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electronic circuits
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Modeling the electrical response ofmulti-level quantum systems at finite frequency has been typically
performed in the context of two incomplete paradigms: (i) input-output theory, which is valid at any
frequency but neglects dynamic losses, and (ii) semiclassical theory, which captures dynamic
dissipation effects well but is only accurate at low frequencies. Here, we develop a unifying theory,
valid for arbitrary frequencies, that captures both the small-signal quantum behavior and the non-
unitary effects introduced by relaxation and dephasing. The theory allows a multi-level system to be
described by a universal small-signal equivalent-circuit model, a resonant RLC circuit, whose
topology only depends on the number of energy levels. We apply our model to a double-quantum-dot
charge qubit and aMajorana qubit, showing the capability to continuously describe the systems from
adiabatic to resonant and from coherent to incoherent, suggesting new and realistic experiments for
improved quantum state readout. Our model will facilitate the design of hybrid quantum–classical
circuits and the simulation of qubit control and quantum state readout.

An accurate model of the electrical response of a quantum system is of
paramount importance, particularlywhenengineering itsmanipulationand
state readout within a larger classical circuit. When an electrical signal
perturbs the quantum dynamics of a mesoscopic quantum system, charge
redistribution events will manifest as a (gate) current, which will propagate
back into the classical world, where it will bemeasured1–7. This signal carries
information about the dynamical properties of the system, which can be
leveraged for characterization, tuning, and in-situ readout of quantum
information8–12.

Much has been studied about the electrical response of mesoscopic
capacitors and resistors13–18. However, a complete theoretical framework is
still lacking in the quantum limit where the unitary dynamics of discrete
levels and decoherence, caused by coupling to the environment, appear as
dispersive anddissipative interactions to a connected classical circuit10,19,19–22.
Thus far, modeling of such phenomena has been approached via two
methods: (i) semiclassically, extending to quantum systems the treatment of
classical high-frequency electronics23,24, and (ii) with Input-Output theory,
adapting quantum electrodynamics (QED) methods to mesoscopic quan-
tum devices operating in the radio-frequency (rf) or microwave range25–28.
Both, however, only capture part of the picture, with the semiclassical
models neglecting the complexity of the unitary dynamics beyond the
adiabatic regime29,30, and input-output theory lacking a complete descrip-
tion of dynamical dissipation processes.

In this work, we present a Lindblad perturbation formalism that bridges
the gap between the two theories, and provides themissing pieces for amore

comprehensive modeling of a quantum device at high frequency, including
dynamicdecoherenceprocesses.Although the formalismwill be of interest to
manycommunities suchas superconducting charge31,32, semiconductor3,4,33–36

andMajoranaqubits5,37–39, hereweadopt the language typical ofquantum-dot
(QD) systems11,23,24. We will consider a quantum system in equilibrium
excited by a (small) perturbation of the control voltages, and explore the link
between its electrical response and susceptibility, arising from the input-
output formalism25,26. Theperturbationoriginates fromanrf excitationofone
of the gate voltages, VGðtÞ ¼ δV cosωt, and we work out its impact on the
QD dynamics as well as the gate current it originates.

If the rf probe is taken to be small, the response of the system is linear,
and thus the gate current oscillates at the same frequency ω as the probe,
allowing us to reframe the problem in terms of small-signal electrical ana-
lysis.Wefind that, within the secular approximation, there exists a universal
small-signal model of the system in terms of linear circuit elements, which
consists of repeated fundamental units in parallel, one for each pair of levels
(see Fig. 1). Thus, the circuit topology only depends on the number of levels
described in the Hamiltonian, while the dynamical properties of the system
only alter the values of the components.

InFig. 1we color-code the circuit elements according to thedescription
they historically originate from: input-output (blue) or semiclassical (red).
Moreover, a consistent description that includes both (detuning-depen-
dent) decoherence and unitary evolution necessarily gives rise to a third set
(black), which is introduced in thiswork and is dominant in the limit of very
high decoherence. Notably, we show how the input-output and
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semiclassical models can be pictured to overlap in the description of the
quantum capacitance, which, as we shall see, is the adiabatic limit of the
isolated quantum system. However, we shall also describe how the intro-
duction of our novel term allows us to cast a new light on quantum capa-
citance, which can be seen additionally as the response of the system when
all coherent processes are suppressed.

Our description of the response of the quantum circuit as linear circuit
elementshas thekeybenefit of enabling the inclusionof small-signal coherent
quantum behavior in simple electronic circuit models. Moreover, we only
make use of frequency-independent voltage-dependent components, obviat-
ing the need for complex and slow Fourier-based nonlinear circuit analysis24.

This work is structured as follows: Firstly, we develop the formalism
that leads to the universal small-signal model, starting from the sim-
plicity of an isolated quantum system and later enhancing the model
including decoherence in a Lindblad formalism. Consequently, we apply
ourmodel to two example systems: a double quantumdot (DQD) charge
qubit11,23,24 and a QD coupled to topological Majorana modes5,37–39. We
discuss our result in the context of the aforementioned paradigms pre-
sent in the literature, demonstrating how our model continuously
transitions between them in their respective regimes of validity. More-
over, we employ our formalism to suggest realistic experiments and
potentially enhance current measurements.

Results
Universal small-signal model of a driven quantum system
In this section, we describe the theoretical basis of our formalism, relating
the electrical response of a perturbed quantum system to its (charge)
susceptibility.

The first necessary step is to describe the driven system quantum-
mechanically, and thus define the gate current in terms of a quantum
observable. For simplicity and ease of notation, we consider the case of a
single gate driving the system (see SM I), but allow for an arbitrary number
of energy levels (i.e., of orbital, valley or spin origin). The perturbation of the
control voltages is related to the energy detuning of the system via a
dimensionless parameter α (the gate lever arm). Thus, in terms of energy
detuning, εðtÞ ¼ ε0 þ δε cosωt, where the detuning oscillation amplitude
reads δε = αeδV11.

To the quantum system, (perturbed) gate voltages appear as a time-
dependent Hamiltonian of the form

H ¼ H0 þ δεΠ cosωt; ð1Þ

whereH0 is the unperturbedHamiltonian, andΠ ¼ d
dεH0 ¼ αeð Þ�1 d

dVG
H0

is thedipoleoperator that couples thequantumsystem to thegate,which can

be understood physically by noting that, in our definition, j ψjΠjψ� �j2
determines how much each level ∣ψ

�
is capacitively coupled to the gate.

Using this physical intuition, we can write the gate current as

IGðtÞ ¼ αe
d
dt

ΠðtÞ� �
; ð2Þ

where αe ΠðtÞ� �
is the expectation value of the (time-dependent) polar-

ization charge at the gate. Notably, we stress that the operator Π describes
both the perturbation of the QD detuning and collects the back-action on
the gate, as one would expect since they originate from the same capacitive
coupling.

