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Abstract
Network Creation Games are an important framework for understanding the forma-
tion of real-world networks. These games usually assume a set of indistinguishable
agents strategically buying edges at a uniform price, which leads to the formation
of a network among them. However, in real life, agents are heterogeneous and their
relationships often display a bias towards similar agents, say of the same ethnic group.
This homophilic behavior on the agent level can then lead to the emergent global
phenomenon of social segregation. We study Network Creation Games with multiple
types of homophilic agents and non-uniform edge cost, introducing twomodels focus-
ing on the perception of same-type and different-type neighbors, respectively. Despite
their different initial conditions, both our theoretical and experimental analysis show
that both the composition and segregation strength of the resulting stable networks are
very similar, indicating a robust structure of social networks under homophily.

1 Introduction

Networks play an eminent role in today’s world. They are crucial for our energy supply
(power grid networks), our information exchange (the Internet and the World Wide
Web), and our social relationships (friendship networks, email exchange, or co-author
networks). There exists an abundance of approaches to provide formal frameworks
for modeling networks, see, for example, the books by Jackson (2010) and Newman
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(2018). In many of these models, the nodes of the network correspond to agents
that strategically create connections, which is particularly suitable for our main focus
of modeling social networks. One such stream of research considers variants of the
Network Creation Game (NCG) as proposed by Fabrikant et al. (2003). There, selfish
agents create edges to form a network among themselves. Forming edges is costly and
hence agents try to create only the most useful edges. On the other hand, the force that
causes agents to form edges at all is well-connectivity within the network, captured
by a desire to occupy a central position.

The NCG is a stylized model of social interaction, providing valuable insight to
agents’ decision processes when interacting with each other. However, it is important
to refine the basic model to spotlight specific details of this decision making. In this
sense, we study network creation under the additional assumption that agents are
separated into various types that model ethnic groups or affiliations.

Our goal is to contribute a new perspective on the simple causes that lead to the
segregation of a society, similar to Schelling’s checkerboard model for residential
segregation (Schelling 1969, 1971). Therefore, our agents’ cost functions have a bias
towards the creation of relationships with agents of the same type. Specifically, we
study two models based on two seemingly orthogonal treatments of other agents. In
the first model, agents incur a fixed cost for every created edge and a variable cost
that only depends on the number of edges towards same-type agents. In the second
model, edges towards different-type agents are initially more expensive but their cost
drops with an inverse linear decay. Both models give a different point-of-view on
the same underlying principle, namely homophily of agents, i.e., the tendency to
form connections with like-minded people. This is often summarized with the proverb
“birds of a feather flock together”, a dominant intrinsic force repeatedly observed in the
creation of social networks, see the survey byMcPherson et al. (2001) for an overview
over the extensive sociological research on homophily in social networks. While our
first model expresses homophily explicitly by an increasing comfort among friends,
the second model incorporates homophily indirectly by accounting for a decreasing
effort of integration once first contact is established. The latter paradigm is closely
related to the well-known effect in social sciences called the “contact hypothesis”
which states that stereotypes and prejudices between ethnic groups can be weakened
by intensified contact (Allport et al. 1954; Amir 1969; Dovidio et al. 2003).

We measure the desirability of networks by means of stability. Since we consider
social networks, we assume a bilateral model where two agents have to cooperate
to connect. Consequently, we use pairwise stability (Jackson and Wolinsky 1996) as
solution concept, rather than, for instance, Nash stability which is more appropriate
for unilateral models.

