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Abstract

We present accurate and mathematically consistent formulations of a diffuse-interface
model for two-phase flow problems involving rapid evaporation. The model addresses
challenges including discontinuities in the density field by several orders of magnitude,
leading to high velocity and pressure jumps across the liquid–vapor interface, along
with dynamically changing interface topologies. To this end, we integrate an
incompressible Navier–Stokes solver combined with a conservative level-set
formulation and a regularized, i.e., diffuse, representation of discontinuities into a
matrix-free adaptive finite element framework. The achievements are three-fold: First,
we propose mathematically consistent definitions for the level-set transport velocity in
the diffuse interface region by extrapolating the velocity from the liquid or gas phase.
They exhibit superior prediction accuracy for the evaporated mass and the resulting
interface dynamics compared to a local velocity evaluation, especially for strongly
curved interfaces.Second, we show that accurate prediction of the
evaporation-induced pressure jump requires a consistent, namely a reciprocal, density
interpolation across the interface, which satisfies local mass conservation. Third, the
combination of diffuse interface models for evaporation with standard Stokes-type
constitutive relations for viscous flows leads to significant pressure artifacts in the
diffuse interface region. To mitigate these, we propose to introduce a correction term
for such constitutive model types. Through selected analytical and numerical examples,
the aforementioned properties are validated. The presented model promises new
insights in simulation-based prediction of melt–vapor interactions in thermal
multiphase flows such as in laser-based powder bed fusion of metals.

Keywords: Two-phase flow with phase change, Evaporation, Melt-vapor interaction,
Diffuse-interface model, Finite element method

Introduction
Background and challenges

Phase change phenomena in immiscible two-phase flows, specifically evaporation, play a
crucial role in various industrial and environmental processes such as spray combustion,
boiling of water in power plants, heat exchangers/cooling systems and, notably, laser-
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based powder-bed fusion additive manufacturing of metals (PBF-LB/M). The focus of our
investigation is primarily motivated by the latter area, where evaporation plays a central
role, as discussed in the following.
Metal additive manufacturing by PBF-LB/M is a promising technology offering unique

capabilities for the on-demand production of high-performance metal parts with nearly
unlimited freedom of design. Considering the mesoscale, on the order of micrometers,
metal powder particles begin to melt in the vicinity of the laser, i.e., a solid–liquid phase
transition is induced that ideally results in the formation of a continuous melt pool.
However, the rapid transition from molten metal to metal vapor and their interaction
under typical process conditions can cause local process instabilities [1–4], resulting in
quality-degrading defects. The main thermo-physical effects of evaporation affecting the
melt pool behavior are summarized as follows: evaporation from a liquid surface leads
to (1) the release of vapor into the surrounding environment and thus a movement of
the melt pool surface, resulting in (2) a potentially strong vapor flow and thus a velocity
jump at the liquid–vapor interface. This induces (3) a force or pressure jump in the
opposite direction of the vapor flow, which is known in the literature as “recoil pressure”.
Furthermore, (4) evaporative cooling due to absorption of the latent heat of evaporation
as well as (5) the convective heat transfer due to the vapor flowmay influence the thermal
field. Existing numerical melt pool models typically consider evaporation only through
simplified models by taking into account solely the evaporation-induced pressure jump
via a phenomenological model (i.e., 3) and evaporative cooling (i.e., 4), neglecting the
other effects (i.e., 1, 2 and 5), e.g., [5–8].
Our long-term goal is to incorporate all of these effects into a high-fidelitymodel ofmelt

pool thermo-hydrodynamics. To this end, we present a key submodel formodeling of two-
phase flow with evaporative phase change across curved, dynamically changing interfaces
in this contribution. Specifically, model components are developed to accurately predict
evaporatedmass (i.e., 1), velocity jump (i.e, 2), and recoil pressure (i.e., 3), and the resulting
flowdynamics. For this purpose, to investigate the latter in an isolatedmanner, isothermal
conditions are assumed by prescribing the evaporativemass flux as an analytical field. The
extension to anisothermal conditions and thus to incorporate effects (4) and (5) is part of
our future work.

Related work about computational modeling of two-phase flows with moving interfaces

The behavior of multiphase flows with phase change is inherently complex because mass,
momentum and energy are exchanged across an a-priori unknown moving, deformable
interface transported with the flow. Typically, the thickness of this interface region is
orders of magnitude smaller than the scale of the flow characteristics. A numerical mod-
eling framework for two-phase flowwith phase change requires two essential components:
(i) amethod for representing and tracking themotion of the interface, and (ii) amethod for
modeling discontinous changes of parameters, variables and coupling (jump) conditions
between primary variables of the phases. A non-exhaustive overview of existing methods
for modeling multi-phase flows without/with phase change is provided below, while the
interested reader is referred to reviews e.g. provided in [9,10].
Moving gridmethods [11,12] explicitly resolve the evolving interface through alignment

with an element or cell boundary and appropriate coupling conditions at the interface,
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yielding high accuracy of the obtained solution. However, once the interface undergoes a
complex deformation, frequent remeshing is required by these schemes, which is a com-
putationally demanding task, especially in 3D. Additionally, the solution fields need to be
remapped from the old mesh to the new mesh, which may additionally introduce unde-
sired diffusive effects [13]. Those frameworks are frequently formulated in an Arbitrary-
Lagrangian–Eulerian (ALE) setting. To the authors’ best knowledge, only a fewALE-based
frameworks for two-phase flowwith phase change are available such as [14–17], all limited
to scenarios of low density ratios and restricted to non-topology changing geometries.
In contrast, in fixed gridmethods [10] the interface intersects the grid. Interface-tracking

schemes can be employed to follow themotion of the interface by explicitly describing the
surface using a Lagrangian mesh or marker points [18]. Alternatively, interface-capturing
schemes describe the interface implicitly via an auxiliary function. Commonly employed
interface-capturing schemes are the volume of fluid (VOF) method [19], the level-set
method [20,21], and the phase field method, adapted in [22] for fluid mechanics. The
major advantage of the VOF method over the level-set method is its inherent mass-
conservingproperty,while in the level-setmethodmass conservation canbe reobtained via
reinitialization of the level-set function [23]. The reconstruction of the interface geometry,
e.g. curvature for calculating surface tension, is not accurately possible from the VOF
function [24] and needs special treatment. The mathematical framework of the level-
set method and the phase-field method is similar, but the level-set method is a strictly
mathematical approach while the phase-field method can be consistently derived from
thermodynamics [25].
For fixed grid methods, additional numerical effort is required to cope with coupling

conditions at the interface. Sharp interface methods [26,27] maintain the discontinuity of
the solution fields at the interface. Thus, they enable a highly accurate representation of
the original multi-phase problem. For sharp modeling of discontinuities at the interface
and interface conditions, these methods rely on extended discrete solution spaces. Exam-
ples include the extended finite element method (XFEM) [28–30], the cut finite element
method (CutFEM) [31–35] or the extended discontinuous Galerkin method [36] together
with level-set schemes, and other methods such as the ghost-fluid method [37–39] or the
immersed interface method [40]. Typically, the accuracy gains of sharp interface methods
require complex modifications of the numerical schemes, such as stabilization to account
for the small cut-cell problem [41]. This stabilization is a necessary ingredient to ensure
robustness of the numerical scheme in terms of a priori error estimates and applicability
to complex surface-coupled problems [30,42].
Alternatively, for a more straightforward and robust implementation by regularizing

discontinuities, diffuse interface methods [13,43], have been introduced. There, a smooth
transition of the properties between the fluids may be assumed over a finite but small
thickness of the interface region. Overall, diffuse interface methods yield a less accurate
solution compared to sharp interface methods. Nevertheless, they are mathematically
consistent such that the solution converges to the one of a sharp model with decreasing
interface thickness. Their most important features include the inherent ability to handle
topology changes, and the use of a standard computational fluid dynamics solver that
supports variable density and viscosity parameters, as detailed in the review article by
Gibou et al. [44].
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In this work, we have adopted a level-set based diffuse fixed grid method to model the
liquid–vapor interaction. This choice was primarily motivated by the imperative require-
ment for robustness, particularly in view of the intended application to mesoscale mod-
eling of PBF-LB/M. Mesoscale models typically resolve individual powder particles and
melt pool thermo-hydrodynamics in order to study defect generation mechanisms that
lead to porosity. [45]. The melt pool undergoes significant deformation and also topo-
logical changes as soon as e.g. spattering of melt drops or pore formation occurs. This
is particularly challenging considering the significant differences in material properties
between molten metal and metal vapor, as well as the rapid evaporation rates leading to
substantial velocity jumps at the liquid–vapor interface.

Related work about computational models for two-phase flows with phase change

In the following, some of the most important previous research endeavors related to the
advancement of fixed grid methods for two-phase flows with phase change are summa-
rized.
In [46] a finite difference scheme combined with front-tracking for studying two-phase

boiling flows in 2D was presented. Similarly, in [47] simulations of film boiling were per-
formedbasedon theVOFmethod combinedwith aMACstaggered scheme,where general
applicability of their method to 3D was demonstrated. In [48,49] a level-set framework
was combinedwith the ghost-fluidmethod to employ sharp jump conditions by extracting
an extension velocity from the liquid/vapor phases to advect the level-set transport. The
authors applied it also for studying film boiling in the presence of immersed solid bodies
[50]. A similar framework was presented in [51] and employed to investigate evaporation
of droplets based on a 2D studies.
Only a few works deal with diffuse interface methods that consider a smeared represen-

tation of the evaporation-induced volume expansion and consequently the evaporation-
induced velocity as well as pressure jumps across a finite interface region: In [52], a
continuous field for the evaporation source term in the continuity equation was derived
by solving an inhomogeneous Helmholtz equation and combined with a VOF framework,
which seemed to work well for flat interfaces. A numerical framework for modeling high
density ratios and evaporation of curved surfaceswas proposed in [53] . This hybrid frame-
work involves modeling aspects from both—sharp and diffuse models—by employing a
smooth treatment of the mass flux and a sharp treatment for jumps in the velocity, pres-
sure and temperature gradient. It is based on the level-set method using discretization by
the marker-and-cell staggered grid method and was successfully applied to study droplet
evaporation with a density ratio of up to 1000. It is one of the few works (together with
[54]), where the issues associated with the computation of the level-set transport veloc-
ity in presence of diffuse velocity jumps at the interface and associated misleading mass
predictions are mentioned. In [55], a VOF-based finite difference framework involving
a smeared evaporation-induced velocity jump was presented. The authors proposed to
transport the VOF function with a combination of a divergence-free extension of the liq-
uid velocity computed from the solution of a Poisson equation and an irrotational term
due to phase change. Their framework was verified by studying the droplet evaporation
at relatively low density ratios (less than 100).
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It is evident that modeling evaporative jump conditions in a diffuse manner is very
attractive, mainly because of its seamless integration into various numerical frameworks,
including finite element methods. This approach comes at the price of requiring a suffi-
ciently fine numerical mesh to resolve the interface region. However, it provides a robust
solution, without the need for additional stabilization techniques. When combined with
an interface-tracking or interface-capturing scheme, the interface transport velocity is
a crucial model component to accurately predict the liquid surface motion including
the evaporated mass. However, its computation poses a significant challenge due to the
smeared velocity jump at the liquid–vapor interface. As shown above, only a few related
frameworks have been presented in the literature. Additionally, a comprehensive discus-
sion of the difficulties associated with the precise modeling of diffuse evaporative jump
conditions for curved surfaces subject to rapid evaporation is lacking. In particular, to
the best of the authors’ knowledge, none of the works discuss the undesirable effect of
numerical pressure artifacts in the interface region. This issue typically arises when dif-
fuse interfacemodels for evaporation are combined with Stokes-type constitutive laws for
viscous flow.

Our contributions

We present accurate and mathematically consistent formulations of a level-set-based
diffuse-interface model for two-phase viscous flow problems involving rapid evaporation.
For incorporating evaporative phase change into a diffuse framework, modifications in
terms of (i) the level-set transport velocity, (ii) the density interpolation function to ensure
mass conservation, and (iii) adding an evaporation-induced correction term in the Stokes-
type constitutive relation are needed, which are detailed in the following objectives:

• We elucidate the difficulties associated with modeling of diffuse jump conditions for
rapid evaporation of curved surfaces based on analytical benchmark examples. Since
most existing verification examples consider problem setups, where the velocity in
one phase is zero, we propose a new verification example, where both phases are
subject to a velocity field.