Since the responseof the system is linear, one can consider the electrical
response of theQD system in terms of a small-signal admittance, defined as

Y ¼
R
0

2π
ω eiωt IGðtÞdtR

0

2π
ω eiωtVGðtÞdt

¼ ωαe
πδε

Z
0

2π
ω

eiωt IGðtÞdt: ð3Þ

If the rf perturbation is slowenough tobe considered adiabatic, andone
neglects decoherence and thermal redistribution of probability, it can be
shown that the system’s admittance reads (Methods)11,23,24

Y ¼ iωCQ ¼ �iωðαeÞ2
X
m

pm
d2

dε2
Em

�����
ε¼ε0

; ð4Þ

where Em are the eigenenergies of the system (given byH0∣ϕmi ¼ Em∣ϕmi)
and pm are the relative state occupation (see Methods). The term CQ is
commonly known as the quantum capacitance of the quantum system23,24,40.
In themost general case, however, the perturbationmaymix the eigenstates
and cause the charge movement to lag behind the excitation. Thus, most
generally, the system’s response must be written in terms of a complex
admittance Y(ω)11,23,24. The real part represents resistive effects, and thus
energy dissipation caused by the interaction of the QD with the environ-
ment, while the imaginary part, other than the quantum capacitance, ori-
ginates from the redistribution of probability, either thermally or because of
diabatic transitions, hence the name tunneling capacitance in the literature23.
From a quantum dynamics perspective, this can be seen by the contribution
of the accumulated geometrical anddynamical phase,which inopen systems
may contain an imaginary part arising from dissipation41–43.

Isolated quantum system. We now consider the case of the isolated
quantum system, the evolution of which is perfectly unitary. When
unperturbed, its evolution is described by the Von Neumann equation as
d
dt ρ ¼ �i H0; ρ

� �
, where we have introduced the density matrix ρ to

describe the system, and take ℏ = 1. If the system is in the steady state with
ρ≡ ρss, i.e., H0; ρss

� � ¼ 0, we can obtain the gate current caused by the
perturbation via the Kubo formula41.

If the response is linear, this can be expressed as

IGðtÞ ¼ αeδε
d
dt

Z þ1

�1
dτ cosðωτÞχðt; τÞ; ð5Þ

where the quantity

χðt; τÞ ¼ 1
i
tr Πðt; τÞ;Π½ �ρss
� �

Θðt � τÞ; ð6Þ

represents the susceptibility of the (time-independent) system25,26, and
Π(t, τ) is the operator in interaction picture. In the small-signal regime, the
susceptibility is not a function of t and τ separately, but only of the time
difference t− τ. Therefore, it is best considered in reciprocal space by taking
its Fourier transform χ(ω)26. We can now use the causality requirement of

Fig. 1 | Universal small-signalmodel of a quantumdevice embedded in a classical
circuit. Circuit elements are color-coded according to the description they originate
from: input-output (blue) or semiclassical (red).Moreover, in thisworkwe introduce a
third branch (black), arising from a consistent quantum description of (detuning-
dependent) dynamical decoherence. Notably, the input-output and semiclassical
models overlap only in the description of the quantum capacitance (upper left).
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Eq. (6), and thus the well-known result that χ(− ω) = χ(ω)*, to write the
electrical response as

IGðtÞ ¼ αeωδε < χðωÞ� �
sinωt þ= χðωÞ� �

cosωt
	 
 ð7Þ

YðωÞ ¼ 2iωðαeÞ2χ�ðωÞ: ð8Þ
This property follows from the fact that the operator determining the

gate current is the same as the operator that determines the perturbation.
Thus Eq. (5) is a consequence of the interaction between the classical circuit
and the quantum system. For a unitary evolution and within the rotating-
wave approximation (seeMethods), the susceptibility takes the well-known
form26

χðωÞ ¼
X
m;n

pm � pn
	 
 ∣ ϕm∣Π∣ϕn

� �
∣2

ω� ðEn � EmÞ
: ð9Þ

Firstly, χ(ω) is purely real, and thus the system’s response is purely reactive.
To compare this result withEq. (4), it is interesting to take the adiabatic limit
of Eq. (9).

For most physical systems, such as QD arrays in the constant-
interaction approximation44, the dipole operator is constant with respect to
gate voltages (i.e., d2

dε2 H0 ¼ 0). We shall make this assumption throughout
this work.Making use of this and theHellman-Feynman theorem40, we find

d2

dε2
Em ¼ 1

2

X
n

∣ ϕm∣Π∣ϕn
� �

∣2

Em � En
; ð10Þ

which leads to the expected result

2ðαeÞ2 lim
ω!0

χ�ðωÞ ¼ CQ: ð11Þ

It is interesting to note that if the linearity with gate voltages is broken
( d

2

dε2 H0 ≠ 0), Eq. (10) no longerholds, and the adiabatic limit of the quantum
capacitance no longer coincides with the second derivative of the
eigenenergies40,45.

Equation (9), moreover, shows how, even for an isolated quantum
system, the finite-frequency response cannot simply be modeled by the
quantum capacitance CQ. Unlike in a simple capacitor, the susceptibility
diverges exactly at resonance, as one would expect from general theory26.
This behavior canbebetter understood ifwenotice that every pair of levels is
summed over twice in Eq. (9). The hermiticity of Π allows us, thanks to
Foster’s theorem46–48, to synthesize the admittance of the system in themuch
more insightful form of an LC resonator, with

YðωÞ ¼ P
Em>En

1
iωCmn

Q
þ iωLmn

Q

� ��1
;

Cmn
Q ¼ ðαeÞ2ηmn

Em�Enð Þ2 L
mn
Q ¼ 1

ðαeÞ2ηmn
;

ð12Þ

where we have defined

ηmn ¼ 2 pn � pm
	 


Em � En

	 

∣ ϕm∣Π∣ϕn
� �

∣2: ð13Þ

Firstly, we note how this confirms our previous adiabatic derivation of the
quantum capacitance, as, thanks to the summation rule in Eq. (10), we find

X
Em>En

Cmn
Q ¼ CQ: ð14Þ

At finite frequencies, however, the full diabatic quantum response implies
the existence of a quantum inductance Lmn

Q , as observed in the literature for a
single QD18,49. The system is thus best modeled as a set of perfect LC reso-
nators in parallel, one per pair of levels and resonant at the energy splitting.