Interestingly, we find an almost identical structure of stable networks for both mod-
els. This hints at a robust structure of networks created under homophily incentives.
Figure1 provides a qualitative picture of our theoretical results and displays typical
stable networks. Our games are parameterized by α > 0, a parameter that governs
the cost of buying edges. Naturally, networks get sparser the higher the edge cost.
A very small edge cost causes extremely high connectivity, as indicated by the fully
connected network on the left of the cost range. For moderately small edge cost, we
provide characterizations of stable networks which are all highly segregated.We inter-
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Fig. 1 Qualitative picture of stable networks. The blue circles and red diamonds represent two different
types of agents. A more extensive version of this picture including exact parameters and a split view of our
two models is provided in Fig. 13 in Sect. 7

pret this as identifying a sweet spot of high sensitivity towards agent types. A typical
stable network at this cost range is displayed in the middle of Fig. 1: all agents of one
type are necessarily exposed to agents of the other type, but the edges connecting agent
types form a matching between different agent types. Clearly, if agents of the same
type are highly connected, this causes a high segregation strength. For larger edge
cost, stability causes a large spectrum of networks to form with respect to segregation
strength. For instance, networks can be highly segregated or highly integrated trees.
One example, a tree in which each agent type forms a star such that only their centers
are connected, is provided at the right of Fig. 1.

We accompany our theoretical findings with an average-case analysis by detailed
simulations that give insight in typical stable networks for α ≥ 1 where our theory
postulates the most diverse picture of stable networks. For this, we consider a simple
distributed dynamics, where agents perform improvements towards stable networks.
It would be plausible if a generally high edge cost causes less distinction of agent
types. While this is sometimes confirmed, we also identify contrasting tendencies
towards extreme segregation. An important driver for the different behavior is the
initial segregation level. In fact, segregation may remain low if it is low initially. As
a policy, this suggests that segregation can be avoided by a high initial effort towards
integration even if policy makers do not interact subsequently.

2 Related work

In the original NCG, the cost of every edge isα, whereα is a parameter of the game that
allows adjusting the tradeoff between the agents’ cost for creating edges and their cost
for the centrality in the network, e.g., the sum of distances to all other nodes. Stable
networks always exist. In particular, for α < 1, only cliques are stable, whereas for
1 ≤ α < n stars, other trees and also non-tree networks can be stable (Mamageishvili
et al. 2015). For α ≥ n it is conjectured that all stable networks are trees and a
recent line of works has proven this for α > 2n (Àlvarez and Messegué 2017; Bilò
and Lenzner 2020; Dippel and Vetta 2024). Bilateral NCGs with uniform edge price
have been introduced by Corbo and Parkes (2005) and recently this framework was
extended by Friedrich et al. (2023a). In addition, variants of the NCG with non-
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uniform edge cost have been studied: a version where edges of differing quality can
be bought (Cord-Landwehr et al. 2014), and NCGs where the edge cost depends on
the node degrees (Chauhan et al. 2017), on the length of the edges in a geometric
setting (Bilò et al. 2024), or on the hop-distance of the endpoints (Bilò et al. 2021).
The latter is motivated by social networks, and bilateral edge formation with pairwise
stability as a solution concept is considered.

The NCG variant by Meirom et al. (2014) features different types of agents and
different but fixed edge costs for each agent type.

Closest to our work is the model proposed by Martí and Zenou (2017) that is a
variant of the connections model (Jackson and Wolinsky 1996) with different types
of agents. Similar to our model, the cost for maintaining an other-type connection
depends on the homogeneity of the neighborhoods of the involved agents. In contrast
to us, the cost for same-type edges is fixed and the distance cost is defined differently.
The authors study the existence and structure of equilibria but do not investigate
segregation quantitatively. The latter has been done by Henry et al. (2011) using a
stochastic process that starts with a randomly drawn network with nodes of different
types. Then edges are randomly rewired with a built-in bias toward favoring same-type
edges. As the main result, the authors show that the network strongly segregates over
time, even if the built-in bias is very low.

Residential segregation has recently received a lot of attention by a stream of
research developing a game-theoretic framework based on Schelling’s checkerboard
model (see, e.g., Chauhan et al. 2018; Agarwal et al. 2021; Echzell et al. 2019; Bilò
et al. 2022b; Kanellopoulos et al. 2021; Bullinger et al. 2021; Bilò et al. 2023). There,
agents of several types strategically select positions on a given fixed network and they
individually aim for having at least a τ -fraction of same-type neighbors, for some
0 < τ ≤ 1.