• We proposemathematically consistent formulations for the level-set transport veloc-
ity to accurately predict the evaporatedmass and the resulting interface topology. For
this purpose, two fundamental approaches are considered: one based on a local veloc-
ity evaluation, and the other based on a velocity extrapolation from the liquid or gas
phase in the diffuse interface region. For a given interface thickness, it is demonstrated
that the latter approach typically fufills the requirement of a divergence-free level set
transport velocity with higher accuracy, in particular for highly curved interfaces.

• We show that the evaporation-induced pressure jump can only be accurately pre-
dicted if a consistent, i.e., a reciprocal, density interpolation across the interface is
chosen that satisfies local mass conservation.

• For mitigating pressure artifacts in the interface region induced by non-physical
deformations resulting from the regularized treatment of evaporative dilation in vis-
cous flows, we introduce a correction term in the Stokes-type constitutive relation.

All these aspects are important in view of the further development of this model for
studying melt pool thermo-hydrodynamics of PBF-LB/M in the future.
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Furthermore, in contrast to the existing literature, we exploit recent developments
related to high-performance computing by considering a matrix-free operator evaluation
and an adaptive refinement of the finite element mesh in the interface region by building
our implementation on the finite element library deal.II [56]. However, since the focus
of this article is on the development ofmodeling techniques for two-phase flowwith phase
change, we will omit the performance analysis in this article. The interested reader may
be referred to corresponding articles, where this topic is discussed in detail [57–60].
The remainder of this article is structured as follows: The governing equations, a com-

prehensive theoretical discussion related to regularized modeling of the evaporation-
induced velocity discontinuity and the derivation of mathematically consistent level-set
transport velocity approaches aswell as the correction term in the Stokes-type constitutive
relation are presented in “Methods” section. In “Results” section, the proposed methods
are employed to several numerical benchmark examples and verified by comparison to
analytical solutions. Conclusions are drawn in “Conclusion” section.

Methods
Preliminaries

In the following, a consistent model for two-phase flow with phase change, which we
interchangeably refer to as “evaporation” throughout this publication, is presented. The
focus lies on accurately predicting the evaporation-induced velocity and pressure change
across the interface as well as the evaporation-induced dynamics of the liquid surface
resulting from the phase transition from liquid to vapor/gas phase. To this end,we propose
the mathematical model based on the following assumptions:

• The flow is incompressible and viscous (Newtonian) at a moderate Reynolds number.
• Spatially resolved vapor phase as well as liquid–vapor phase transition to explicitly

resolve evaporation-induced recoil pressure and gas/vapor flows and thereby induced
material redistribution dynamics.

• Isothermal conditions to investigate the evaporation-induced discontinuities arising
in the mass/momentum equation of the two-phase flow framework in an isolated
manner. Thus, for the present work, the evaporative mass flux, representing the
evaporated mass rate per unit area, is prescribed as an analytical field. The extension
of the framework to anisothermal conditions will be considered in our future work.

• Diffuse interface capturing scheme with a finite but small interface thickness.

Governing equations of isothermal two-phase flowwith evaporative phase change

We assume that the Eulerian domain of interest � = �g ∪ �� ∈ R
n with n ∈ {1, 2, 3} is

occupied by a liquid phase �� and a gaseous (vapor) phase �g, both modeled as incom-
pressible and immiscible fluids, illustrated in Fig. 1. Irreversible phase transition between
liquid and gaseous (vapor) phase, i.e., evaporation, along the liquid–gaseous interface
� ∈ R

n−1 may occur. By employing a level-set based diffuse interface capturing scheme
for the position of the interface between the gaseous and the liquid phase, a single set of
equations for the entire multi-phase domain can be formulated.
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Fig. 1 Physical domain of interest for the two-phase flow with phase change problem. The domain is
decomposed into a liquid and a gaseous phase, represented by �� and �g, respectively, separated by an
interface �. The spatial discretization of the domain is performed by a finite element mesh T� . Based on the
level-set function φ, the two phases are implicitly distinguished

Flow field

The velocity field u(x, t) and the pressure field p(x, t) for point x ∈ � and at
time t ∈ [0, tend] are governed by the incompressible, isothermal Navier–Stokes equa-
tions formulated in an Eulerian setting, consisting of the continuity equation and the
momentum balance equation:

∇ · u = ṽv in � × [0, tend] , (1a)

ρeff

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + ∇ · τμ + ρeff g + f̃ σ in � × [0, tend] . (1b)

Within each phase, thermo-physical properties are assumed to be constant but vary
smoothly across the interface region. They are designated as effective properties by the
subscript (•)eff to refer to the two-phase (liquid/gas) mixture. These effective properties,
the density ρeff and the dynamic viscosity μeff, are specified in “Effective material proper-
ties” section. The dynamic viscosity influences the viscous stress tensor τμ, as discussed
in “Constitutive relation for incompressible viscous flow with diffuse phase change” sec-
tion, and ρeff g denotes gravitational forces. Variables indicated by a tilde ˜(•) represent
diffuse interface contributions and consist of the evaporative dilation rate ṽv and surface
tension f̃ σ which are specified in “Interface source terms” section. Equations (1a)-(1b) are
supplemented by a suitable initial condition

u = u(0) in � × {t = 0} (2)

where the superscript (•)(0) denotes an initial field function. Dirichlet and Neumann
boundary conditions are imposed according to

u = ū on ∂�D,u ⊂ ∂� × [0, tend], (3)

σ · n̂ = t̄ if u · n̂ > 0 (outflow) on ∂�N,u ⊂ ∂� × [0, tend] (4)

with the Cauchy stress tensor σ = τμ −p I , where I represents the second-order identity
tensor, and the outward-pointing unit normal vector n̂ to the domain boundary ∂� =
∂�D,u ∪ ∂�N,u with ∂�D,u ∩ ∂�N,u = ∅.
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Level-set field

The temporal evolution of the interface�, represented by the zero-isosurface of a level-set
function chosen as a regularized function −1 ≤ φ(x, t) ≤ 1 according to [23], is obtained
by solving the advection equation

∂φ

∂t
+ u|�∇φ = 0 in � × [0, tend] . (5)

We denote φ > 0 as inside the liquid phase and φ < 0 as inside the gaseous phase. In
Eq. (5), u|� represents the level-set transport velocity. At this point it should be noted
that the formulation of the level-set transport velocity u|� is a key modeling component
in presence of rapid evaporation and is part of a detailed discussion in “Formulations of
a consistent level-set transport velocity for a diffuse evaporation-induced velocity jump”
section. Without phase change, it is typically assumed that the latter corresponds to the
local fluid velocity u|�(x, t) := u(x, t). For the initial level set we assume the regularized
characteristic function

φ(x) = tanh
(
d(x)
2ε

)
(6)

depending on the interface thickness parameter ε and a signed distance function d(x). For
a given level-set function, Eq. (6) can be inverted to obtain an expression for the signed
distance function

d(φ) = ε log
(
1 + φ

1 − φ

)
. (7)

Dirichlet and Neumann boundary conditions are prescribed

φ = φ̄ on ∂�inflow
D,φ ⊂ ∂� × [0, tend] ∇φ · n̂ = 0 on ∂�N,φ ⊂ ∂� × [0, tend]

(8)

along the domain boundary ∂� = ∂�inflow
D,φ ∪ ∂�N,φ with ∂� = ∂�inflow

D,φ ∩ ∂�N,φ = ∅.
Subsequent to solving the advection Eq. (5) of the level-set function φ at time t, a

reinitialization step [23] is performed to preserve the shape of the regularized indicator
function as the interface moves. For this purpose, we solve

∂ψ

∂τ
+ ∇ ·

(
1 − ψ2

2
n�

)
= ε∇ · ((∇ψ · n�)n�) in � × [0, τend] (9)

for the pseudo-time τ ∈ [0, τend] with initial condition ψ(x, τ = 0) = φ(x, t) and homo-
geneous Neumann boundary conditions ∇ψ · n̂ = 0 on ∂� × [0, τend] until steady state
is obtained at τ = τend. Here, ψ represents an auxiliary field, which is transferred to the
level-set field, φ(x, t) = ψ(x, τ = τend), at the end of the reinitialization pseudo-time
stepping scheme. The parameter ε is the interface thickness parameter, and n� represents
the interface normal vector, evaluated at time t (or pseudo-time τ = 0) and assumed as
constant over the pseudo-time. The determination of the latter is described below. For
discretization in time of the reinitialization equation, we employ a semi-implicit Euler
time stepping scheme, considering an explicit scheme for the nonlinear compressive flux
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Fig. 2 Distribution of (left) the effective dynamic viscosity (Eq. (15)) and (right) the effective density using a
(standard) arithmetic phase-fraction weighted average versus the employed reciprocal interpolation function
(Eq. (16)). The values for the liquid phase are chosen to represent Ti-6Al-4V, i.e. ρ� = 4133 kg/m3 and
μ� = 3.5 × 10−3 Pa · s. The ratios between the phases are artificially varied for the sake of demonstration

term
(
(1 − ψ2)/2n�

)
in order to obtain a linear system of equations. The pseudo-time

step size is chosen as �τ = min (ε,�t).
As proposed in [23], the interface normal vector is computed from a projection step of

the normalized level-set gradient

n̄� = ∇φ

|∇φ| in � (10)

to the level-set space

n� − ηn h2�n� = n̄� in � (11)

subject to homogeneous Neumann boundary conditions ∇n� · n̂ = 0 on ∂�. The filter
parameter ηn h2 is determined from the element edge length h and the constant ηn and
represents the radius of nonlocal interaction. The mean curvature is defined as

κ̄ = −∇ · n� in � . (12)

In order to avoid spurious high-frequency oscillations of the curvature, likewise to the
projected interface normal vector, we compute a regularized curvature κ as proposed
in [23]

κ − ηκ h2�κ = κ̄ in � . (13)

with the filter parameter ηκ h2 from the element edge length h and a constant ηκ . We use
homogeneous Neumann boundary conditions ∇κ · n̂ = 0 on ∂�.

Remark 1 For quadrilateral or hexahedral elements, we compute the element edge length
h as h = max(d)/

√
dim, where max(d) is the largest diagonal of the element and dim ∈

{1, 2, 3} is the considered dimension. The influence of the filter parameter was investigated
in [61,62]. In our simulations we consider ηκ = 2 and ηn = 2 as default values.
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Effectivematerial properties

From the level-set functionφ, a localized, indicator-like representation can be constructed
by employing the smoothed approximation of the Heaviside function [21,63]

Hφ(φ) =

⎧⎪⎪⎨
⎪⎪⎩
0 d(φ) ≤ −3ε
1
2 + d(φ)

6 ε
+ 1

2π
sin

(
π d(φ)
3 ε

)
−3ε < d(φ) < 3ε

1 d(φ) ≥ 3ε

. (14)

This function is used to interpolate quantities between the two phases. In addition, the
gradient of Eq. (14) is employed to compute a smoothed approximation of the Dirac delta
function, allowing for a diffuse representation of interface contributions with non-zero
support localized to a finite interface region (see “Interface source terms” section). For
example, the effective dynamic viscosity μeff is evaluated as arithmetic phase-fraction
weighted average of the values for the liquid and the gaseous phase, i.e., μ� and μg,
respectively:

μeff (φ) = Hφ(φ)μ� + (
1 − Hφ (φ)

)
μg . (15)

While the type of interpolation function used for the effective viscosity is arbitrary (see
discussion in Appendix B), this is not the case for the density in the presence of phase
change. We employ a reciprocal interpolation function of the density between the two
phases

1
ρeff (φ)

= Hφ(φ)
ρ�

+ 1 − Hφ(φ)
ρg

(16)

considering the density of the liquid phase ρ� and the one of the vapor phase ρg. This
type of interpolation function was chosen to obtain consistency with the expression of
the evaporative dilation rate, which is explained in “Formulations of a consistent level-set
transport velocity for a diffuse evaporation-induced velocity jump” section.
In Fig. 2, the distribution of the viscosity (left) and effective density (right) is illustrated

over the interface region for increasing ratios of these parameters between the liquid
and the gaseous phase (liquid phase parameters are taken for Ti-6Al-4V as exemplary
material). For comparison, in the left panel of Fig. 2 the density distribution according to
Eq. (16) and the one obtained by an arithmetic phase-fraction weighted average similar to
Eq. (15) is shown. It can be seen that for the employed reciprocal interpolation function
the influence of different density ratios becomesmuchmore pronounced in the interfacial
region compared to the (standard) arithmetic phase-fraction weighted average.