OpenQuantumSystem. It is of interest to go beyond the isolated system
and consider the presence of decoherence because of the coupling
between the QDs and the environment. The quantum dynamics of an
open system can be described via the Lindblad Master Equation (LME)50

d
dt

ρ ¼ L0ρ ¼ �i H0; ρ
� �þX

l

ΓlD Ll
	 


ρ ð15Þ

D Ll
	 


ρ ¼ LlρL
y
l �

1
2

Lyl Ll; ρ
n o

; ð16Þ

where Γl are called tunnel rates, while D Ll
	 


is the superoperator causing
decoherence effects, described by the jump operators Ll. In this case, Eq. (5)
remains valid provided that we now redefine the susceptibility as41

χðt; τÞ ¼ tr ΠeL0ðt�τÞδLρss
� �

Θðt � τÞ; ð17Þ

where eL0ðt�τÞ is the unperturbed propagator of the (non-unitary)
dynamics, and δL is the (small) perturbation to the time-independent
Liouvillian L0 caused by the excitation. Given the linearity of the LME, we
candivide theperturbationasδL ¼ δLH þ δLΓ þ δLL,whereweconsider
the effect of the rf excitation on the Hamiltonian, the tunnel rates, and the
jump operators respectively. Their time evolution can be expressed to first
order in the perturbation as

ΓlðtÞ ¼ Γ0l þ δε dΓldε cosωt þOðδε2Þ
LlðtÞ ¼ L0l þ δε dLldε cosωt þOðδε2Þ:

ð18Þ

Linearity in Eq. (17) lets us write the total susceptibility as
χ(ω) = χH(ω)+ χΓ(ω)+ χL(ω) and thus, fromEq. (8), the admittance can be
synthesized as47,51,52

Y ¼ 2iωðαeÞ2χ�ðωÞ ¼ YH þ YΓ þ YL: ð19Þ
Notably, this can be thought of in electrical terms as a parallel com-

bination of the three contributions (Fig. 1), which we now discuss in detail.
The result in Eq. (17) is valid for any Liouvillian, not necessarily in Lindblad
form. However, for the sake of simplicity, we assume that the dynamics of
the system is well described by a phenomenological model including
relaxation (T1) and pure dephasing (Tϕ) processes. Thus, we can write

L0ρ ¼ �i H; ρ
� �þ P

Em>En

Γmnϕ D τznm
	 


ρ

þ P
Em>En

Γmn
þ D τþmn

	 

ρþ Γmn

� D τ�mn

	 

ρ;

ð20Þ

where we have defined

τþð�Þ
mn ¼ ∣ϕmðnÞ

E
ϕnðmÞ
D

∣; τznm ¼ ∣ϕm
�
ϕm
�

∣� ∣ϕn
�
ϕn
�

∣ffiffiffi
2

p : ð21Þ

Consistently with the Lindblad formalism, we treat dephasing in a Mar-
kovian approximation, neglecting the effect of low-frequency noise53–57.

Hamiltonian admittance. The simplest term is the contribution due to
the direct perturbation of theHamiltonian. Similarly to Eq. (6), this reads

δLHρ ¼ �iδε cosωt Π; ρ
� �

: ð22Þ

In Methods we show that considering the Lindbladian in Eq. (20) leads to
the simple modification of Eq. (9)26

χHðωÞ ¼
X
m;n

pm � pn
	 
 ∣ ϕm∣Π∣ϕn

� �
∣2

ω� ðEn � EmÞ þ iΓmn
T2

; ð23Þ
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where

ΓmnT2
¼ Γmn

ϕ þ Γmnþ þ Γmn
�

2
ð24Þ

is the rate of decay of off-diagonal terms in the density matrix58.
Therefore, the effect of metastable states is to give χH(ω) a small
imaginary part with respect to the isolated system, allowing the open
quantum system to dissipate energy, thus curing the divergence of the
response exactly at resonance. Notably, we find a diabatic decoherence-
induced resistance, discussed in the literature of mesoscopic
capacitors13–18,59 but notably absent in the literature of equivalent-
circuit models of QD systems11,23,24.

Exploring this further, the Choi-Kraus theorem guarantees that
Γmn
T2

¼ ΓnmT2

50. Thus, we find the admittance related to χH as

YHðωÞ ¼
X
Em>En

1
Gmn
D

þ 1
iωCmn

H
þ iωLmn

Q

� ��1

; ð25Þ

where we have introduced

Gmn
D ¼ ðαeÞ2ηmn

2Γmn
T2

Cmn
D ¼ ðαeÞ2ηmn

Γmn
T2

� �2 ð26Þ

and Cmn
H ¼ 1

Cmn
Q
þ 1

CmnD

� ��1

. As for the isolated system (Eq. (12)), the diabatic

response of the Hamiltonian component can be pictured as arising from
resonators in parallel, one for each pair of levels. These are now, however,
RLC resonators, as the presence of decoherence introduces both a resistive
component Gmn

D and an additional capacitance Cmn
D in series with the

quantum terms (Fig. 1). Notably, the frequency pulling of Cmn
D cancels out

the damping exactly, and the resonance frequency remains unaltered at the
value _ωres ¼ Em � En.

Sisyphus Admittance. To first order in the excitation, the perturbation
of the Lindbladian due to the tunnel rates takes the form

δLΓρ ¼ δε cosωt
X
l

dΓl
dε

D L0l
	 


ρ: ð27Þ

In the literature, this effect has been termed Sisyphus processes,
responsible for the resistance of the same name, and has been iden-
tified as the main cause of dynamical dissipation in QD
systems10,11,21,23,24. The physical cause of Sisyphus processes stems from
the dependence of the tunnel rates on energy11. The simplest way to
describe time-dependent excitation is the instantaneous eigenvalue
approximation (IEA), where the functional form of the time-
independent master equation is calculated for the instantaneous
eigenvalues of H(t)60. Thus Γmn

± ðtÞ ¼ Γ± EmðtÞ � EnðtÞ
	 


. For a small
perturbation, this causes the population to relax to equilibrium (see
Methods) with rate

Γmn
T1

¼ ΓþðEm � EnÞ þ Γ�ðEm � EnÞ: ð28Þ

However, along one excitation cycle, the resulting modulation of the rates
can give rise to excess relaxation,

dΓmn
±

dε
¼ ϕn∣Π∣ϕn
� �� ϕm∣Π∣ϕm

� �	 
 d
dE

Γ± ðEm � EnÞ; ð29Þ

which is manifested as a resistive term10,21,24.

In Methods, we show how the electrical response arising from the
Sisyphus process can be written as

YΓðωÞ ¼
X
Em>En

1
Gmn
Γ

þ 1
iωCmn

Γ

� ��1

; ð30Þ

where we have defined

Gmn
Γ ¼ ðαeÞ2σmn; C

mn
Γ ¼ ðαeÞ2σmn

ΓmnT1

σmn ¼ dΓmnþ
dε pm � dΓmn

�
dε pn

� �
ϕn∣Π∣ϕn
� �� ϕm∣Π∣ϕm

� �	 

:

ð31Þ

This is a generalization of the Sisyphus conductancederived for theDQDor
the single-electron box11,23,24. Notably, Eq. (30) shows how Sisyphus
processes generally include also a reactive component, thus inviting us to
refer to a Sisyphus admittance that includes both the Sisyphus conductance
and the tunneling capacitance24, as they are manifestations of the same
physical process. Electrically, the series RC combinations behave as high-
pass filters, one for each pair of levels, with corner frequency Γmn

T1
(Fig. 1),

with the clear physical significance of suppressing unitary processes that
would happen on a longer timescale than the lifetime of the levels.