Also, certain classes of coalition formation games have a similar flavor. In hedonic
diversity games (Bredereck et al. 2019; Boehmer and Elkind 2020; Darmann 2021;
Brandt et al. 2023), there are two types of agents and the utility of an agent within
some coalition depends on the type distribution of her coalition. Moreover, there exist
classes of hedonic games, where the preferences depend on distinguishing friends and
enemies (see, e.g., Dimitrov et al. 2006; Kerkmann et al. 2020).

3 Preliminaries andmodel

We consider a set V = {1, . . . , n} of n agents partitioned into k ≥ 2 disjoint types.
The set of types is denoted by T , and for every type T ∈ T , let VT be the set of agents
of type T , i.e., V = ⋃

T∈T VT and VT ∩ VT ′ = ∅ for T , T ′ ∈ T , with T �= T ′. For
an agent u ∈ V, we denote by T (u) her type, i.e., we have that u ∈ VT (u). Given a
type T ∈ T , let nT = |VT | denote the number of agents of type T . We identify types
with colors and assume that there are specific types B and R of blue and red agents,
respectively, which are associated with an agent type having the smallest and largest
number of agents, respectively. Thus, for every type T ∈ T , we have nB ≤ nT ≤ nR .
In particular, with exactly two agent types we have precisely a blue minority and a red
majority type.
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In a network creation game, agents buy edges to eventually form a network. This
leads to an undirected graph G = (V, E) whose vertices are the agent set and whose
edges are the established links between the agents. To speak about these networks,
we now introduce some graph-theoretic concepts and notation. Therefore, consider
an undirected graph G = (V, E) together with vertices u, v ∈ V. We denote the
(potential) edge between u and v by uv (whether it is present or not). For two agents
u, v ∈ V, the edge uv is said to be monochromatic if u and v are of the same type,
and bichromatic, otherwise. If uv ∈ E , we use the notation G − uv := (V, E \ {uv}),
otherwise we use G + uv := (V, E ∪ {uv}). Further, let NG(u) := {v ∈ V : uv ∈ E}
denote the neighborhood of u in G, let degG(u) := |NG(u)| be the degree of u in G,
i.e., the size of its neighborhood, and let dG(u, v) be the distance from u to v in G,
i.e., the length of a shortest path from u to v in G. The diameter of G is defined as
diam(G) := maxu,v∈V dG(u, v), i.e., the maximum length of any shortest path in G.
Finally, a useful measure for the centrality of a vertex in a network is its distance to a
set of vertices. Given a subset V ′ ⊆ V of vertices, let dG(u, V ′) := ∑

v∈V ′ dG(u, v)

denote the sum of distances from u to all vertices in V ′. Also, given a subset of agents
C ⊆ V, we denote by G[C] the subgraph of G induced by C , i.e., G[C] := (C, F),
where F = {uv ∈ E : u, v,∈ C}.

Before formally defining our network creation model, we introduce notation for
some relevant special types of graphs. ByKn = (V, E) we denote the complete graph
in which all possible edges are present, i.e., E = {uv : u, v,∈ V}. Further, we denote
by Sn = (V, E) a star graph, i.e., a graph for which there exists u ∈ V such that
E = {uv : v ∈ V\{u}}. We also consider networks for the special case of two agent
types. By DSn = (V, E) we denote a graph for which there exist two agents u ∈ VB

and v ∈ VR such that E = {uv} ∪ {uw : w ∈ VB} ∪ {vw : w ∈ VR}. Moreover, by
DSXn = (V, E) we denote a graph for which there exist two agents u ∈ VB and
v ∈ VR such that E = {uv} ∪ {uw : w ∈ VR} ∪ {vw : w ∈ VB}. We refer to DSn and
DSXn as a double star and a double star with switched centers, respectively.

