respect to preprocessing
and evaluation. In a joined publication [220] leading experts in this field have proposed
scientific best practices for deterministic predictions and extended them to probabilistic pre-
dictions in several responses [143]. These proposed best practices are adopted in this work
(see Chapter 3).

On the other hand, the prediction quality is use case dependent and therefore studies with
more extensive comparisons are necessary. Accordingly, one of the objectives of this thesis is
to compare different approaches in detail and to address both their strengths and weaknesses,
for the use case of intraday forecasting for onsite multi-modal DESs.
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Selected algorithms for this thesis

Based on the specifications of the use case described in Section 2.4.2 and the derived forecast
requirements, two different methodological approaches are studied in more detail in this thesis.
First, time series models, explicitly autoregressive exogenous (ARX) models, are analyzed
more closely. As the acronym suggests, the forecast is a linear combination of past time steps
of the to be forecasted signal and exogenous signals:

y[t] =
Dar∑

i=1

θar,i · y[t − i · T ] +
F∑

f=1

D f∑

j=0

θexo, f , j · x f [t − j · T ], (2.15)

where F ∈ N defines the number of additional features x f ∈ R, D f ∈ N the model order of
the respective feature, and Dar ∈ N the autoregressive model order. The parameters of the
respective lags are in turn denoted by θar,i ∈ R as well as θexo, f ,i ∈ R.

Due to their parameter linear mathematical structure, the parameters of autoregressive ex-
ogenous models can be estimated using ordinary least square (OLS). This has the advantage
that many programming libraries9 contain this method by default and the parameters can be
estimated relatively fast by using for instance the so-called QR-decomposition or cholesky
factorization.10 In combination with the comparatively small number of model parameters,
it is feasible to run ARX models on low computational edge devices (e.g., remote terminal
units). Furthermore, the model approach has established itself over many years which is why
linear time series models are still often used in practical applications [57]. In the comparative
study in Ref. [48]11 these models also provided similar probabilistic prediction accuracy to
several neural network architectures.

In addition, (deep) MLPs are studied in detail. Their structure is summarized in Figure 2.13.
They consist of input and output layer with one or several hidden layers in between, where
each layer is fully connected to the next. The layers are in turn composed of a number of
perceptrons12. Mathematically, the propagation characteristic of a single perceptron can be
described as follows [153]:

h(l)
j = ϕ

(l)
j


Nl, j∑

i=1

ωl
i, j · h(l−1)

i + b(l)
j

, (2.16)

with l ∈ N denoting the number of the respective layer and j ∈ N the number of the perceptron
of the layer, i ∈ N the number of the perceptron from the previous layer, h(l)

j ∈ R the output

9For instance, the MATLAB coder supports the transformation of OLS methods into C code, thus providing
easy rapid prototyping and programming for remote terminal units [140].

10Although the parameters of OLS in the so-called closed form can already be estimated by using matrix
multiplication and inversion, in practice the numerically more robust methods mentioned above are commonly
used [33].

11In this reference solar irradiance forecasts, using only endogenous data with an hourly resolution were studied.
12In the hidden layer, the perceptrons are also often called hidden units [153].
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Figure 2.13: Example MLP structure (a) and detailed depiction of a perceptron (b).

of the perceptron, ϕ(l)
j the activation function and Nl, j ∈ N the overall number of perceptrons

in the previous layer. The weights ω(l)
i, j ∈ R of the respective perceptron inputs and the bias

b(l)
j ∈ R are the parameters of the model that are estimated during the training. A nonlinear

function is often chosen as activation function, in order to be able to model nonlinear behavior
[153]. As evident from Figure 2.13 and 2.16, the MLP initially has a static model structure
without memory. Nevertheless, it can be used for modeling time series by temporally shifting
the respective associated inputs and outputs, analogous to the ARX model. MLPs have the
advantage compared to ARX models that they can depict considerably more complex behavior.
For instance, given a sufficient amount of hidden units a shallow MLP with only one hidden
layer is a universal function approximator and can therefore theoretically model any function
to any desired accuracy level [43, 102]. Nevertheless, deep networks have demonstrated better
performance than shallow ones both in theoretical and practical studies in recent years [172].
One reason is their ability to learn better and more detailed abstract relationships between the
input data, because each subsequent layer can leverage the generated features of the previous
one. However, MLPs generally require significantly higher computing capacity for model
training than ARX models, which means that they may not be able to be trained on all remote
terminal units. In these cases, cloud solutions or high-performance clients on-site have to be
used.

Besides the depictable complexity, MLPs have the advantage that many of the probabilistic
extensions listed in the following chapter can be applied to them. Furthermore, preliminary
investigations by the author with more complex dynamic neural networks (e.g., LSTM) have
not yielded significantly better deterministic predictions. Further information on MLPs can
be found, for instance, in Ref. [153].
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2.5 From a deterministic to a probabilistic forecast

2.5.1 Sources and types of uncertainty

While deterministic forecasting predicts only a single value ŷ, probabilistic forecasting
estimates the conditional probability p(ŷ | x,D) at each time point, while considering the used
training data set and the respective input features for the current forecast.

To characterize the inherent uncertainty of forecasts, it is beneficial to comprehend their
respective causes. According to Hyndman [106] there are generally four major sources
affiliated with the uncertainty of time series models:

1. The random noise of the undelaying process which ideally corresponds to the model
error term

2. The choice of the model (structure) to replicate the historical process behaviour and
subsequently extrapolate it into the future

3. The estimated parameters of the chosen model

4. The assumption that the process being forecasted will behave in a similar way in the
future as it did in the past

Applied to the use case of PV power forecasts, the first source can be, for instance, the non-
consideration of possible relevant features such as wind speed and wind direction changes in
the prediction model or present inaccuracies in the input signals e.g., NWP.

Uncertainties due to the model structure, as mentioned in the second point, are caused by
the general choice of the forecasting algorithm and its respective structure (e.g., model order
for ARX model and architecture hyperparameters for neural networks). Often, an attempt is
made to reduce this uncertainty and the associated forecasting error by data exploration and
hyperparameter tuning combined with cross validation during model selection.

Uncertainty in the model parameters described by the third point may result from an insuffi-
cient amount of available training data, an (overly) high model complexity, or the inability to
determine the global minimum during training due to non-linear models with respect to their
parameters (e.g., neural networks). Especially in the case of flexible model structures such as
neural networks, the second and third point become sometimes indistinguishable.

The listed fourth cause of uncertainty is almost impossible to quantify and at the same time
inherent and unavoidable in forecasting. Nevertheless, by understanding the physics of the
process and a subsequent consideration of relevant exogenous variables, this effect is tried to
be minimized. For the other three sources of uncertainty, however, there are approaches to
model them.

In the literature, the respective sources are generally categorized into two different types of
uncertainty. Aleatoric (lat. aleator: dice player; alea: game of chance) describes in this context
the general non-modeled randomness of the underlying process and thus both the first and the
last cause. Epistemic (greek episteme: knowledge) uncertainty in turn, refers to the existing
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2.5 From a deterministic to a probabilistic forecast

model uncertainty (second and third point) which occurs due to the lack of knowledge about
the perfect predictor. Mathematically, the composition of the conditional probability can be
represented as follows [136, 153]:

p(ŷ | x,D) =
∫

p(ŷ | x, θ)︸    ︷︷    ︸
primarily
aleatoric

p(θ | D)︸  ︷︷  ︸
primarily
epistemic

dθ, (2.17)

with the term p(θ | D) denoting the probability distribution function of the model parameter θ
given the training data setD and with the term p(ŷ | x, θ) depicting the probability distribution
function of the estimated model output ŷ given a parameterized model with θ and the respective
input x. Consequently, epistemic uncertainty is modeled by placing a probability distribution
over the parameter whereas aleatoric uncertainty is modeled by placing a distribution over
the model output [114].13

The distinction between uncertainty types is important since epistemic uncertainty decreases
with more training data, while this has no influence on aleatoric uncertainty [104].14 Addi-
tionally, neglecting one of them will likely lead to an underestimation or misrepresentation of
the overall uncertainty. For instance, in practical applications, the models often have a signifi-
cantly higher epistemic uncertainty, given that instead of individual adjusted hyperparameters,
default settings based on intial investigations e.g., from different sites are used. If this higher
epistemic uncertainty is not taken into account, it leads to too narrow prediction intervals.
Yet, several current studies do not consider a combined assessment of both uncertainties [82].
Accordingly, Hyndman notes that "almost all prediction intervals from time series models are
too narrow" [106].

Due to the relevance of the uncertainty types and causes as well as their sometimes difficult
distinction at first glance, the concept is demonstrated in Figure 2.14 by a simplified statistical
example.

13This concept can be confusing at first for the interested reader. Of course, a distribution over the model
parameters also leads to a distribution at the output. However, this distribution then only depicts the uncertainty
caused by the model parameters and therefore the epistemic uncertainty.

A distribution, which is taken only at the output with a single set of model parameters, in turn, considers only
the distribution of the model error, which depicts the aleatoric uncertainty. Consequently, slightly different
training data could in this case change the model parameters for the forecast and therefore the model error as
well as the recorded output distribution. The total uncertainty can thus only be represented by combining
both effects.

14Although epistemic is often referred to in the literature as reducible and aleatoric as irreducible, this refers only
to the situation with the respective information content. For instance, by increasing measurement precision
or considering additional information (input signals), some of the seemingly random noise in the process
can be reduced. Related to PV Power this could be, for instance, the live consideration of cloud movements
in the respective environment with cameras. This also shows that the distinction between the two types of
uncertainty cannot always be made precisely in practice and can change due to modifications in the setup or
the considered model features. For a more detailed insight into this topic, the interested reader is guided to
Ref. [104].
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Figure 2.14: Illustration of aleatoric and epistemic uncertainty using a simple example. As indicated in the left
diagram, even if the underlying function is precisely estimated, the individual observations cannot be accurately
predicted given the present (and not modeled) noise. The noise can thereby also be heteroscedastic and thus not
constant over the complete range of values. The diagram on the right shows that, despite having the correct
model structure, different functions can be determined depending on the available training data. The deviations
between the two estimated functions are mainly caused by epistemic and should diminish with an increasing
amount of training data. Moreover, further deviations from the underlying function may occur, if the model
structure (e.g., order) of the underlying process is assumed incorrectly.

2.5.2 Difference between a prediction and a confidence interval

Although the confidence interval and the prediction interval describe different concepts, both
terms are sometimes mistakenly used as synonyms even in the scientific literature (see e.g,
Refs [3, 4, 47, 87, 99, 118, 121, 126, 134, 208, 212]) or in software documentations (see
e.g, [94, 199]). However, this inconsistency can lead to confusion and incorrect conclusions.
Therefore, their distinction is explained below, in particular with reference to the respective
considered types of uncertainty.

Confidence intervals are a frequentist concept, which are often associated with the uncertainty
of estimated parameters. Mathematically, an α% confidence interval estimated for a parameter
θ based on a given data set D states that in a study repeated with infinitely sampled data
sets, about α% of the different confidence intervals will cover the true value of θ [211].15

Thus, confidence intervals are based on the expected value or mean of the respective (true)
parameter.

15The commonly used expression that an empirical confidence interval is the range in which the true value lies
with x % probability can be used as a rough guide but is strictly speaking inaccurate. From the frequentist
point of view, θ is a fixed constant value, so it can either be in an interval or not. [153]
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2.5 From a deterministic to a probabilistic forecast

Applied to the model output of, e.g., a linear model

y = ŷ + ε,

= x · θ̂ + ε, (2.18)

confidence intervals refer to the so-called mean response. Hence, assuming that the model
error is ε ∼ N

(
0, σ2

)
, the width of the confidence interval is proportional to

√
Var(ŷ) =√

x2Var(θ̂).

In practice, however, one often does not want to know the mean response, but rather the
uncertainty associated with an individual forecast. The so-called prediction interval also
takes into account the variability of the individual observation and therefore the model error.
Applied to the linear model example, the latter has a width proportional to

√
Var(ŷ + ε) =√

x2Var(θ̂) + σ2.

To connect the two concepts, one could also simplistically say that if predictions are estimated
for infinitely many different samples of the input x, their distribution should lie within the
prediction interval while their mean should lie within the respective confidence interval, both
according to the associated probability. Confidence intervals therefore account only for the
epistemic uncertainty of the model parameters and not for the aleatoric uncertainty of the
underlying process. As a consequence, confidence intervals are usually significantly narrower
than prediction intervals (see e.g., Figure 2.15).

In this thesis, the prediction interval is examined, as it is more important for the described
practical use cases.
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Figure 2.15: Width of a 95 % confidence and 95 % prediction interval exemplarily illustrated. The data set was
generated with the underlying linear function y = 1.75x + 3.
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2.5 From a deterministic to a probabilistic forecast

2.5.3 Types of probabilistic forecasts

Three different basic concepts (see Figure 2.16) are widely used for the representation and
generation of probabilistic forecasts: (1) creation of ensemble forecasts, (2) identifying a
discrete cumulative distribution function by e.g., quantiles, or (3) determining a continuous
probability function via a parametric distribution or non parametric depiction (e.g., kernels).
In the following, these different approaches are discussed in detail referencing several state
of the art examples.

Ensemble approaches

Ensemble forecasts consist of different ensemble members – typically point forecasts – which
are generated by e.g., bootstrapping [90], multi model approaches [22, 228], scenario analy-
sis of model inputs [198], determination of possible input deviations [192] or by selection
outputs from comparable situations in the past [3]. They can therefore assume any occurring
distribution function. However, ensembles may require a postprocessing for the calibration of
the prediction interval and are often in comparison more computational demanding [192]. Fur-
thermore, depending on the used ensemble generation technique, they commonly only model
one type of uncertainty. Training data bootstrapping, for instance, only depicts epistemic
uncertainty, as one basically estimates a distribution of model parameters [57]. Bootstrapping

Types of probability forecasts

I) Ensemble II) Quantiles/Intervals III) Continuous Probability Distribution

Parametric Semi- / Nonparametric
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(e.g., training data, forecasts,
forecast error)
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Multi model approaches

Scaling and transforming other
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Softmax regression network

Pinball loss function
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quantile neural network)
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Probability neural network
(e.g., using negativ likelihood
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Figure 2.16: Overview of different representation types for probabilistic forecasts and exemplary methods to
generate them. While continuous probability distributions can be both parametric and non-parametric, ensembles
and quantile representations never assume a parametric distribution. A combination of several approaches as
well as the conversion of the different representation forms into each other is also possible.
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2.5 From a deterministic to a probabilistic forecast

of the model residuals, in turn, only depict the aleatoric uncertainy, as a distribution is only
estimated over the model output.

In addition to their standalone use, ensemble concepts can also be combined with other
probabilistic approaches to enable the modeling of all types of uncertainties. In these cases,
ensemble members are often used to indirectly depict the distribution of model parame-
ters, while other methods represent the aleatoric uncertainty (e.g., an ensemble of quantile
forecasts). This is based on the assumption that the influence of epistemic uncertainty can
be compensated by averaging the individual ensemble members, resulting in (2.17) being
approximated to [136]:

p(ŷ | x,D) =
∫

p(y | x, θ) p(θ | D) dθ ≈ 1
M

M∑

i=1

p
(
ŷ | x, θ̂i

)
, θ̂i ∼ p(θ | D), (2.19)

where M ∈ N denotes the number of ensemble members and θ̂i ∈ R the estimated parameters
of the respective ensemble members. This concept is also applied to purely deterministic
identifications. For instance, bagging is used to improve the prediction quality in random
forests by reducing the model uncertainty when compared to decision trees. In addition to the
classical methods of ensemble generation, new approaches have been developed in the field
of machine learning, such as Monte Carlo (MC) dropout. There, dropout is not only activated
during training, but also during the forward pass of the network. By randomly dropping
various units during forecasting, different results are generated. These can even be interpreted
overall as a deep Gaussian process approximation when dropout is applied to each hidden
layer [84].

Quantile and interval approaches

Estimating the cumulative distribution function (CDF) of probabilistic prediction discretely
using e.g., quantiles is the most commonly used approach for probabilistic forecasts [123].
In doing so, for each quantile υ ∈ [0; 1], a forecast ŷυ is estimated for the signal y where the
probability of y[t] to be lower than ŷυ[t] is exactly υ:

Pr(y[t] < ŷυ[t]) = υ . (2.20)

While in classical deterministic forecasts the parameters are estimated by minimizing the
MSE of the residuals, in quantile regression an asymmetric weighted error is used for the
loss function e.g., the so-called pinball loss. Hence, this approach can be applied to several
algorithms and consequently often used to easily transform an existing deterministic forecast
model into a probabilistic one [142]. For example, Ref. [123] and Ref. [57] provide a
comparison and overview of different linear prediction models based on quantile regression.
The authors in Ref. [65], in turn, applied quantile regression to an encoder-decoder architecture
that uses LSTM neural networks in combination with an MLP. However, quantile regression
only depicts the aleatoric uncertainty and therefore the uncertainty in the data, as the adjusted

35



2.5 From a deterministic to a probabilistic forecast

loss function only characterizes a distribution over the model output. In addition, for each
quantile that one wants to determine, a separate model training is usually performed.

In addition to the determination of quantiles, probabilistic intervals (e.g., an 80 % prediction
interval) can also be determined directly. This can be done by adapting the cost function, e.g.,
using the coverage width-based criterion for the lower and upper bound estimation, which
considers both the sharpness and the coverage of the intervals (see also 3.3.2) [115]. Another
approach is to estimate conformal intervals based on past prediction errors [195].

Nevertheless, of all the representation forms of probabilistic forecast the quantile and interval
approaches have the lowest information content, as only discrete values of the CDF are
estimated. As a result, the information content may not be sufficient for some subsequent
applications.

Parametric approaches with a continuous probability distribution

Alternatively, the complete probability distribution can also be estimated directly. In the
parametric approaches, a set distribution (e.g., Gaussian distribution) is assumed ex ante
for the uncertainty and its parameters are subsequently estimated. This can be realized with
additive volatility models such as generalized autoregressive conditional heteroscedasticity
(GARCH) models, which provide a probabilistic extension for any deterministic prediction
while requiring minimal computational effort [47]. Another possibility, implemented in
many publicly available R (e.g., tsibble [206]) or Python (e.g., pmdarima [199]) forecasting
packages thanks to its simplicity, is the estimation of a normal distribution using the standard
deviation of the training residuals. Yet, this approach assumes homoscedasticity and only
considers the deviation of the random error term and therefore aleatoric uncertainty. This can
lead to an common underestimation of prediction intervals of up to 25 % [107]. Analogous
to quantile regression, the cost functional of the prediction model can also be adapted in
order to apply a parametric approach to different model structures (e.g., distributional neural
networks). By using the negative log likelihood of a Gaussian distribution as the cost function,
for instance, the mean and the standard deviation can be estimated directly.

All these approaches have in common that the uncertainty of the estimated model should
correspond to the predefined distribution. However, previous studies on irradiance forecasts
have shown that the assumption of e.g., a fixed Gaussian distribution of the error terms is not
always supported by the data due to a lack of symmetry, resulting in inferior forecast quality
[48].

Semi-/ and non-parametric approaches with a continuous probability distribution

Flexible density estimation, e.g., via kernel functions, can solve this challenge. One of the
best-known methods for this is the Gaussian process, which was used, for example, in Ref.
[155] to predict PV power probabilistically. Ref. [63] in turn used Bayesian Model Averaging
as a postprocessing method to generate a probabilistic mixture model out of NWP ensembles,
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combining a discrete component for power clipped at the inverter rating and a continuous
portion for the lower output. Ref. [132] used a coupled input and forget gate network in
combination with quantile regression to initially generate individual quantiles and afterwards
converted them into a continuous probability distribution using kernel density estimation.