Hermes admittance. The last term contributing to the susceptibility is
the perturbation of the jump operators. In the notation of Eq. (18), this
reads

δLLρ ¼ δε cosωt
X
l

Γ0l D0ðLlÞρ; ð32Þ

where we have defined

D0ðLlÞρ ¼ L0l ρ
dLyl
dε

� 1
2

dLyl
dε

L0l ; ρ

( )
þ h:c: ð33Þ

Within the IEA, jump operators are usually defined in the instantaneous
eigenbasis (IEB) in which H(t) is instantaneously diagonal60,61. Thus,
LlðtÞ ¼ WyðtÞLIEBl WðtÞ, where the rotation matrixW(t) is such thatW†(t)
E(t)W(t) =H(t), with E(t) the diagonalmatrix containing the instantaneous
energies. Incidentally, this term is a requirement to get a valid
Lindbladian60,62–64. This is clear as, if the tunnel rates depend on the energies
of the instantaneous eigenstates, the jump operators must describe transi-
tions between such same levels. Thus, a consistent quantum treatment of
Sisyphus processesmust account for δLL as well. InMethods, we show how
the response reads

χLðωÞ ¼ i
X
m;n

Γmn
T2

pm � pn
Em � En

∣ ϕm∣Π∣ϕn
� �

∣2

ω� ðEn � EmÞ þ iΓmn
T2

: ð34Þ

This term is a novel effect introduced in this work, and includes the effect of
both relaxation (T1) and pure dephasing (Tϕ) processes, which combine to
give the total decoherence rate as T�1

2 ¼ T�1
ϕ þ 2T1

	 
�1
.

Firstly, we note the stark similarity between χH and χL, which is to be
expected since the perturbation of the jump operators stems from the
changes of the Hamiltonian and its eigendecomposition. Similarities and
differences become evident if we analyze the response from the circuit point
of view. After some algebra, we can write

YLðωÞ ¼
X
Em>En

1
Gmn
Lþ

þ 1
iωCmn

Lþ

þ 1
Gmn
Lk

þ iωCmn
Lk

 !�1

; ð35Þ
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where we define

Cmn
Lþ

¼ γCmn
H Gmn

Lþ
¼ 2γGmn

D
Cmn
Lk

¼ �γCmn
Q Gmn

Lk
¼ �2γ2Gmn

D
ð36Þ

and γ¼
Γmn
T2

Em�En

� �2

. Notably, also for this term, the admittance corresponds to

circuits in parallel, one for each pair of levels (Fig. 1), and the values of the
equivalent circuit components are proportional (via γ) to theirHamiltonian
counterparts. This highlighs the nature of this term as a state correction,
which enters the first-order linear response as a perturbation of the jump
operators, defined in the instantaneous eigenbasis. However, we note that
the inductance in χH is here replaced by a parallel combination of a
(negative) resistor and a (negative) capacitor. Thus, similarly to the Sisyphus
term, χL doesnot resonate

65, but rather acts to dampen resonances caused by
theHamiltonian term.Wenoticehowall the terms in χL dependon γ, i.e., on
the (squared) ratio between the coherent quantum beat between levels and
the decay of their coherent superposition. As amatter of fact, we shall see in
the subsequent section how this term dominates over the quantum
(Hamiltonian) contribution when the system decoheres faster than its
natural frequency (γ > 1), and in this regime it is responsible for the recovery
of the semiclassical limit. Expanding on this, it is in fact possible to show
(after some algebra) that

lim
γ!1

YH þ YL

	 
 ¼ X
Em>En

iωCmn
Q ; ð37Þ

which casts a new light on the concept of quantum capacitance. This can
now be seen as either the adiabatic limit of the isolated system (as argued
above) or as the response of the quantum system in the limit of infinitely fast
decoherence (which the literature sometimes defines as the semiclassical
limit66,67). Physically, these two views are reconciled by noticing how in both
regimes it is impossible for the quantum system to escape its steady state,
either because of the adiabaticity of the drive or the suppression of coherent
superposition and thus unitary processes.

Lastly, we address the issue of naming the new term χL. As we have
seen, this depends on the velocity of decoherence compared to the intrinsic
beat of the Hamiltonian dynamics. Thus, in keeping with the mythological
theme established with the term ‘Sisyphus’, it seems only fitting to name χL
the Hermes susceptibility, from the Greek deity of velocity and
mischievousness.

Circuit model of example systems
In this Section, we employ the formalism derived thus far and we showcase
its capabilities on two example systems: (i) a DQD charge qubit and (ii) a
Majorana qubit formed by a QD coupled to two topological Major-
ana modes.

Charge qubit. Firstly, we discuss a charge qubit in a DQD, chosen
because it is the simplest coupled two-level system and the (semiclassical)
Sisyphus admittance and adiabatic quantum capacitance are well known
from the literature23,24. In particular, we use the Lindblad equivalent of the
semiclassical model employed in refs. 23 and 24, where the Hamiltonian
in the charge basis of the two QDs reads

HðtÞ ¼ 1
2
ðε0 þ δε cosωtÞσz þ

Δ

2
σx ¼ H0 þ δεΠ cosωt: ð38Þ

Here, Δ/2 is the tunnel coupling. Relaxation is introduced phenomen-
ologically as61

LIEBþ ¼ ∣ei g
�
∣ ΓþðΔEÞ ¼ Γ0nðΔEÞ

LIEB� ¼ ∣g
�
eh ∣ Γ�ðΔEÞ ¼ Γ0 nðΔEÞ þ 1½ �; ð39Þ

where ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ε2

p
is the energy difference between the ground (∣g

�
)

and excited (∣ei) states, andnðΔEÞ ¼ eΔE=kBT � 1
	 
�1

.As is common in the
literature5,24, we take Γ0 to be independent of energy. The small-signal
admittance of the DQD can be found by direct application of the above
equations, taking

ΓT1
¼ ΓþðΔEÞ þ Γ�ðΔEÞ ¼ Γ0 2nðΔEÞ þ 1ð Þ ð40Þ

and, in the absence for now of a dephasing term, ΓT2
¼ 1

2 ΓT1
. In particular,

considering Eqs. (25), (30), and (34), one obtains

YH ¼ i
αe2

2
Δ2

ΔE
Γ0
ΓT1

ω

ΔE2 þ ΓT2
þ iω

� �2 ð41Þ

YΓ ¼
αe2

4kBT
ε20
ΔE2

Γ20
ΓT1

ω

ω� iΓT1

sinh�2 ΔE
2kBT

� �
ð42Þ

YL ¼ i
αe2

2

ΓT2
Δ2

ΔE3

Γ0
ΓT1

ωðΓT2
þ iωÞ

ΔE2 þ ΓT2
þ iω

� �2 ; ð43Þ

where, notably, ejΠjg� � ¼ Δ=ΔE is the dipole matrix element, and the
polarization in the energy basis reads pg � pe ¼ Γ0=ΓT1

. A quantitative
comparison between Eqs. ((41)–(43)) and the input-output and semi-
classical admittances is presented in SM II.