Interface source terms

For a vaporizing incompressible two-phase-flow model, the two phases are coupled by
source terms consisting of (i) the evaporative dilation rate and (ii) the surface tension
force. The singular evaporative dilation rate is stated as

vv (x, t) = ṁv (x, t)
(

1
ρ�

− 1
ρg

)
δ (x, t) (17)
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with the evaporativemassflux ṁv,which is a prescribedquantity in our setting arising from
the underlying assumption of isothermal conditions in this contribution. The singularity
at the interface may be imposed by the Dirac delta distribution

δ (x, t) =
⎧⎨
⎩
1 on �

0 else
(18)

with support on the discrete/sharp interface �. Considering the weak form of Eq. (17),
e.g., in a finite element context, with the test functionw, the latter can formally be applied
as a sharp model via

(
w , vv

)
�

=
(
w , ṁv

(
1
ρ�

− 1
ρg

))
�

(19)

exploiting the property of the Dirac delta function
∫
�
f δ d� = ∫

�
d� for an arbitrary

function f .
Alternatively, in a regularized model considering a continuous surface flux in the sense

of [43], which is employed in the present work, the Dirac delta function δ is approxi-
mated by a regularized, smooth function δφ preserving the property

∫ 1
−1 δφ dφ = 1. We

calculate δφ from the smoothed Heaviside function (14)

δφ(φ) = ||∇Hφ(φ)|| (20)

with support within the interface region 0 < Hφ < 1. This leads to a slightly modified
expression for the weak form of Eq. (19), which reads as

(
w , vv

)
�

≈
(
w , ṁv

(
1
ρ�

− 1
ρg

)
δφ

︸ ︷︷ ︸
ṽv

)
�

(21)

where the regularized representation of the evaporative dilation rate applied to the con-
tinuity Eq. (1a) is introduced

ṽv (x, t) = ṁv (x, t)
(

1
ρ�

− 1
ρg

)
δφ (φ(x, t)) . (22)

It is important to note that the consideration of the evaporative dilation rate (22) in Eq. (1a)
results inherently in an additional, evaporation-induced pressure at the interface, i.e., the
evaporation-induced recoil pressure,

pv(x, t) = ṁv (x, t)2
(

1
ρ�

− 1
ρg

)
δφ (φ(x, t)) . (23)

For instance, using the Hertz–Knudsen relation [64] to compute the evaporative mass
flux yields results consistent with the recoil pressure model presented by [65], a widely
adopted approach in melt pool modeling [5]. Hence, the consideration of an extra term
for the evaporation-induced recoil pressure in the momentum equation, as considered in
e.g. [5], is not necessary. Instead, the recoil pressure results naturally from the velocity
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Fig. 3 Schematic illustration of different predictions of the melt pool geometry, indicated by the dashed lines,
obtained for different level-set transport velocities

gradients across the interface as induced by the dilation rate ṽv (22), which is demonstrated
in “Results” section.
Similarly to the evaporative dilation rate, the surface tension force is modeled as a

continuous surface force in the sense of [43]. It is expressed as

f̃ σ (x, t) = ακ(φ(x, t))n�(φ(x, t))δρ
φ (φ(x, t)) (24)

and is considered in themomentumequation (Eq. (1b))with the surface tension coefficient
α, the interface normal vector n� and the interface mean curvature κ , the latter two
computed from the level-set function as described in Appendix A. Here, δρ

φ represents a
density-scaled delta function similar to [66], adjusted for the employed reciprocal density
interpolation according to [67]:

δ
ρ
φ (φ) = δφ (φ) ρeff (φ) cρ with cρ = ρg − ρ�

ρ�ρg ln
(

ρg
ρ�

) for ρg > 0 ∧ ρ� > 0 . (25)

This ensures that the magnitude of the surface-tension-induced acceleration is well-
balanced across the interface.

Formulations of a consistent level-set transport velocity for a diffuse evaporation-induced

velocity jump

Preliminaries

For phase change across the liquid–gaseous interface �, a key modeling aspect lies in an
accurate expression for the level-set transport velocity u|� in Eq. (5) that (i) predicts the
evaporated liquid mass accurately, (ii) is a continuous field and (iii) ideally is divergence-
free at least in the near-interface region. The determination of u|� is not straightforward
since the fluid velocity exhibits a (smeared) discontinuity across the interface in the pur-
sued diffuse one-fluid formulation of the presented modeling framework.
The importance of this quantity should be additionally highlighted for the example

of melt pool dynamics of PBF-LB/M. The exact prediction of the location of the melt
pool surface is a crucial aspect, since it determines the morphology of the molten metal,
as indicated in Fig. 3. If the melt pool surface is incorrectly predicted, e.g., leading to a
thinner layer of moltenmetal, themass and the thermal mass of themelt pool will change.
Consequently, the dynamic behavior will be significantly different compared to the real
melt pool morphology.
For now, let us consider a sharp interface description with a velocity jump from u� to ug

present at the interface with u� being the velocity on the liquid side of the interface and
ug the velocity on the gaseous side of the interface. Mass conservation across the interface
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according to the Rankine–Hugoniot condition states

ρ� (u|� − u�) · n� = ρg
(u|� − ug

) · n� ≡ ṁv (26)

considering a reference frame moving with the interface [10]. Equation (26) implies that
the velocity jump from the liquid to the gas phase occurs in the normal direction to the
interface. The velocity component tangential to the interface is continuous. The variable
n� is the interface normal vector (pointing inside ��) and u|� is the interface transport
velocity, which is our quantity of interest. By rearrangement of the Rankine–Hugoniot
condition, an expression for the transport velocity of the discrete interface is obtained

u|� = u� + ṁv
ρ�

n� or u|� = ug + ṁv
ρg

n� on �. (27)

The direct evaluation of Eq. (27) is not possible in our diffuse framework due to the
smearing of the velocity discontinuity across the interface region.
In the following, we discuss three different formulations for the computation of the

level-set transport velocity field in a narrow band around the interface, applicable to a
diffuse phase-change framework.

Variant 1: Divergence-free continuous level-set transport velocity based on a consistent

density distribution

In this section,we derive a continuous level-set transport velocity, suitable for diffuse jump
conditions and flat or slightly curved interfaces, and an associated consistent interpolation
function of the density between the two phases. If the reader is only interested in the final
result, we recommend skipping the following paragraphs and continuing before Eq. (42).
We depart from the mass conservation equation

Dρ

Dt
+ ρ ∇ · u = 0 (28)

with the material time derivative of the density Dρ/Dt and the fluid velocity u. For the
sake of brevity, we denote the effective density as ρ in this section. We assume that the
density is a function of the smoothed Heaviside function Hφ(φ) (14). Thus, the material
time derivative of the density is obtained by applying the chain rule

Dρ

Dt
= ∂ρ

∂Hφ

∂Hφ

∂φ

Dφ

Dt
. (29)

By inserting the continuity equation (Eq. (1a)) together with Eq. (29) into Eq. (28) results
in

∂ρ

∂Hφ

∂Hφ

∂φ

(
∂φ

∂t
+ u∇φ

)
︸ ︷︷ ︸

Dφ
Dt

+ρ ṽv = 0 . (30)

After rearrangement, consisting of the insertion of the defined evaporative dilation rate
(Eq. (22)) into Eq. (30)

∂ρ

∂Hφ

∂Hφ

∂φ

(
∂φ

∂t
+ u∇φ

)
+ ρ ṁv

(
1
ρ�

− 1
ρg

)
δφ = 0 (31)
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and taking into account the equality δφ = ∂Hφ/∂ φ (∇φ · n�) in Eq. (31), we obtain:

∂ρ

∂Hφ︸︷︷︸
ρ′

∂Hφ

∂φ

(
∂φ

∂t
+ u∇φ

)
+ ρ ṁv

(
1
ρ�

− 1
ρg

)
︸ ︷︷ ︸

c1

∂Hφ

∂φ
∇φ · n� = 0 . (32)

Next, we cancel out ∂Hφ/∂φ from Eq. (32) and divide by ρ′ = ∂ρ/∂φ, arriving at the
transformed form of Eq. (30) for the transport equation of the level set

∂φ

∂t
+

(
u + c1ṁv

ρ

ρ′ n�

)
︸ ︷︷ ︸

:=u|�

·∇φ = 0 (33)

with the definition of the transport velocity u|� , the interface normal vector n� and the
abbreviation c1 = 1/ρg − 1/ρ�. At this point, it is not clear, which interpolation rule
should be chosen to describe the smooth evolution of the density across the interface.We
derive a suitable density interpolation function in the following. In a first step, in order to
keep the level-set profile constant as the interfacemoves and to avoid artificial deformation
of the level set field, we enforce that the interface velocity should be divergence-free

∇ · u|� = 0 . (34)

We apply the chain rule to compute the divergence of the transport velocity defined in
Eq. (33). For this purpose, we assume a potentially varying evaporation flux ṁv over the
finite interface region, consider the definition of the evaporative dilation rate (22) and
employ the definition of the interface curvature, ∇ · n� = κ , which yields:

∇ · u|� = c1 ṁv δφ︸ ︷︷ ︸
∇·u

+c1
ρ

ρ′ n� · ∇ṁv + c1 ṁv
ρ

ρ′ κ︸ ︷︷ ︸
≈0

+c1 ṁv

(
1 − ρ ρ′′

ρ′2

)
n� · ∇φ ≡ 0 .

(35)

Here, the abbreviation ρ′′ = ∂2ρ/∂φ2 is introduced. The expression ṁvκ ρ/ρ′ may be
neglected if the interface thickness, influenced by ε, is considerably smaller than the
curvature radiusRκ = 1/κ , i.e., when approaching the limit case of a flat interface (ε/Rκ =
0). Note that in this context the ratio ρ/ρ′ scales with the interface thickness parameter
ε. With this approximation and after division by the non-zero term c1 and exploiting
δφ = ∂Hφ/∂φ n� · ∇φ, this results in the simplified form of the divergence-free condition
of the transport velocity

0 = n� ·
(

ρ

ρ′ ∇ṁv + ṁv

(
ṁv + 1 − ρ ρ′′

ρ′2

)
∂Hφ

∂φ
∇φ

)
. (36)

In Eq. (36), the scalar product of the interface normal vector (n�) and the gradient terms
(∇φ and ∇ṁv) represent an extraction of the component of the gradient in the interface
normal direction. Therefore, we introduce a local coordinate system, in which the x-
direction is aligned with the interface normal direction n� , which allows us to express
Eq. (36) as

−
dṁv
dx
ṁv

= dHφ

dx

(
2ρ′

ρ
− ρ′′

ρ′

)
, (37)
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representing a linear differential equation. The latter can be solved analytically by sep-
aration of variables and subsequent integration over the interface thickness x with
−t/2 ≤ x ≤ t/2. Considering Hφ(−t/2) = 0 and ρ(−t/2) = ρg , this results in

C
∫ x

−t/2
ṁv δφ dx = 1

ρg
− 1

ρ(x)
. (38)

Determination of the integration constant C follows from integration over the interface
thickness −t/2 ≤ x ≤ t/2 with ρ(t/2) = ρl

C = 1∫ t/2

−t/2
ṁv δφ dx

︸ ︷︷ ︸
˙̄m

(
1
ρg

− 1
ρ�

)
. (39)

Finally, inserting Eq. (39) into Eq. (38) yields an expression for the density distribution
over the interface that ensures a divergence-free transport velocity

1
ρ

= 1
ρg

− 1
˙̄m

(
1
ρg

− 1
ρ�

) ∫ x

−t/2
ṁv δφ dx . (40)

By evaluationof Eq. (40) for a spatially constant evaporativemassflux in interface thickness
direction (n� (n� · ∇ṁv) = 0), the relations ˙̄m = ṁv and

∫ x
−t/2 ṁv δφ dx = ṁvHφ hold.