Another promising approach, which has been successfully applied to other forecasting do-
mains, are mixture density networks (mixture density networks (MDNs)) [229]. They can be
seen as extensions of distributional neural networks, as they combine different distributions
using the sum of weighted negative log likelihoods of kernel functions as minimizing objec-
tive. Consequently, they can estimate flexible uncertainty distributions with almost all neural
network structures and thereby benefit from the advances in machine learning, e.g., deep
neural networks. Moreover, with a sufficiently high number of Gaussian distributions, it is
theoretically possible to represent any other distribution form [17]. Ref. [229] have used it, for
instance, for the probabilistic forecast for regional wind power. Furthermore in Ref. [203] an
MDN with four distributions was able to achieve a significantly better deterministic forecast
than a linear transformation model for the solar irradiance. Analogous to quantile regression,
however, MDNs only depict the aleatoric uncertainty with the change of the minimizing
objective/cost function.

2.6 Selected probabilistic approaches for this thesis

As the different representation forms of probabilistic forecasts have different advantages, all
three concepts will be applied and compared in this thesis for ARX time series models as well
as for MLPs (see Table 2.1).

Table 2.1: Overview of the different to be analysed probabilistic appraoches in this thesis.
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2.7 Summary of the specified scope and derived research objectives

For the discrete representation of the CDF, the most commonly used approach of quantile
regression will be adopted. The focus is thereby on the question to what extent epistemic
uncertainty plays a role for the application case at hand, with limited training data and without
manual hyperparameter optimization. Furthermore, it will be investigated to which degree it
can be reduced, if necessary. This can be of particular importance, as pure quantile regression
depicts only the aleatoric.

As ensemble approaches, training data bootstrapping (epistemic uncertainty), model residual
bootstrapping (aleatoric uncertainty) and an extended sieve bootstrapping approach (epistemic
and aleatoric uncertainty) will be adapted for the prediction with the ARX model. Since
each of the bootstrapping approaches considers different types of uncertainty, this allows
to analyze their respective impact better. Ensemble approaches for MLPs usually have the
disadvantage that the generation of multiple deterministic predictions requires considerably
more computational power caused by the comparatively longer training time. As an alternative,
MC dropout is adapted for PV forecasts in this thesis, since it requires only one training session.
However, since MC dropout depicts only the epistemic uncertainty, a model output calibration
will be also applied.

For the continuous description of the CDF in this thesis, the ARX model will be incorporated
with the GARCH model. In comparison to other parametric approaches, which are only based
on the standard deviation of the training residuals, the GARCH model has the advantage that
it allows the modeling of time-varying volatilities. This is important, because the uncertainty
in PV predictions is heteroscedastic [47]. In addition, GARCH approaches require minimal
computational effort and are therefore also suited for use on edge devices. For MLPs, MDN
will be adopted as an approach for PV power prediction. By combining MLPs with several
Gaussian distributions, it is possible to describe non-symmetric uncertainties continuously.
Given that both parametric approaches only represent the aleatoric uncertainty, this thesis
will also analyze the influence of epistemic extensions and will investigate to what extent
these can further improve the prediction quality.

A detailed description of the algorithms and the adaptations made for PV power forecasts can
be read in Chapter 4.

2.7 Summary of the specified scope and derived
research objectives

The objective of this work is to advance the field of probabilistic PV power prediction by
addressing remaining questions for practical application in multi-modal DES. Therefore, first
the detailed requirements for the forecasting algorithms were derived in this chapter based on
the specified practical applications. Afterwards, they were used to identify the to be resolved
gaps in the current state of the art.

In particular, the commissioning process and related challenges have been insufficiently
addressed in the scientific literature. This includes both the dealing with comparatively little
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2.7 Summary of the specified scope and derived research objectives

training data and the commissioning with as little manual effort as possible. A summary of
the use case scope, which will be analyzed, and the associated forecast specifications can be
found in Table 2.2. The third column contains references to the detailed reasoning for the
selection.

To address these gaps and advance the field of probabilistic PV forecasting, the following
specific aspects will be explored in this thesis:

• Simulation and analysis of forecast commissioning and operation under practical
conditions – To the best of the author’s knowledge, there are no studies regarding the prob-
abilistic prediction quality of PV power forecasts with limited amount of data. However,
as this is indispensable for commissioning in practice, the prediction quality of different
methods is investigated in this thesis, both for the initialization operation period with little
data (7 days) and also for a regular operation period (182 days of training data). In order
to do this, multiple temporal forecast initialization start points are also simulated for each
site.

Furthermore, the optimal combination of training hyperparameters and network structure
depends on the underlying data in each case. Accordingly, the optimal choice varies by
location, the number of training data, and sometimes the time of year (e.g., weather in
spring and fall is more volatile than in summer). Hence, there is arguably no general
specification that is truly "optimal" for all circumstances. For this reason, scientific studies
often perform extensive manual optimization for their published forecasting algorithms
[119]. However, in practical applications this is not possible due to limited capacities.

Table 2.2: Specified focus for the analysis in this work with reference to the segments for the respective
explanation.

Parameter Specifiction/Scope for this thesis Reference

Forecast type Direct PV power forecast 2.4.1

Temporal resolution 15 minutes 2.4.2

Spatial resolution On-site roof top systems 2.4.2

Forecast horizon 6 hours 2.4.2

2.4.2

Commissioning (semi) automated 2.4.2

2.4.3

2.6

Amount of
available data
for training

Two scenarios:
• "Start" of commissioning process (7 days)
• "End" of commissioning process (182 days)

Forecasting algorithm ARX MLP

Probabilistic extension • Quantile regression
• Residual-, training data

and sieve bootstrapping
• GARCH

• Quantile regression
• MC dropout with output

calibration
• MDN
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Hence, this thesis also investigates the feasibility of generating and updating the forecasts
over the commissioning period without manual intervention.

• Consideration of both aleatoric and epistemic uncertainty – Non-optimal model struc-
tures and a lack of training data can lead to high epistemic model uncertainty, which in turn
can degrade forecast quality if not taken into account. Moreover, considering the previous
paragraph, both aspects are infeasible to avoid in practice. Thus, it seems particularly
important for practical applications to investigate methodological approaches that also
consider and compensate these epistemic uncertainties and therefore generate very good
results even with limited data or model structures that are not perfectly application specific.

However, previous studies on PV power mostly do not differentiate between the different
types of uncertainty and do not consider both [82]. They focus instead commonly only on
the aleatoric component (see, e.g., [47, 48, 65, 142]). This thesis will focus in particular
on the consideration of both types of uncertainties e.g., by using epistemic extensions.
Consequently, to the best of the author’s knowledge, for a number of used probabilistic PV
power approaches (e.g., MDN, GARCH), this thesis will investigate epistemic extensions
in detail for the first time. This also enables a specific analysis of the influence of the
different uncertainty types.

• Extension and adaptation of probabilistic forecasting algorithms for the prediction
of PV power – There are several advanced studies on probabilistic machine learning
approaches e.g., for computer vision use cases [122], while probabilistic solar forecasting
is the least mature area in the field of energy time series forecasting [9]. Accordingly, this
thesis leverages a number of approaches that have yielded very good results in other fields
(e.g., MDN, MC dropout) and adapts them for PV power for the first time.

• Comparison of several probabilistic methods for PV power – As outlined in Section
2.4.3, a cross comparison of different forecasting algorithms between several papers is
always very challenging. Hence, large comparative studies between different approaches
provide a clear added value for the PV power forecasting community. This thesis intends to
fulfill this need by comparing eight different approaches, some of them with and without
different epistemic extensions.
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“[M]any researchers draw equivalence
between accuracy and value [of a forecast].
Whereas accuracy can indeed reflect the
significance of a forecasting research, it does
not necessarily translate to value.”

Dazhi Yang [219]
(Professor at the Harbin Institute of Technology and currently

the world’s leading published solar forecaster)

3
Test and evaluation framework

This Chapter provides an overview of the applied analysis framework. First, the data sets and
preprocessing steps along with the creation of the simulated forecast initialization instances
are outlined. Afterwards, methods and metrics for evaluating the probabilistic forecasting
algorithms are introduced.

3.1 Data sets used and preprocessing applied

The algorithms in this study are compared using data from three different sites in Central
Europe. An overview of the site characteristics is summarized in Table 3.1. Thereby the solar
variability σ∆κt describes the standard deviation of the changes of the clear sky index, which
is the GHI in relation to the GHI under clear sky conditions. As such, it characterizes the
volatility of local weather conditions and serves as a relative reference for how difficult it is to
predict PV power at that site. All PV systems are rooftop installations with mixed orientation.
Alongside the measured PV power, the GHI and outside temperature predicted by an external
provider on the previous day serve as input signals for the forecasts. In order to achieve
practical conditions, the forecasts of the provider Meteonorm were continuously recorded
at midnight of the respective previous day. Figure 3.1 illustrates exemplarily the temporal
behavior of the individual signals for the location North Bavaria (for the other location see
Appendix: A.3). The measured values were available at a sample rate of one minute.
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3.1 Data sets used and preprocessing applied

Table 3.1: Main information concerning the data used in this work.

North Bavaria
(Germany)

South Bavaria
(Germany)

Vienna
(Austria)

Elevation [m] 280 725 150
Annual GHI [MWh/m2] 1.77 1.88 1.79
Time period 08/19 – 02/21 01/19 – 09/21 05/17 – 04/19
Sample rate [min] 15 15 15
Ratio of missing and removed days [%] 1.3 4.9 12.2
Solar variability (σ∆κt) 0.188 0.186 0.195
Ppeak, daily of PV panel [kW] 1.29 14.584 14.95

First, outlier and erroneous measured values (e.g., variance of signal is too long zero, signal
exceeded physical feasible thresholds) were deleted. Subsequently, the signals were resampled
on a 15 minute basis, as this is also the time resolution of the forecast1. Thereby data gaps
smaller than 30 minutes were linearly interpolated and days with gaps of more than 30 minutes
were omitted. It was assumed that the panels were covered with snow, if the days had an
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Figure 3.1: Temporal profile of the signals for the PV power system in northern Bavaria.

1The authors in Ref. [148] observed in their research that the use of smaller sample times during training did
not increase the forecast accuracy and merely made the learning phase more time-consuming.
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3.2 Simulation setup

average power of less than five percent of the mean PV power of the previous month. As the
methods in this paper are only intended to forecast nominal operation, these days were also
ignored.2

3.2 Simulation setup

It is common for forecasting studies to perform analyzes by cross-validation or prediction
using a single test set for each site. However, this does not provide a very good representation
of a commissioning process. As an alternative approach, this work simulates 24 forecast
initialization instances for each site (see Figure 3.2). In each case, the next seven days after
each forecast initialization instance serve as test data.
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Figure 3.2: 24 simulated forecast initialization instances are defined for each of the three data sets (see top
graph). The forecast quality for the next seven days (test data) is determined for these instances. A distinction is
made between 2 scenarios. In the first scenario, the respective last 7 days are used as training data (see bottom
graph left), while in the second scenario the last 182 days are used (not depicted in the figure).

2It is preferable to use a monitoring system in practice combined with multiple forecasting models for the
different operating states (e.g., snow on panel, nominal operation.). Furthermore, the PV power signal has
a very low volatility when the panel is covered, which would distort the accuracy metrics, if the dates with
snow on the panel where not ignored.
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3.3 Forecast evaluation

Given that forecasting models are rarely adjusted over time, the probabilistic forecasts should
be able to produce satisfactory results over the complete commissioning process. Accordingly,
this thesis analyzes two different scenarios. The first scenario depicts the early stages of the
commissioning process, where only seven days of training are available and therefore the
data is limited. In the second scenario, 182 days of available measurements are considered. If
days are thereby missing due to a data gaps for one of the instances, the previous days are
included until the corresponding number of days with training data are available.

The forecasts are generated every 15 minutes over a forecast horizon of six hours, resulting in
24 different forecasts for each time instant. During the conversion to a supervised learning
problem for the individual methods, the rows which output contained only sunset times were
deleted. This leads to an even stronger focus on the nominal operation during the day for the
model training.

3.3 Forecast evaluation

3.3.1 What constitutes a good forecast?

In order to evaluate and compare forecasts properly, it is crucial to initially define what
actually constitutes a good forecast. This varies depending on the specific application and is
particularly dependent on the individual factors described in Section 2.4 (e.g., interpretability,
computation time). According to Murphy [152] three different ways for the characterization
of the goodness of a forecast can be distinguished:

• Consistency – The extent to which the prediction reflects the forecaster’s best estimate of
the situation based on his or her level of knowledge (no influence e.g., due to bias)

• Quality – The extent to which the prediction matches actual events / observations

• Value – The extent to which the forecast helps a decision maker achieve additional eco-
nomic and/or other benefits.

Forecast quality is the best-known criterion in the scientific field, and also the focus of this
thesis, since a comparison of the informative value of a forecast is generally only possible
with regard to a concrete use case and the applied methods. In addition, the consideration of
consistency is mainly relevant for manually created or influenced forecasts. Nevertheless, as
forecast value should not be overlooked when comparing multiple methods, the shortcom-
ings of evaluating forecasting algorithms solely on the basis of their quality will be briefly
discussed.

In order to compare the forecast quality of ensemble based, quantile/interval based and con-
tinuous CDF based approaches on an equal basis, they have to be transformed into a common
form of presentation. Otherwise, they would contain varying degrees of information about
the estimated probability density. This transformation is often performed by down sampling
the estimated CDF with respect to the information density, which generally corresponds to a
representation via quantiles e.g., [10 %, 20 %, . . . , 90 %]. Afterwards, the evaluation is carried
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3.3 Forecast evaluation

out using the metrics outlined in the next section. However, the necessary transformation may
lead to the quantile-based methods being superior in terms of forecast quality, as they are
designed directly for the determination of quantiles. Depending on the use case, though, the
value of the estimated quantiles may not be as high given the lower information content. For
example, to use a probabilistic prediction in stochastic optimization, a continuous CDF (e.g.,
parametric representation) is beneficial [128]. Yet, the authors in Ref. [142] have found that
69 % of published studies are non-parametric. One of the reasons could be that studies and
publications primarily focus on the forecast quality and only secondarily on the often abstract
and use-case dependent value. As the author stated in Ref. [219]: “many researchers draw
equivalence between accuracy and value”. The same effect occurs not only when comparing
the representation types but also when comparing the neural network and time series model
based methods, as the latter have significantly more value for solutions on edge devices due
to the limited computing capacities. Therefore, the difference between forecast value and
forecast quality as well as the fact that the quality is not the sole criterion for the goodness of
a forecast should be kept in mind when reading the results of this thesis.

3.3.2 Evaluating forecast quality

For deterministic forecasts, it is common to quantify the forecast quality with metrics based on
the scalar forecast error, which is the difference between forecast and observation. Probabilistic
forecasts, however, are not as straightforward to evaluate, since they have multiple quality
objectives and involve comparing a probability distribution with a scalar observation in each
case. This complexity, combined with the lack of established assessment methods, has often
led to the use of inconsistent practices in the past (i.e., inappropriate metrics and benchmarks)
[142]. As a result, several papers [97, 124, 143, 164, 216] focused on the subject to introduce
a standard and to promote consistence and sensible methodological comparison. In the
following, the recommended procedures are outlined and if necessary adjusted for the use
case of probabilistic prediction of PV power.

One of the fundamental characteristics a good probabilistic forecast should exhibit is relia-
bility, sometimes also referred to as calibration [171]. It characterizes whether the predicted
distribution corresponds to the observed distribution over a sufficiently long data sets. If
one e.g., predicts a 10 % to 90 % coverage interval, 80 % of the values should also fall
into the interval. A well calibrated prediction therefore avoids systematic bias and ensures
statistical consistency, which could otherwise lead to a systematic bias in the subsequent
decision process [171]. Reliability can be quantified with the prediction interval coverage
probability (PICP) [142], which is defined as:

PICP =
1
N

N∑

t=1

ζ[t], (3.1a)

with ζ[t] =


1, if y[t] ∈

[
p(ŷ)⌋[t], p(ŷ)⌉[t]

]

0, otherwise
, (3.1b)
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where y[t] ∈ R denotes the observed data pointand N ∈ N represents their overall amount.
p(ŷ)⌋[t] ∈ R and p(ŷ)⌉[t] ∈ R are the lower and upper bound of the predicted interval
respectively at time t. Consequently, the PICP value should be equal or near the expected
coverage rate to have a reliable forecast.

A possibility to check deviations in reliability graphically is the rank histogram3. There, the
predicted CDF is divided into M ∈ N bins on the x-axis, while the y-axis shows the PICP value
for each predicted interval of bins, which in this context is often termed relative frequency
(see Figure 3.3). If the division of the bins is equidistant and the forecast is well calibrated, the
rank histogram possesses a uniform distribution4 [170]. In this dissertation, the CDF is divided
into ten ranks for each of the rank histograms. Therefore, 10 % of the observations should
fall into each decile, which is represented by the dashed line in the illustration. Deviations
from this line indicate an over- or underestimation of the respective quantile. Accordingly, a
∪-shape indicates an underdispersed and a ∩-shape indicates an overdispersed forecast. A
triangular shape, in turn, indicates a systematic bias. However, the uniform distribution of a
rank histogram is a necessary but not a sufficient criterion for reliability. As the authors in [91]
and [88] showed, one can obtain a seemingly perfect rank histogram while the forecasted and
true underlying probability still differ.5 Consequently, a combination with other evaluation
methods is recommended.

Since the primary objective of probabilistic forecasting is to estimate future uncertainty,
predicted probabilistic bands should be kept as wide as necessary to ensure reliability, but
also as narrow as possible to provide the maximum amount of information. The latter is
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Figure 3.3: Example cases for the calibration of probabilistic forecasts visualized as rank histograms. With a
sufficient number of data points a good calibration leads to a nearly uniform distribution. If the histogram is ∩-
shaped, the forecast is overdispersed, so that in particular the middle percentiles disproportionately represent the
actual measured values. With a ∪-shaped histogram, the forecast is underdispersed. As a result, a high proportion
of the measured values are within the 10% percentile and above the 90% percentile. Disproportionately high
values on a side of the histogram in turn indicate a systematic bias of the model.

3The rank histogram was originally developed and only used for ensemble forecasts [91]. For continuous
probability depiction the analogous solution is often called probability integral transforms diagram [88].
However, since the term rank histogram has also been adopted in the literature for other forms of representation
(e.g., quantiles [48]), it will be used for a better readability for all forms of representations in this thesis.

4Slight differences may still occur depending on the sample size investigated due to random noise. In this case,
one can also determine confidence intervals for the bins based on a binomial distribution [170].

5For example, if the forecasted distribution is multimodal and the true underlying probability Gaussian, a
generated rank histogram could possess a uniform distribution [91].
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referred to as sharpness of a forecast and is in most practical use cases essential for a good
forecast value. It can be considered as a measure of the efficiency of the forecasting model
and can be quantified with the prediction interval average width (PIAW) [204]:

PIAW =
1
N

N∑

t=1

(p(ŷ)⌉[t] − p(ŷ)⌋[t]). (3.2)

However, sharpness alone is not a good measure of prediction quality. As can be seen in (3.2),
the PIAW depends solely on the probabilistic forecast itself and therefore does not provide
any information on how significant a deviation from the observation is. Consequently, a good
score must consider both reliability and sharpness simultaneously. For instance, the authors
in Ref. [88] state, that the objective of a forecast should be to maximize sharpness while
having reliability as a constraint. In addition, a probabilistic metric should be proper to ensure
consistency [24, 201]. For a scoring function S

(
p(ŷ), y

)
with an estimated forecast probability

density p(ŷ) and observation y ∈ R the expected outcome can be defined as:

S
(
p(ŷ), p(y)

)
=

∫
S
(
p(ŷ), y

)
dp(y), (3.3)

where p(y) is the true probability distribution [24, 201]. The scoring function is defined proper,
if:

S
(
p(y), p(y)

) ≤ S
(
p(ŷ), p(y)

)
, (3.4)

whereby a lesser score denotes a more successful forecast [24, 201]. In other words, with a
proper scoring function, the best score can only be generated by estimating the true underlying
probability.