In Fig. 2, we showcase ourmodel by considering the effects of increasing
the excitation frequency, comparing them to the semiclassical24 and input-
output26 results.Wechoose the case of high temperature (kBT >Δ) to enhance
the contributionof theSisyphus term.For completeness,we additionally carry
out a brute-force integration of the LME (blue dots), showing complete
agreementwithouranalyticalmodel.Tobeginwith,wenotehow,as expected,
the semiclassical admittance is recovered forω→ 0. In particular, we see how
the width of the peak becomes broader than the mere quantum capacitance
(Fig. 2c, i) due to the Sisyphus term, in agreement with the semiclassical
theory11,24 and experimental observations68,69. Notably, in this work we obtain
the same functional form for Sisyphus resistance and tunneling (Sisyphus)
capacitance (Eq. (42)) as Ref. 24, as expected since this term arises from the
perturbation of scalars. More specifically, it is possible to show (seeMethods)
that if ρss is diagonal (as it typically is in thermal equilibrium26,41,66), then
δLΓρss is alsodiagonal. Therefore, this termof the LME is perfectly equivalent
to a semiclassical (scalar) master equation. In passing, we note that this is not
the case for δLH or δLL. In contrast to the semiclassical theory, input-output
theory ignores the dynamical relaxation process, thus predicting at low
excitation frequencies a narrower, temperature-independent26 peak, which
cannot faithfully reproduce the LME (Fig. 2i). This discrepancy is further
highlighted when one considers the resistive component of the admittance
(Fig. 2f), where the Sisyphus term dominates andwe obtain the characteristic
two lobes24 caused by the dependence of (thermal) relaxation on ΔE. The
semiclassical model, however, fails to correctly predict the additional con-
ductance peak at zero detuning, where the Sisyphus term vanishes and dis-
sipation is dominated by GD and the Hermes term.

The situation is reversedwhenω >Δ. (Fig. 2c, f, h).Weobserve theRabi-
inducedpeak splitting caused by the inductive component in χH,whilewithin
the two Rabi wings (ω >ΔE) the reactive component changes sign. Both
phenomena are predicted by input-output theory26,27 and circuit QED70,71,
and have a simple physical interpretation. The splitting of the peak is caused
by the strong response (divergent in thenon-dissipative limit) of thequantum
system when driven exactly at resonance. Within the wings, the system is
driven faster than its natural response frequency, and thus the charge lags
behind the excitation, giving rise to a negative reactance. Both observations
have been confirmed experimentally19,49,72, while they are obviously absent
from the semiclassical (adiabatic) model. A similar peak splitting due to
vacuum Rabi is observed also in the conductance of the charge qubit, the
response dominated byYH and sharply peaked at resonance. Similarly to the
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capacitive response at resonance, the large conductance canbe understoodby
the systembeingefficientlydrivenby theexcitation.This constant interplayof
excitationof thequantumsystemandrelaxation through thebathcausesanet
energy dissipation, whichmanifests electrically as a resistance. This is further
clarified by thinking of the process in the formalism of circuit QED, where
instead of charge dynamics, we are invited to keep track of photons

exchanged with the cavity, which in turn drive the quantum system26. If the
drive is resonantwith the energy splitting, photons can efficiently be absorbed
by the system being excited in a coherent superposition, which then decays
back to equilibrium, leaking energy into the environment.

This demonstrates how our formalism is able to continuously morph
between the two regimes, always remaining in agreement with the LME,

Fig. 2 | Coherent charge qubit. Capacitance (a–c),
conductance (b–f) and absolute value of the
admittance (g–i) of the DQD charge qubit for
increasing frequency at kBT = 2.5Δ and Γ0 = Δ0/10.
The line cuts are taken in the adiabatic (ωb = 0.2Δ)
and resonant (ωt = 4Δ) regimes. b, c and e, f Show
the contribution to real and imaginary parts of the
admittance from the Hamiltonian (cyan), Sisyphus
(orange) and Hermes (pink) components, while
h, i show a comparison between our model and the
semiclassical model24 and input-output theory26.We
additionally carry out a brute-force integration of
the LME (blue dots), showing perfect agreement
with our analytical model. Color bars are linear for
the ±5% of the values on either side of zero and
logarithmic outside.
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showcasing how this work unifies the semiclassical and input-output
descriptions.

Lastly, we comment on the new Hermes term, which becomes
important when, unlike in Fig. 2, ΓT2

is comparable with ΔE. To showcase
this effect, we introduce a pure dephasing term of the form

LIEBz ¼ ∣g
�
g
�
∣� ∣ei eh ∣ffiffiffi
2

p ; ΓzðEÞ ¼ Γϕ; ð44Þ

which has no semiclassical equivalent. For simplicity, we take Γϕ also
independent of energy. Thus, the only necessary modification of Eqs.
((41)–(43)) is redefining ΓT2

¼ Γϕ þ ΓT1
=2. Consequently, varying Γϕ

decouples the effect of χH and χL from the Sisyphus term.
In Fig. 3, we consider theDQD in the resonant regime (Fig. 2c, f, i) and

show the evolution of the admittance for increasing Γϕ. For lowdecoherence
rates, we see how the addition of a dephasing term does not qualitatively
alter the admittance, which still shows a strong response sharply peaked at
resonance (Fig. 3c, f, i) and a change in the sign of the reactance (Fig. 3f), a
phenomenon well described by input-output theory (Fig. 3i). When ΓT2

approaches ΔE, however, not only do the resonant peaks become broader,
but theHermes contribution starts to becomemore relevant, in the shape of
a single peak.

This trend continues up to the point where the system decoheres
faster than the timescales of the unitary dynamics (ΓT2

>ΔE). In this
case, we see how the Hermes term begins to dominate over the
Hamiltonian (Fig. 3b, e), and the Rabi peaks disappear completely, the
admittance having the shape now of a more conventional single peak
centered at ε = 0. In fact, when ΓT2

≫ΔE, we completely recover the
semiclassical prediction, as one would expect from the limit of very
high decoherence (Fig. 3i). Unlike in the adiabatic regime, however, we
see that the resistive component also takes the shape of a zero-centred
peak rather than the Sisyphus lobes (Fig. 2i). This is the physical
manifestation of the fact that in this regime the dominant process is not
the dynamical relaxation, but rather the dynamical loss of coherence
(and thus leakage of quantum information), which is most efficient at
ε = 0, where the dipole of the system is largest.

Therefore, we stress how the inclusion of the Hermes term is not only
crucial to correctly reproduce the results from the LME, but, most impor-
tantly, to correctly recover the semiclassical limit (Eq. (37)), as desirable in
any complete and consistent modeling effort.

Majorana qubit. As a second example, we discuss the equivalent
admittance of a Majorana qubit5,37–39,73–78. Typically, a Majorana qubit is
based on a topological one-dimensional system housing two Majorana
zeromodes, whichmake up the computational basis. For concreteness, in
this work we concentrate on the simplest incarnation of such a qubit, in
which the topological modes are coupled to an ancillaryQD5,73. However,
our formalism can be generalized naturally to more-recent Majorana-
qubit proposals37,78, as well as similar non-abelian systems that lack for-
mal topological protection, such as Kitaev chains and ‘poor man’s
Majorana’ bound states39.