Network creation games with homophilic agents We study network creation within
a cost-oriented bilateral model à la Corbo and Parkes (2005), where the agent cost is
separated into a neighborhood cost encompassing the cost of sponsoring edges and a
distance cost encompassing the cost of the agents’ centrality. In both our models, a
created network G has a distance cost for agent u of dG(u) := dG(u, V), i.e., the sum
of agent u’s distances to all other agents. The neighborhood cost is different in our
two models and will be specified in the definition of our network creation games.

To model the cost dependency on the types of neighbors, we define the set of same-
type agents in the neighborhood of agent u ∈ VT as FG(u) := VT ∩ NG(u). We
will sometimes call the set of same-type neighbors of an agent her friends and her
other-type neighbors, defined as EG(u) := NG(u)\FG(u), as enemies. We denote the
cardinalities of these sets by fG(u) := |FG(u)| and eG(u) := |EG(u)|, respectively.

We now define our network creation games. A network creation game with increas-
ing comfort among friends (ICF-NCG)with cost parameterα > 0 is a network creation
game where the neighborhood cost is given by
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aICFG (u) = degG(u) · α

(

1 + 1

fG(u) + 1

)

,

i.e., there is a fixed cost of α for every edge and an additional cost that decreases with
an increasing number of same-type neighbors. If each agent is of a different type, then
fG(u) = 0 for all agents, and therefore each edge has a uniform cost. In this case, the
game is equivalent to the single-type bilateral network creation game by Corbo and
Parkes (2005).

A network creation game with decreasing effort of integration (DEI-NCG) with
cost parameter α > 0 is a network creation game where the neighborhood cost is
given by

aDEIG (u) = α

(

degG(u) +
eG (u)∑

j=1

1

j

)

.

Hence, there is a fixed edge cost of α for every edge to an agent in the neighborhood
together with a harmonically decreasing additional cost for edges towards other-type
agents. Note that the sum is empty for eG(u) = 0, and therefore, the DEI-NCG with
a single type of agents is identical to the single-type bilateral network creation game
by Corbo and Parkes (2005).

For the neighborhood cost, we omit the superscript indicating the type of network
creation game, whenever this is clear from the context. Also, for both our models, we
define the cost of an agent u in a network G as cG(u) := aG(u) + dG(u).

The cost functions mimic the two effects that we want to model, namely a general
homophilic behavior via the ICF-NCG and diminishing prejudices with intensified
contact via the DEI-NCG. In both models, edge costs have a similar decay structure
and identical range of [α, 2α]. In the ICF-NCG, the cost of edges is 2α for each edge
if an agent has no friends, and the edge cost is approaching α when the number of
neighboring same-type agents is growing. In theDEI-NCG, the cost of edges to friends
is always α and the variable cost only affects other-type agents, where we approach α

with a harmonic decay starting at a cost of 2α for the first other-type agent.

Measures for desirable networks We analyze networks by the incentives of agents to
maintain the network in terms of stability and by the diversity of their neighborhood
with respect to other agent types. An agent u ∈ V is said to be discontent in network
G if
(i) there exists a neighbor v ∈ NG(u) such that cG(u) > cG−uv(u), i.e., v would

benefit from unilaterally severing the edge to v or
(ii) There exists a non-neighbor v /∈ NG(u) such that cG(u) > cG+uv(u) and cG(v) >

cG+uv(v), i.e., u and her neighbor v can bilaterally create an edge to decrease their
respective cost.
An agent that is not discontent in network G is said to be content in network G.

Following Jackson and Wolinsky (1996), a network G is said to be pairwise stable if
every agent is content in network G.

An agent severing an edge or creating an edge to decrease her and, in the case
of edge creation, her new neighbor’s cost is said to perform a better response. A
better response that decreases an agent’s cost the most is called a best response. If a
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better response is executed, we also speak of a deviation. In our simulations, we will
study dynamics where agents iteratively preform best responses and we refer to such
dynamics as best response dynamics.

Connectivity is an important aspect in network analysis. With multiple agent types,
the internal connectivity per type deserves special consideration. Formally, a network
G = (V, E) is said to be fully intra-connected if, for every pair u, v ∈ V of same-
type agents, it holds that uv ∈ E . Furthermore, network G is fully connected if G is
complete.