For this special case, the definition of the density distribution (40) reduces to

1
ρ

= Hφ

ρ�

+ 1 − Hφ

ρg
. (41)

It represents the employed interpolation function used for the effective density of our
diffuse framework given in Eq. (16), for which we have demonstrated a mathematically
consistent derivation to achieve a diverence-free level-set transport velocity. In this deriva-
tion, two main assumptions have been made: (1) the interface thickness has to be small
compared to the interface curvature radius; (2) the variation of the evaporative mass flux
has to be small across the interface thickness. Both assumptions can be justified if the
interface thickness is chosen small enough.
We conclude the central result of the derivation above with the definition of the level-

set transport velocity (33) and the reciprocal interpolation of the density (41). The first
approach for computing the level-set transport velocity of the diffuse model is defined by

u|(V1)� (x) = u(x) + ṁv
ρ(x) n�(x) for x in � . (42)

It is referred to as variant 1 in the following. This equationmodifies the local fluid velocity
u(x) by an evaporation-dependent contribution, considering only local field quantities
making it attractive for a finite element framework.
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Variant 2 and variant 3: Level-set transport velocity based on extended velocity fields

The previously presented variant 1 (42) for computing the level-set transport velocity
is particularly suited for flat or slightly curved interfaces. However, in certain practical
applications such as PBF-LB/M, a very thin interface thickness is required to achieve an
acceptable accuracy owing to the fundamental assumptions of variant 1 (a small interface
thickness compared to the curvature radius and a minimal variation of the evaporative
mass flux across the interface). This necessitates an extremely fine spatial discretization,
which leads to a significant increase in computational cost. Inspired by the sharp model
equations (27), we propose two alternative variants to compute the transport velocity
in the diffuse model which are more accurate for highly curved interfaces. We exploit
extension algorithms which are similarly found in ghost fluid methods [51].
Variant 2 considers an extension of the velocity from the liquid end of the interface

region, i.e., from x�:

u|(V2)� (x) = u(x�(x)) + ṁv
ρ�

n�(x) for x in � . (43)

The liquid end of the interface region x� is defined as the projection of a point x along the
interface normal to the level-set isocontour where Hφ(φ) attains 1, see Eq. (14).
In contrast, variant 3 considers an extension of the fluid velocity from the gaseous end

of the interface region, i.e., from xg:

u|(V3)� (x) = u(xg(x)) + ṁv
ρg

n�(x) for x in � . (44)

The gaseous end of the interface region xg is defined as the projection of a point x along
the interface normal to the level-set isocontour where Hφ(φ) attains 0, see Eq. (14).
The two presented variants above require an extrapolation algorithm for determining

u(xg) or u(x�) in a narrow band around the interface. In Appendix C, algorithmic details
are provided, along with an illustrative demonstration and verification based on the well-
known two-phase flow benchmark example of a rising bubble. In the extension algorithm,
we utilize closest point projection, as suggested in [68]: In the first step, corresponding
to the current location x, points at the liquid or gaseous end of the interface region, i.e.,
xg(x) or x�(x), defined as the closest point located at the level-set-isocontours

φ(x�) = φ(d(x) = 3 ε) Eq. (6)= tanh (1.5) (45)

and

φ(xg) = φ(d(x) = −3 ε) Eq. (6)= tanh (−1.5) , (46)

are computed. In the second step, the fluid velocities u(x�(x)) or u(xg(x)) are evaluated at
the projection points xg and x�, which can be used in Eqs. (43) and (44) to compute the
level-set transport velocity.
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Fig. 4 Comparison of sharp and diffuse models based on the analytical solution for the fluid velocity normal to
the interface of a flat (top) and an axisymmetric curved (bottom) interface subject to evaporation. The parameters
are chosen as ṁv = 0.01 kg/m2s, ρ� = 1000 kg/m3, ρg = 1 kg/m3. For the curved interface, the diffuse model
results in a slightly lower peak velocity compared to the sharp model through the inherent diffusion of the
velocity over the curved interface zone

Evaluation of the proposed level-set transport velocity approaches based on analytical

benchmark examples

After having introduced three formulations of a level-set transport velocity suitable for a
diffuse framework in “Variant 1: Divergence-free continuous level-set transport velocity
based on a consistent density distribution” and “Variant 2 and variant 3: Level-set trans-
port velocity based on extended velocity fields” sections, we evaluate their strengths and
weaknesses based on two simple yet illustrative analytical benchmark cases consisting of
(i) a flat interface (cf. Figure 21) and (ii) an axisymmetric curved interface (cf. left panel
of Fig. 6). At the interface liquid material evaporates with a spatially and temporally con-
stant evaporative mass flux. Simultaneously, the evaporated volume is compensated by
a prescribed inflow velocity on the liquid side of the interface to yield a spatially fixed
interface location. Thus, we expect the computed level-set transport velocity u|� to be
zero. For the two examples, analytical solutions exist for the velocity and the pressure field
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Fig. 5 Evaluation of diffuse models based on the analytical solution for the level-set transport velocity of a flat
(top) and an axisymmetric curved (bottom) interface subject to evaporation (cf. Fig. 4): The considered variants
1-3 yield identical results corresponding to the sharp reference solution for the flat interface. For the curved
interface, only variant 2, i.e., considering an extension velocity from the liquid end of the interface zone, yields a
good approximation of the exact transport velocity for finite values of the interface thickness

for both the diffuse and the sharp model, which are derived in Appendix D and Appendix
E, respectively.
In Fig. 4, the resulting profiles of the velocity component normal to the interface are

depicted for the flat (top) and the axisymmetric curved interface (bottom). The black,
dashed curves represent the velocity profiles derived for a sharp model—representing the
exact reference solution [cf. to Eq. (D7) for the flat interface and Eq. (E24) for the curved
interface]. The colored solid curves correspond to the solutions obtained for the diffuse
model for different values of the interface thickness parameter ε according to Eqs. (D11)
and (E18). For the curved interface, the diffusemodel predicts a slightly lower peak velocity
compared to the sharp model due to the inherent diffusion of the velocity over the curved
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interface zone, as also discussed in [53]. For both geometries, the solution of the diffuse
model tends to converge to the reference solution as the interface thickness decreases
(ε → 0) and thus is considered mathematically consistent.
The resulting level-set transport velocities for the two investigated geometries and dif-

ferent interface thickness parameters are shown in Fig. 5.We recall that the exact solution
for the level-set transport velocity is by construction zero.
As depicted in the top panel of Fig. 5, for the flat interface, the transport velocity obtained

by using variant 1, variant 2 or variant 3 all agree with the reference solution as expected.
However, when considering the curved interface, illustrated in in Fig. 5 bottom, the

transport velocities predicted by the diffuse model for variant 1 and variant 3 signifi-
cantly deviate from the reference solution. This deviation is particularly notable at the
critical location of the discrete interface, i.e., φ = 0, where the level-set transport velocity
plays a key role in determining the overall evaporated mass. Furthermore, the solution
according to variant 1 exhibits a substantial variation across the interface, leading to a
violation of the initial assumption of a local divergence-free condition of the transport
velocity. It should be emphasized that, due to the analytical nature of the problem, spatial
or temporal discretization errors play do not play a role. Consequently, the error can be
attributed to the assumption made in “Variant 1: Divergence-free continuous level-set
transport velocity based on a consistent density distribution” section regarding a small
ratio between the interface thickness and the curvature radius. Despite these discrepan-
cies, it is important to note that the solution remains mathematically consistent, i.e., the
error decreases as the interface thickness or the curvature approaches zero. Nevertheless,
for realistic values of the interface thickness, the deviation between the transport velocity
of the diffuse model in variant 1 and the sharp model can be significant. This is especially
truewhen dealingwith high velocity jumps and curved geometries, which is demonstrated
in numerical benchmark examples in “Results” section.
Variant 2 tends to exhibit a better accuracy than variant 3 for modeling evaporation.

This is expected because the transport velocity closely resembles the velocity at the liquid
end of the interface region, which differs significantly from the velocity at the gas end. The
evaporation-induced velocity difference results from a significant density ratio and/or a
large evaporative mass flux.
As a final remark, although the extension algorithm makes variant 2 and variant 3

computationally more expensive compared to the local nature of variant 1, the resulting
transport velocity is constant across the interface region by construction. This is advanta-
geous for the level-set transport, potentially reducing the need for frequent reinitialization
steps [69].

Constitutive relation for incompressible viscous flowwith diffuse phase change

Stokes’ constitutive relation

For modeling incompressible viscous flow, the Stokes’ constitutive relation

σ = −p I + 2μeff ε︸ ︷︷ ︸
τμ

(47)

is frequently employed, where σ is the Cauchy stress tensor, p is the pressure, I is the
second-order identity tensor, μeff is the effective dynamic viscosity and ε the rate-of-
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deformation tensor according to

ε = 1
2

(
∇u + (∇u)�

)
. (48)

A corrected viscous stress formulation

For incompressible flow without phase change, the rate-of-deformation tensor according
to Eq. (48) is purely deviatoric due to the divergence constraint, i.e, tr (ε) ≡ ∇ · u = 0.
As a consequence, the viscous stress tensor τμ= 2μeff ε is purely deviatoric. However, in
presence of phase change, the diffuse velocity jump in normal direction to the interface,
introduced in Eq. (1a) through the evaporative dilation rate (22), yields an intentional
violation of the incompressibility condition in the interface zone, i.e. ∇ · u = tr (ε) �= 0
for {x ∈ � | 0 < H (x) < 1}. As a consequence, the evaporative dilation rate contributes
to the rate-of-deformation tensor according to Eq. (48). According to Eq. (47), this would
result in an evaporation-induced contribution to the viscous stress, which is deemed
to be not physically meaningful but a purely numerical artifact of the diffuse interface
approximation.
As a remedy, we propose in the following to correct the rate-of-deformation tensor by

neglecting the volumetric deformation caused by the diffuse evaporative dilation rate in
the evaluation of viscous stresses. Specifically, we propose to introduce a correction term
into the rate-of-deformation tensor

ε(mod) = ε − tr (ε) n� ⊗ n�︸ ︷︷ ︸
ε(v)

. (49)

and use it in Eq. (47) via

τμ = 2μeff ε(mod) . (50)

Thereby, the non-physical evaporation-induced volumetric deformation of the inter-
face region, denoted as ε(v), is subtracted. It is by definition a deviatoric tensor
(i.e., tr

(
ε(mod)

)
= 0) and accounts for the fact that evaporative deformation only

affects the strain rate component in interface normal direction (resulting from the
evaporation-induced velocity jump in normal direction). The evaporation-induced rate-
of-deformation ε(v) is only non-zero in the interface zone, where the evaporative dilation
rate ṽ(lg) �= 0 and thus tr (ε) �= 0 holds. Using this expression within the momentum
equation (1b) leads to successful elimination of spurious pressure artifacts in the interface
region for viscous flows with evaporation, as demonstrated based on an analytical exam-
ple in “Analytical demonstration example: evaporating circular shell” section and several
numerical examples in “Results” section.

Analytical demonstration example: evaporating circular shell

For an illustrative derivation of the proposed corrected viscous stress formulation in
Eqs. (49) and (50) andwithout losing generality, we consider a circular shell under axisym-
metric conditions as depicted in the left panel of Fig. 6, parametrized in 2D by the radius
r and the angular coordinate θ . The shell has an inner radius of Ri and an outer radius
of Ro. At the interface liquid material evaporates with a spatially and temporally constant
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Fig. 6 Circular shell subject to an axisymmetric evaporative mass flux ṁv: (left) geometry and boundary
conditions; (right) analytical solution for the radial velocity component and comparison with the solution
obtained without phase change. The parameters are chosen as (SI units): Ri = 0.125, R� = 0.25, Ro = 0.375,
ρ� = 10, ρg = 1, ṁv = 0.01, ε = 5 × 10−3. A low density ratio is utilized on purpose to retain fine details in the
region where r < 0.25

evaporative mass flux ṁv. Simultaneously, the evaporated volume is compensated by a
prescribed inflow velocity on the liquid side of the interface

ur(r = Ri) = ū = ṁv
ρ�

R�

Ri
(51)

to yield a spatially fixed interface location. Considering the axisymmetry of the system,
the velocity field and other field quantities do not depend on the angular coordinate θ .
Furthermore, the circumferential velocity uθ (r, θ ) is zero throughout the domain. The
only non-zero velocity component is the radial velocity component ur(r), which can be
expressed in terms of the cylindrical coordinate system as:

u =
[
ur(r)
0

]
. (52)

For this example, an analytical solution for the radial velocity (and the pressure) is derived
considering the present diffuse model, detailed in Appendix E:

ur(r) = 1
r

(
Ri ū + ṁv

(
1
ρg

− 1
ρ�

)∫ r

Ri

(
r

∣∣∣∣dHφ(r)
dr

∣∣∣∣
)

dr
)

. (53)

It is illustrated in the right panel of Fig. 6 for exemplary parameter values. The rate-of-
deformation tensor (48) computed from this velocity field and expressed in cylindrical
coordinates reads as

(54)

It can be seen that insertion of Eq. (53) into the rate-of-deformation tensor (54) yields
a radial normal strain rate component εrr = ∂ur/∂r which differs from εθθ = ur/r. Thus,
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the volumetric strain rate results to tr (ε) = ∂ur/r + ur/r �= 0. Consideration of the latter
in Eq. (47) would induce a non-physical, evaporation-induced viscous stress.
In contrast, evaluation of Eq. (49) for the analytical solution provided in Eq. (53) yields

ε(mod) =
[

∂ur
∂r 0
0 ur

r

]
−

(
∂ur
∂r

+ ur
r

) [
1
0

]
·
[
1 0

]
=

[
−ur

r 0
0 ur

r

]
, (55)

implying the desired purely deviatoric rate-of-deformation tensor, i.e., tr(ε(mod)) = 0.
Hence, by using the corrected rate-of-deformation tensor to compute viscous stresses
(49)–(50), artificial evaporation-induced viscous stress contributions are reduced.