A metric that fulfills these three requirements is the continuous ranked probability score
(CRPS). It is defined as the squared difference between the predicted CDF P(ŷ[t]) and the
observed CDF P(y[t]) for signal y at time point t, and can be denoted as [93]:

CRPS(P(ŷ[t]), y[t]) =
∫ ∞

−∞

(
P(ŷ[t]) − P(y[t])

)2dẙ, (3.5)

where ẙ represents the variable of interest6 for y[t] and the observed CDF P(y[t]) is described
by the Heaviside step function:

P(y[t]) = 1(y[t] − ẙ) (3.6a)

=


1 for ẙ ≥ y[t]

0 for ẙ < y[t]
. (3.6b)

6The distinction between y and ẙ is made to clarify that the integral is not calculated over the temporal axis of
the signal y but rather for the respective CDF of the time series y at time t. See also Figure 3.4
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For a better understanding of the CRPS, Figure 3.4 illustrates scenarios with varying sharpness
and reliability of the probability forecast. CRPS has the same dimension as the predicted
variable, with a lower value meaning higher prediction quality. If a deterministic forecast is
provided, (3.7) transforms into an absolute error [93]. Consequently, its minimal value of
zero is achieved if P(ŷ[t]) = P(y[t]), which means that the forecast is firstly deterministic and
therefore perfectly sharp and secondly also perfectly reliable.

As discussed in the previous section, the respective representations are converted for a better
comparability of the CRPS values between them into the quantiles υ ∈ [10 %, 20 %, . . . , 90 %]
beforehand. In the case of the ensemble forecast, the so-called classical method is thereby
applied. This method assumes that each of the ensemble members has the same probability
mass and that no forecast will fall outside the ensemble (see also Figure 3.5) [124].7

For a systematic analysis and better comparability between sites, the CRPS score is averaged
over all observations N and normalized with the mean maximum daily produced power
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Figure 3.4: In the four different forecasting scenarios, the CRPS value is represented by the blue area. As can
be seen, the CRPS depends on both reliability and sharpness. Adopted and modified from Ref. [117].

7For more information on this topic: Ref. [124] explains the advantages and disadvantages of different
conversion options from ensembles to a CDF.
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Figure 3.5: Conversion from an ensemble representation to its CDF using the ’classical’ method adapted and
modified from Ref. [124].

Ppeak, daily ∈ R≥0 (see Table 3.1) of the PV panels resulting in the normalized continuous
ranked probability score (NCRPS):

NCRPS =
1

Ppeak, daily

1
N

N∑

t=1

CRPS(P(ŷ[t]), y[t]). (3.7)

Furthermore, time points with marginal PV power generation (PV power < 3 % of the respec-
tive Ppeak, daily) are neglected, as these would affect the NCRPS disproportionately [220]. The
remaining examined time instants possess more than 97 % of the produced electrical energy.
The Python package properscoring [200] is used for the determination of the NCRPS, which
adopts the approach from [93] using discrete8 CDFs.

As the forecast quality depends particularly on the local weather conditions, it is advisable to
make a comparison with a reference forecast in addition to the evaluation via a proper score.
For this purpose, the complete-history persistence ensemble (CH-PeEn) is adapted to the use
case of PV power in this study (see Algorithm 1 and Figure 3.6). The forecasting algorithm is
recommended in [97] based on a comparative study against other benchmark methods for
solar irradiance and can be interpreted as a probabilistic extension of the described smart
persistence in equation (2.14).

To quantify the improvement related to the benchmark method and to analyze the benefit of
different extension and hyperparameter combinations, this study applies the skill score (SS),
which is calculated as follows:

SS = 1 − NCRPSforecast

NCRPSref
. (3.8)

8Originally, the approach was developed for ensemble forecast assuming a so-called classical spacing of the
CDF [124]. However, since then it is also often used for evaluating CDFs with quantiles [48, 123, 124, 225].
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Algorithm 1: Complete-history persistence ensemble

1 Calculate clear sky index κ for the PV power, PPV at time t: κ[t] = PPV[t]/PPV,csp[t].
Since there is no clear sky value for PV power as there is for radiation, and a simple
conversion is not possible due to the mixed orientation of the panels, the clear sky
profile PPV,csp is based on a moving horizon of the last seven days’ maximum values
at the same time of day.

2 Generate a forecast ensemble by using all past values of κ in the same hour
3 Multiply the ensembles of clear sky indices with PPV,csp

Past PV
power
PPV[t]

Ring buffer
containing
last 7 days

Calculate clear sky
values by taking

max of each hour

÷
PPV,csp[t]

Sort by hour
of the day

κ[t]

Saved and
sorted clear
sky indexes

×

Ensemble
of clear sky
indexes

p̂(PPV[t])

Figure 3.6: Complete-history persistence ensemble.

A higher value for the latter indicates a relative greater improvement of the forecast
NCRPSforecast ∈ R>0 compared to the reference case NCRPSref ∈ R>0, with a value of one
characterizing a perfect forecast. Negative values, in turn, signify a deterioration compared to
the benchmark and a value of zero denotes no change in the forecast quality quantified by the
NCRPS.

However, the skill score should be treated with caution. Even though the skill score is state
of the art and widely used [97, 143], it is not proper according to the definition in (3.4).
Unconsistencies may occur, for instance, with a limited number of samples caused by noise
and dividing by the reference case [209]. Accordingly, the skill score is only taken into
account after averaging the NCRPS values over all measured values, which usually comprise
more than 150,000 samples depending on the specific analysis.

3.3.3 How does the forecast quality affect potential use cases?

As already explained in Section 2.1, it is preferable to have not only a benchmark but also
a baseline for the required forecast accuracy. It is also important to know whether further
increases in forecast quality also lead to more value or if a saturation occurs above a certain
threshold value. In the following, this relationship and the difficulty of quantifying a baseline
will be addressed with the example use case local energy markets. Therefore, the concept of
the LEM and the exemplary use of probabilistic forecasts for a bidding strategy will be briefly
explained.
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In LEMs, DESs trade with each other in a geographically and socially close community
(e.g., within a city district). This results in improved self-consumption and self-sufficiency
of the local energy system, which in turn reduces the strain on the higher-level grid and
reduces load or generation peaks [95]. However, smaller DESs have on average both a more
volatile generation and a more volatile consumption profile due to the lack of aggregation
effects resulting in higher forecasting uncertainties (e.g., compared to virtual power plants).
Moreover, if a so-called prosumer provides a lower amount of energy than previously offered
due to an incorrect forecast, additional costs arise for him. If this happens, the difference
in energy must be provided by a backup supplier. By incorporating energy reserves (e.g.,
consistently offering only 50 % of the forecast PV generation on the market) in their bidding
strategies, these penalties can be minimized. Nevertheless, this may result in opportunity
costs, as the remaining energy is then no longer sold for comparable higher prices prices
achievable on the LEM. Figure 3.7 illustrates this relationship using a simplified application
example with different scenarios for the amount of generated energy.

Taking into account the probability Pr(E) ∈ R≥0 that the energy E ∈ R≥0 is generated, the
benefit ξWEM,s ∈ R≥0 for selling to the wholesale energy market (WEM), the penalty costs
ξp ∈ R≥0 for non-compliance with the bid and the benefit ξLEM,s ∈ R≥0 for compliance with
the bid, overall losses compared to selling to the WEM can be avoided over a longer period of
time.
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(b) Participant benefit for two bidding scenarios.

Figure 3.7: Participant benefit for a simplified bidding example of a prosumer with the LEM. It is assumed
that the benefits for selling to the LEM ξLEM,s are uniform for the entire quantity of energy traded, the complete
undelivered energy segments must be acquired via a backup provider for ξBP and any surplus energy is sold at a
fixed price ξWEM,s, analogous to the current concept of surplus feed-in. The price differences between ξBP and
ξLEM,s result also from assumed savings in taxes and grid fees.
In the first bidding scenario, 50%̇ of the forecast value was offered on the local market and in the second scenario
100%̇. Due to penalty costs by non-adherence, the particitpant benefit can also be negative (e.g., forecast mean
offered but less than ∼ 50 % are generated). Accordingly, only as much energy should be offered as can be
expected to be delivered. However, a bid that is too low leads to opportunity costs if more energy is generated.
Hence, if 100 % of the forecasted power is generated the benefit of bidding the full 100 % at the LEM is greater
than when bidding, for instance, only 50 %.
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For this, the individual bids have to ensure the following:
(
Pr(E)[t] · ξLEM,s[t] − (1 − Pr(E)[t]) · ξp[t]

)
︸                                                   ︷︷                                                   ︸

Expected benefit for each kWh sold via the LEM

·E ≥ ξWEM,s[t] · E. (3.9)

The penalty costs in turn result from

ξp[t] = ξBP[t] − ξLEM,s[t] + ξLEM,ic[t], (3.10)

where ξBP ∈ R≥0 is the cost of the energy from the backup provider (e.g., wholesale energy
market) and ξLEM,ic ∈ R is the internal price premium or discount of the LEM after consol-
idation of all non-compliant bids and including any penalty. Consequently, the necessary
minimum price ξLEM,s⌋ ∈ R≥0 to prevent losses can be calculated for each given probability of
the probabilistic prediction using

ξLEM,s⌋[t] = ξWEM,s[t] + ξBP[t](1 − Pr(E)[t]) − ξLEM,ic[t] Pr(E)[t]. (3.11)

Since there is also a price ceiling (price for consuming from the WEM ξWEM,b[t] ∈ R≥0), a
probabilistic range results that should be traded on the local energy market. Assuming that
ξWEM,b[t] ∼ ξBP[t], the marginal probability threshold results in

Prmt[t] =
ξWEM,s[t]

ξBP[t] + ξLEM,ic[t]
, (3.12)

and is therefore dependent on the time-varying price variables. Accordingly, a continuous
CDF is preferable for this use case, as the corresponding amount of energy is predicted for
each probability. Figure 3.8 illustrates an example of Prmt and the characteristic of ξLEM,s⌋
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Figure 3.8: Necessary minimum price ξLEM,s⌋ to prevent losses over a long period of price depending on the
respective generation probability. The values of the example scenario from Figure 3.7 were used for the diagram.
Due to the price ceiling, which corresponds to trading via the WEM, a marginal probability threshold for bidding
via the LEM results at the intersection point.
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depending on the respective probability of generating energy. The resulting amount of energy
Emt ∈ R≥0 that should be traded results from the probabilistic prediction via P−1(Prmt) · ∆t
or, according to the notation used so far for the PV prediction: yPrmt · ∆t. For this amount of
energy, ξLEM,s⌋ should only serve as a minimum bid. An individual pricing strategy based on
the market situation for profit maximization is still recommended (see e.g., Refs. [8, 158]).

The question in relation to the use case is now what consequences a bad probabilistic forecast
has. A forecast with a lower sharpness also has a lower energy quantity Emt, which should be
traded on the LEM. Accordingly, the opportunity costs increase in this case and the following
applies:

PIAW[t] ∝ (
ξLEM,s[t] − ξWEM,s[t]

)
. (3.13)

To examine the influence of reliability, two different cases must be distinguished. Systematic
overpredictions will lead to opportunity costs, while underpredictions will lead to penalty
costs. The additional energy costs ξrel ∈ R≥0 result accordingly:

ξrel[t] =



(
yPrmt [t] − ŷPrmt [t]

) · (ξLEM,s[t] − ξWEM,s[t]
)

for ŷPrmt [t] < yPrmt [t](
ŷPrmt [t] − yPrmt [t]

) · ξp[t] for ŷPrmt [t] > yPrmt [t]
. (3.14)

Nevertheless, defining a necessary accuracy limit, e.g., in the form of a maximum NCRPS
score, is difficult. On the one hand, the respective weighting of the individual costs is depen-
dent on multiple time-dependent variables, as can be seen in (3.13) and (3.14). In particular,
ξLEM,s depends not only on one’s own bidding behavior but also on the bidding behavior
of other market participants. At the same time, the true yPrmt cannot be determined for a
single point in time but can only be derived systematically over a longer period. Finally,
in multi-modal DESs the effects of inaccurate predictions can often be reduced by optimal
operation using e.g., electrical storage or multi-modal coupling. Consequently, simulations of
different market participants and bidding behaviors for varying prediction errors are useful
for more accurate estimates of the impact of prediction quality on costs. To the best of the
author’s knowledge, this has so far only been done for local energy markets in Ref. [185] for
deterministic forecast errors of load forecasts at the LEM.

However, it can be deduced from (3.13) and (3.14) that there is no threshold for maximum
accuracy or a range from which its significance decreases. This statement was also supported
by the simulations in Ref [185]. Each improvement of the forecast automatically leads to lower
overall costs over time and should therefore be pursued taking into account the respective
effort.

In addition to the presented method, there are also other approaches to compensate the
inaccuracies and uncertainties of forecasts in LEM. For instance, the author of this thesis has
co-authored three pending patents (Refs [59–61]) on the integration of probabilistic forecasts
in LEMs.
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“A large part of research efforts is actually
still focused on point forecasting only, with
the main objective of increasing forecast
accuracy. [...] [However], there will always
be an inherent and irreducible uncertainty in
every prediction.”

Pierre Pinson [169]
(Prof. at Imperial College London and Editor-in-Chief of the

International Journal of Forecasting)

4
Methodology

This chapter explains the forecasting methods used in this work in detail. First, the applied
and for the use case adapted deterministic forecasting structures of the ARX model and the
MLPs are specified. This includes how the commissioning can be ensured without the need
for manual adjustments. Subsequently, the probabilistic methods for the two approaches
including their extensions are discussed. Thereby content of previous conference papers
and journal publications by the author about the respective probabilistic methods are partly
integrated (ARX: [57], MLP with MDN: [58], MLP with MC dropout: [56]).

For a comprehensible structure, the probabilistic approaches are sorted according to the repre-
sentation forms (ensemble, quantiles, continuous CDF), whereby the probabilistic extension
for the ARX model is outlined first followed by the MLP approach.
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4.1 Underlying forecasting frameworks

4.1.1 ARX model

Preprocessing and overall concept

As ARX models can only depict stationary behavior (signals without seasonality and with
constant mean and homoscedasticity) a stationarization process for the respective input and
output signals needs to be carried out beforehand. For solar irradiation predictions, the GHI
signal is generally stationarized by dividing it with the GHI signal under clear sky conditions,
which is a common signal provided by weather services [47]. The resulting, so-called, clear
sky index kt can then be forecasted with the time series model.

However, there is no corresponding signal readily available for PV power. In Ref. [13] the
authors calculated the “clear sky PV power“ using a two-dimensional smoothing kernel along
the days and the respective time of the day as an alternative for an ARX model. Nevertheless,
this approach requires either much more historical data or, as in the reference, future PV
power data, which of course are not available ex ante in practice. Another common alternative
for the preprocessing of ARX models is the differentiation of the signal values, which would
indirectly correspond to the integrative part of the 1st order of the ARIMA model family
[130].

Instead, this thesis proposes a time series decomposition approach as an alternative. The
seasonal daily component of the PV forecast can be compensated using day ahead forecasts.
This allows additional information about the behavior of the physical system and the signals
of the weather forecast already to be incorporated during the stationarization. Afterwards,
only the remaining, commonly referred to as stochastic, component is modeled with the ARX
model.

For a rudimentary daily forecast, the nonlinear relationship between the GHI and the generated
PV power (see also Section 2.2) is first adaptively linearized for the respective 15-minute
intervals of a day. This is performed by calculating the ratio between the measured PV power
PPV ∈ R≥0 and the predicted GHI ∈ R≥0 for the last seven days at the same time of day
t.1 Multiplication by the weather service provider’s GHI forecast then yields the forecast
P̂PV, day ahead ∈ R≥0:

P̂PV,day ahead[t] =
1
7
∑7

i=1 PPV

[
t − i 24h

T

]

1
7
∑7

i=1 GHI
[
t − i 24h

T

] · GHI[t]. (4.1)

Despite its relative simplicity, this forecasting method has shown better results than a physical
based modeling approach and only slightly inferior results compared to more advanced

1Linearization along the temporal component has the advantage of selecting close operating points with respect
to the irradiation/power characteristic. In addition, systematic shadowing effects are taken into account, as
they hardly differ from one day to the next.
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Figure 4.1: Day ahead prediction accuracy of the applied adaptive linearization of operating points compared to
a physical approach as well as an MLP with one year of training data. The deterministic investigations were
performed by the author in a previous research project based on five different PV power sites. The adaptive
linearization model performs better than a physical model and almost as well as an MLP. In addition, ≈ 44.9 %
of the error is due to the uncertainties in the input signal, as a perfect weather forecast yields only an error of
12.1 %. Adopted and modified from Ref. [54].

forecasting methods (MLP) in past analyzes of the author regarding deterministic day ahead
forecasts (see also Figure 4.1).

Analogous to the clear sky index, the PV power is afterwards stationarized by dividing the
measured power with the generated forecast:

P̃PV =
PPV(t)

P̂PV,day ahead(t)
. (4.2)

For the stationarization of the exogenous signals of the ARX model, additional day ahead
forecasts are generated using smart persistence models (see (2.14)) of the last seven days.
Consequently, the GHI xGHI[t] ∈ R and ambient temperature xTamb[t] ∈ R provided from the
weather forecaster are stationarized as follows:

x̃GHI[t] =
xGHI[t]

1
7
∑7

i=1 xGHI

[
t − i 24h

T

] (4.3a)

x̃Tamb[t] =
xTamb[t]

1
7
∑7

i=1 xTamb

[
t − i 24h

T

] . (4.3b)

The overall ARX forecasting approach of this thesis is summarized in Figure 4.2.

Applied to the use case, the mathematical notation of the ARX model with an added intercept
θc ∈ R is as follows:

P̃PV[t] = θc +
∑

i ∈Tar

θar,i · P̃PV[t − i · T ] +
∑

j ∈TGHI

θGHI, j · x̃GHI[t − j · T ]

+
∑

k ∈TTamb

θTamb,k · x̃Tamb[t − k · T ],
(4.4)
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Figure 4.2: Function block diagram of the used overall forecasting concept with an ARX model.

whereby Tar ∈ NDar ,TGHI ∈ ZDGHI ,TTamb ∈ ZDTamb are the sets of used time lags of the
respective features, θar,i ∈ R, θGHI, j ∈ R, θTamb,k ∈ R are the to be estimated parameters for
the respective features and Dar ∈ Z≥0,DGHI ∈ Z≥0,DTamb ∈ Z≥0 are the respective number of
considered lags.2 Converted into matrix notation, this results for N training data points in:



P̃PV[t]
...

P̃PV[t−ζ]


︸        ︷︷        ︸

Y∈R(ζ−1)

=



1
[
P̃PV[t−iT ]

]T

i ∈Tar

[
x̃GHI[t− jT ]

]T

j ∈TGHI
[x̃Tamb[t−kT ]]

T

k ∈TTamb

...
...

...
...