For the evaluation of diversity, we consider two segregation measures. Given a
network G = (V, E), its local segregation, denoted by LS(G), is defined as the
average fraction of agents of the same type, i.e.,

LS(G) = 1

|V|
∑

u∈V

fG(u)

degG(u)
.

The global segregation, calledGS(G), is the proportion of monochromatic edges, i.e.,

GS(G) =
∑

u∈V fG(u)

2|E | .

Note that 1
2

∑
u∈V fG(u) is the number of monochromatic edges, i.e., in the numerator

ofGS(G), we count each such edge twice. Both segregation measures are designed in
a way that higher values indicate higher segregation. The range is between 0, which
occurs in networks where all neighbors are from different types and 1, which happens
in networks where all edges are between same-type agents. Because of the distance
cost, all reasonable networks are connected and their segregation measures are well-
defined.1 This also means that networks with more than one agent type will typically
not lead to a segregation measure of exactly 0 or 1 (a value of 1 is even impossible
because we need at least one bichromatic edge). In our worst-case examples, these
extreme values will, however, occur in an asymptotic sense, i.e., if the number of
agents tends to infinity.

The segregation measures LS and GS are (related to) standard measures in social
sciences to capture the agents’ exposure (Massey and Denton 1988). The segregation
measure LS is used by Paolillo and Lorenz (2018) and GS is used in the simulation
framework Netlogo (Wilensky 1997) and by Zhang (2011).

Finally, the minimum willingness of an agent to integrate can be evaluated by
checking if she entertains any bichromatic edge. Therefore, we call an agent curious
if she is part of a bichromatic edge. Similarly, a type of agents is said to be curious if
it solely consists of curious agents. Note that this concept is related to the degree of
integration, which is identical to the number of curious agents and has been studied
in game-theoretic models for residential segregation (Agarwal et al. 2021; Bilò et al.
2022a; Friedrich et al. 2023b).

1 In fact, all networks considered in our paper are connected. To make LS and GS well-defined for isolated
vertices, one can use the convention that 0

0 := 1, which is based on the idea that isolated vertices are fully
segregated.
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4 Increasing comfort among friends

In this section, we perform our theoretical analysis of the ICF-NCG. Unless explicitly
stated otherwise, all statements hold for an arbitrary number of types. All missing
proofs here and in the subsequent sections can be found in the appendix.

We start by gathering some statements concerning structural properties and sim-
ple pairwise stable networks. Their proof follows by a careful analysis of the cost
difference after the creation and deletion of edges.

Proposition 4.1 For the ICF-NCG the following hold:
1. If α < 6

7 , then every pairwise stable network is fully intra-connected.
2. If α < 4

3 , then diam(G) ≤ 2 for every pairwise stable network G. In particular,
network G contains a curious type.

3. Let α < 1, let G be a pairwise stable network, and let C ⊆ V such that every
agent in C is curious and C ⊆ VT , for some type T ∈ T . Then, network G[C] is
a clique. In particular, every curious type of agents is fully intra-connected.

4. If α ≤ nB
nB+1 , then the complete network Kn is pairwise stable. Moreover for

α < min{ 67 , nB
nB+1 }, the network Kn is the unique pairwise stable network.

5. If α ≥ 1, then the star Sn is pairwise stable.
6. If α ≥ 4

3 , then the double star DSn is pairwise stable.

Notably, all bounds for α obtained in Proposition 4.1 are tight. In fact:

1. If α ≥ 6
7 , then a star with a red center agent, one blue leaf agent, and three red leaf

agents is pairwise stable but not fully intra-connected.
2. If α ≥ 4

3 , then the double star is pairwise stable but has a diameter of 3 and none
of the types is curious.

3. If α ≥ 1, then any star network is pairwise stable, but all agents of types different
from the center agent’s type are curious but not directly connected with each other.