When an auxiliary QD is coupled to twoMajorana zero modes, it can
be used to read out the jointMajorana parity, i.e., to sense the occupation of
the (non-local) fermion composed by the two Majorana modes5,39. The
effective low-energy Hamiltonian of such a system simply reads

Hp ¼
ε

2
σz þ

Δp

2
σx; ð45Þ

where ε is the detuning of the ancillary QD, and p∈ {even, odd} is the joint
Majorana parity5. Δp represents the Majorana-QD coupling in each parity
state, and can be tuned experimentally by changing barrier voltages and the
magnetic flux threading the device. Most importantly, generally
Δeven ≠ Δodd, and, thus, the parity state can be measured through the
admittance of the coupled QD5. For the sake of simplicity, in the following

discussion we will only include decoherence processes (modeled as in
Eqs. (39))within the even and odd sectors, while ignoring processes that can
alter the Majorana parity, making the (realistic) assumption that they are
negligible within the typical timescales of qubit readout75,79.

We now consider admittances of the even and odd states, as well as
the absolute value of their difference Yeven− Yodd, which directly
translates to the visibility of the readout of the two states5,12. These
quantities are shown in Fig. 4 as a function of the QD detuning for the
example parameters Δeven = 2.5 GHz and Δodd = 0.5 GHz. From Fig. 4e
it is clear that in the adiabatic limit, both states have a non-zero
admittance, thus creating additional challenges for readout when
compared to other qubit systems5. This, however, can be obviated by
measuring at finite frequency. In particular, by choosing a readout
frequencyΔodd < ω < Δeven, one can use the Rabi-induced peak splitting
to suppress the admittance of the less-coupled mode (odd in this case)
at ε = 0, while the more-coupled mode remains below resonance and
still shows a zero-centered peak, as shown in Fig. 4d. The same panel,
furthermore, shows how, while the odd state is indeed dark for ε = 0,
the Rabi wings give a strong response for εodd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� Δodd

p
, where the

odd subspace is resonant with the excitation. Thus, in this setting, one
can selectively choose which state is bright by changing the readout
voltages. This capability has been discussed in the context of other
qubit architectures, and has been proposed to have several advantages
with respect to more conventional readout techniques based on
negative measurements, such as the ability to check for leakage outside
the computational basis12,80. Our formalism thus predicts the possibi-
lity of selectively (and dynamically) choosing the bright state of a
readout measurement by exploiting the diabatic properties of the
system’s admittance, overcoming the limitation of this platform in the
adiabatic regime.

Discussion
We have presented a Lindblad perturbation theory for quantum modeling
of the electrical response of a generic QD device, highlighting the link
between the susceptibility of a quantumsystemand its small-signal electrical
admittance, from which stems a universal small-signal equivalent circuit.
This condenses the perturbed quantum dynamics into linear circuit com-
ponents, making use uniquely of frequency-independent variable compo-
nents, simplifying the implementation of the model and providing key
insights into the complex response of the Lindbladian. Our model shows
how semiclassical and input-output approaches describe two facets of the
decohering quantum dynamics, overlapping in the description of the
adiabatic and perfectly coherent limit: the quantum capacitance. Moreover,
we introduce a novel contribution to the response, named the Hermes
admittance, which casts a new and complementary light on the concept of
quantum capacitance, which can additionally be seen as the response of the
quantum systemwhen decoherence is so fast that all coherent processes are
suppressed (i.e., the semiclassical limit).

Our approach provides an intuitive model for the small-signal
electrical response of any quantum system, retaining the complexity of
Lindblad circuit QEDwhile being readily implementable within circuit
simulators, showcasing it on two example systems. We have described
the electrical response at high frequency of a DQD charge qubit,
demonstrating the ability of the model to transition continuously from
the Sisyphus-broadened adiabatic capacitance to the Rabi-induced
peak splitting predicted by circuit QED. The single, zero-centered peak
of the quantum capacitance is then recovered when considering fast
dephasing, thanks to the inclusion of the Hermes term. The phe-
nomenon of resonant peak splitting has then been exploited to
showcase the response of a Majorana qubit composed of twoMajorana
zero modes coupled to an ancillary QD. The admittance of the QD can
be used to read the state of the qubit, and we showcase how the diabatic
response of the system can be leveraged to selectively make either state
dark by varying the readout detuning. We stress that such a scheme
exploits the high-frequency capabilities of the model to get around
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limitations that cannot be overcome in the adiabatic regime, thus
highlighting how accurate modeling of the electrical response of
quantum systems is key to unlocking the full potential of upcoming
quantum technologies.

Methods
Numerical calculation of the gate current
In this section,wewill showhow toderive the admittance fromEq. (2) for an
arbitrary perturbation of a markovian time evolution. In particular, we will

Fig. 3 | Effect of dephasing. Capacitance (a–c),
conductance (d–f) and absolute value of the
admittance (g–i) of the DQD charge qubit in the
resonant regime (ω = 4Δ) for increasing dephasing
rate Γϕ at kBT = 2.5Δ, and Γ0 = Δ0/10. The line cuts
are taken in the low-dephasing (Γϕ = 0.02Δ) and
high-dephasing (Γϕ = 7.5Δ) regimes. b, c and
e, f Show the contribution to real and imaginary part
of the admittance from the Hamiltonian (cyan),
Sisyphus (orange) and Hermes (pink) components,
while (h, i) show a comparison between our model
and the semiclassical model24 and input-output
theory26. We additionally carry out a brute-force
integration of the LME (blue dots), showing perfect
agreement with our analytical model. Scale bars are
linear within ± 5% and logarithmic outside.
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consider the most general case of a Lindbladian of the type

LðtÞ ¼ L0 þ δLðtÞ; ð46Þ

where we consider δL to be a small perturbation toL0.Wewill then be able
to write the time evolution as

ρðtÞ ¼ ρ0 þ δρðtÞ ¼
X
m

ðpm;0 þ δpmÞ∣ϕm
�
ϕm
�

∣; ð47Þ

where we assume that ρ(t) remains mostly diagonal and

L0ρ0 ¼ 0 ð48Þ

for the stationary state.
We must now compute IG(t). We can write, however,

IGðtÞ ¼ αe
d
dt

ΠðtÞ� � ¼ αe
d
dt
tr ΠρðtÞ� �

: ð49Þ

Fig. 4 |Majorana qubit. a, bAbsolute value of the admittance of the auxiliary QD in
case of the even (a) and odd (b) joint Majorana parity. c Absolute value of the
admittance difference between the two parity states, which directly translates to the
visibility of the readout of the two states. d, e ∣Yeven− Yodd∣ in the resonant (d) and

adiabatic (e) regime, showing the benefit of performing readout atΔodd < ω < Δeven to
suppress the admittance of the odd state at ε = 0, which instead has a strong response
at εodd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� Δodd

p
, where it is resonant with the excitation. Color bars are linear

below 10−2 and logarithmic above.
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Semiclassically, we may simply write