1
[
P̃PV[t−iT−ζ]

]T

i ∈Tar

[
x̃GHI[t− jT−ζ]

]T

j ∈TGHI

[
x̃Tamb[t−kT−ζ]

]T

k ∈TTamb


︸                                                                                                 ︷︷                                                                                                 ︸

X∈R(ζ−1)×(1+Dar+DGHI+DTamb)

·



θc

θar

θGHI

θTamb


︸    ︷︷    ︸

θ∈R(1+Dar+DGHI+DTamb)

,with

ζ = N − 1 −max(Tar,TGHI,TTamb) −max(0,−Tar,−TGHI,−TTamb).
(4.5)

2As can be seen from the specified value ranges, for x̃GHI and x̃Tamb future lags are also included, as the
forecasts of the weather provider are available for future time steps.
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There are already a variety of proven implementations for identifying ARX models for time
series (e.g., System Identification Toolbox in Matlab, pmdarima in Python and fable in R).
However, for this work, a new algorithm is implemented to determine the model parameters.
This involves preprocessing the input data with appropriate time shifts into matrix form
according to (4.5) and a subsequent determination of the model parameters using OLS.
Compared to the above-mentioned implementations, the more flexible and direct access to
the optimization problem for the parameter identification results in the following advantages
for the given use case:

• Ignoring nighttime values for the parameter estimation – In practice, PV power forecasts
provide added value only when the sun is present, i.e., for about 50% of the time of day,
depending on the location and season. Accordingly, it is beneficial to optimize the model
parameters only for these time periods without taking nighttime values into account during
training. However, the mentioned existing implementations require continuous time series
as input, which renders the disregard of the nighttime values infeasible.3

In the matrix notation of (4.5), in turn, the rows for the time periods t can be disregarded
where PPV[t] is smaller than 1 % of Ppeak, daily. Thus, the respective night values are still
considered as input for the parameter identification, but not as model output.

• Enabling bootstrapping of the training data – This thesis studies the influence of the
epistemic uncertainty for the ARX time series models by bootstrapping the training data.
Thereby, repeated random samples are drawn from the used rows of the matrix in (4.5)
during the parameter identification process for each ensemble member to approximate the
uncertainty of the estimated parameters.

Analogous to the previous item, bootstrapping is difficult without direct access to the
optimization problem, especially when there are few training days, as otherwise only whole
days could be sampled in each case.

• Enabling cross validation – The validation of time series models during initialization
is traditionally done through simulations with a moving horizon. In this case, the last
temporal section is mostly used as validation data set. Analogous to the points already
described, the matrix notation, on the other hand, allows a fraction of the rows to be used
as a test data set at a time, which also enables multiple cross validation.

3Other publications (e.g., Refs. [13, 47, 130]) handle this issue instead by deleting the nightly signal segments
in preprocessing and connecting the signals synthetically afterwards. However, the deleted time segments in
this case should be of equal length, so that in the case of the autoregressive component the temporal offset to
the day before is constant over the entire year. As a result of the different sunrise and sunset times during
a year, however, many night values are then still included in the parameter identification, especially during
winter. Moreover, the sunset time periods of the previous day are used as model input for the prediction of
PV power during sunrise, which leads to relatively large errors.
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Automatic model order selection

In addition to the parameter estimation, the model structure which characterizes the physical
behavior in the best way must also be determined during the initialization of the ARX model.
This should be as automated as possible for the present application in order to avoid manual
intervention and to adapt the model structure throughout the entire commissioning process.
The choice of the model structure corresponds to the selection of the considered lags and thus
the choice ofTar,TGHI andTTamb. For the classical ARX model, all lags up to a selected model
order are considered (e.g., Tar = {1, 2, . . . ,Dar}). However, at a sample rate of 15 minutes,
this would require a total of 97 autoregressive parameters to include the same time point of
the previous day, which in turn would unnecessarily increase the parameter uncertainty and
thus the epistemic.

As an alternative, isolated important lags are used for the forecast in this work. For this
purpose, the partial autocorrelation function (PACF) and the cross correlation function (CCF)
are applied to determine the lags with the highest correlation to future time points. These lags
are also the most important for the forecast, given that the ARX models are linear and the
correlation analyzes describe the linear dependency relationship between the lags in each
case.

Subsequently, the number of the respective lags of the features is determined. A greedy
search algorithm is therefore developed (see Algorithm 2), which is based on the principle of
Occam’s razor. Hence, the model order is increased consecutively until the more complex
model can no longer describe the underlying process better.

For the determination of the prediction quality of the respective model orders, cross validation
is employed, as it enables the identification of the model with the lowest generalization
error.4 Additionally, a patience counter ϱMAX = 3 is implemented, as a strict greedy algorithm
does not necessarily select the best model structure or lag combination. Although a lag
can be higher sorted according to the PACF or CCF, the information it can provide may be
overlapping with already selected lags. Thus, the additional information may be smaller in
comparison to other available lags.

The exact procedure of the developed approach for the automatic selection of the optimal
model structure can be seen in Algorithm 2.

4As an alternative to cross validation, other studies (e.g., Refs. [34, 148, 161, 202]) use information criteria, such
as the Akaiken information criterion (AIC) to determine the optimal model structure [218]. AIC introduces a
penalty term for the number of parameters used in addition to the goodness of the fit in the cost functional.
Nevertheless, the performance of cross validation should be generally higher, because in addition to the
number of parameters, it implicitly includes the two other influencing factors of model complexity, sample
size and functional form [112].
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Algorithm 2: Greedy search algorithm to determine best ARX model structure

Preliminary steps: Extract for all F features (P̃PV, x̃GHI, x̃Tamb) the D lags ψ with the
highest PACF (endogen) or CCF (exogen) values and sort them by size into the
respective feature set Tf , s.th. Tf = {ψ f ,l} ∀ f ∈ (1, F), d ∈ (1,D) and F,D ∈ N.

Summary description: Select successively for each possible ARX model order
Θ ∈ [1, F · D] the lag ψbest out of Tf that produces the smallest mean squarred error
MSElow until no further improvement can be detected using cross-validation. A
patience counter ϱ ∈ N is introduced as additional lags with higher PACF/CCF values
do not necessarily provide the most additional information due to cross correlation
between the lags.

1 MSElow ··= [
MSElow,Θ

]
, whereby MSElow,Θ = ∞∀Θ ∈ [1, F · D] // initialization

2 for model order Θ in [1, F · D] :
3 for feature set Tf in [T1, . . . ,TF] :
4 ϱ ··= 0 // initialization
5 for lagψ f ,d in [ψ f ,1, ψ f ,D] :
6 Determine MSEΘ, f ,d of ARX model with additional (or first) lag ψ f ,d using

3-fold cross validation
7 if MSEΘ, f ,d ≤ MSElow,Θ :
8 MSElow,Θ ··= MSEΘ, f ,d
9 ψbest,Θ ··= ψ f ,d

10 elif ϱ ≤ ϱMAX :
11 ϱ ··= ϱ + 1 // increase ϱ, as this lag does not lead to a lower MSE
12 else:
13 break // break for loop, as no other lag of this feature results in a lower MSE

14 if Θ > 1 and MSElow,Θ ≥ MSElow,Θ−1 :
15 break // end greedy search, as no additional lag resulted in a lower MSE
16 Add determined best additional lag ψbest,Θ to selected ARX model structure

Multistep forecast generation

The classical ARX model estimates the output for one step into the future. However, PV
forecasts with a forecast horizon of six hours and respectively 24 time steps are investigated
in this work, due to its relevance for use in multimodal DES. Such a multistep forecast is
achieved with a classical ARX model by iteration. First ŷ[t] is estimated and afterwards ŷ[t+1]
is used to determine the next iteration step as if it were a real measurement point (y[t] ≈ ŷ[t]).5

However, this approach has some challenges for probabilistic PV power forecasts, as their
uncertainty increases with the lead time. In other words, a forecast that extends further into

5This mathematical notation assumes a fixed temporal reference point with respect to t. In terms of the common
notation of ARX models, where y[t] is estimated, one can also think of it as if the relative reference point
of t shifts. In this case, all time lags shift by one and y[t − 1] is approximated by the previously determined
forecast value.
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the future is generally subject to more uncertainty. Accordingly, the additional uncertainty of
the iteratively used forecasts in comparison to the PV power measurements would need to be
taken into account via some form of uncertainty propagation.

A more elegant alternative to account for the increasing uncertainty with increasing lead time
is to compute the multistep forecast directly via different ARX models, expanding (4.4) to:

P̃PV[t + τ] = θc +
∑

i ∈Tar,τ

θar,i,τ · P̃PV[t − i · T ] +
∑

j ∈TGHI,τ

θGHI, j,τ · x̃GHI[t − j · T ]

+
∑

k ∈TTamb,τ

θTamb,k,τ · x̃Tamb[t − k · T ], ∀τ ∈ [0, 23]
(4.6)

whereby only the time steps up to t − 1 are available to the respective model. The Greedy
search algorithm described in the previous section is used for each of these models. Hence,
for each forecast horizon lag, the ARX models possess presumably varying model structures.

4.1.2 MLP approach

Preprocessing and overall concept

Analogous to the ARX model, a general data preparation was performed (deletion of gaps,
outliers, etc., see also Chapter 3.1). However, no time decomposition or adaptive linear
stationarization of the data was performed, as this is not necessary for MLPs. Furthermore,
due to their nonlinear structure, better day ahead forecasts were achieved in preliminary
investigations with an MLP than with the rudimentary forecasts used for the stationarization
of the ARX model (see also Figure 4.1, p. 57).

All features were standardized by:

x̃ =
x − x
σx

(4.7)

with σx ∈ R≥0 being the standard deviation of the feature x ∈ R. This ensures that the input
data for the MLP has a common scale and thereby improves the numerical condition of the
optimization problem and accelerate convergence during training [103, 125].

In each case, the PV power over the last 24 h, the predicted GHI over the forecast horizon
as well as the previous day, and the predicted ambient temperature over the forecast horizon
and the last three hours are used as input data for the neural networks (see also Figure 4.3).6

As with the ARX approach, rows whose prediction output are only during sunset times were
deleted in the supervised learning problem.

6As the outdoor temperature has a much lower variability than the other two features and its impact on both
the volatility and the absolute level of the PV power is minor, not the entire past day was taken into account.

In addition, for PV power and the predicted GHI signal, no improvements with respect to the deterministic
prediction accuracy could be achieved in preliminary investigations with input data from even further back in
time.
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Figure 4.3: Principle network architecture of the underlying MLP.

Hyperparameter selection

Analogous to the greedy search algorithm used in the ARX model, there are also approaches
for the automated determination of the optimal hyperparameter for MLPs. Under the popular
term “automated machine learning“, both training hyperparameters and the network architec-
ture are optimized in a multistage optimization process [105, 113]. For this purpose, e.g., grid
search, random search, greedy search or Bayesian optimization can be employed [105, 113].

However, due to the large number of model parameters, the nonlinear model structure and
the number of hyperparameters to be optimized, MLPs require significantly longer for hy-
perparameter optimization than the ARX model. Moreover, the number of available data
points varies over the commissioning process, which arguably makes it more advantageous
to perform the determination of the hyperparameters even multiple times.

Nevertheless, the objective of this thesis is not to find the optimal model structure in each
case, but rather to use a constant network architecture as it is common in practice.7 Thus,
only the model parameters are adjusted by continuous training with the newly available data.
Hence, regularization methods are used to mitigate overfitting. Additionally, the aim is to
generate sufficiently accurate probabilistic forecasts also with non-perfectly tuned models, by
taking the epistemic into account. This approach is supported by the hypotheses in Ref. [41],

7This approach also in line with that of Andrew Ng, cofounder and former head of Google Brain, who advocates
a shift away from the model-centric approach prevalent in the academic world towards a data-centric approach
for practitioners [174].
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according to which large networks with appropriate regularization methods are preferable to
smaller networks in practice. There the authors argue that with increasing number of neurons,
the probability of capturing a local minimum with poor generalization error decreases [41].8

By accounting for epistemic uncertainty through ensembles, this effect is likely to be further
amplified, as multiple local minima are thus incorporated into the result.

Consequently, in this thesis, the network architecture for each representation is determined
by manual hyperparameter selection based on additional data sets. Initially, the network
architecture is chosen via random search and subsequently refined via a specified grid search.
Afterwards, the network architecture and hyperparameters are adopted for all three sites.9

Nevertheless, all probabilistic methods used in this thesis have common hyperparameters and
training specifications, the selection of which is briefly discussed below:

• General network structure: rather deep than shallow – Although in theory neural
networks can act as universal function approximator already with one layer [43, 102], deep
networks have performed better in empirical studies in recent years for a wide variety of
uses cases than shallow ones (see Refs. [89, 153, 172] for summaries of reference cases).
One reason is their ability to learn better and more detailed abstract relationships between
the input data, because each subsequent layer can leverage the generated features of the
previous one. Hence, mathematical functions with a compositional10 structure can be
represented with significantly fewer neurons [145].11 In the case of probabilistic PV power
predictions these intermediate steps can be e.g., general preprocessing, time decomposition,
generation of volatility time features or elements of the physical chain in Section 2.2.

Accordingly, sparser deep network structures are prioritized in the respective initial search
of the network hyperparameters in this work.

• Rectified linear unit (ReLU) as activation function in the hidden layers – The hidden
layer activation function used in this thesis is ReLU, a piece wise linear function that
directly passes a positive input and returns zero otherwise (see also Figure 4.4) [81, 153]:

f (x) =


x if x > 0

0 otherwise
(4.8a)

= max(0, x) (4.8b)

Its non-saturating nature for positive values has been shown to minimize the occurrence
of vanishing gradient. Hence it is more suitable for deep neural networks than e.g., a

8The authors also suggest that it is not necessarily useful to find the global minima of the training data, as this
is often accompanied by overfitting [41].

9In contrast to the ARX model, an individual tuning of the hyperparameters/model order per location is not
mandatory, since MLPs have a significantly higher capacity to represent varying mathematical functions due
to the incorporated nonlinearity as well as the number of parameters even with constant model structure.

10A simple function composition is e.g., f3(x) = f2( f1(x)).
11For instance, Ref. [68] proves that for approximation of certain functions neural networks with only one less

layer need an exponentially larger width for the same accuracy.
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Figure 4.4: The rectified linear activation function. Adapted and modified from Ref. [153].

sigmoid oder hyperbolic tangent activation function [153]. Furthermore it is relatively
computationally efficient, as only the mathematical max(·) function is applied and its
gradient is either zero or one. For these reasons it is the most common activation function
[153] and according to Ian Goodfellow also “the default activation function recommended
for use with most feedforward neural networks” [89]. Consequently also several papers
focussing on probabilistic or energy forecasting applied ReLU successfully (e.g., Ref. [25]
for MDN, Ref. [232] for quantile neural networks, Ref. [122] for deep ensembles, Ref.
[139] for energy forecasts with deep neural network architectures).

• Applied regularization methods: dropout in each hidden layer, max-norm and early
stopping – To prevent the MLP from overfitting and to enable better generalization,
several regularizing approaches are used in this work. The first one is dropout, which
was introduced in 2014 by Srivastava et al. [193]. Its basic concept is to randomly switch
off the output of individual perceptrons according to a specified probability Prdrop ∈ R≥0.
Accordingly, the propagation characteristics of a single pereceptron can be expanded from
Equation 2.16 (p. 28) to:

h(l)
j = z(l)

j · ϕ(l)
j


Nl, j∑

i=1

ωl
i, j · h(l−1)

i + b(l)
j

, (4.9)

with the dropout variable z(l)
j ∼ Bernoulli(1 − Prdrop, j). The used dropout mask (whether

a perceptron is activated or not) is thereby updated for each new training step (size of
the MiniBatch). Consequently, a different randomly selected thinner neural network is
trained on each model parameter update. Accordingly, only around n · Prdrop perceptrons
are available for each training step, with n ∈ Z≥0 being the total number of hidden units (see
also Figure 4.5).12 This reduces the so-called co-adaptation [153, 193], i.e. that single nodes
specialize too much on single features and other units become too reliant on them. Instead,
the hidden units are motivated to be more independent and generate meaningful features on
their own [193]. Consequently, “dropout can be interpreted as a way of regularizing a neural

12Accordingly, networks with dropout should have generally more neurons per layer than those without dropout.
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Figure 4.5: An example neural network with three hidden layers and a dropout probability of 50 %. Due to
the dropped units (shaded grey) the network is thinner and the amounts of connections between the layers is
reduced.

network by adding noise to its hidden units” [193]. This leads to increased robustness by
preventing an overly specialized network for the training data.

Besides regularization, dropout also has the advantage of being able to generate ensemble
members for neural networks without having to retrain them [84] (see segment 4.2.2 for
more information). This is also one of the primary reasons for choosing it as a regularization
method in this work.

To prevent individual network parameters from becoming too large, it is recommended to
combine dropout with max-norm regularization [193]. This constrains the model parameters
of each neuron to be smaller than a scaled ℓ2 norm of all weights of the neuron [40]:

ω(l)
i, j =



ω(l)
i, j if ∥ω(l)

j ∥2 ≤ CMax-norm

CMax-norm · ω(l)
i, j

∥ω(l)
j ∥2

otherwise
, (4.10a)

with ∥ω(l)
j ∥2 =

√
ω2

1, j + ω
2
2, j + · · · + ω2

Ni, j
, (4.10b)

whereby CMax-norm ∈ R>0 denotes the hyperparameter, which determines the scaling value
of the ℓ2 norm, Ni ∈ N the overall number of perceptrons of the previous layer and ωi, j ∈ R
the model weight from the perceptron i of the previous layer (l − 1) to the perceptron j of
the layer l.

Another regularization method used in this thesis is early stopping. One disadvantage of
having a very large network for a given amount of data is that, if it is trained for too long
(over too many epochs), the training data error may still be reduced, while the generalization
error increases due to overfitting [153]. Therefore, early stopping considers the validation
data error as estimation of the generalization error for the model selection. If the validation
error does not decrease any further, the training process is stopped and the model parameter
set with the lowest error is selected. A so-called patience parameter defines thereby how
many epochs a model should be continued to be trained even without loss decrease in order
to find a more optimal solution eventually (see Figure 4.6). This should prevent a premature
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Figure 4.6: An exemplary illustration for early stopping. The generalization error is approximated by the
validation loss, which is therefore sought to be minimized during model training. As soon as there is no
lower validation error over a certain number of epochs (defined by the parameter patience) the training stops.
Afterwards, the parameter set with the lowest validation loss is adopted.

termination of the training process while the best possible parameter combination has not
yet been found [173]. Early stopping is particularly suited for a (semi) automated training
of forecasts, since the hyper-parameter of the amount of training epochs does not have
to be extensively adapted. This is significant for the analyzed use case, as the number of
optimal training epochs will vary depending on the location and the amount of available
training data. To quote Geoff Hinton: “Early stopping [is] beautiful free lunch” [96].13

• Applying Adam as optimizer – In this thesis, Adaptive Moment Estimation (Adam) is
used as a gradient descent optimization algorithm. It considers both the momentum of the
last gradients and an adaptive learning rate based on the second momentum of the gradients
to update the model weights individually [116]. Accordingly, the model parameters θ,
which include both model weights and biases, are updated over each training step t as
follows14:

θ[t] = θ[t − 1] − βs√
δv[t] + 10−8

δm[t], (4.11a)

with δm[t] = βmδm[t − 1] + (1 − βm) · ∇θL(D, θ[t − 1]), (4.11b)

and δv[t] = βvδv[t − 1] + (1 − βv) · (∇θL(D, θ[t − 1]))2, (4.11c)

whereby δm ∈ R and δv ∈ R are the exponential moving averages of the gradient and
squared gradient of the loss function L with regard to θ [116]. The parameter βm ∈ R≥0

and βv ∈ R≥0, in turn, specify the respective exponential decay rates and βs ∈ R>0 the

13Geoff Hinton is a luminary in the field of deep neural networks and works at Google and the University of
Toronto. He alludes in this case to the “no free lunch theorem“ [210], which claims that no optimization
algorithm is better on average over all possible problems than any other optimization algorithm.