4. If α > nB
nB+1 , then every blue agent in a complete network has an incentive to sever

a bichromatic edge.
5. If α < 1, then every pair of agents from a type different than the center agent’s

type in a star have an incentive to together create an edge.
6. If α < 4

3 , then two leaves of differnt types of a double star have an incentive to
create an edge.

Moreover, the uniqueness in Proposition 4.1(4.1) excludes the parameter range
6
7 ≤ α ≤ nB

nB+1 , which can only happen for sufficiently many blue agents. In fact,
there the uniqueness ceases to hold, as we show in the next example.

Example 4.2 Consider the ICF-NCG with two agent types. Let nB ≥ 6 and 6
7 ≤ α ≤

nR
nR+1 . We fix a specific red agent r∗ ∈ VR and consider the network G = (V, E) with
E = {vw : v,w ∈ VR} ∪ {vr∗ : v ∈ V\{r∗}}, i.e., the red type is fully intra-connected
and there is a special agent r∗ to which all agents are connected. The structure of this
network is depicted in Fig. 2.

If 6
7 ≤ α ≤ nB

nB+1 , it is even possible to interchange the roles of the two agent types.
Pairwise stability of this network follows by straightforward computations. �
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Fig. 2 Pairwise stable network for 6
7 ≤ α ≤ nR

nR+1 with nB = 6 and nR = 6 blue and red agents,
respectively

Fig. 3 Illustration of the proof of Proposition 4.3. We consider an ICF-NCG with 3 types containing 2, 3,
and 5 agents, respectively. Hence, we consider the parameter range nB

nB+1 = 2
3 ≤ α < 1. The pairwise

stable networks are dependent on the thresholds τ2 = 3
4 and τ = 12

13 . We then find the pairwise stable

networks for nB
nB+1 ≤ α < τ2 (left), τ2 ≤ α < τ (middle), and τ ≤ α < 1 (right)

For the existence of stable networks, we still have to consider the intermediate
parameter range nB

nB+1 < α < 1. We fill this gap by identifying two similar types of
stable networks for this range.

Proposition 4.3 In the ICF-NCG, a pairwise stable network exists for every nB
nB+1 ≤

α < 1.

Proof Consider an instance of the ICF-NCG and let nB
nB+1 ≤ α < 1. Assume that

we have ordered the types in increasing size, i.e., T = {T1, . . . , Tk}, where T1 = B,

Tk = R and nT1 ≤ · · · ≤ nTk . Suppose that VTj = {t1j , . . . , t
nT j
j }. We will define a

stable network for α dependent on several thresholds for α. In particular, there is a

threshold τ = nTk−1 (nTk−1+1)
nTk−1 (nTk−1+1)+1 . In addition, we consider further threshold values. Let

2 ≤ j ≤ k − 1, and define τ j = nTj
nT j +1 . Note that

nB
nB+1 ≤ τ2 ≤ τ3 ≤ · · · ≤ τk−1 <

τ < 1 as nTk−1(nTk−1 + 1) > nTk−1 .
We define the network G = (V, E) with edges given as follows:

• {t ij , t�j } ∈ E for 1 ≤ j ≤ k, 1 ≤ i < � ≤ min{nTj , nTk−1},
• {t ij , t i�} ∈ E for 1 ≤ j < � ≤ k, 1 ≤ i ≤ nTj ,

• {t ik, t�k } ∈ E for 1 ≤ i ≤ nTk−1 and nTk−1 + 1 ≤ � ≤ nTk ,
• for each 2 ≤ j ≤ k − 1, if α < τ j , then {t ij , tm� } ∈ E for j < � ≤ k, 1 ≤ i ≤ nTj ,
and 1 ≤ m ≤ nT�

,
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• if α < τ , then {t ik, t�k } ∈ E for nTk−1 + 1 ≤ i < � ≤ nTk , and
• no further edges are in E .
The different cases for the network G are illustrated in Fig. 3.
We claim that G is pairwise stable. First, we show that no agent can sever an edge.