Remark 2 Recalling the considered example of the circular shell (cf. right panel of Fig. 6)
for incompressible two-phase flow without phase change, the analytical solution for the
radial velocity component can be obtained from an analytical solution of the continuity
equation as

ur(r) = Ri
r
ū. (56)

It is illustrated in the right panel of Fig. 6 as the black, dashed line. Here, the rate-of-
deformation tensor (54) is calculated as

ε =
[
−ū Ri

r2 0
0 ū Ri

r2

]
≡

[
−ur

r 0
0 ur

r

]
(57)

which is equal to Eq. (55) and represents a purely deviatoric tensor.

Numerical framework

The governing partial differential equations, i.e., Eqs. (1a)–(1b) and Eq. (5), as well as the
additional equations for the level-set framework consisting of the reinitialization (9), the
filtered normal (11) and the filtered curvature (13) are discretized in space using con-
tinuous finite elements based on Lagrange polynomials as test and trial functions. The
resulting weak form for Eqs. (1a)–(1b) and Eq. (5) and additional notes on the discretiza-
tion are presented in Appendix F. Finite element discretizations of transport terms, such
as present in the governing equations, would typically require stabilization schemes at
higher Reynolds numbers. We employ no distinct stabilization since the Reynolds num-
bers considered in this publication are moderate and potential oscillations in the level set
field are flattened by the reinitialization, where diffusion in the direction normal to the
interface is employed [see Eq. (9)]. The polynomial degree k of the test and trial functions
for the velocity field is ku = 2 while it is kp = 1 for the pressure field to ensure inf-sup
stability. For the level-set field, we consider kφ = 1. For the transport and reinitialization
equation of the level-set field, the filtered normal vector and curvature calculation, we
employ a refined mesh by subdividing it nφ

sub times, in the spirit of [58]. If not stated
otherwise, we choose nφ

sub = 2 leading to a level-set mesh to be a factor of two finer com-
pared to the one of the Navier–Stokes equations. In order to avoid amismatch in pressure
space with the level-set space, we employ an interpolation of the level-set function onto
the pressure space before evaluating the surface tension force [58,61]. For evaluating the
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integrals of the weak form, we consider numerical integration by evaluation at (ki +1)dim,
with i ∈ {p, u,φ}, Gaussian quadrature points.
For time integration, (semi-)implicit time stepping schemes are used. The coupled sys-

tem of equations is solved based on operator splitting considering a weakly partitioned
solution scheme, introducing an explicit (time lag) scheme between the equations as out-
lined inAlgorithm1.Thus, each of the fields is propagated fully implicitly, but the coupling
terms, i.e., evaporative dilation rate and surface tension force are treated explicitly, which
introduces a time-step limit. For computing the latter, we consider the capillary time-step
limit according to [43]

�tmax ≤
√(

ρ� + ρg
)
l3min

4πα
(58)

where lmin is the minimum edge length. It is noted that the time step limit could also be
affected by the explicit treatment of the evaporative dilation rate, but in the absence of a
detailed study of the latter, we estimate it empirically by trial and error in the following
studies.
To allow for a high spatial resolution of the interface region, adaptive meshing schemes

are considered. In every time step, we assess whether refinement is necessary. If a cell

located within 3.5 layers of the interface (i.e., if − log
(
max
K

|∇φ| ε
)

< 3.5 holds) is not

at the maximum refinement level, adaptive mesh refinement is performed. In such cases,
we follow the remeshing strategy presented in [58]: all cells within four layers of the

interface (i.e., if − log
(
max
K

|∇φ| ε
)

< 4 holds) or seven layers biased towards the flow

direction (i.e., if − log
(
max
K

|∇φ| ε
)

− �t (u · ∇φ) / (ε |∇φ|) < 7 holds) are refined. The

second criterion introduces an additional layer of roughly three cells in the downstream
direction, which extends the duration for a valid mesh and consequently lowers the need
for frequent remeshing.
To reduce the time for the matrix–vector product within the iterative solvers for the

linear systems of equations, highly efficient matrix-free algorithms as presented in [57,70]
are used for each field. Matrix-free operator evaluation ensures high node-level perfor-
mance, in line with current trends in exascale finite-element algorithms described in [71].
This approach allows for the matrix-free evaluation of the operator action y = Ax, com-
puting the integrals underlying a finite-element discretization on the fly. Specifically, it
involves a loop over all cells, applying the element stiffness matrix on a vector restricted
to the unknowns (degrees of freedom) of the cell [57], i.e., y = A(x) = ∑

i RT
i AiRi. For

example for quadratic finite elements and systems of partial differential equations such as
the systemmatrix of the incompressible Navier–Stokes equations linearized by a Newton
method, thematrix-free kernels can be up to ten times as fast asmatrix-based kernels [58].
The frameworks for adaptive mesh refinement and matrix-free operator evaluation are

used from the open-source finite element package deal.II [56] together with available
parallelized MPI-based implementations using domain decomposition. In addition, we
use and extend the open-source incompressible Navier–Stokes solver adaflo [58]. As
outlined in Algorithm 1, for this purpose, we provide variable material properties and
additional right-hand side terms to the Navier–Stokes solver.
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Table 1 Default solver settings; either the absolute tolerance (‖R‖�2 < ATOL) or the relative

tolerance (‖R‖�2 /

∥∥∥R(0)
∥∥∥

�2
< RTOL) need to be fulfilled R represents the residual of the current

iteration and R(0) the initial residual

Subproblem Linear solver Nonlinear solver

Type Preconditioner ATOL RTOL ATOL RTOL

Navier–Stokes equations (1a)–(1b) GMRES ILU+Schur – 10−4 10−10 –

Level-set advection (5) GMRES Diagonal 10−20 10−12 – –

Reinitialization (9) CG Diagonal 10−20 10−12 – –

Normal vector (11)

Curvature (13)

For the solution of the linear equation systems, we use iterative solvers based on precon-
ditioned Krylov subspace methods, i.e., the conjugate-gradient (CG) solver for symmetric
systems and the generalizedminimal residualmethod (GMRES) solver for non-symmetric
systems [72]. A summary on the linear solver settings can be found in Table 1. Solving the
fully coupled block system of the Navier–Stokes equations involves a saddle point struc-
ture [73]. To adress this, we employ a block-triangular preconditioner with an incomplete
LU decomposition (ILU) for the velocity block and with the Cahout–Chabard approxi-
mation [74] of the Schur complement as described in [58].

Algorithm 1Overall solution algorithm of the incompressible two-phase flow with evap-
oration framework

Results
In the following, several benchmark examples are computed to evaluate the strengths and
weaknesses of the diffuse framework for two-phase flow with evaporative phase change
presented in “Methods”. If units are omitted in this section, they are assumed to corre-
spond to SI standards, i.e., kg, m, s, K. As stated in the introduction, the focus of this
contribution is to accurately predict the movement of the liquid surface for rapid evap-
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Fig. 7 Illustration of the one-dimensional phase change problem

oration. The analytical study in “Evaluation of the proposed level-set transport velocity
approaches based on analytical benchmark examples” section showed that variant 1 and
variant 2 are the most promising for modeling interface movement under evaporation.
Therefore, we exclude variant 3 from the subsequent numerical study to keep the study
concise. For the evaporative mass flux ṁv (kg/(m2 s)), we prescribe an analytical function
to mimic isothermal conditions. For every investigated example, an analytical solution
exists for verification.

One-dimensional phase change

In this example, the behavior of a flat liquid surface subject to evaporation is analyzed.
Thereto, a one-dimensional (1D) domain is considered with a prescribed spatially and
temporally constant evaporation flux of ṁv = 0.01, illustrated in Fig. 7. A similar example
was considered e.g. in [53]. The domain � = x ∈ [0, 1] is occupied with a liquid (left
half) and a gaseous phase (right half), characterized by an initial position of the discrete
interface at x(φ = 0, t = 0) ≡ x(0)� = 0.5 and the interface thickness parameter ε = 0.02.
The fluid is initially at rest (u(0) = 0). HomogeneousDirichlet boundary conditions for the
velocity along the left domain boundary (u(x = 0) = 0) and an outlet boundary condition
is assumed along the right domain boundary (p(x = 1) = 0). A uniform mesh with an
element length of approx. 0.008 is employed. Considering a refined mesh for the level-set
framework by subdividing it nφ

sub = 2 times, this results in a resolution of the interface
region by approx. 30 elements for the level-set field. The simulation is performed for the
time period 0 ≤ t ≤ 1 with a constant time step size of 5 × 10−4. The parameters for the
phase densities are specified as ρ� = 1 and ρg = 10−3. Gravity forces are neglected.
The analytical solution for this example is described in Appendix D for both the sharp

and the diffuse model. For discussing the influence of the viscous stress tensor (cf. “A
corrected viscous stress formulation” section), in the following, we present simulation
results considering two different rheology types of fluids, i.e., a quasi-inviscid fluid and a
viscous Newtonian fluid.

Quasi-inviscid fluid

First, we consider a quasi-inviscid fluid (realized by setting μeff = 10−10), for which the
Stokes’ law without correction term (47) holds and the modification of the viscous stress
proposed in “Constitutive relation for incompressible viscous flow with diffuse phase
change” section is not needed. According to Fig. 8, the movement of the liquid surface is
accurately modeled for both considered variants of the level-set transport velocity. The
numerically predicted velocity and pressure, illustrated in the bottom panel of Fig. 8, are
in perfect agreement with the analytical solution of the diffuse model and coincide with
the sharp model outside the interface region. It is stressed that the reciprocal density
interpolation (16) is mandatory for the diffuse framework to predict the correct solution
for the pressure difference between the two phases, irrespective of the chosen level-set
transport velocity variant. For example, if the effective density in themomentum equation
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Fig. 8 One-dimensional phase change problem subject to a spatially and constant evaporation flux (cf. Fig. 7) for
a quasi-inviscid fluid: (top) temporal movement of the discrete interface (x(φ = 0)); Both considered variants 1 and
2 for computing the level-set transport velocity yield identical results corresponding to the sharp reference
solution; (bottom left) velocity and (bottom right) pressure at the end of the simulation. The perfect agreement
between the numerical results, the analytical solution of the diffuse model and the one of the sharp model
outside the interface region verifies the numerical framework

(1b) were calculated according to an arithmetic phase-weighted average, the pressure
would deviate significantly from the reference solution. This standard approach for two-
phase flow without phase change would overestimate the pressure in the liquid phase by
a factor of 166, as shown in Fig. 9.