Πh i ¼
X
m

pm ϕm
d
dε

H0

����
����ϕm

� �
¼
X
m

pm
d
dε

Em; ð50Þ

which, to zeroth perturbative order, can be written as

IGðtÞ ¼ αe
X
m

pm
d
dt

d
dε

EmðtÞ
� �

; ð51Þ

leading to Eq. (4) making use of d
dt ¼ d

dε
dε
dt

23,24. However, this neglects any
redistribution of the state occupation, either thermal or due to coherent
processes. Thesemay be accounted for in the Lindblad formalism, which by
definition of the Lindbladian, allows us to write Eq. (49) as

IGðtÞ ¼ αetr ΠLðtÞρðtÞ� �
: ð52Þ

To first order in the perturbation, this becomes

IGðtÞ ¼ αe tr ΠδLðtÞρ0
� �þ tr ΠL0δρðtÞ

� �	 

; ð53Þ

echoing the fact that δρ(t) is, to first order, the solution of the equation

d
dt
δρðtÞ ¼ δLðtÞρ0 þ L0δρðtÞ: ð54Þ

It is interesting to point out how Eq. (54) is the direct Lindblad general-
ization of the expression of tunneling capacitance presented in Ref. 80.
However, the necessity of solving a complex time-dependent differential
equation to obtain δρ(t) makes this particular formulation only viable for
numerical treatments.

Equilibrium populations
In this work, we have seen how the calculation of the susceptibility requires
knowledge of the equilibrium probability of occupation. Therefore, for the
benefit of the reader, we include this short Appendix on the means of
calculations of the equilibrium populations of a quantum system.

If the dynamics of the system is already described by an LME via a
superoperator L0, the steady-state density matrix will simply read

L0ρss ¼ 0; ð55Þ

which, for the non-driven system, is simply the thermal equilibrium.
Therefore,finding ρss simply turns into an eigenvalueproblemoffinding the
kernel of L0. This can be easily done, in the general case, in Fock-Liouville
space50,81, where it is possible to turn the superoperator eigendecomposition
into a matrix eigenvalue problem41.

In some cases, however, the coupling with the environment will be
small enough to be negligible in the dynamics within an rf cycle, but
nonetheless large enough to dictate the equilibrium steady state in the long-
time regime. In this case, as we have already discussed, the density matrix
will become diagonal, and one only needs to find the occupation probability
in thermal equilibrium. The simplest way to do so is to consider the system
coupled to a bosonic bath (i.e., phonons in the crystal), which is responsible
for T1-type processes. The Hamiltonian in this case reads

HS�B ¼ λ
X
Em>En

τþmnbþ τ�mnb
y; ð56Þ

where b is the annihilation operator on the bath. In this case, the LME reads

Lρ ¼ �i H0; ρ
� �þ LT1

; ð57Þ

with

LT1
¼ Γ0

P
Em

> EnNðEm � EnÞD τ�mn
	 


ρþ

þ Γ0
P
Em

>En NðEm � EnÞ þ 1
	 
D τþmn

	 

ρ;

ð58Þ

where we assume for the summation that Em > En ifm > n, and that there is
no forbidden transition. In the rotating-wave approximation, we simply
take23,26

NðEÞ ¼
Z 1

�1
byb
� �ðϵÞδðE � ϵÞdϵ ð59Þ

as the number of bosons resonantwith the transition. For simplicity, we take
Γ0 to be independent of energy and the same for all transitions. Typically,
one could consider a Debye model26

NðEÞ ¼ E
E0

1

eE=kBT � 1
; ð60Þ

where 1
eE=kBT�1

is theBose-Einsteindistribution andE=E0 represents the bath
spectral density.On the diagonal of the densitymatrix, these jumpoperators
take the form of a Pauli-like master equation, reading

d
dt pn ¼ Γ0

P
m>n

� Nmnpn þ ðNmn þ 1Þpmþ
�

þP
m<n

�ðNnm þ 1Þpn þ Nnmpm

�
;

ð61Þ

where, for ease of notation, we have definedNmn =N(Em− En). Therefore,
the equilibrium probabilities are found as the eigenvalues of the rate matrix

Rmn ¼ Γ0

Nmn þ 1 if Em>En

�PmNmn �
P

m<n1 if m ¼ n

Nmn if Em<En

8><
>: ð62Þ

fromwhich it is clear that the steady state does not depend on the choice of
Γ0. Moreover, in the limits of very low (Nmn≪ 1) or very high (Nmn≫ 1)
temperature, the steady state does not depend on E0

26,58.

Susceptibility derivation
In this section, we shall sketch for completeness and pedagogical value the
necessary mathematical steps to derive the susceptibility formulas in the
main text from the general expression in Eq. (17) (and Eq. (6)).

Hamiltonian susceptibility. The first term we tackle is the case of the
isolated system. As mentioned in the main text, Eq. (9) is equivalent to
Ref. 26. However, we report it here for completeness and to illustrate the
physical origin of the imaginary response in Eq. (23), aswell as it naturally
extending to describe χH in Eq. (23).

To begin with, we can define

Uðt; τÞ ¼ exp �iH0ðt � τÞ	 
 ð63Þ

through which the operators evolve in the interaction picture as

Πðt; τÞ ¼ Uyðt; τÞΠUðt; τÞ: ð64Þ

Therefore, making the commutator explicit,

χðt; τÞ ¼ �i tr Uyðt; τÞΠUðt; τÞΠρss
� ��	

�tr ΠUyðt; τÞΠUðt; τÞρss
� �


Θðt � τÞ: ð65Þ
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We can now take the case when ρss is purely diagonal. This may not be the
case for a perfectly Hamiltonian dynamics. However, any interaction with
the environment will lead to exponentially decaying off-diagonal terms66.
Therefore, we can consider this as the limit of Γmn

T2
! 0. For a practical way

of computing such probabilities, a method is presented in the Methods. In
this case, we can use the fact that

ρss ¼
X
m

pm∣ϕm
�
ϕm
�

∣ ð66Þ

and the cyclic property of the trace to write the first term in Eq. (65) as

tr Uyðt; τÞΠUðt; τÞΠρss
� � ¼
¼P

m
pm ϕm∣U

yðt; τÞΠUðt; τÞΠ∣ϕm
� �

:
ð67Þ

Now, we can use the completeness relation

I ¼
X
n

∣ϕn
�
ϕn
�

∣; ð68Þ

where I is the identity, to obtain

X
m;n

pm ϕm∣U
yðt; τÞΠUðt; τÞ∣ϕn

� �
ϕn∣Π∣ϕm
� �

: ð69Þ

Performing similarmanipulation for the other term in Eq. (65) andmaking
the time evolution of bra and ket explicit, we find

χðt; τÞ ¼ �i
P
m;n

ðpm � pnÞeiðEm�EnÞðt�τÞ�

�j ϕn∣Π∣ϕm
� �j2Θðt � τÞ;

ð70Þ

whose Fourier transform is Eq. (9).
This derivation allows to immediately consider the expression for χH(t,

τ) in the case of the Lindblad dynamics. Using the cyclic property of the
trace, in fact, we can write the equivalent of Eq. (70) as

χHðt; τÞ ¼ �i
P
m;n

ðpm � pnÞeiðEm�EnÞðt�τÞ�

�e�ΓmnT2
ðt�τÞj ϕn∣Π∣ϕm

� �j2Θðt � τÞ;
ð71Þ

where we have defined Γmn
T2

¼ 1
2 Γ

mn
T1

þ Γmn
ϕ as in themain text, and used the

fact that [Π, ρss] is real and antihermitian, and thus non-zero only off the
diagonal, as well as

L0∣ϕm
�
ϕn
�

∣ ¼ iðEm � EnÞ � Γmn
T2

� �
∣ϕn
�
ϕm
�

∣: ð72Þ

Taking the Fourier transform, we obtain Eq. (23).