Let 1 ≤ j ≤ k, 1 ≤ i ≤ nTk−1 , and nTk−1 + 1 ≤ �,m ≤ nTk .
If agent t ij severs an edge to an agent of her type, the distance cost is increased

by 1 while the neighborhood cost is decreased by α
(
1 + fG (u)−degG (u)+1

(fG (u)+1)fG (u)

)
≤ α < 1

(which can be computed with the aid of the update formula in Lemma A.1 in the
appendix).

Next, we show that no agent can sever a bichromatic edge between an agent in VTj

an agent of type Tp, for j + 1 ≤ p ≤ k. First, for j = 1, agent t i1 cannot sever a
bichromatic edge, because then the distance to the adjacent neighbor increases by 2

while the neighborhood cost is decreased by α
(
1 + 1

nT1

)
< 2α < 2. For the same

reason, the unique neighbor of agent t i1 in VTp , for 2 ≤ p ≤ k, cannot sever the edge to
agent t i1.Next, consider the case that 2 ≤ j ≤ k−1. Ifα < τ j , then severing an edge to a
neighbor inVTp , for 2 ≤ p ≤ k, is not profitable because this increases the distance cost

by 1while saving only a neighborhood cost ofα

(

1 + 1
nTj

)

< τ j

(

1 + 1
nTj

)

= 1. The

neighbors in VTp have (weakly) more friends and would save even less neighborhood
cost by severing the respective edge. In the caseα ≥ τ j , there is again a uniqueneighbor
of type Tp and the case is analogous to the case for agents of type T1. Thus, we have
considered all bichromatic edges. The red agent t�k cannot sever the edge towards agent
t ik , because this improves the neighborhood cost by less than 2 while it increases the
distance to both t ik and t

i
1 by 1 each. Finally, consider the case thatα < τ . Then, agent t�k

cannot sever the edge t�k t
m
k , for � �= m. Indeed, this would increase the distance cost by

1 while saving a neighborhood cost of α
(
1 + 1

nTk (nTk−1)

)
≤ α

(
1 + 1

(nTk−1+1)nTk−1

)
.

Here, we use that such an edge can only exist if nTk ≥ nTk−1 + 1. Hence, the total

increase in cost is at least 1 − α
(
1 + 1

(nTk−1+1)nTk−1

)
= 1 − α

nTk−1 (nTk−1+1)+1
(nTk−1+1)nTk−1

>

1 − τ
nTk−1 (nTk−1+1)+1
(nTk−1+1)nTk−1

= 0.

Next, we show that it is also not possible to create edges. As a first step, we show
that agents cannot create bichromatic edges. Let therefore 1 ≤ j < p ≤ k and let
1 ≤ i ≤ nTj and 1 ≤ � ≤ nTp with i �= j . Note that the edge t ij t

�
p is present if α < τ j

and j ≥ 2. Hence, we assume that α ≥ τ j if j ≥ 2. Then, t ij does not benefit from

creating the edge t ij t
�
p. Indeed, this decreases her distance cost by exactly 1 while it

increases her neighborhood cost by α
nTj +1

nTj
≥ 1. Here, we use that α ≥ nB

nB+1 if j = 1

and α ≥ τ j if j ≥ 2. It remains the case of missing edges between red agents for large
edge cost. Assume therefore α ≥ τ and let nTk−1 + 1 ≤ i, � ∈ nTk . Adding the edge
t ik t

�
k decreases the distance cost for t ik by 1 while increasing her neighborhood cost

by α
(
1 + 1

nTk−1 (nTk−1+1)

)
≥ τ

nTk−1 (nTk−1+1)+1
(nTk−1+1)nTk−1

= 1. Hence, creating this edge is not

beneficial for agent t ik .

123



Network creation with homophilic…

Fig. 4 Pairwise stable networks for nB
nB+1 ≤ α < τ (left) and τ ≤ α < 1 (right)

Overall, we have found stable networks for α in the desired range. �
Combining Propositions 4.1 and 4.3, we immediately obtain the following theorem.

Theorem 4.4 In the ICF-NCG pairwise stable networks always exist.