Viscous fluid

Next, we analyze a viscous fluid with a dynamic viscosity of μ� = μg = 10−3. We choose
the viscosities to be equal between the phases in order to study the artificial evaporation-
induced pressure jump in an isolatedmanner.We expect viscosity not to have an influence
on the results due to the 1D nature of the problem. For the present study, we consider
two variants for the calculation of the viscous stress tensor in our diffuse model: the
Stokes’ constitutive relation for incompressible flow based on (i) the uncorrected rate-
of-deformation tensor (48) and (47) (denoted as standard Stokes) and (ii) the corrected
rate-of-deformation tensor Eqs. (49) and (50) (denoted as corrected Stokes) taking into
account a subtraction of the evaporation-induced deformation. According to the left
panel of Fig. 10, viscosity has no influence on the velocity profile. However, by analyzing
the pressure profile in the right panel of Fig. 10, it becomes apparent that the result in the
interface zone is manifested by a significant pressure elevation due to the contribution of
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Fig. 9 One-dimensional phase change problem subject to a spatially and constant evaporation flux (cf. Fig. 7) for
a quasi-inviscid fluid: numerical solution for the velocity (left) and the pressure (right) at the end of the simulation,
considering the effective density in themomentum equation (1b) as an arithmetic phase-weighted average
ρ
(arith)
eff = Hφρ� + (1 − Hφ ) ρg. Due to the inconsistent interpolation function of the density between the two

phases used for demonstration purposes, there is a significant discrepancy between the numerically predicted
pressure and the reference solution in the liquid domain

Fig. 10 One-dimensional phase change problem subject to a spatially and constant evaporation flux (cf. Fig. 7)
for a viscous fluid: Numerical vs. analytical solution for the velocity (left) and the pressure (right) at the end of the
simulation (t = 1). The results for the velocity are not affected by the viscosity and resemble the one of Fig. 8.
However, the pressure profile obtained by the Stokes’ constitutive relation using the uncorrected
rate-of-deformation tensor exhibits a significant peak in the interface zone (blue curve). The latter can be avoided
by using a correction term within the rate-of-deformation tensor according to Eq. (49) (red curve)

the evaporation-induced volumetric strain-rate to the viscous stress using the uncorrected
rate-of-deformation tensor in the Stokes relation. The latter is remedied by adding the
correction term to the rate-of-deformation tensor (49) and using it in the viscous stress
relation (50).
Additional verification is performed by simulating the problem in 2D and 3D, shown in

Fig. 11. It can be seen that the pressure, and for completeness the velocity, is identical to the
purely one-dimensional case, which underlines the general applicability of the proposed
modified Stokes’ relation (49) also to higher dimensions. The total runtime for the 3D
simulation (19,496 degrees of freedom and 1000 time steps) was 1min, using two cores of
an AMD Ryzen Threadripper PRO 3995WX.
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Fig. 11 One-dimensional phase change problem subject to a spatially and constant evaporation flux (cf. Fig. 7)
for a viscous fluid considering variant 1: Numerical vs. analytical solution for the velocity (left) and the pressure
(right) at t = 0.05. The results are computed considering a flat interface embedded in a 1D, 2D and 3D domain to
investigate the influence of the spatial dimension on the pressure. For the 2D and 3D cases the values are
evaluated along a line through the center that is normal to the interface. The agreement between the results
confirms the general applicability of the viscous stress tensor (49) to higher dimensions

Evaporating droplet

For verification of the proposed numerical framework for evaporation of highly curved
surfaces, a circular droplet subject to a spatially and temporally constant evaporation flux
ṁv = 0.1 is simulated, illustrated in Fig. 12 (top left). A similar study was performed in
[49,53]. The domain� = [−0.5, 0.5]2 is occupied by a liquid droplet, characterized by the
initial radius r0 = 0.25 and the interface thickness parameter ε = 2 × 10−3, embedded
in a bulk vapor phase. The fluid is initially at rest (u(0) = 0). Along the domain boundary,
outflow boundary conditions at zero pressure are assumed. In order to better resolve
the interface domain, we employ adaptive mesh refinement with an element edge length
between ≈ 0.0039 and 0.0625. The simulation is performed for the time period 0 ≤ t ≤ 5
at a constant time step size of 5 × 10−3. The values for the phase densities are specified
as ρ� = 1000 and ρg = 1. The fluid is assumed to be quasi-inviscid. Surface tension and
gravity forces are neglected for the sake of simplicity.
The analytical solution for this example is derived from evaluating mass balance across

themoving interface, mentioned also in [53], resulting in the time derivative of the droplet
radius r

dr
dt

= −ṁv
ρl

. (59)
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Fig. 12 Evaporating droplet (quasi-inviscid, variant 2): (top left) problem setup; contour plots of (top right) the
level-set transport velocity, (bottom left) the fluid velocity and (bottom right) the pressure, obtained at the final
stage of the simulation

Similar to “One-dimensional phase change” section, for discussing the influence of the
chosen type for the viscous stress tensor (cf. “A corrected viscous stress formulation”
section), we present simulation results considering a quasi-inviscid fluid and a viscous
Newtonian fluid.

Quasi-inviscid fluid

First, we consider a quasi-inviscid fluid (realized by settingμeff = 10−10), where the results
obtained for a two-dimensional simulation are shown in Figs. 12, 13. In the left panel of
Fig. 13, the numerically predicted evolution of the relative movement of the interface is
illustrated for variant 1 and variant 2 in comparison with the analytical solution. For the
evaluation of the droplet radius from the numerical results, we performed an averaging
over the droplet perimeter. Excellent agreement is obtained for variant 2, while variant 1
overestimates the movement of the interface significantly. This behavior is in agreement
with the analytical examples discussed in “Evaluation of the proposed level-set transport
velocity approaches based on analytical benchmark examples” section and shown in Fig. 5.
In addition, the zero-level-set isosurface at the final simulation time is shown in the right
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Fig. 13 Evaporating droplet (inviscid): Relative movement of the interface over time considering variants 1 and 2.
It can be seen that variant 1, i.e., the local modification of the fluid velocity, overestimates the interface movement
and thus leads to violation of mass conservation while variant 2 is in excellent agreement with the analytical
solution

velocity u0 0.1 transport velocity u|Γ0 1 · 10−4

Fig. 14 Evaporating droplet (inviscid, variant 2): Results from a 3D simulation in the final stage of the simulation.
The behavior resembles the one of the 2D simulation illustrated in Fig. 12

panel of Fig. 13, where the overestimation of the droplet shrinkage becomes apparent.
The resulting transport velocity according to variant 2 is illustrated in Fig. 12 (top right)
for the final simulation time. Here, the velocity magnitude is constant over a narrow
band around the interface and the vector points in radial direction into the droplet — as
expected. This investigation indicates that variant 2 is a promising candidate for accurate
level-set transport in presence of evaporation for curved interfaces. For completeness, the
velocity vectors and the pressure are shown in the bottom panels of Fig. 12. It can be seen
that the velocity is zero inside the droplet and increases significantly across the interface.
This leads to an evaporation-induced pressure increase with a maximum value inside the
droplet.
For additional demonstration of the versatile applicability of the framework, the velocity

field (left) and the transport velocity field (right) is shown for a 3D computation using
variant 2 in Fig. 14. The results resemble the one of the 2D case.
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Fig. 15 Evaporating droplet (2D, viscid, variant 2): Pressure at the final simulation stage considering the Stokes’
constitutive relation (i) using the uncorrected rate-of-deformation tensor (47) (left column) and (ii) using the
corrected rate-of-deformation tensor (50) (right column). The first row shows contour plots of the pressure in a
deformed state (pressure scale factor of 5). The second row shows pressure profile along the horizontal section
through the center. It can be seen that the evaporation-induced pressure elevation within the interface region
can be avoided by using our proposed evaporation-related correction of the rate-of-deformation tensor for
computing viscous stress

Viscous fluid

Next, we analyze a viscous fluid with a dynamic viscosity of μ� = μg = 10−3. We
expect that viscosity should not have an influence on the results due to axisymmetry.
For the present study, we consider two variants for computing the stress tensor in our
diffuse model: the Stokes’ constitutive relation for incompressible flow based on (i) the
uncorrected rate-of-deformation tensor (48) and (47) (denoted as standard Stokes) and (ii)
the corrected rate-of-deformation tensor Eq. (49) and (50) (denoted as corrected Stokes)
taking into account a subtraction of the evaporation-induced deformation. Similar to
the one-dimensional phase change case (cf. “Viscous fluid” section) and according to
Fig. 15 (left column) the interface region exhibits a significant pressure elevation without
employing the evaporation correction of the deformation for the viscous stress. By using
the corrected rate-of-deformation tensor (49) for computing viscous stress, this is avoided
as shown in Fig. 15 (right column).

Remark on the computational effort

Table 2 summarizes the computational effort split into the main tasks for the simulation
of the evaporating droplet case, which represents the largest simulation of this contribu-
tion. It is evident that evaluating the level-set transport velocity in variant 2 consumes a
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Table 2 Evaporating droplet (viscid): distribution of the computational effort using 60 cores of AMD
Ryzen Threadripper PRO 3995WX

Evaporating droplet, viscid

2D 3D

Variant 1 Variant 2 Variant 1 Variant 2

Overall run time (60 cores) 7min 10min 6min 1 day

Average DoFs (φ + p + u) 447,300 411,977 1,890,106 2,733,955

Total number of time steps 1000 1000 500 500

Task Relative effort

Level set (advection, reinitialization, normal vector, curvature) 44% 27% 28% < 1%

Level-set transport velocity (note: not optimized!) < 1% 31% 2% 99%

Navier–Stokes 53% 40% 62% < 1%

Adaptive meshing < 1% < 1% < 1% < 1%

Other (output, initial conditions, etc.) < 1% < 1% 8% < 1%

substantial portion of the total computation time, especially in 3D. Thus, performance
optimization of this task is necessary in view of large-scale simulations.

Evaporating circular shell

The examples shown previously are characterized by zero velocity in the liquid phase.
In the following, we present a new benchmark example that allows us to evaluate the
accuracy of our framework for curved surfaces in presence of fluid velocities in both
phases—the liquid and the vapor phase. This enables to mimic the typical situation of
practically relevant problem types, such as melt pool dynamics of PBF-LB/M. For the
chosen setup we derive an analytical solution, which is presented in Appendix E.
We revisit the circular shell geometry described in “Analytical demonstration example:

evaporating circular shell” and illustrated in Fig. 6 (left). The domain � is described by a
radius of the interior face Ri = 0.125 and the exterior face Ro = 3Ri = 0.375. The initial
liquid–vapor interface is positioned at R� = 2Ri = 0.25. The liquid surface is subject to
a spatially and temporally constant evaporation flux ṁv = 0.1. The inflow velocity at the
interior boundary is chosen as ū = ṁv R�/(ρl Ri) = 2 × 10−5. This should balance the
evaporated volume of the liquid phase and should prohibit the movement of the interface
according to the analytical solution of the problem. The fluid is initially at rest (u(0) =
0). The initial level-set function is characterized by an interface thickness parameter
ε = 2 × 10−3. Along the exterior domain boundary, outflow boundary conditions at
zero pressure are assumed. In order to better resolve the interface domain, we employ
adaptive mesh refinement with an element edge length between ≈ 3.068 × 10−3 and
3.834 × 10−4 in circumferential direction and ≈ 4.883 × 10−4 and 3.906 × 10−3 in radial
direction (illustrated in Fig. 16 bottom left). The simulation is performed for the time
period 0 ≤ t ≤ 1 at a constant time step size of 1 × 10−3. The material parameters
comply with the evaporating droplet example of “Evaporating droplet” section.
The results are shown in Fig. 16. The relative interface movement for the investigated

approaches of the level-set transport velocity variant 1 and variant 2 is plotted in the
top panel of Fig. 16. It can be seen that the results obtained with the level-set transport
velocity according variant 2 are in good agreement with the analytical solution, while
for variant 1 the undesirable motion of the interface is larger. The velocity and pressure
profiles at the final simulation stage are depicted in the central panel of Fig. 16. The
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Fig. 16 Evaporating circular shell: (top) relative movement of the interface over time considering variant 1 and
variant 2; (center) velocity and pressure profile at the final simulation stage (only variant 2); (bottom left)
employed adaptively refined finite element mesh and (bottom right) resulting fluid velocity field shown as a
vector plot (scale factor of 5) for variant 2. Again, variant 2 yields a good agreement with the analytical solution

results are in good agreement with the analytical solution for the diffuse model, presented
in Eqs. (E18) and (E23). This demonstrates the applicability of this method also to typical
velocity scenarios for evaporative phase change, where the velocity in the liquid phase is
non-zero but relatively small compared to the one in the vapor phase. For completeness,
the velocity vectors are shown in the bottom right panel of Fig. 16. It should be noted that
the velocity in the liquid part of the shell is so small (2 × 10−4) compared to the one in
the vapor part that there are no vectors visible in the liquid area. Again, it can be seen that
the velocity increases significantly across the interface from the liquid to the gas phase.
The total runtime for the simulation using variant 2 (126,051 degrees of freedom and