14For a better focus on the concept of Adam, the bias correction for the initialization and the smoothing term
for numerical stability has not been included in the equation. See Ref. [116] for more detailed information on
Adam.
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step size. The consideration of the moment δm is particularly useful for dropout, as past
gradients derived with different dropout masks still have an influence on the training. This
also stabilizes the training behavior, since otherwise the varying dropout masks could lead
to strongly oscillating direction changes of the gradients and also to a strongly fluctuating
learning curve. Using an individual adaptive learning rate for each parameter also fits the
intended use case, as input data is often sparse given the nighttime values [183]. Moreover,
according to empirical analysis from its inventor [116], dropout is fairly robust with respect
to the choice of hyperparameters and thus well suited for (semi-) automatic model training.

For these reasons, Adam is commonly used in deep learning architectures in the energy
forecasting domain [207] (see, e.g., [25, 82, 147, 229]), and according to Refs. [139, 183],
it is also the first choice for a training optimization algorithm.

More details on the MLP hyperparameters used for each probabilistic representation can be
found in the corresponding sections that follow.

4.2 Probabilistic representation using ensemble
members

4.2.1 Bootstrapping approaches for the ARX model

Bootstrapping was introduced in 1979 by Brad Efron [67].15 It is a nonparametic method
to estimate statistical characteristics of an underlying population using bootstrapped data
samples. The basic concept is as follows: Given

• a random data sampleD = {xn}Nn=1 from a population P, and

• M ∈ N bootstrap samplesD∗m =
{
x∗n

}N
n=1, m ∈ [0,M] of the same size N ∈ N, generated by

random sampling with replacement fromD,

then D behaves to the population P as the bootstrapped samples D∗m ∈ [0,M] to D [77, 120].
Consequently, the distribution of a calculated statistic Ξ∗ =

{
Ξ∗m

}M
m=1 (e.g., mean, median,

identified parameter) for all bootstrapped samples is analogous to the unknown distribution
of Ξ forD [77, 120].

Applied to the present use case, the uncertainty of model parameters can be approximated,
for instance, by empirically determined distributions of identified parameters from bootstrap
samples.16

15The name is derived from the phrase “pull yourself up by your bootstraps”, famously associated with “The
Surprising Adventures of Baron Munchausen”. It means to succeed on your own, without any help from
outside (in something that seems impossible).

16It is important to note that the bootstrap samples should have the same size as D, since many statistical
characteristics are dependent on sample size. Accordingly, the replacement during sampling is necessary, as
otherwise it would be the case thatD = D∗m ∈ [0,M]. [120]
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This thesis analyzes three different bootstrapping approaches for determining the uncertainty:
bootstrapping of training data, bootstrapping of residuals and a two stage bootstrapping
approach, which will be explained in the following. The three bootstrapping methods were
selected because each incorporates different combinations of uncertainties. This allows to
estimate the influence of the respective uncertainty types in a direct comparison.

All bootstrapping approaches are performed for the ARX model and in the domain of the
decomposed signals, as it is recommended e.g., in Ref. [167]. In consequence, the residuals
exhibit lower heteroscedasticity over time. Furthermore, for each approach 200 ensemble
members are generated, as no significant improvement could be observed in exemplary tests
with more ensemble members.17

Bootstrapping of training data

Training data bootstrapping, sometimes referred to as "case bootstrapping" [49], is the process
of generating M random samples D∗m ∈M with the same size from the training data set
D = {

xn, yn
}N
n=1. Afterwards, for each bootstrap sample m ∈ [1,M] an ARX model is

determined according to the method described in Section 4.1.1 and subsequently a forecast
ŷm ∈ R is generated. This results in an ensemble of generated forecasts throughout all
bootstrap samples (see also Algorithm 3 and Figure 4.7 for an overview of this appraoch).

The basic principle of bootstrapping of the training data is predominantly used to determine
the confidence intervals of the model parameters [49, 77]. Accordingly, if the model structure
remains fixed, the different training data will result in varying estimated parameters and,
accordingly, a distribution over the parameters. Hence, it is clear that this approach only

Algorithm 3: Bootstrapping of training data

Preliminary steps: Generate the training data setD = {
Xn, yn

}N
n=1 from the

stationarized time series in the form of a regression problem (see (4.5))
1 for ensemble member m in M :
2 D∗m ··= {} // initialization
3 while #(D∗m) < #(D) :
4 Sample a block of six consecutive input-output cases

{
Xn, yn

}n+6
n , with

n ∈ [1,N − 5] fromD and append it to the bootstrapped training data setD∗m
5 Ensure #(D∗m) = #(D) by deleting surplus elements // necessary, if N mod 6 , 0
6 Determine the best model structure with the the developed greedy search algorithm

using cross validation (see Algorithm 2)
7 Estimate the model parameter θ̂m for the determined model structure using OLS
8 Generate a forecast ensemble member ŷm = Xf · θ̂m with the respective forecast

input Xf

17For the residual bootstrapping approach the members amount exceeds for instance, already the number of
different residuals to sample from, if only two weeks of training data are available.
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Figure 4.7: Principle behind the bootstrapping of training data.

considers the epistemic uncertainty. Model residuals and thus the aleatoric is not incorporated.
Nevertheless, the approach has been used, e.g., in Ref. [231] for probabilistic load forecasts
and in Ref. [205] for solar irradiation forecasts both in combination with several machine
learning appraoches. Moreover, the principle is also utilized in the machine learning domain
with the so-called bagging method (bootstrap aggregation) [23]. By averaging the ensemble
members, a part of the epistemic uncertainty is compensated, which enhances the deterministic
forecasting quality [167].

By applying the developed greedy search algorithm, the ARX model structure in this work
also varies across the bootstrapping samples. Accordingly, not only the parameter uncertainty
but also part of the uncertainty induced by the model structure is taken into account with this
approach.18

The bootstrapping is applied to the supervised training data set formulated according to
Equation (4.5). Otherwise, direct sampling would introduce gaps in the time series.19 However,
when bootstrapping regression problems of time series, it is recommended to sample blocks
consisting of several rows rather than individual rows [27]. Thereby some time related
information and dependencies are still preserved within each sample [27]. For this purpose,
1.5 hours (six samples) are selected in this work, since the partial autocorrelation values of
the stationarized PV power signals were highest over this time span.

Residual bootstrapping

Residual bootstrapping was already applied successfully in several energy forecasting use
cases (see e.g., wind power: [86, 169], load: [212]). This approach generates an ensemble

18It should be noted that probably not all of the uncertainty generated by the assumed model structure is
addressed, as specific model constraints are imposed by the assumption of an ARX structure (e.g., linear
combination of the lagged inputs)

19In comparison: during the bootstrap of the supervised learning data set, certain time steps of the PV power
signal might not be sampled as model output, but might appear indirectly in other samples as model input.
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4.2 Probabilistic representation using ensemble members

member ŷm of the probabilistic prediction by adding a bootstrapped residual ε∗m ∈ R to the
prediction result of an underlying deterministic forecast:

ŷm[t] = ŷ[t] + ε∗m. (4.12)

Consequently, it depicts only the aleatoric uncertainty, as only the distribution at the model
output is modeled. Despite the applied stationarization, a systematic variation of the signal
variance often remains in solar forecasts, leading to a heteroscedastic distribution of the
residuals (see also Figure 4.8) [90]. Therefore, a simple bootstrapping from all residuals
should be avoided and instead a prior selection of possible residuals to sample from each
time should be preferred.

In general, a nearest neighbor approach is used to find similar circumstances in the past
in order to generate appropriate residual pools. Depending on the use case and available
data sources, different influential variables are incorporated in past studies. In Ref. [90], for
instance, the selection of possible residuals is based on the respective solar elevation and
solar hour angle of the time points. Ref. [3] in turn, also includes additional meterological
weather signals as cloud cover and predicted GHI.

Since this thesis focuses on the commissioning period, where data points are limited, consid-
ering too many different features for the selection of residual pools is unreasonable. Instead,
the underlying concept of the solar positions is adapted by assigning the residuals from
the same hour of the day in the past to the respective residual pools. Due to the applied
adaptive ARX approach, the solar hour angle and solar elevation are similar over the short
observation horizon and additionally, no further information about the location is needed. To
prevent systematic bias the residuals are thereby also mean adjusted [50]. A summary of the
bootstrapping method is given in Figure 4.9 and Algorithm 4.
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Figure 4.8: Distribution of the residual of the ARX model for the stationarised signal as a function of the hour
of the day for the location in north bavaria. Even after stationarization, the variance varies differs throughout the
day.
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Algorithm 4: Residual bootstrapping
Preliminary steps: Determine the best model structure with the the developed greedy
search algorithm (see Algorithm 2) and generate an according training data set
D = {

Xn, yn
}N
n=1 = (X, y) from the stationarized time series

1 Estimate θ̂ = (XT X)−1XT y of the underlying point forecast via OLS
2 Determine ŷ = X · θ̂ and calculate ε = ŷ − y
3 Group residuals ε on an hourly basis h ∈ [0; 23] and mean adjust each group
εh = εh − εh

4 Generate the deterministic forecast ŷ for the future
5 for ensemble member m in M :
6 Bootstrap sample ε∗m from respective hourly pool εh

7 Generate the ensemble members ŷm = ŷ + ε∗m
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Figure 4.9: Principle behind the residual bootstrapping method.

Extended sieve with residual bootstrapping

The two bootstrapping appraoches presented earlier each consider only one uncertainty type.
Thus, a two-stage bootstrapping approach is adapted from Ref. [50] (Algorithm 6.4), which
depicts both uncertainty types. To the best of the author’s knowledge, this method has not
been applied to probabilistic solar forecasts before.

First, in a preliminary for loop, bootstrapped residuals are used to generate synthethic output
training data, which in turn is used to identify new model parameters. Thereby, primarily
the epistemic is taken into account. Afterwards, the residuals are bootstrapped again in a
secondary for loop similar to the residual bootstrapping. This primarily depicts the aleatoric.
Analogous to residual bootstrapping, the residuals in both for loops are first sorted into
respective pools depending on the hour of the day and afterwards mean adjusted. A summary
and detailed description of the algorithm can be found in Figure 4.10 and Algorithm 5. The
parameters M ∈ N and R ∈ N of the for loops thereby define how many bootstrap samples
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should be used to estimate the respective uncertainties. In this study, M was set to 20 and R
to 10, which results overall also in 200 ensemble members.

Algorithm 5: Extended sieve with residual bootstrapping
Preliminary steps: Determine the best model structure with the the developed greedy
search algorithm (see Algorithm 2) and generate an according training data set
D = {

Xn, yn
}N
n=1 = (X, y) from the stationarized time series

1 Estimate θ̂ = (XT X)−1XT y of the underlying point forecast via OLS
2 Determine ŷ = X · θ̂ and calculate ε = ŷ − y
3 Group residuals ε on an hourly basis h ∈ [0; 23] and mean adjust each group
εh = εh − εh

4 for parameter ensemble m in M :
5 Bootstrap samples ε∗m from the respective hourly pool εω to generate a synthesized

model output with ym = ŷ + ε∗m
6 Reestimate parameter θ̂m = (XT X)−1XT ym for this bootstrapped replication
7 Calculate residuals εm = Xθ̂m − ym, group them on an hourly basis and mean

adjust each group εh,m = εh,m − εh,m

8 for residual ensemble r in R :
9 Bootstrap sample ε∗r from the respective εh,m and calculate an overall ensemble

residual εm,r = Xf(θ̂ − θ̂m)︸      ︷︷      ︸
primary epistemic

+ ε∗r︸︷︷︸
primary aleatoric

with the forecast input Xf

10 Generate predicted ensemble member ŷm,r = ŷ + εm,r

Past PV power
PPV[t]

Stationarization
by time

decomposition

Transformation
into supervised

problem

Delete night
time values at
forecast output

P̃PV[t]

Preprocessing

input output

Generate point
forecast with
greedy search

algorithm

P̃PV

Sort residuals by
hour of the day
and mean adjust

D ˆ̃PPV ε εh− Error
database
for each
hour of
the day

output
input

Training data
with synthesized

model output

Synthesized model output P̃PV,m

ˆ̃PPV

Bootstrapped residuals ε∗m

Generate point
forecast with
greedy search

algorithm

Generate point
forecast with
greedy search

algorithm

Generate point
forecast with
greedy search

algorithm

Sort residuals by
hour of the day
and mean adjust

Error
database
for each
hour of
the day

εm εh,m

P̃PV,m

−

× Destationarization
Estimated parameters with

original training data θ̂

Forecast
input
Xf

ˆ̃PPV

Estimated
parameters
θ̂m

−
Distribution
of parameter

deviations εm,r p̂(P̃PV)

Bootstrapped residuals ε∗r

p̂(PPV)

Figure 4.10: Principle behind the extended sieve with residual bootstrapping method.

73



4.2 Probabilistic representation using ensemble members

The first stage of this approach, resembles the so-called Sieve bootstrapping, which is espe-
cially recommended for time series [5, 26, 27].20 The advantage of sieve bootstrapping is that
temporal information and dependencies between samples are preserved. It was successfully
applied for wind forecasting in Ref. [86] and for solar irradiation forecasting in Refs. [48,
90].21 In addition, a similar variation of a two-step bootstrapping approach was successfully
applied in Ref. [230] for load forecasting. There, first training data and second residuals were
bootstrapped in combination with a random forest appraoch.

4.2.2 Monte-Carlo dropout with output calibration

Monte-Carlo dropout

All described bootstrapping approaches of the ARX model could also be adopted for neural
networks. However, training MLPs is computationally more demanding than for ARX models
due to the nonlinear optimization problem, the number of parameters to be trained, and the
training epochs used. Thus, having the network trained individually per ensemble member –
e.g., for the consideration of the epistemic – would significantly increase the total training
time.

As an alternative approach, Yarin Gal et al. 2016 proposed the use of Monte Carlo (MC)
Dropout [83, 84]. The key idea is that the regularization method dropout (see also section
4.1.2) is applied not only during training, but also during inference. This leads to varying
network structures and therefore also varying estimated deterministic forecasts ŷ, despite
only a single model training (see also Figure 4.11). This approach leverages thereby the
dropout characteristic of decreasing co-adaptation, wich results in sparse subnetworks during
inference that tend to accurately reproduce the underlying behavior. Or to say it differently,
dropout can also be interpreted as if numerous thinned networks with shared weights are
implicitly trained [193].

As already stated in Equation 2.17 (p. 31) and repeated here for better readability, the predic-
tive distribution of the estimated output ŷ given the respective model input x and the training
data setD can be calulated by marginalization over the model parameters θ [83]:

p(ŷ | x,D) =
∫

p(ŷ | x, θ)︸    ︷︷    ︸
primary
aleatoric

p(θ | D)︸  ︷︷  ︸
primary

epistemic

dθ, (4.13)

20The difference to the described sieve bootstrapping approaches in the references is that instead of a simple
autoregressive model also exogenous variables are considered in this thesis through the ARX model. In
addition, the signal is not averaged in advance but stationarized via time series decomposition.

21One might ask why sieve bootstrapping was not used for the analysis of epistemic uncertainty in this thesis
instead of training data bootstrapping. Since the former uses the output residual to generate new parameters,
the aleatoric already has an effect on the ensemble generation. Accordingly, sieve bootstrapping does not
model solely the epistemic.
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Figure 4.11: The principle behind MC dropout. During inference, nodes are also dropped, leading to a different
structure for each forecast of the ensemble.

Gal et al. proved22 in Ref. [83] that each dropout member corresponds to a sample of the
approximated parametric posterior distribution q(θ | D), leading to:

θ̂i ∼ q(θ | D) ≈ p(θ | D). (4.14)

A sufficient number of MC sample parameters thus approximates p(θ | D), which concludes
that the generated ensemble members represent the effects of the epistemic uncertainty on the
forecast.

As a result, MC dropout is often combined with other methods such as a mean and variance
[131, 146, 157] or quantile [126, 186] estimation at the model output to represent the overall
uncertainty. For instance, it has been successfully applied in the past in load forecasting [38,
146, 186], weather forecasting [131], wind power forecasting [157] or in other practical areas
including e.g., time series forecasting at Uber [233]. In the field of solar forecasting it has
been used only sporadically. Ref. [126] used it in combination with quantile regression for the
prediction of an 80 % prediction interval. Ref. [208] in turn estimated with it a 95 % prediction
interval for a one step ahead PV power forecast. However, neither reference analyzed the
accuracy over the entire PDF, e.g., using multiple quantiles, examined the combination with
multiple approaches, or evaluated the impact on multi-step prediction.

22The authors proved that as long as dropout is applied in each hidden layer, the distribution of the dropout
configuration is equivalent to a deep Gaussian process that estimates p(θ | D) by minimizing the Kullback-
Leibler divergence.
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In this thesis, MC dropout is combined with mean and variance estimation, with mixture
density networks (MDNs), as well as with quantiles, and is also compared with other repre-
sentations methods for the epistemic uncertainty. Nevertheless, the focus in this segment is
on using MC dropout while maintaining an ensemble uncertainty representation and simulta-
neously accounting for the overall uncertainty. For this purpose, post-processing using output
calibration is carried out in the following.

Output calibration

The output calibration of a derived predictive uncertainty via postprocessing is predominantly
carried out using a held out calibration data set [85]. Under the assumption, that the omitted
data set represents the same uncertainty distribution as the underlying process, one can use it
to adjust the uncertainty of the Monte Carlo ensemble to depict also the aleatoric uncertainty.

In this thesis the method called "calibrating regression uncertainty distributions empirically"
(CRUDE) is being applied. In Ref. [227] it showed better better results in comparison to
other output processing methods in combination with MC dropout and is particularly suited
for non Gaussian distributions, as no parametric form for the uncertainty is assumed. The
general assumption thereby is that the generated MC dropout distribution can be linearly
scaled to generate the sought after underlying probabilistic distribution. This principle is also
consistent with the calibration approach proposed by Yarin Gal et al. in the appendix to their
paper on MC dropout [83].

First, for each ensemble member m ∈ [1,M], at each forecast time t of the calibration data set
Dcal, the respective z-score

Zcal[t] =
y[t] − ŷcal[t]
σ̂cal[t]

(4.15a)

with σ̂cal[t] =
1
M

M∑

m=1

(
ŷcal,m[t] − ŷcal[t]

)2
, (4.15b)

and ŷcal[t] =
1
M

M∑

m=1

ŷcal,m[t], (4.15c)

is calculated, which basically describes how many standard deviations σ̂cal ∈ R≥0 the obser-
vation y ∈ R is away from the forecasted mean ŷcal ∈ R of the ensemble [226]. Afterwards,
the CDF P(Zcal) is formed over all considered z-scores of the calibration data set (see also
Figure 4.12). With its inverse, the percentile function P−1(υ), the estimated output power for
the probability υ ∈ [ 1

M ,
2
M , . . . , 1] can be calculated as follows:

ŷυ[t] = ŷtest[t] + P−1(υ) · σ̂test[t], (4.16)
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I. Calculation of calibration parameter II. Calibration of MC dropout distribution
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2. Calibrate the forecast:
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Figure 4.12: Illustration of the CRUDE steps involved in the calibration process.

whereby σ̂test[t] ∈ R≥0 is the standard deviation and ŷtest[t] ∈ R the mean of the forecasted
ensemble of the test data set [226, 227]. Essentially, CRUDE utilizes the calibration data to
determine the deviation of individual probabilities from the average and subsequently scale
the standard deviation of the forecast accordingly.