Sisyphus susceptibility. To derive the general form of the Sisyphus
admittance, we must write down the variation of T1 with respect to
energy. Assuming without loss of generality a simple form of Eq. (58), we
can write

δLΓT1
ρss ¼

P
Em>En

dΓmn
þ
dε D τþmn

	 

ρssþ

þ dΓmn
�
dε D τ�mn

	 

ρss;

ð73Þ

where, for compactness, we write

dΓmn
±

dε
¼ dE

dε
d
dE

Γmn
±

��
E¼Em�En

: ð74Þ

We can now notice that, for a diagonal density matrix,

D τ�mn

	 

ρss ¼

ffiffiffi
2

p
pmτ

z
mn: ð75Þ

En passant, we note that the δLΓ due to pure dephasing processes vanishes
over a diagonal steady-state ρss. Therefore, even if the dephasing rate has an
energy dependence, it only contributes to Γmn

T2
in Eq. (23), but does not

introduce additional terms in the admittance.
Therefore,

δLΓT1
ρss ¼

ffiffiffi
2

p X
Em>En

dΓmn
þ
dε

pm � dΓmn
�
dε

pn

� �
τzmn: ð76Þ

If we now define

Γmn
T1

¼ Γmnþ þ Γmn
� ð77Þ

using the definitions in Eq. (30), and making use of Eqs. (76) and (17), we
easily obtain

χT1
ðt; τÞ ¼

X
Em>En

e�ΓmnT1
ðt�τÞσmn: ð78Þ

whose Fourier transform reads

χT1
ðωÞ ¼ P

Em>En

δΓþmnpm � δΓ�mnpn
	 


ϕn ∣Π∣ϕnh i� ϕm ∣Π∣ϕmh i
ΓmnT1

þiω

ð79Þ

and

δΓ±
mn ¼

dE
dε

d
dE

Γ± ðEÞ
��
E¼Em�En

: ð80Þ

Hermes susceptibility. The first step towards deriving the Hermes
admittance is to expand the rotationmatrixW(t), which diagonalizes the
Hamiltonian instantaneously, to first order. To do so, we can notice that

WðtÞ ¼
X
m

∣ϕmðtÞ
�
ϕmðtÞ
�

∣: ð81Þ

Instantaneously, to first order,

∣ϕmðtÞ
� ¼ ∣ϕm

�þX
n≠m

ϕnjΠjϕm
� �
Em � En

∣ϕn
�
δε cosωt þOðδε2Þ: ð82Þ

Thus,

WðtÞ ¼ W0 þ δεδW cosωt þOðδε2Þ; ð83Þ

with

δW ¼
X
m

X
n≠m

ϕnjΠjϕm
� �
Em � En

∣ϕn
�
ϕm
�

∣� h:c:

 !
: ð84Þ

Consequently, the perturbation of the jump operators reads

dLl
dε ¼ δWyLIEBl W0 þ W0

	 
y
LIEBl δW

¼ � δW; L0l
� �

:
ð85Þ

With some more algebra, it is possible to write

D0ðLÞ ¼ � δW; L0ρ L0
	 
yh i

þ 1
2 δW; L0

	 
y
L0

h i
; ρ

n o
þ

þL0 δW; ρ
� �

L0
	 
y

:
ð86Þ
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We must now consider relaxation and dephasing separately. The
Hermes susceptibility of T1 processes can be calculated making use of the
algebra presented above, with the additional fact that

δW; ∣ϕm
�
ϕm
�

∣
� � ¼X

n≠m

ϕnjΠjϕm
� �
Em � En

∣ϕn
�
ϕm
�

∣þ h:c: ð87Þ

With a similar formalism, it is also possible to include pure dephasing (Tϕ)
processes, which are usually described by a diagonal jump operator τzmn.
Carrying out the algebra and making use of Eq. (87), we find the results in
Eq. (88).

D0ðτ�mnÞρss ¼ �P
n≠m

3pmþpn
2

ϕnjΠjϕmh i
En�Em

∣ϕn
�
ϕm
�

∣� ϕmjΠjϕnh i
Em�En

∣ϕm
�
ϕn
�

∣
� �

¼ �P
n≠m

3pmþpn
2 Λmn

D0 τznm
	 


ρss ¼ P
n≠m

ðpm � pnÞ
ϕnjΠjϕmh i
En�Em

∣ϕn
�
ϕm
�

∣� ϕmjΠjϕnh i
Em�En

∣ϕm
�
ϕn
�

∣
� �

¼ P
n≠m

ðpm � pnÞΛmn:

ð88Þ
Notably, one can express both superoperators in terms of Λmn, and

they only differ in their dependence on the probabilities. The formulae
greatly simplify if we consider the combined action of relaxation and
dephasing. In the notation above and taking, without loss of generality,Em>
En, the perturbation to the jump operators reads

δLmn
L ρss ¼ Γmn

ϕ D0 τznm
	 


ρssþ
þ Γmn

þ D0 τþmn
	 


ρss þ Γmn� D0 τ�mn

	 

ρss;

ð89Þ

where we have introduced the pure dephasing rate Γϕ.
Before proceeding, we note that in such a Lindbladian the equilibrium

probabilities and the relaxation rates are linked by the principle of detailed
balance as

pm
pn

¼ Γmn
þ
Γmn
�

: ð90Þ

Combining Eqs. (88) and (90) we find, after some algebra,

δLmn
L ρss ¼ Γmn

T2
ðpm � pnÞΛmn; ð91Þ

where we have defined

Γmn
T2

¼ Γmn
ϕ þ 1

2
Γmn
T1
: ð92Þ

Interestingly, there is a factor of 2 between the contributions of
relaxation and dephasing, reflecting the fact that the decay of the coherences
reads T�1

2 ¼ Tϕð Þ�1þ 2T1ð Þ�1.
From Eq. (91) it follows directly that we can write the Hermes sus-

ceptibility as

χLðt; τÞ ¼ i
P
m≠n

Γmn
T2

pm�pn
Em�En

eiðEm�EnÞðt�τÞ�

�e�ΓmnT2
ðt�τÞj ϕn∣Π∣ϕm

� �j2Θðt � τÞ
ð93Þ

the Fourier transform of which is Eq. (34) in the main text.
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