1000 time steps) was 5min, using 60 cores of an AMDRyzen Threadripper PRO 3995WX.
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Conclusion
We have presented a mathematically consistent and robust diffuse-interface model for
two-phase flow problems involving rapid evaporation. The model combines an incom-
pressible Navier–Stokes solver with a conservative level-set formulation, and enhances
it by a regularized representation of evaporation-induced discontinuities for ensuring
robustness. The numerical discretization and high-performance solution approach uti-
lizes a matrix-free adaptive finite element framework based on the open-source finite
element library deal.II [56], taking advantage of its adaptive mesh refinement and dis-
tributed point evaluation capabilities, as well as its matrix-free framework and a related
incompressible Navier–Stokes solver [58]. To address the associated challenges of rapid
evaporation, high density ratios, velocity jumps, and complex interface geometries includ-
ing topological changes, we have made three major contributions to this research field.
First, we have proposed mathematically consistent level-set transport velocity formula-

tions particularly suitable for diffuse evaporation-induced velocity jump conditions, aim-
ing at an accurate prediction of the evaporated mass. Specifically, we have investigated
two different variants based on an evaporation-dependent modification (i) of the local
fluid velocity and, alternatively, (ii) of the extension of the fluid velocity from the liquid or
gas phase to the diffuse interface region via closest point projection. While approach (ii)
requires a higher numerical effort, it has been shown tooffer greater accuracy.This is based
on several analytical and numerical benchmarks. Specifically, the extension of the fluid
velocity from the liquid phase, provides higher accuracy for a given interface thickness
compared to approach (i). Approach (i) requires a small interface thickness to curvature
radius ratio, which is computationally expensive due to fine spatial discretization. Hence,
we recommend using approach (ii) with liquid extension velocity for a better trade-off
between accuracy and computational cost.
Second, we show that accurate prediction of the evaporation-induced pressure jump

requires a consistent, namely a reciprocal, density interpolation across the interface,
which satisfies local mass conservation. Third, we have proposed a correction term for
the Stokes-type constitutive relation in evaporating viscous two-phase flows. It neglects
the contribution of the non-physical evaporation-induced volumetric deformation rate
across the interface region to the viscous stress tensor. This approach allows for the effec-
tive elimination of spurious pressure artifacts in the interface region, an issue that—to the
best of our knowledge—has not been addressed in the literature.
In summary, this work has laid important groundwork for the diffuse modeling of two-

phase flowswith rapid evaporation, whichmay be of interest formany types of engineering
applications.We successfully verified ourmethods against various benchmarks, including
scenarios with curved interfaces subject to rapid evaporation and high density contrast.
In addition to well-established benchmark examples, we also proposed a new benchmark
test including the derivation of an analytical solution. It represents a more general flow
problem and is therefore closer to practical application scenarios than the aforemen-
tioned existing benchmarks. While this study focuses primarily on isothermal conditions
to isolate evaporation-induced effects on the flow field, the extension to anisothermal
conditions via incorporation of the heat transfer is possible and is part of our future work.
As such, it will become an important building block of a high-fidelity thermal-multiphase
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flow model for the study of melt–vapor interactions in laser-based powder bed fusion of
metals.
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Appendix A: Solution algorithm of the level-set framework
The overall solution algorithm for the level-set framework, consisting of the advection
step, the reinitialization step and subsequent evaluation of geometric quantities of the
interface, is summarized in Algorithm 2.

Algorithm 2 Solve the level-set equation and compute filtered normal and curvature
level_set_solver(φ, u, ṁv).
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Appendix B: Interpolation function for effective viscosity
To demonstrate that the choice of interpolation function for the effective viscosity is
arbitrary, we compute the one-dimensional phase change (see “One-dimensional phase
change” section) and evaporating droplet (“Evaporating droplet” section) problems for
phase-dependent viscosities of μ� = 10−3 and μg = 10−5. In Figs. 17 and 18, the velocity
and pressure distribution are shown for two different types of effective viscosity interpola-
tion functions, i.e., arithmetic and reciprocal phase-weighted average. It can be observed
that the resulting velocity and pressure fields remain the same, regardless of the chosen
effective viscosity interpolation function.
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Fig. 17 One-dimensional phase change problem with phase-dependent viscosities of μ� = 10−3 and
μg = 10−5: Velocity, pressure and viscosity distribution at the final stage of the simulation considering the
effective viscosity μeff as (i) an arithmetic phase-weighted average and (ii) a reciprocal phase-weighted average. It
can be seen that the pressure and velocity distribution is independent of the chosen interpolation function for
the effective viscosity
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Fig. 18 Evaporating droplet problem with phase-dependent viscosities of μ� = 10−3 and μg = 10−5: Velocity,
pressure and viscosity distribution at the final stage of the simulation considering the effective viscosity μeff as (i)
an arithmetic phase-weighted average and (ii) a reciprocal phase-weighted average. Note the different scale on
the x-axis for the viscosity distribution. It can be seen that the pressure and velocity distribution is independent of
the chosen interpolation function for the effective viscosity

Appendix C: Extension of solution quantities from a level-set isosurface using
closest point projection
In the following, algorithmic aspects of performing a closest point projection from an
arbitrary point inside the domain to a certain level-set isosurface are elaborated. In this
work, this algorithm is used for computing the closest points to the liquid or gaseous
ends of the interface region. At those points velocities are evaluated to compute extended
velocity fields appearing in the models for the level-set transport velocity, i.e., Eqs. (43)
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and (44). Nevertheless, it could be also used to extend other quantities from certain level-
set isosurfaces, e.g., to evaluate the mean curvature κ at the zero-level-set isosurface and
extend it over a narrow band to improve the accuracy of the continuum surface tension
force model, similar to [69].
For the sake of demonstration and motivated by the example mentioned above, our

isosurface of interest for performing a closest point projection is the discrete interface

� = {y ∈ � | φ(y) = 0} , (C1)

represented by the zero-level-set isosurface. The goal is to find for any point x of the
domain the closest point y = CP(x) on � such that ∀x ∈ �

y = {CP(x) : min
y∈�

(‖x − y‖) ∧ xy · t (j),� = 0} with j ∈

⎧⎪⎪⎨
⎪⎪⎩

{} for 1D
{0} for 2D
{0, 1} for 3D

(C2)

holds. The first criterion represents minimization of the distance and the second ensures
that the local tangent plane described by the unit tangent vector(s) t (j),� is orthogonal to
the distance vector xy. The tangential vectors are defined in 2D and 3D, respectively, as

2D: t (0) ←
[

n�,1
−n�,0

]
(C3)

3D: t (0) ← v − (v · n�) n� t (1) ← n� × t (0) (C4)

with v being an arbitrary unit vector that must not be parallel to n� . In practice, we set v
to ex or ey.
For determining the closest point according to Eq. (C2), we implemented the algorithm

similar to [68,69]. First, we collect the support points of the finite element mesh in a
narrow band around the target isosurface of the level-set function {x ∈ � | |φ(x)| < φlim}
illustrated in Fig. 19. Next, for each considered point x we perform a fixed-point iteration
by performing a sequence of correction steps k < kmax to evaluate the closest point y.
We start with the initial guess y(0) = x. The computation consist of (i) a sequence of

Fig. 19 Sketch of the employed algorithm for closest point projection considering a narrow band (blue
elements) around the zero-level-set isosurface, consisting of correction steps in interface normal direction
(indicated by red colors) and one correction step in tangential direction (indicated by blue colors)
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correction steps in normal direction

y(k) ← y(k) − d
(
y(k)

)
n�

(
y(k)

)
(C5)

and if necessary (ii) one correction step in tangential direction

y(k+1) ← y(k) −
(−−→
xy(k) · t (j),�

(
y(k)

))
t (j),�

(
y(k)

)
(C6)

until a certain tolerance for ‖y(k+1) − y(k)‖ is reached. Once the closest point y has been
identified, it can be used to perform an extrapolation of solution values at the discrete
interface to the narrow band interface region.

Remark 3 Note that the point y(k) may lie arbitrarily inside the computational domain�

and may not necessarily comply with support points. Thus, the evaluation of the level-set
function, the normal vector and the tangential vector(s) at this point, needed for the fixed-
point iteration, comprises the following steps for a distributed finite element mesh among
multiple processes: (1) identification of the process that owns the point; (2) identification
of the attributed finite element and positions in the reference cell; (3) interpolation by
means of shape functions. Subsequently, the values for the signed distance function, the
normal vector and the tangential vector can be computed to perform the correction. This
procedure is implemented in deal.II [56,75].

To demonstrate and verify the capabilities of the closest point projection algorithm, we
consider the well-known benchmark example of the rising of a bubble, presented in [76].
It should be noted that this is a pure two-phase flow problem without evaporation effects,
i.e., ṁv = 0. We determine the level-set transport velocity based on two approaches.
Case 1 computes the transport velocity from the local fluid velocity, i.e., u|�(x) = u(x),
which is the standard assumption for simulations without phase change. Alternatively,
and similar to the approaches discussed within the presented two-phase flow with phase
change framework in “Methods” section, in case 2 we perform a closest point projection
to the zero-level-set isosurface and subsequently extend the fluid velocity from the latter
to a narrow band region to compute the level-set transport velocity, i.e., u|�(x) = u(x�).
The parameters (SI units) are chosen as ρ� = 1, ρg = 0.1, μ� = 0.01, μg = 0.001,
ε = 0.01. Gravity forces with g = [0,−9.81]T and surface tension forces with σ = 0.001
are considered. The simulation is performed for the time period 0 ≤ t ≤ 1 with a constant
time step size of 0.02.
Snapshots from the simulation are shown in Fig. 20, where the left half of each snapshot

refers to case 1 and the right half to case 2. It indicates the level-set isosurfaces at φ =
{−0.99, 0, 0.99}, and the color fields represent the computed level-set transport velocity.
It can be seen that the resulting transport velocity according to case 1 is accompanied by
a strong variation of the velocity across the interface region, which may lead to artificial
deformation of the level-set field. This is not the case for case 2, where the resulting level-
set transport velocity remains constant across the interface thickness due to the employed
extension algorithm. By comparison of the two approaches, there is no apparent difference
in the bubble shape, which underlines that the approximation of the level-set transport
velocity u|� ≈ u is perfectly valid for simulations without phase change.
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time t = 0.2222 t = 1 t = 2
case 1 case 2

u|Γ = u(x) u|Γ = u(xΓ)

Fig. 20 Snapshots from simulations of the rising bubble benchmark [76] considering two different cases for
computing the level-set transport velocity u|� : case 1—local evaluation of the fluid velocity (u|� (x) = u(x))
indicated in the left part of one snapshot; case 2—extension fluid velocity from the interface (u|� (x) = u(x� ))
indicated in the right part of one snapshot; The domain x, y in � = [0, 1] × [0, 2] is discretized with quadrilateral
elements with an adaptively refined mesh ranging between element edge length of hmin = 6.25 × 10−3 and
hmax = 0.025

Ωg
x

Ω� open (p = 0)u = ū
ṁv

Fig. 21 Illustration of the one-dimensional phase-change problem with inflow

Appendix D: Analytical solution for the one-dimensional phase change
problem for a sharp and diffusemodel
We consider a one-dimensional evaporative phase-change problem, representing a sim-
plified version of the well-known Stefan’s problem based on the assumption of isothermal
conditions, illustrated in Fig. 21. We prescribe an inflow velocity on the liquid end and
assume a zero pressure outlet on the gaseous end.
Sharp model
From the evaluation of theRankine–Hugoniot conditions (26) and the continuity equation
(1a) together with the Dirichlet boundary condition for the inflow velocity, the analytical
solution for the velocity predicted by a sharp interfacemodel, i.e., the exact solution, yields

u(x, t) =
⎧⎨
⎩
ū for x < x�(t)

ū + ṁv
(

1
ρg

− 1
ρ�

)
for x > x�(t)

(D7)
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with the current position of the interface according to

x�(t) = x(0)� +
(
ū − ṁv

ρ�

)
t (D8)

and the interface transport velocity

u� = ū − ṁv
ρ�

on � . (D9)

FromEq. (D9) it can be seen that if ū is equal to ṁv/ρ� the interface position remains static.
By insertion of the velocity field into the momentum equation (1b) and subsequent inte-
gration, considering the zero pressure outlet at the gaseous end, an analytical expression
for the pressure for a sharp model is obtained as

p(x, t) =
⎧⎨
⎩
ṁ2

v

(
1
ρg

− 1
ρ�

)
for x < x�(t)

0 for x > x�(t)
. (D10)

Diffuse model
An analytical solution for the velocity in the diffuse-model case can be obtained from
analytical integration of the continuity equation (1a), specialized for the present use case
and considering the inflow velocity at the liquid end, to

u(x, t) = ū + ṁv (1 − Hφ(x, t))
(

1
ρg

− 1
ρ�

)
. (D11)

By insertion of the velocity field into the momentum equation (1b) and subsequent inte-
gration considering the zero pressure outlet at the gaseous end, an analytical expression
for the pressure is obtained

p(x, t) = ṁ2
v Hφ(x, t)

(
1
ρg

− 1
ρ�

)
. (D12)

Appendix E: Analytical solution for the stationary evaporating circular shell
In the following, the analytical solution for the stationary evaporating circular shell, pre-
sented in “Analytical demonstration example: evaporating circular shell” and illustrated
in the left panel of Fig. 6, is derived.