As the aleatoric uncertainty of the data may increase with higher values, the CRUDE z-scores
will be distinguished in this thesis for every hour of the day. This enables a different calibration
of the distributions for each hour and also adapts the same approach as the binning of the
residual pools of the previously presented bootstrapping method. It is also in line with the
suggestions of Yarin Gal et al. who recommend to compensate the influence of the data
magnitude when calibrating MC dropout [83]. In addition, an hourly discrimination has
shown better results in initial studies.

Simulation setup

Table 4.1 summarizes the specific parameters used for MC dropout in addition to the hyper-
parameters already described in Section 4.1.2 for the MLP structure. To analyze the influence
of the dropout factor as well as the number of ensemble members, these two parameters are
varied in the simulation.

Creating the individual training data sets is not straightforward, as a calibration data set
is also required. 20 % of the data are used only for calibration and 20 % of the data are
used for both validation and calibration.23. In this process, complete days of the regression
formulation are sampled to make sure that all hours of the day are available and all data
23In general the calibration data set should be completely independent of the training data set [227]. However,

especially with the small number of days studied, and the distinction made between the individual hour slots
during the day, it is not feasible to separate the calibration and validation data sets. The influence of the
validation set on the training is also comparatively small as it is only used for the determination of the best
model during early stopping.
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Table 4.1: Used hyperparameter for the MC dropout methd with CRUDE postprocessing. For a specification of
the other hyperparameter see also Section 4.1.2.

Hyperparameter

Number of hidden layers 3
Number of units per hidden layer 50
Batch size 32
Validation split 20 %
Calibration split 40 %
Dropout factor [0.1, 0.3, 0.5, 0.7, 0.9]
Amount of MC dropout ensemble members [50, 100, 500]

sets have homogeneous distribution of the times of the day. In addition, the calibration data
are predominantly sampled from temporally more recent data. This ensures that for a very
large amount of available training data, the sun positions of the individual hour slots of the
calibration data are very similar to the forecasting time period. A more detailed description
of how the data sets are created is summarized in Figure 4.13.

Strictly speaking, the calibration and the determination of the calibration parameters are also
subject to epistemic uncertainty. Given the limited amount of training data, this epistemic
could have a significant effect on the overall forecasting quality. In order to evaluate this
influence on the calibration, five different sampled versions of the individual data sets are also
tested for each training initialization. This corresponds to a bootstrapping of the respective
training data for the forecasting model and for the calibration model.

Notation information: The overall available data set for
the training isD whileDposs cal andDposs val respectively
represent the subsets of possible input/output pairs out
of which the calibration and validation data sets can be
sampled (see also illustration on the right).

(I) Randomly select 20% of the total available data
from the given range to be used exclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusivelyexclusively for ca-
libration to generateDcal excl ∈ Dposs cal

(II) Randomly select 20% of the total available data
from the given range to be used for validation to
generateDval ∈ Dposs val
Data selected exclusively for calibration in the
previous step cannot be included in the sample
(Dval ∩Dcal excl = 0).

(III) Assign the overall calibration data by
Dcal = Dcal excl ∪Dval

(IV) Generate the training data set byDtrain = D−Dcal

Generation of the data sets for model training

Overall data available
for training processD
Data (range) to sample vali-
dation data fromDposs val

Data (range) from which
data is taken to be used
exclusively for calibration
purposesDposs cal

Data ranges for the different data sets

An example generation of the data sets

Time

50 %

30 %

Dtrain Dval Dcal excl

Dcal

Figure 4.13: Specification of the procedure used to generate the different data sets (training, validation and
calibration) for the model training.
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4.3 Probabilistic representation using quantiles

4.3.1 Pinball loss function

The predominant approach to generate a quantile representation for time series models is
to adjust the loss function for the model training. While in classical linear regression the
parameters are estimated by minimizing the MSE of the residuals, in quantile regression an
asymmetric error function is minimized. A corresponding loss function for achieving this is
the so-called pinball loss:

PLυ(ŷυ, y) =


υ ·|ŷυ − y|, ŷυ ≤ y

(1 − υ) · |ŷυ − y|, ŷυ > y
, (4.17)

whereby υ ∈ [0, 1] denotes the quantile and ŷυ ∈ R the respective estimated output for it. As
can be seen in Figure 4.14 the lowest error for the pinball loss still occurs, when the forecast
matches the measurements and the resulting residual is zero. Nevertheless, depending on the
respective quantile the over- and underpredictions are weighted differently. For the illustrated
quantile 0.1, for instance, the pinball loss is nine times lower for underprediction than for
overprediction, if the absolute residuals are equal.

For each quantile an extra model with a corresponding set of parameters is commonly
estimated. This can lead to the effect of quantile crossing, whereby ŷυ1 > ŷυ2 although υ1 < υ2.
Since a CDF should increase monotonicall with υ, quantile crossing is compensated in this
thesis by rearranging the respective quantiles as recommended by Ref. [39].
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Figure 4.14: Pinball loss for different quantiles. In contrast to the mean square error cost function, the values of
the pinball loss increase linearly with the residuals. The origin of the name is easy to see, as the course of the
cost function resembles the reflection of a pinball.
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4.3 Probabilistic representation using quantiles

4.3.2 Quantile regression with the ARX model

There are different approaches to combine quantile regression with time series models. In
Ref. [48] and [161] the deterministic output of an ARMA model was used and afterwards
linearly scaled with one parameter

ŷυ[t] = θυ · ŷ[t], (4.18)

to generate the respective quantile forecasts for solar irradiation and PV power. However,
this approach has the disadvantage that additional influences are not taken into account when
determining the quantile and, thus, e.g., a remaining heteroscedasticity of the residuals or
uncertainty can not be considered. In Ref. [123], the authors were able to achieve better
results in a direct comparison for the quantile forecast of solar irradiation by applying the
pinball loss directly to the time series model instead. This is also the approach proposed but
not evaluated in Ref. [13] for PV power forecasts.

Accordingly, this approach is adopted in this thesis. The entire procedure is summarized in
Algorithm 6. In contrast to the referenced sources, the determination of the model order is
conducted automatically and without continuous consideration of the lags, using the developed
greedy search algorithm.

Algorithm 6: Quantile regression with consideration of the epistemic uncertainty

Preliminary steps: Generate the training data setD = {
Xn, yn

}N
n=1 from the

stationarized time series in the form of a regression problem (see (4.5))
1 for ensemble member m in M :
2 D∗m ··= {} // initialization
3 while #(D∗m) < #(D) :
4 Sample a block of six consecutive input-output cases

{
Xn, yn

}n+6
n , with

n ∈ [1,N − 5] fromD and append it to the bootstrapped training data setD∗m
5 Ensure #(D∗m) = #(D) by deleting surplus elements // necessary, if N mod 6 , 0
6 Determine the best model structure with the the developed greedy search algorithm

using cross validation (see Algorithm 2)
7 for quantile υ in [0.1, 0.2, . . . , 0.9] :
8 Estimate the model parameter θ̂m,υ for the determined model structure by

solving the nonlinear optimization problem:
θ̂m,υ = arg minθm,υ

(∑N
n=1 PLυ(ŷυ, y)

)
.

9 Generate a forecast for the ensemble member ŷm,υ = Xf · θ̂m,υ with the
respective forecast input Xf

10 for quantile υ in [0.1, 0.2, . . . , 0.9] :
11 Calculate the overall quantile forecast and compensate epistemic uncertainty by

ŷυ = 1
M

∑M
m=1 ŷm,υ
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4.3 Probabilistic representation using quantiles

Quantile regression only considers aleatoric, as only at the model output the distribution is
modeled. Consequently, bootstrapping of the training data is applied, which leads to different
model orders as well as parameter sets per ensemble (see also Section 4.2.1). The ensemble
members are subsequently averaged based on the assumption that:

p(ŷ | x,D) =
∫

p(y | x, θ) p(θ | D) dθ ≈ 1
M

M∑

i=1

p
(
ŷ | x, θ̂i

)
, θ̂i ∼ p(θ | D), (4.19)

with p(θ | D) being in this case represented by the the respective quantile forecasts.

4.3.3 Quantile neural network

In the quantile neural network, the pinball loss is used for the cost function and averaged over
all lags of the forecast horizon. This approach has been successfully used in the context of
solar forecasting [65, 126, 132, 139] as well as general energy time series forecasting [223,
224, 232].

In this thesis, a separate network is generated and trained for each quantile. Alternatively, all
quantiles could also be determined with a single neural network. However, given the present
use case with a forecast horizon of six hours, a sampling rate of 15 minutes, and the quantiles
to be determined ranging from 10 % to 90 %, this would result in 216 outputs for the neural
network. As the total cost function value would be the average of the pinball loss over all
outputs, local minima could be reached during training which yield very good results for a
large fraction of the outputs, while neglecting individual lags or quantiles.

In order to take epistemic into account, MC dropout is applied in this thesis. Analogous
to the approach in the ARX model, the ensemble members are subsequently averaged to
obtain the final forecast for the individual quantiles. To the best of the author’s knowledge,
the consideration of epistemics with quantile neural networks was only performed in [126].
There, an LSTM model was used to estimate PV power for the next hour at hourly resolution.
Even with more than 200 days of training data, it was able to improve sharpness by 33 %
and reliability by 4 %. However, the evaluation was done only on a very small test size (≈5
days), for one location and only for the 10 % to 90 % interval. Hence, further investigations
are necessary to enable more systematic assessments.

An illustration of the used quantile neural network can be seen in Figure 4.15 and an overview
of its specific hyperparameters can be found in Table 4.2.
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4.3 Probabilistic representation using quantiles
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Figure 4.15: Architecture of the used quantile neural network with dropout. For the estimation of each quantile
a different model was trained.

Table 4.2: Used hyperparameter for the quantile neural network. For a specification of the other hyperparameter
see also Section 4.1.2.

Hyperparameter

Number of hidden layers 3
Number of units per hidden layer 50
Batch size 32
Validation split 30 %
Dropout factor 0.3
Amount of MC dropout ensemble members [1, 50, 100, 500]

82



4.4 Probabilistic representation using a continuous probability distribution

4.4 Probabilistic representation using a continuous
probability distribution

4.4.1 GARCH model in combination with the ARX model

The Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) model is a volatil-
ity model developed by Tim Bollerslev in 1986. It has the following basic structure:

y[t] = µ[t] + ε[t] (4.20a)

ε[t] = σ[t] · χ[t] (4.20b)

σ2[t] = θres,0 +

Dres∑

j=1

θres, j · ε2[t − j · T ] +
Dv∑

i=1

θv,i · σ2[t − i · T ], (4.20c)

where µ[t] ∈ R is the mean model, ε[t] ∈ R is the volatility process also labelled as mean
model residuals and y[t] ∈ R is the output signal [19]. The underlying principle is that the
model used to estimate the mean – in our case the ARX model – is not able to represent the
respective volatility around the average given its model structure and cost function. Instead,
an additional volatility model is used (see also figure 4.16). For the volatility process, an
independent, identically distributed random variable χ[t] withE[χ] = 0∧Var(χ) = 1 is scaled
by an estimated conditional standard deviation σ[t] ∈ R≥0. The corresponding conditional
variance σ2[t] ∈ R≥0 is in turn defined as a linear combination of past values of the conditional
variance and past values of the model residuals, where θv ∈ RDv and θres ∈ RDres are the
weighting factors, and Dv ∈ Z≥0 and Dres ∈ Z≥0 are the considered model order.

GARCH models are predominantly used in economics to estimate the volatility of asset
prices, stock returns, indices, and currencies [78]. However, in the domain of probabilistic
energy time series forecasting, it has also been applied to wind power [37], electricity prices
[129], and electrical load [35, 36, 222].

Past PV power PPV[t]

Stationarization
by time

decomposition

Transformation
into supervised

problem

Delete night
time values at
forecast output

P̃PV[t]

Preprocessing

input output

Generate point
forecast with
greedy search

algorithm

P̃PV

Estimate
volatility via

GARCH model

Calculate
Quantiles Destationarization

D ˆ̃PPV ε

−

Distribution parameters
(e.g., standard deviation)

ˆ̃PPV,υ p̂(PPV)

Figure 4.16: Principle of the GARCH model in combination with the ARX model.
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4.4 Probabilistic representation using a continuous probability distribution

In the field of solar forecasting, it has been applied by David et. al. in Ref. [47] and Ref [48]
for the probabilistic forecasting of solar irradiance. In these studies, however, the accuracy
of the GARCH approach was lower than that of quantile regression. This was attributed
to the fact that the model error at hand was not symmetrically distributed and had a larger
kurtosis than the assumed Gaussian distribution [48]. However, this may be caused by the fact
that only autoregressive information was considered in the generation of the deterministic
forecasts, which means that the used ARMA model was insufficient to capture the behavior
of the underlying process. In Ref. [87] the GARCH model for the probabilistic prediction
of PV power was slightly modified to emphasize the variance residuals. However, as the
evaluation was only performed using a 99 % prediction interval, the results do not provide
enough insight into the quality for an entire distribution function.

The estimation of the GARCH parameters in this thesis is performed by maximum likeli-
hood estimation. Thereby, the parameters are determined which maximize the likelihood
of observing the measured data given a selected statistical model. For time series y[t] with
N independent data points, the likelihood function is the product of the probability density
functions of all observed values of the time series. Assuming that the density function pχ of
the random noise χ is known (4.20b), and given that the area under a density function must
remain equal to one, the density of ε is [78]:

pε(ε[t]) =
1
σ[t]

pχ

(
ε[t]
σ[t]

)
. (4.21)

Hence, the likelihood is given by:

ℓ(θv, θres|ε[t]) =
N∏

t=1

1
σ[t]

pχ

(
ε[t]
σ[t]

)
, (4.22)

with σ being recursively defined by (4.20c). For a more stable estimation of the parameters,
especially for individual small probabilities, a log transform is commonly applied to the
likelihood combined with a change of sign, leading to the minimization of the negative sum
of the a density functions called negative log likelihood:

θ̂v, θ̂res = arg minθv,θres −


N∑

t=1

log
1
σ[t]

pχ

(
ε[t]
σ[t]

). (4.23)

In addition to the commonly used Gaussian distribution, a skewed t-distribution is used in
this thesis in order to be able to better represent non-symmetric distributions. The Gaussian
probability density function of the signal x is defined as

p(x, σ, µ) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
(4.24)
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4.4 Probabilistic representation using a continuous probability distribution

with µ ∈ R being the mean and σ ∈ R+ the standard deviation [78]. The skewed t distribution
was introduced by Handsen in 1994 to the GARCH model family [92]. Its density function is
[92]:

p(x, σ, v, λ) = ζ2ζ3

1 +
1

v − 2


ζ1 + ζ2x/σ

1 + sgn
(

x
σ
+

ζ1
ζ2

)
λ



2

−(v+1)/2

, (4.25a)

with ζ1 = 4λc
(
v − 2
v − 1

)
, (4.25b)

and ζ2 =

√
1 + 3λ2 − ζ2

1 , (4.25c)

and ζ3 =
Γ
(

v+1
2

)

√
π(v − 2)Γ

(
v
2

) , (4.25d)

whereby the two shape parameters v ∈ R and λ ∈ R control the kurtosis and skewness,
respectively, and Γ denotes the gamma function. An overview of the skewed t-distribution with
different parameters for gamma and lambda in comparison to the Gaussian distribution can be
seen in Figure 4.17. The different parameters of the distribution functions are also estimated
during the maximum likelihood estimation. The percentile function of the distribution and
the mean prediction of the ARX model can subsequently be used to calculate the PV power
values for the different quantiles.

For the implementation of the GARCH model, the Python package “arch 6.1.0” is used [187].
In order to also represent the epistemic, the training data of the ARX model is bootstrapped,
which in turn results in a varying ARX model structure and mean model residuals. These
different residuals serve as training data to estimate the different GARCH models. Analogous
to the quantile regression, the calculated quantiles of the GARCH ensemble members are
subsequently averaged. The model order is the same as in Ref. [47] and Ref. [48] with
Dv = 1 ∧ Dres = 1, since it also yielded the best results in preliminary analysis.
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Figure 4.17: Skewed-t distribution with different parameters sets. v changes the kurtosis and λ the skewness.

85



4.4 Probabilistic representation using a continuous probability distribution

4.4.2 Mixture density network

MDNs were initially introduced by Bishop in [17] as a means of estimating general distribution
functions. For this purpose, the conditional probability distribution p(y|x) of the target variable
y given the input features x is represented as a linear combination of kernel functions Ψk(y|x):

p(y|x) =
K∑

k=1

φk(x)Ψk(y|x), (4.26a)

with:
K∑

k=1

φk(x) = 1 (4.26b)

where K ∈ N is the amount and k ∈ [1,K] is the respective number of the considered
components in the mixture model. Furthermore φk(x) ∈ R constitutes the weighting of the
respective mixture component also called mixing coefficient. In this work Gaussian kernels
are used, since a neural network with a sufficient number of hidden units and a mixture model
with a sufficient number of kernel functions can theoretically approximate any conditional
density function [17]. Consequently Ψk(y|x) is formulated as follows:

Ψk(y|x) =
1√

2πσ2
k(x)

exp
(
− (y − µk(x))2

2σk(x)2

)
(4.27)

with µk(x) ∈ R as the mean and σk(x) ∈ R≥0 as the variance of the kth mixture component.
To estimate the neural network parameter the negative log likelihood is used as minimization
objective L. This results together with (4.26) and (4.27) in:

L = − log
(
p(y|x)

)

= − log



K∑

k=1

φk(x)√
2πσ2

k(x)
exp

(
− (y − µk(x))2

2σk(x)2

)
.

(4.28)

For a better understanding of the applied MDN, its basic structure as well as exemplary
estimated distributions are depicted in Figure 4.18.

In practice, several measures must be implemented to guarantee that, on the one hand, the
Gaussian parameters comply with their mathematical constraints and, on the other hand, no
numerical instability occurs during training. The formulation in (4.28) is mathematically
ill-conditioned, as exponentiating small values can lead to a numerical underflow24, while
logarithmizing small values can lead to a numerical overflow. Given the negative sign, this

24An underflow occurs when an arithmetic operation attempts to produce a numeric value whose absolute value
is smaller than the range that can be represented by a given number of digits.
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Figure 4.18: Principle representation of the employed mixture density network (MDN) in combination with
dropout in the hidden layers. The weighted combination of the different Gaussian distributions allows to estimate
non-Gaussian distribution functions.

situation may occur, for instance, when the estimated variances during the model training are
relatively small. To mitigate this effect, the so-called log-sum-exp trick [18]

log
N∑

i=1

exp(ζi) = max j ζ j + log
N∑

i=1

exp
(
ζi −max j ζ j

)
,∀ N ∈ N, j ∈ [1,N], (4.29)

is adopted, whereby ζi ∈ R denote arbitrary values. By rearranging the maximum value
outside the logarithmic and exponential terms, an approximation for the optimization is
obtained, even if an underflow would occur in all summands. Moreover, the sum of the
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4.4 Probabilistic representation using a continuous probability distribution

exponents ≥ 1, even if underflow occurs, since at least one of the terms is exp(0). Consequently,
there are no numerical issue with the use of the logarithm.

For this purpose the exponential function within (4.28) is reformulated as follows:

L = − log



K∑

k=1

exp


log(φk(x)) −

constant︷     ︸︸     ︷
1
2

log(2π)−1
2

log
(
σ2

k(x)
)
− (y − µk(x))2

2σk(x)2 .




, (4.30)

leading in combination with (4.29) to:

L = − log


K∑

k=1

exp
(
ζk −max j ζ j

) −max j ζ j, ∀ j ∈ [1,K],

with ζk = log(φk(x)) − 1
2

log(2π) − 1
2

log
(
σ2

k(x)
)
− (y − µk(x))2

2σk(x)2 .