Diffuse model
The continuity equation considering evaporative phase change (1a) and specialized for
stationary, axisymmetric conditions reads as

d
dr

(r ur(r)) = ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHφ

dr

∣∣∣∣ . (E13)

It represents a first-order linear ordinary differential equation. If the evaporative mass
flux ṁv, the interface position and accordingly the heaviside function Hφ is known, the
right-hand side term of Eq. (E13) is given. According to the method of integrating factors,
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the integrating factor is determined as I = exp(
∫
dr/r) = r. If we multiply Eq. (E13) by

the integrating factor we obtain

ur + dur
dr

r = r ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHφ

dr

∣∣∣∣ (E14)

which can be rearranged to

dur
dr

= ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHφ

dr

∣∣∣∣ − ur
r
. (E15)

Integration of both sides of the equation with respect to r gives

r ur(r) =
∫

r ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHφ

dr

∣∣∣∣ dr + C . (E16)

We integrate over the domain Ri ≤ r ≤ Ro and determine the integration constant C
from the inflow boundary condition ur(r = Ri) = ū

C = Ri ū . (E17)

Finally, the analytical solution for the radial velocity is obtained as

ur(r) = 1
r

(
Ri ū + ṁv

(
1
ρg

− 1
ρ�

)∫ r

Ri

(
r

∣∣∣∣dHφ(r)
dr

∣∣∣∣
)

dr
)

. (E18)

The analytical solution for the pressure can be obtained from the momentum equation,
where we consider the axisymmetric, stationary, inviscid case. It reads as

ρur
dur
dr

= −dp
dr

. (E19)

The derivative of the radial velocity (E18) with respect to r reads as

dur
dr

= −ū
Ri
r2

− 1
r2

ṁv

(
1
ρg

− 1
ρl

)(
r(H (r) − 1) +

∫ r

Ri
H (r)dr

)

+ ṁv
r

(
1
ρg

− 1
ρl

) (
(H (r) − 1) + r

dH
dr

+ H (r)
)

(E20)

= −ū
Ri
r2

+ ṁv

(
1
ρg

− 1
ρl

)(−1
r2

∫ r

Ri
H (r)dr + dH

dr
+ H (r)

r

)
. (E21)

Inserting Eqs. (E21) and (E18) into Eq. (E19) yields

dp
dr

= −ρur
(
ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHdr
∣∣∣∣ − ur

r

)
. (E22)

Integration over r yields an analytical expression for the pressure considering the pressure
boundary condition on the outer face p(r = Ro) = 0:

p(r) =
∫ r

Ri

(
−ρur

(
ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHdr
∣∣∣∣ + ur

r

))
dr

+
∫ Ro

Ri

(
ρur

(
ṁv

(
1
ρg

− 1
ρl

) ∣∣∣∣dHdr
∣∣∣∣ − ur

r

))
dr . (E23)
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A Python script for evaluation of the radial velocity (E18) and the pressure (E23), con-
sidering numerical integration, can be found in the supplementary materials.
Sharp model
As a reference, considering a sharp model, the analytical solution for the radial velocity
component can be stated as

ur(r) =
⎧⎨
⎩

Ri
r ū for r < R�

Ri
r ū + ṁv

(
1
ρg

− 1
ρ�

)
R�

r for r > R�

. (E24)

Appendix F: Weak form and notes on the discretization of the governing
equations
In the following, the spatial discretization by means of the finite element method of the
main governing equations consisting of the Navier–Stokes equations (1a)–(1b) and the
level-set transport Eq. (5) is briefly summarized. ForL2-inner productswe use the notation
(f, g)� = ∫

�
f g dx. For the sake of brevity, we omit the detailed description of the spatial

and temporal discretization and refer interested readers to the literature.
Navier–Stokes equations
The weak form of the Navier–Stokes equations (1a)–(1b) is obtained by multiplication
with weighting functions for the pressure and the velocity, denoted as δp and δu. The
solution space for the velocity is defined as Su = {u ∈ (

H1(�)
)dim | u = ū on ∂�D,u} and

for the corresponding weighting function as Vu = {δu ∈ H1(�) | δu = 0 on ∂�D,u}. Here,
H1(�) denotes the space of square integrable functions with square integrable derivatives.
The solution space for the pressure and the corresponding weighting function is defined
as Sp = Vp = L2(�) for inf-sup stability, where L2(�) = H0(�) denotes the space
of square integrable functions. Multiplication by the weighting functions, integration
over the spatial domain, application of the divergence theorem and incorporation of the
Dirichlet andNeumann boundary condition yields the weak form. Find p ∈ Sp and u ∈ Su
such that

(
δp , ∇ · u

)
�

=
(

δp , ṽ(lg)
)

�

,

(
δu , ρeff

(
∂u
∂t

+ (u · ∇)u
))

�

−
(

∇ · δu , p
)

�

+
(

∇δu , τμ

)
�

=
(

δu , ρeff g + f̃ σ

)
�

+
(

δu , t̄
)

∂�N,u

∀ {δp, δu} ∈ Vp × Vu (F25)

holds. The weak form Eq. (F25) is discretized in space based on a Bubnov–Galerkin ansatz
for the discrete function values for the velocity

uh(x, t) =
∑
j
Nu,j(x)uj(t) and δuh(x, t) =

∑
j
Nu,j(x) δuj(t) (F26)

and the pressure

ph(x, t) =
∑
j
Np,j(x) pj(t) and δph(x, t) =

∑
j
Np,j(x) δpj(t) . (F27)
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Here, Nu,j and Np,j are the shape functions and uj and pj the nodal solution coefficients,
for the velocity and the pressure. After insertion of the approximate solution for the
velocity and the pressure into the weak form, the space-discrete problem is obtained.
The latter is discretized in time using the backward differentiation formula BDF2. After
that, the discrete system of equations is consistently linearized and solved using a full
Newton–Raphson scheme as described in [58].

Level-set advection equation
The weak form of the level-set advection Eq. (5) is obtained by multiplication with the
weighting functios for the level-set field, denoted as δφ. The solution space for the level-set
is defined as Sφ = {φ ∈ H1(�) | φ = φ̄ on ∂�inflow

D,φ } and for the corresponding weighting
function as Vφ = {δφ ∈ H1(�) | δφ = 0 on ∂�inflow

D,φ }. Multiplication by the weighting
function and integration over the spatial domain yields the weak form. Find φ ∈ Sφ such
that

(
δφ ,

∂φ

∂t
+ u|� · ∇φ

)
�

= 0 ∀δφ ∈ Vφ (F28)

holds. The solution of the weak problem is discretized in space using a Bubnov-Galerkin
ansatz for the level set

φh(x, t) =
∑
j
Nφ,j(x)φj(t) and δφh(x, t) =

∑
j
Nφ,j(x) δφj(t) . (F29)

Here, Nφ,j are the shape functions and φj the nodal solution coefficients for the level
set. The temporal discretization is performed via the Crank–Nicolson time-integration
scheme. It should be noted that due to the dependency of the level-set transport velocity
u|� on the level set in case of evaporation, as discussed in “Formulations of a consistent
level-set transport velocity for a diffuse evaporation-induced velocity jump” section, the
resulting systemof equations becomes nonlinear. Thus, we perform a fixed-point iteration
for solving the nonlinear system of equations, as outlined in Algorithm 2.

Appendix G: Convergence studies
We analyze the convergence behavior of the presented diffuse interface evaporating two-
phasemodelwith respect to the solutionof a sharp interface evaporating two-phasemodel.
As benchmarks, examples of one-dimensional phase change (cf. “One-dimensional phase
change” section) and evaporating circular shell (cf. “Evaporating circular shell” section)
are used. For these, analytical solutions for the sharp interface model for both, pressure
and velocity, are available. To measure the error, we employ the L2 norm

∥∥(•)∥∥L2 =
√∫

�

(•)2 d� . (G30)

G.1 One-dimensional phase change

We refer to the study of one-dimensional phase change of a viscid fluid presented in
“Viscous fluid” section. Figure 22 shows the relative error of the velocity and the pressure
with respect to the sharp interface reference solution according to Eqs. (D7) and (D10)
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Fig. 22 Convergence study for the one-dimensional phase change problem for a viscous fluid: velocity and
pressure error against different interface thicknesses at t = 1 × 10−3 with time step size �t = 1 × 10−6. We
evaluate the velocity in the gas phase ug at x = 1, and the pressure in the liquid phase u� at x = 0

for different values of the interface thickness w� . The interface thickness parameter ε

is annotated. The number of cells across the interface are chosen constant at n� = 31,
and the time step size is chosen as 10−6. For all investigated interface thicknesses, the
spatial and temporal discretization error was checked to be negligible for that interface
thickness resolution and time step size. Reducing the interface thickness while ensuring a
sufficient mesh resolution leads to convergence to the sharp interface reference solution.
The relative error in velocity andpressuremeasured in theL2 norm (cf. top panel of Fig. 22)
decreases with a convergence rate of orderO(w1/2

� ) with respect to the interface thickness.
This error is expected to be independent of the polynomial degree of the finite element
function space. We believe that the observed behavior results from the discontinuity in
velocity and pressure at the interface in the limit of zero interface thickness as will be
discussed in Appendix G.3. Therefore, to increase the accuracy, it is necessary to reduce
the interface thickness w� .
Furthermore, we analyze the relative error in the difference of the pressure �prel and

velocity �urel between the phases, presented in the bottom panel of Fig. 22. The relative
velocity difference error has already reached a vanishingly small error in the order of the
tolerance of the nonlinear solver, while the relative pressure difference error decreases
with a convergence rate of order O(w�) and exhibits superconvergence with respect to
the interface thickness.
For the chosen configuration in “One-dimensional phase change” section (ε = 0.01) the

overall error in the velocity and pressure profile is still significant (7%), which is attributed
to the large value of the interface thickness. However, the pressure and velocity difference
are computed with sufficient accuracy (0.001%).

G.2 Evaporating circular shell

Werefer to the study of the evaporating circular shell of a viscid fluid presented in “Viscous
fluid” section. Figure 23 shows the relative error of the velocity with respect to the sharp



M. Schreter-Fleischhacker et al. AdvancedModeling and Simulation in Engineering Sciences          (2024) 11:19 Page 45 of 48

10−310−210−2

10−1

100

10−310−210−3

10−2

10−1

ε = 0.0005
ε = 0.001

ε = 0.002
ε = 0.004

O(w1/2
Γ )

interface thickness wΓ

‖u
−

u
re

f‖
L

2

‖u
re

f‖
L

2

ε = 0.0005

ε = 0.001

ε = 0.002

ε = 0.004

O(w
Γ)

interface thickness wΓ

Δ
u

re
l
=

|u
n
u
m

g
−

u
re

f
g

|
u

re
f

g

nΓ = 12 nΓ = 12

Fig. 23 Convergence study for the evaporating circular shell problem: velocity and pressure error against
different interface thicknesses at t = 0.1 with time step size �t = 5 × 10−4. We evaluate the velocity in the gas
phase ug at r = 0.375, and the pressure in the liquid phase u� at r = 0.125

interface reference solution according to Eq. (E24) for different values of the interface
thickness w� . The interface thickness parameter ε is annotated. The number of cells
across the interface are chosen as n� = 12, and the time step size is chosen constant at
5 × 10−4. For all investigated interface thicknesses, the spatial and temporal discretization
error was checked to be negligible for that interface thickness resolution and time step
size. Reducing the interface thickness while ensuring a sufficient mesh resolution leads to
convergence to the sharp interface reference solution.
Similar to the one-dimensional phase change problem, the relative error in the radial

velocity measured in the L2 norm (cf. left panel of Fig. 23) decreases with a convergence
rate of orderO(w1/2

� ) with respect to the interface thickness w� .
Furthermore, we analyze the relative error in the radial component of the velocity�urel

in the gas phase away from the interface, presented in the right panel of Fig. 23. It decreases
with a convergence rate of orderO(w�) with respect to the interface thickness.
For the chosen configuration in “One-dimensional phase change” section (ε = 0.002)

the overall error in the velocity and pressure profile is still significant (8%), which is
attributed to the large value of the interface thickness. The velocity in the gas phase is
computed with higher accuracy (2%).

G.3 Discussion

For the cases discussed in Section G.1 and G.2, we observe a convergence order measured
in the L2 norm for the primary variables, pressure and velocity, ofO(w1/2

� ). By comparison,
in our previous study [67], we analyzed the accuracy of continuum surface flux models in
approximating two-phase heat transfer under high material property ratios and extreme
temperature gradients. In that work, we found that the relative temperature error, also
measured in the L2 norm, for the case of interfacial heating resulting in a kink in the
temperature distribution at the interface converges to the sharp interface limit with a rate
ofO(w�). We attribute the lower convergence order of the L2 error norm observed in the
present cases to the presence of interface jumps (instead of kinks) of the primary variables,
pressure and velocity.
For the relative error in the pressure and velocity away from the interface, our findings

in Sections G.1 and G.2 yielded a convergence rate of O(w�). This is consistent with the
work of Zahedi et al. [61], who obtained the same convergence order for the pressure
jump of a static capillary droplet.
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