(4.31)

For the mixing coefficients φk(x) a softmax activation function is used, since they must
sum to unity (see (4.26)). In addition, clipping

(
φk ∈ [1 × 10−12, 1],∀k ∈ [1,K]

)
is performed

beforehand to guarantee that their values are positive and for numerical stability purposes
not too small. To ensure a positive variance Bishop [17] initially suggested an exponential
activation function. However, as these can get unstable for large values a softplus function
with an additional constant minimum variance term was added instead. This approach was
also used in [122] for multiple regression tasks with a deep ensemble and only a single
Gaussian distribution.

Consequently, the output layer of the neural network corresponds to a parameter vector
[hµk , hσ2

k
, hφk ]

T ,∀k ∈ [1,K], which must be post-processed to get the parameters of the
Gaussian mixture model (GMM) model for both the loss function and the forecast, as follows:

µk = hµk (4.32a)

σ2
k = log

(
1 + exp

(
hσ2

k

))
+ 1 × 10−6, (4.32b)

φk =
exp

(
ζφk

)

∑K
j=1 exp

(
ζα j

) , (4.32c)

with: ζφk =



1 × 10−12, if hφk ≤ 1 × 10−12

1, if hφk ≥ 1

hφk , otherwise

. (4.32d)
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4.4 Probabilistic representation using a continuous probability distribution

MDNs only depict aleatoric uncertainty, as e.g., the uncertainty of the estimated model
parameters is not considered. Analogous to the previous methods, members with different
estimated parameters are generated for the consideration of the epistemic.

This means for the present approach that the conditional distributions are combined in a
higher-level mixture model. Taking (4.26) and (4.27) into account, the overall distribution for
the approach can thus be determined as follows:

p(y|x) = M−1
M∑

m=1

pθm (y|x, θm)

=

M∑

m=1

K∑

k=1

φk,m(x)

M
√

2πσ2
k,m(x)

exp
−

(
y − µk,m(x)

)2

2σk,m(x)2

,
(4.33)

where M ∈ N is the overall amount of ensemble members and m ∈ [1,M] indicates the
respective ensemble member number. As can be seen in (4.33), the ensembles also influence
the shape of the distribution function. Since the overall amount of distribution is K times
M, the density flexibility increases. For instance, even with only one distribution used at the
output (K = 1) and multiple ensembles (M > 1), the result is a GMM. It should be noted,
however, that with well-chosen hyperparameters, the distributions between the generated
ensemble members are expected to differ less than the generated output distributions within a
single forecast.

For the generation of ensemble members, this thesis compares two different approaches, MC
dropout and multiple network initialization. The latter captures the deviation from the different
local minima of the objective function (4.31) reached during model training. Compared to
MC Dropout, better results were obtained with this approach in [122] for different regression
tasks. In addition, the multiple network initialization approach has been found to outperform
Bayesian neural networks in practice [76]. To take into account the uncertainty caused by the
limited training data, the training and evaluation data sets are randomly allocated before each
initialization.

An overview of the specific parameter of the applied MDN can be seen in Table 4.3.

Table 4.3: Hyperparameter used for the MDNs. For specification of the other hyperparameters see also Section
4.1.2.

Hyperparameter

Number of hidden layers 4
Number of units per hidden layer 75
Batch size 32
Validation split 30 %
Dropout factor 0.35
Amount of MC dropout ensemble members [1, 5, 10, 15]
Amount of network initializations [1, 5, 10, 15]
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“Accepting the advantages and limitations of
systematic forecasting methods [...] is critical.
Such methods do not possess any prophetic
powers, they simply extrapolate established
patterns and relationships to predict the
future and assess its uncertainty.”

Spyros Makridakis [168]
(Founding chief editor of the Journal of Forecasting and the

International Journal of Forecasting)

5
Results

Considering the large number of comparison possibilities, the focus of this chapter is first on
analyzing the different variations of the respective methods (e.g., with different hyperparame-
ters) in detail. This is particularly interesting as several of the introduced methods are applied
for the first time to PV power forecasts to the best of the author’s knowledge. Furthermore,
commissioning simulations with little training data have not yet been carried out.

Afterwards, the overall comparison of the respective best methods and hyperparameter com-
binations across all representation forms is performed in Section 5.7.
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5.1 Bootstrapping approaches for the ARX model

Figure 5.1 illustrates both the probabilistic accuracy and the relative improvement of the
bootstrapping approaches compared to the reference forecast, each depending on the amount
of training data.1

Both Sieve bootstrapping (16.2 %) and Residual bootstrapping (15.9 %) demonstrate a better
forecast accuracy than the benchmark with just 7 days of training data. However, training data
bootstrapping has a worse forecast quality than the benchmark. Combined with the fact of the
small differences (maximal 0.2 %) between residual bootstrapping and sieve bootstrapping,
it can be concluded that the influence of epistemic uncertainty for the ARX approach on
the present use case is rather small or even negligible. This conclusion is reinforced further
by the rank diagrams in Figure 5.2. These show that the rank histogram of the training
data bootstrapping approach is far too sharp / underdispersed. This is due to the fact that the
modeled parameter uncertainty only accounts for a significantly smaller part of the uncertainty.

The low influence of the epistemic uncertainty also results from the determination of the
significant model lags via cross-validation with the greedy search algorithms and by al-
lowing gaps between them. Both prevent an unnecessarily high number of parameters and

-0.3 -3.0 -7.4 -10.0

15.9 14.7
11.5 9.6

16.2 14.8
11.5 9.6

Sk
ill

sc
or

e
[%

]

NCRPS and SS averaged over all locations

19.58 16.43 16.37 19.76 16.36 16.35
20.69

17.08 17.07
21.24

17.47 17.48

Amount of training days [d]

N
C

R
PS

[%
]

7 21 35 49

−10

0

10

20

7 21 35 49
0

20

40

60

Training data
bootstrapping
Residual
bootstrapping
Sieve
bootstrapping

Figure 5.1: The NCRPS depicted as box plots and the SS depicted as bar graph averaged over all locations
for the different bootstrapping approaches. As benchmark serves the CH-PeEn. The specific results for the
individual locations can be found in the appendix in A.4. The whiskers in the box plot span 1.5 times the
interquartile range, which extends from the 25th to the 75th percentile.

1The skill score is only presented as a bar graph in this thesis. As stated in Section 3.3.2, the skill score is
not proper. Hence, the skill score should not be determined for individual data points or small samples to
ensure consistent statements. Therefore, the NCRPS values are first averaged over all measured values and
subsequently the skill score is calculated.
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Figure 5.2: The rank histogram for the analyzed bootstrapping algorithms for different amount of training
data. The training data bootstrapping rank histogram is underdispersed, leading to the conclusion that this
probabilistic forecast approach generates a too sharp distribution.

correspondingly a higher parameter uncertainty. The other two bootstrapping approaches,
though, consistently show a good reliability in the rank diagram. Nevertheless, with increasing
amounts of training data, all distributions tend to become more and more underdispersed with
the bars of the 1st and 10th ranks increasing in particular.

The effect of forecast deterioration with increasing number of training data can also be
observed when looking at the NCRPS value. Figure 5.3 shows the relative improvement in
NCRPS of each respective forecast as a function of the number of days of training data used.
While the forecast quality has increased slightly due to the increase from 7 to 21 days of
training data (e.g., 0.44 % for residual bootstrapping)2 , a deterioration of the forecast quality
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Figure 5.3: The relative change of the NCRPS due to the additional available amount of training data. While
the addition of 7 to 21 days of training data still improves the prediction accuracy for two of the three methods,
a general deterioration of the prediction accuracy can be seen from 35 days of training data onwards. Due to the
comparatively longer time period, the influence of seasonal effects increases, which cannot be captured with the
applied ARX model approach.

2If one only considers the skill score, it seems as if the forecast gets worse with 21 days of training data.
However, the reduction is due to a relative improvement in the prediction quality of the benchmark.
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5.1 Bootstrapping approaches for the ARX model

is visible starting from the step of 21 to 35 used training data days (e.g., 4.43 % for residual
bootstrapping).

Due to the comparatively longer time period, the influence of seasonal effects increases, which
cannot be captured with the applied decomposition model approach for the stationarization.
For instance, depending on the season and the location the sunrise and sunset times can shift
by more than one hour from one month to the next, which in turn reduces the accuracy of the
piece wise linearization based on the temporal operating points. Furthermore, the volatility
of PV power varies throughout the year. Hence, a comparatively lower volatility in summer
could be better predicted e.g., with less highly volatile training data from spring.

State of the art to compensate the occurring seasonal changes with the ARX model would be
either to adjust the window width accordingly (e.g., limit it to a climate/site-specific duration
of 21 days in our case) or to introduce a forgetting factor for the training data [48]. In this
thesis the first approach is chosen. Thus, even if 182 days of training data were available for
the selected model approach, only the last 21 days would be considered by using a moving
window.

In addition to the prediction accuracy, the computational time required for the individual
bootstrapping algorithms was monitored (see Figure 5.4). The evaluation of the required
computation time should be interpreted primarily qualitatively, as different results can be
expected depending on the available hardware and type of implementation. For this reason, a
normalization is carried out with respect to the longest required computing time (15.7 s). In
particular, a repeated parameter estimation by least square to model the epistemic uncertainty
is more computationally intensive. Consequently, the Sieve bootstrapping and training data
bootstrapping take two to three times as long as the residual bootstrapping.

As Sieve bootstrapping was only marginally better for the analyzed systems the residual
bootstrapping approach is probably preferable, particularly when using the algorithm on low
computational edge devices, e.g., remote terminal units.
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Figure 5.4: Needed computational time to generate a respective forecast for the different bootstrapping fore-
casting methods. As the absolute time depends highly on the available hardware and type of implementation a
normalization was carried out with respect to the longest required computing time (15.7 s).
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5.2 Monte-Carlo dropout with output calibration

Figure 5.5 displays the prediction quality of the MC dropout for both the calibrated and
uncalibrated cases. It is immediately apparent that the benchmark algorithm performed better
with 7 days of training data. This is partly due to the fact that only 4 days are used to train the
neural network as the additional calibration data set is required. Moreover, the calibration
data set is also too small, which even results in a deterioration compared to the uncalibrated
case.

However, from 21 days of training data, the MC dropout approach is already considerably
better than the benchmark. This effect also increases with 182 days of training data, where,
for example, the calibrated model shows a forecast with a 31.7 % lower NCRPS compared to
the CH-PeEn. In addition, the calibrated approach is significantly better in both cases. For
instance, the difference between the approaches for 21 days of training data is 3.4 %, which
in turn corresponds to a relative improvement of ∼ 21 %.

The reason for the significant improvement of the calibrated prediction compared to the
uncalibrated one becomes especially clear in the rank histogram (see also Figure 5.6). Only
a consideration of the epistemic uncertainty is not sufficient, as this results in a too sharp
probabilistic forecast. This can be concluded from the ∪-shape of the rank histogram. Despite
this, an improvement compared to the benchmark without calibration, can be seen due to the
good underlying point forecast. It keeps many of the sharp predictions close to the true value
and thus positively influences the metric. The calibrated forecast, in turn, is significantly more
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Figure 5.5: The NCRPS depicted as box plots and the SS depicted as bar graph averaged over all locations for
Monte-Carlo dropout with output calibration. As benchmark serves the CH-PeEn. The specific results for the
individual locations can be found in the appendix in A.4.
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Figure 5.6: The rank histogram for MC dropout for different amount of training data.

reliable and shows almost a uniform distribution in the rank histogram, especially for 182
days of training data. The slight increases in rank 1 and 10 for 21 days of training data are
probably due to the fact that the calibration data set is not sufficient to adequately reflect the
very high and low extreme values.

The dependence of the forecast quality on the forecast horizon is displayed in Figure 5.7. It
clearly shows how much more difficult it is to predict further into the future. For example,
the skill score is 37 % lower with a forecast horizon of five to six hours compared to the next
hour despite 182 days of training data. This is due to the fact, that the current volatility, e.g.,
strong winds/calm weather, can change more with a longer forecast horizon. In addition, it
can be seen that even with 7 days of training data, the model is better than the benchmark
with a low forecast horizon.
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Figure 5.7: The skill score for both the forecast one hour into the future and five to six hours into the future.
There is a significant deterioration in the forecast quality for the period further into the future. As benchmark
serves the CH-PeEn.
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The influence of the dropout factor was analyzed in preliminary studies during the hyper-
parameter selection using the location in North Bavaria. As can be seen from Figure 5.8,
the prediction accuracy is almost the same except for the dropout factor of 0.9, due to the
subsequent calibration. Since 50 % was slightly better with 182 days of training data, it was
selected for the investigations.

Both the number of network initializations and the number of MC dropout ensemble members
positively impact the prediction accuracy, as can be seen in Figure 5.9. For instance, with
21 days of training data, multiple network initializations alone can reduce the NCRPS value
of the prediction by 8.26 %. The influence of the MC dropout ensemble members is lower,
however. This is partly attributable to the subsequent calibration. Furthermore, only in the
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Figure 5.9: Influence of the number of MC dropout members and network initializations during training on the
forecast quality depending on the amount of available training data. The data includes all forecasts over the
entire horizon (six hours). To enable a clearer analysis of the benefits of the epistemic extensions, the prediction
with one dropout member and one initialization member was used as a reference value for the skill score for
each respective amount of available training data.
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case of multiple initializations, is the epistemic of the calibration model depicted by using
different timestamps for the calibration data set of each ensemble member. Consequently,
at least a few ensemble members should be considered in practice, since considerable great
advances can already be achieved with relatively little effort. It is also noticeable that the
improvement due to network initialization decreases as the amount of training data increases.
Given the larger training and calibration data sets the influence of the epistemic decreases.

5.3 Quantile regression with the ARX model

As can be seen in Figure 5.10, the ARX model in combination with quantile regression
shows a significant improvement compared to the CH-PeEn benchmark. For instance, the
skill score is 19 % for 7 days of training data. As with the ARX bootstrapping approaches, the
predictive accuracy decreases as the number of training days increases. Thereby, the marginal
deterioration from 7 (15.9 %) to 21 (16.0 %) days of training data is caused by individual
outliers. For example, the median at 21 days (10.2 %) is even slightly lower than at 7 days
(10.6 %). Accordingly, an adaptive approach with a moving training data window is also
preferable for this probabilistic method. This is also supported by the histogram (see Figure
5.11), which shows a bias, especially starting from 21 days of training data.
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Figure 5.10: The NCRPS depicted as box plots and the SS depicted as bar graph for the quantile regression
approach with the ARX model. As benchmark serves the CH-PeEn.
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Figure 5.11: The rank histogram for quantile regression in combination with the ARX model approach for
different amount of training data.

Although the prediction quality does not improve as the number of training data increases,
the influence of the epistemic is still relatively high. Thus, the average of the probabilistic
distributions of the ensemble shows a higher prediction quality than even the best ensemble
member (see Figure 5.12). Hence, it can be concluded that the model uncertainty is primarily
caused by the restrictive linear model structure of the ARX model and not by the available
amount of training data. This conclusion is also confirmed in Section 5.7 in the comparison
with the GARCH approach.

A potential reduction of the model bias could be achieved by determining the optimal model
structure in the greedy search algorithm during cross validation directly on the basis of the
probabilistic forecast and thus also with a probabilistic metric.
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Figure 5.12: Influence of ensemble member averaging on prediction quality. The averaged forecast has better
accuracy than any of the individual ensemble members. The difference between the average and the ensemble
members declines with an increasing number of training data, as this also decreases the distinction between the
determined ARX model structures by the greedy search algorithm.
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5.4 Quantile neural network

Averaged over all locations, the quantile neural network already shows a better forecast quality
at 7 days than the benchmark of 4.1 % (see Figure 5.13). Nevertheless, this does not apply to
all the examined sites, as Vienna has a negative skill score. However, the improvement with
increasing number of training days is significant. Both in relation to the benchmark and also
in terms of the absolute NCRPS values. For example, the NCRPS value decreases in relative
terms by 31 % from 18.4 % to 12.7 % with 182 days of training data. This improvement is
also visible in the rank histogram in Figure 5.14. The distribution is almost uniform at 182
days.

These results suggest that the model structure is initially too complex for the available amount
of data. However, when 182 days of training data are available, slightly worse results were
obtained in the sample tests with 30 instead of 50 neurons per hidden layer.

The influence of the epistemic and the extent to which the ensemble members can compensate
it is also shown in Figure 5.15. Here it can be seen that the increase in additional MC dropout
ensemble members has no significant influence on the prediction quality.

The influence of the epistemic and the extent to which the ensemble members can compensate
for it is also shown in Figure 5.15. The increase of additional MC dropout ensemble members
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Figure 5.13: The NCRPS depicted as box plots and the SS depicted as bar graph for the quantile neural network.
As benchmark serves the CH-PeEn.

100



5.4 Quantile neural network

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

Rank

R
el

at
iv

e
fr

eq
ue

nc
y

7 days

1 2 3 4 5 6 7 8 9 10
Rank

182 days

Figure 5.14: The rank histogram for the quantile neural network for different amount of training data.

has no significant influence on the prediction quality.3 However, the influence of the network
initializations is significantly higher, as the forecast quality increases by 4.36 % at 7 days if
the network is initialized five times.

There are two reasons for the difference in impact. Firstly, MC dropout tends to focus on a
single mode of the loss landscape, whereas different network initializations tend to explore
diverse modes in the function space [76]. Secondly, the training and validation data was
also resampled for each initialization. Both lead to a greater variance between the ensemble
members and also to a better consideration of the epistemic. As was to be expected, the
influence of the epistemic also decreases at 182 days due to the greater number of data. Hence,
the network initializations only increased the prediction quality by an average of 2.24 %.
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Figure 5.15: Influence of the number of MC dropout members and network initializations during training on
the forecast quality of the quantile neural network for different amount of available training data. The illustrated
chart contains all forecasts over the entire horizon (six hours). To enable a clearer analysis of the benefits of the
epistemic extensions, the prediction with one dropout member and one initialization member was used as a
reference value for the skill score for each respective amount of available training data.

3The reduction of 0.03 % with increasing number of ensemble members via MC dropout is due to the fact
that negligibly better members were apparently drawn at random in the 50 members. To reduce the effect
of individual ensemble members, five different combinations of ensemble members were used for each of
the ensemble scenarios shown. Accordingly, each number in Figure 5.15 also represents the average of 5
different selected ensemble pairs.
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5.5 GARCH model in combination with the ARX model

Figure 5.16 depicts both the probabilistic accuracy and the relative improvement of the
GARCH model compared to the reference forecast. Already 7 days of training data show
a significant improvement of the forecast quality of 30.5 % for the Gaussian distribution.
Compared to the other ARX approaches, the forecast quality is consistent for different numbers
of training data. Nevertheless, with 21 days of training data, the NCRPS values are marginally
better at 13.1 % for the Gaussian distribution. With an additional number of training days, the
NCRPS values increase slightly. Accordingly, an adaptive approach or an approach that uses
the training data with a moving window is also recommended for the GARCH model.

The accuracy results of the different distributions show a marginal difference. The estimated
Gaussian distribution approach has a roughly 0.2 % lower NCRPS value at 21 days than the
model with Skewed-t distribution. However, the negligible difference is primarily due to the
influence of “more extreme” deviations during averaging. For instance, at 21 days of training
days, the median NCRPS for the Gaussian distribution (9.31 %) is even slightly higher than
for the Skewed-t distribution (9.26 %).

This aspect is also supported by the rank histograms in Figure 5.17. Given the minimally
overdispersed distribution with assumed Gaussian distribution, it can be concluded that the
prediction intervals are relatively wide. This leads to slightly higher NCRPS values over
several predictions, but at the same time reduces the probability of outliers or very poor
predictions. Due to the mostly heavier tails of the t-distribution, the outer ranks one and ten in
particular are better calibrated with this distribution. At the same time, a bias is recognizable.
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Figure 5.16: The NCRPS depicted as box plots and the SS depicted as bar graph averaged over all locations for
the GARCH model. As benchmark serves the CH-PeEn. The specific results for the individual locations can be
found in the appendix in A.4.
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Figure 5.17: The rank histogram for the GARCH model for different amount of training data and different types
of assumed residual distributions.

Overall, both the rank histograms and the NCRPS values show better results compared to the
previous ARX approaches. The high forecasting accuracy even with a low amount of training
data can be attributed to the more rigorous model formulation with assumed uncertainty
distribution and therefore lower flexibility. Consequently, the influence of the epistemic is
also comparatively low. This is also one of the reasons why averaging the ensemble members
only marginally improves the prediction quality (see Figure 5.18). For instance, the average
of the ensemble does not have a higher accuracy than the best ensemble member, as it was
the case with the quantile ARX approach. Nevertheless, the bagging approach increases
the robustness of the prediction, especially with little training data, as individual ensemble
members also perform worse. The accuracy of the prediction can potentially be improved
in the future if, in addition to the structure of the underlying ARX model, the order of the
GARCH model is also varied.
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Figure 5.18: Influence of ensemble member averaging on prediction quality. The spread in accuracy between
the respective ensemble members decreases with an increasing number of training data, as the influence of the
epistemic also lessens.
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5.6 Mixture density network

Figure 5.19 illustrates both the probabilistic accuracy and the relative improvement of the
MDN compared to the reference forecast, each depending on the amount of training data
and the number of mixture distributions. A significant improvement of 14.4 % to 16.0 %
compared to the benchmark can already be observed with 7 days of training data and a single
Gaussian output distribution. MDNs can therefore be used with relatively limited available
training data, e.g., during commissioning. Prediction accuracy increases considerably with
half a year of training data, as can be seen by the reduced interquartile ranges in the box plots.
The mean NCRPS for ten mixture distributions, for instance, decreases from 16.3 % to 12.0 %
for 10 distributions, corresponding to a relative improvement of 26.4 % and an improvement
over the CH-PeEn benchmark of 39.8 %.

The impact of the additional output distributions in the mixture model depends on the amount
of available training data. The quality initially decreases at 7 days, as the NCRPS increases
from 16 % (one distribution) to 16.3 % (ten distributions). This can be attributed to the
influence of extreme values on the averaged value, as the median for ten distributions, is
relatively 14 % lower than with one. Hence, the significantly more complex model structure
of 30 outputs for 10 distributions in comparison to three outputs for one distribution may lead
to poorer results if there is too little training data. However, after six months of training data,

16.0

34.7

14.3

39.5

14.4

39.8

Sk
ill

sc
or

e
[%

]

NCRPS and SS averaged over all locations

16.0 16.3 16.3 13.1 12.1 12.0

Amount of training days [d]

N
C

R
PS

[%
]

7 182
0

10

20

30

40

7 182
0

10

20

30

40

MDN-1
MDN-5
MDN-10

Figure 5.19: The NCRPS depicted as box plots and the SS depicted as bar graph averaged over all locations
for the MDN approach. As benchmark serves the CH-PeEn. The results are based on a forecast horizon of 6
hours and MDN ensembles with 15 training initializations, which in turn have 15 dropout ensembles each. The
number after the abbreviation MDN in the legend indicates the respective distribution quantity, e.g., MDN-1
means one output distribution.
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5.6 Mixture density network

significant improvements can be observed, resulting in a relative improvement of e.g., 7.6 %
from one to 5 mixture distributions. Consequently, firstly, the more complex model structure
is better at utilizing the additional information provided by the extra data and, secondly,
a certain amount of training data is required to exploit the potential of the more flexible
distribution mixture. From five to ten distributions no significant additional improvement
occurred, indicating that the underlying uncertainty distribution of the forecast can already
be estimated relatively accurately with five output distributions. Moreover, it should not be
forgotten that slightly different Gaussian distributions are already included in the mixture
model due to the ensemble members.

The rank diagrams in Figure 5.20 show a good reliability in comparison to the benchmark
method and a slight improvement with the added mixture distributions. Since the underly-
ing uncertainty at the output does not exactly resemble a normal distribution, a slight bias
occurs at the output with only one distribution. Consequently, the sixth percentile is slightly
overestimated. This context is demonstrated further by Figure 5.21, which shows the parame-
ters (standard deviation, mean value, weighting factor) of the individual output distributions
normalized by the measured PV power for different numbers of mixture distributions. In the
case of a single distribution, the mean is slightly overestimated, and the standard deviation is
comparatively higher, in order to include and represent also extreme values in the uncertainty
estimation. With multiple mixture models, these extreme values can, in turn, be modeled by
the additional distributions with higher normalized mean values and lower standard deviations
and weighting factors. Thus, instead of one broad distribution, multiple narrower distributions
are combined with each other. Thereby, the distributions with the smallest distance to the true
value, which is in the normalized representation the value one, have the largest weighting
factors. As the number of mixture distributions increases, their weighting factors decrease
significantly. This also leads to the conclusion that additional distributions probably do not
improve the forecast quality, and at the same time may cause numerical problems considering
a possible underflow in (4.31).
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Figure 5.21: Representation of the parameters of the different mixture distributions depending on their number
in the model output. The size of the markers reflects their respective weighting factor in the mixture model.
In order to enable comparability for varying power levels, both the standard deviation and the mean of the
distributions were normalized by dividing the values with the respective measured PV power.

The influence of the extensions to estimate epistemic uncertainty are summarized in Fig-
ure 5.22. Both the network initializations and MC dropout have a significant positive effect on
the forecast performance. For example, the use of dropout ensemble members alone improves
the forecast quality by up to 10.05 % and additional network initializations by up to 18.41 %
for 7 days of training data. The impact of MC dropout is therefore slightly lower. As already
mentioned in the case of the quantile neural network, the reason for this is that the members
of the dropout ensemble typically gravitate around a single mode of the loss landscape,
while the different network initializations exhibit a more diverse exploration [76]. Moreover,
since the training and validation data are also sampled, the variety and information in the
training data is also higher for the multiple network initializations. Nevertheless, MC dropout
needs less computational resources and is faster, as the model training does not have to be
performed multiple times. For both methods, the added value decreases significantly as the
number of ensemble members increases. At least a few ensemble members should therefore
be considered in practice, since considerable great advances can already be achieved with
relatively little effort.

The improvement of the forecast quality by the two approaches is larger for 7 days of
training data than for 182 days, since the epistemic uncertainty decreases with increasing
number of training data. Accordingly, the epistemic extensions to the MDN are particularly
recommended for applications in practice, when the number of training data may be limited
during commissioning and no corresponding individual adjustment of the network structure
is made.
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5.7 Overall Comparison

Figure 5.23 provides the overall comparison of the algorithms in this work each with the best
specification for both 7 and 182 days of training data.4

Overall, the ARX-based probabilistic prediction methods perform better than the neural
networks with fewer available training days for all representation forms. Thus, the increased
model flexibility of the MLP models leads to a lower prediction quality despite the regular-
ization methods and methods used to compensate for the epistemic in the studies. This is
particularly evident in the MC dropout, which has an average skill score of -3.5 %. Due to the
necessary calibration data set, this approach has even less data available for training, meaning
that even the benchmark algorithm performs better.

Nevertheless, it can be seen that the developed MDN structure with an average of 14.4 %
performs better than the quantile regression approach with 4.1 %. It therefore performs
better than the other MLP approaches. The comparatively low model flexibility is the reason
for this. By estimating the entire distribution and the model specification of the mixed
Gaussian distributions, the influence of the epistemic is reduced. This is further reinforced

4The individual analyses have shown that the accuracy of the ARX approaches decreases beyond a certain
point if more training data is used. As a result, even with 182 training days available, the last 21 days were
used adaptively for the GARCH and residual bootstrapping approach and the last 7 days for the quantile
regression approach.
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Figure 5.23: Comparison of the skill score of the different algorithms using the persistent ensemble. For the
individual algorithms, the best specification, e.g., maximum number of ensemble members, was used. Differences
in the values of the skill score compared to the previous subchapters arise since for the ARX based algorithms
182 days instead of 21 days of training data were used for the benchmark. The first row corresponds to the SS
based on the average NCRPS values of the respective algorithms and the benchmark and the second row to the
respective medians.

by a comparison of the skill score values based on the medians. In particular, the quantile
neural network (NN) shows a considerable difference between the median and mean-based
skill score. This indicates negative outliers, presumably due to the increased flexibility, which
distort the overall mean value. The MDN approach is therefore advantageous compared to
the other MLP approaches during commissioning with smaller data sets.

Overall, with 7 days of training data, the GARCH ensemble model performed best with an
average improvement of 31.4 % compared to the benchmark. This means that it even has
better accuracy than the used multistep quantile regression model (19.0 %), which has more
model flexibility due to the form of representation via quantiles and the use of an individual
model for each quantile. Accordingly, it can be assumed that the differences in quality lie in
the underlying model concept. In the GARCH model, past volatility is taken into account
directly in order to estimate future volatility. As can be seen in Figure 5.24 and also in the
forecast results, the use of past volatility and thus uncertainty is a good indicator for the future.
As the ARX model with quantile regression estimates the quantiles using a linear combination
of past performance values, past volatility can only be taken into account indirectly.

This information is particularly significant, as the GARCH approach had performed worse
in past studies [48] in the irradiation forecast with a pure autoregressive ARMA approach
compared to different probabilistic methods (including quantile regression). Consequently, the
developed adaptive ARX approach used with greedy search algorithm and time decomposition
as well as including exogenous features is better able to capture the behavior of the underlying
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process. This leads to more Gaussian-like distributions of the residuals and better depiction
of the forecasting uncertainty with the GARCH approach.

Although the ARX-based probabilistic prediction methods perform better than the MLP-
based methods during the initial commissioning process, this is reversed after six months of
available training data. At this point, the MLP-based approaches perform better on average
than their ARX-based counterparts. A comparison of the rank histograms also illustrates this
(see figure 5.25), as the MLP-based approaches show a better calibration with 182 days of
training data.
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Figure 5.25: The rank histogram for different amount of training data. For the individual algorithms, the best
specification, e.g., maximum number of ensemble members, was used. The subsequent calibration in the MC
dropout algorithm becomes visible, as the distribution almost resembles a uniform distribution.
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In particular, the more flexible quantile neural network approach shows the greatest improve-
ment with an average SS of 37.2 %. Nevertheless, the developed MDN approach is still more
accurate with an average SS of 39.8 %. Since the median SS is the highest for the quantile
neural network, it can be concluded that individual poor results distort the overall mean
analogous to the case with few training days.

In general, it can be concluded that the pure ensemble methods have the lowest accuracy in
comparison with 19.7 % on average for residual bootstrapping and 31.7 % for MC dropout
with output calibration. Accordingly, they should rather be used as a supplement for the
compensation of the epistemic. As shown in the previous detailed analyses, they have led to
considerable improvements.

Furthermore, it can be seen overall that the approaches used with a continuous distribution
have the best prediction accuracy. Based on the available data, the GARCH model is recom-
mended over the entire commissioning period, as it achieved in comparison excellent results
both with a small and large amount of available training data. MDN, on the other hand, has
the best overall performance given sufficient amounts of training data.
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“It is very important for researchers and
practitioners to understand that a universally
best technique simply does not exist.”

Tao Hong [99]
(Founder of the Global Energy Forecasting Competition and

the IEEE working group on energy forecasting)

6
Summary and outlook

6.1 Summary and conclusion

This thesis addressed the generation of probabilistic PV power forecasts for multi-modal
DESs. The focus was thereby particularly on relevant questions that need to be answered for
the transition to an applied industrial use.

Based on several use cases, the practical requirements for on-site energy systems were first
identified (Section 2.4.2), followed by the derived definition of the forecast specifications
for the studied scenario (Section 2.7). In addition, the example of local energy markets was
used to demonstrate that there is no threshold for maximum forecast accuracy or a point after
which the importance of further accuracy improvements decreases (Section 3.3.3).

By comparing the practical requirements with the current state of the art in the field of
probabilistic PV predictions, research gaps were analyzed and identified (Section 2.7). To
close these gaps, the following three primary research objectives were explored in this thesis:

• Comparison and adaption of several probabilistic methods for PV power – Probabilistic
solar forecasting is the least mature area in the field of energy time series forecasting.
Moreover, solar forecasts in the scientific literature are generally made indirectly via
forecasting models for solar irradiation, although this approach has several disadvantages
in practice compared to PV power forecasts (Section 2.4.1). In addition, the comparison of
different forecasting algorithms across several papers is often not feasible (Section 2.4.3).
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6.1 Summary and conclusion

Accordingly, four approaches (extended sieve with residual bootstrapping, MC dropout with
output calibration, GARCH model, MDN), which have proven successful in solar irradiance
forecasting or other forecasting domains, were adapted for PV power and examined in
detail, for the first time in this paper or its corresponding publications to the best of the
author’s knowledge. These methods were compared with two other already established
algorithms (ARX model with quantile regression and quantile NN), two additional ARX
bootstrapping approaches and a benchmark (CH-PeEn). Thus, all three forms of represen-
tation for uncertainties (ensemble, quantiles and continuous probability distribution) are
reflected by the selected methods. Furthermore, comparatively simpler model structures
with less required computing capacity (ARX models) as well as more complex models
(e.g., MDN) were compared.

• Simulation and analysis of forecast commissioning and operation under practical
conditions – There were no studies regarding the probabilistic prediction quality of PV
power forecasts with limited amount of data.

However, as this is indispensable for commissioning in practice, the prediction quality
of different methods was investigated in this thesis, both for the initialization operation
period with little data (7 days) and also for a regular operation period (182 days of training
data). In order to do this, a simulation setup with 24 different initialization start points for
each site was set up (Section 3.2). In practice extensive manual optimization for each site
and forecast initialization is not possible due to limited capacities. However, the optimal
choice of model structure and hyperparameter varies by location, the amount of training
data, and sometimes the time of year (e.g., weather in spring and fall is more volatile
than in summer). Hence, this thesis also investigates the feasibility of generating and
updating the forecasts over the commissioning period without manual intervention. Instead,
several regularization methods are applied to the MLP based approaches (Section 4.1.2).
Furthermore, a time decomposition approach was developed for the ARX models using
rudimentary forecasting methods followed by a higher-level greedy search algorithm for
the automatic determination of the model order (Section 4.1).

• Consideration of both aleatoric and epistemic uncertainty – Non-optimal model struc-
tures and a lack of training data can lead to high epistemic model uncertainty, which in turn
can degrade forecast quality if not taken into account. Moreover, considering the previous
paragraph, both aspects are infeasible to avoid in practice. However, previous studies on
PV power forecasting mostly do not differentiate between the different types of uncertainty
and do not consider both.

Therefore, this thesis focused on the consideration of both types of uncertainties e.g., by
using extensions for modeling the epistemic. Consequently, for several probabilistic PV
power approaches (e.g., MDN, GARCH), this thesis investigated epistemic extensions and
the influence of the different uncertainty types in detail for the first time.

Some work in this thesis was previously presented in corresponding publications (Refs.
[56–58]). However, this thesis also contains many new elements. These are in particular,
an even more profound analysis of the individual methods (Section 5.1 – Section 5.6), the
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applied GARCH model approach (Section 4.4), a comprehensive comparison between all the
analyzed methods (Section 5.7) and the overarching, broader characterization of the topic
including its context.

Data from three different sites in Central Europe (Section 3.1) was used for the analysis.
All investigated methods except MC dropout with output calibration showed better forecast
accuracy than the CH-PeEn benchmark with seven days of available training data. However,
the MC dropout approach had even less data available for the training due to the necessary
calibration data set. For all uncertainty representation forms, the ARX-based probabilistic
prediction were better than their respective neural network counterparts given only seven days
of training data. Furthermore, it was apparent that an adaptive approach with consideration of
21 days of training data is preferable for the ARX models. If longer periods are taken into
account, the influence of seasonal effects cannot be sufficiently captured with the applied
decomposition model approach for the stationarization, leading even to a reduction in forecast
accuracy.

After six months of available training days, the behavior reversed and the MLP-based ap-
proaches performed better on average. Due to the higher model flexibility, they were better
able to represent the existing underlying uncertainty. In general, the approaches with a contin-
uous distribution had the best forecasting accuracy. Hence, the GARCH model in combination
with the ARX model is recommended over the entire commissioning period, as it achieved in
comparison excellent results both with a small (SS: 31.4 %) and large (SS: 34.3 %) amount
of available training data. Thus, contrary to previous studies on solar irradiation, it achieved
significantly better results in direct comparison with other probabilistic methods. Due to the
developed adaptive ARX approach with greedy search algorithm and time decomposition as
well as the inclusion of exogenous features, the method is significantly better able to capture
the behavior of the underlying uncertainty. However, when provided with sufficient amounts
of data, the MDN model surpasses the other models in terms of overall forecasting accuracy
with an improvement of 39.8 % compared to the benchmark.

In general, it can also be concluded that the ensemble methods should not be used individually
for uncertainty characterization, as the predictive accuracy was systematically worse. However,
the additional ensembles in MLP based methods led to significant improvements and should
therefore be used as an extension. Ensembles generated by repeated network initialization
were able to achieve significantly better performance gains due to the better exploration of
the loss landscape leading to a better representation of the underlying epistemic. For the
ARX approaches, on the other hand, the influence of the epistemic was rather small, due to
the comparable easier model structure and the use of the greedy search algorithm for the
individual determination of the model order.
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6.2 Outlook

For the transition to scaled industrial use, further aspects need to be investigated in the
area of probabilistic PV prediction. One aspect is that the methods should be tested with
data from other climate zones. Furthermore, a practical assessment of the workload on low
computational edge devices is also recommended, as they are used for several services at
once.

In addition, the analyzed algorithms reflect the operation under standard conditions. In
practice, a holistic forecasting framework including a monitoring system is necessary, which
integrates models for different operating scenarios (e.g., snow on panel, standard operation,
fall back solution in the case of missing measurements). The recommended probabilistic
methods GARCH and MDN as well as CH-PeEn can serve as the basis for such a framework.

It was shown that, depending on the respective application, theoretically any improvement in
forecast accuracy also yields added value. As a result, further investigations should be carried
out by using more advanced model architectures, particularly for large amounts of existing
training data. For instance, temporal convolutional neural networks and models based on
transformers have achieved exceptional performance in the fields of computer vision and
natural language processing in the recent past. These architectures could be combined with
the presented MDN approach.

Finally, one of the next priorities should be to further investigate the optimal use of proba-
bilistic predictions for the listed use cases (e.g., bidding strategies with external markets) in
DESs. This can be achieved through comprehensive simulations and field trials to advance
the evaluation and quantification of the added value under different scenarios.
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Figure A.1: Temporal profile of the signals for the PV power system in southern Bavaria.
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Figure A.2: Temporal profile of the signals for the PV power system in Vienna.
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A.4.1 Bootstrapping approaches for the ARX model
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Figure A.3: Specific results for the individual locations for the boostrapping approaches for the ARX models.
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A.4.2 Monte-Carlo dropout with output calibration
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Figure A.4: Specific results for the individual locations for the boostrapping approaches for MC dropout with
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A.4.3 GARCH model in combination with the ARX model
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Figure A.5: Specific results for the individual locations for the GARCH model in combination with the ARX
model.
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A.4 Additional result diagramms

A.4.4 Mixture density network
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Figure A.6: Specific results for the individual locations for the MDN.
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