Next,wewant to have a closer look at the case of k = 2 agent types.An illustration of
the stable networks constructed inProposition4.3 is provided inFig. 4. In particular, the
construction only depends on the threshold τ = nB (nB+1)

nB (nB+1)+1 . The obtained networks
consist of monochromatic cliques (of a size equal to the number of agents of the
minority type), connected by a matching of bichromatic edges. All agents of the
majority type are connected to all other agents of their type, but whether non-curious
agents of the majority type have further edges depends on the threshold.

The construction for more agent types exploits the same idea. The structure of the
subnetwork induced by the agents in VB ∪ VT for any type T ∈ T with T �= B is
essentially the same. However, dependent on α, agents from larger communities might
have an incentive to maintain further bichromatic edges, captured by the multiple
thresholds. Interestingly, when k = 2, the stable networks constructed in the proof
of Proposition 4.3 give an almost full characterization of stable networks for an edge
costs smaller than but close to 1.

Theorem 4.5 Consider the ICF-NCG with parameter α and k = 2 agent types. Let
nR

nR+1 < α < 1 and assume that G is pairwise stable. Then, the blue agents are fully
intra-connected, the bichromatic edges form a matching of size nB, and curious red
agents are connected to all other red agents.

Proof Let nR
nR+1 < α < 1 and assume that G is a pairwise stable network in the ICF-

NCGwith cost parameter α. By Proposition 4.1(4.1), the diameter of G is bounded by
2 and there exists a curious type of agents. By Proposition 4.1(4.1), the curious type
of agents forms a clique C and the curious agents of the other type form a clique as
well.

Assume towards a contradiction that the bichromatic edges do not form amatching.
Assume that there is an agent x ∈ C that maintains bichromatic edges with two
different agents y and z. We will show that agent y has an incentive to sever the edge
xy. For this, consider the network G ′ = G − xy. First, the distance cost of agent y
decreases by at most 1. Indeed, since all agents of the type of x are still curious in G ′
and since agent y forms edges to all curious agents of her type, the distance to all these
agents is 2 in G ′ and 1 to agents other than x to which a bichromatic edge exists in G.
Also, since agent y is connected to all curious agents of her type, the shortest paths
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Fig. 5 Pairwise stable network for nB
nB+1 ≤ α ≤ nR

nR+1

to agents of her own type in G cannot use x and still exist after severing the edge xy.
Now, the neighborhood cost decreases by

α

(

1 + 1

fG(y) + 1

)

≥ α

(

1 + 1

nR

)

> 1.

Hence, no agent in the clique C maintains more than one bichromatic edge.
Next, assume that two agents w, x ∈ C maintain a bichromatic edge to the same

agent y. It is quickly checked that severing the edge xy increases the distance cost by
1 for agent y and her neighborhood cost decreases by more than 1, as above.

Together, the bichromatic edges form a matching. Hence, only a minority type can
be a curious type and we can conclude that the blue agents are fully intra-connected
and that the matching of bichromatic edges is of size nB . It remains to show that all
curious red agents maintain edges with non-curious red agents. Assume that agent y
is a curious red agent forming a bichromatic edge to the blue agent x and that there is
no edge to a non-curious red agent z, i.e., the edge yz is not present in G. But then,
dG(x, z) ≥ 3, contradicting Proposition 4.1(4.1). �
Example 4.6 The characterization encountered in Theorem 4.5 does not cover the
whole parameter range of Proposition 4.3. In fact, it does not hold for nB

nB+1 ≤ α ≤
nR

nR+1 , and further pairwise stable networks exist. Assume that nR ≥ 2 and let r∗ ∈ VR .
Consider the network G = (V, E), where

E = {{v,w} : v,w ∈ VR} ∪ {{v,w} : v,w ∈ VB} ∪ {{v, r∗} : v ∈ VB},

i.e., the network is fully intra-connected and there is a special agent r∗ to which all
blue agents are connected. The structure of this network is depicted in Fig. 5. It is
straightforward to check that the network is pairwise stable.

Moreover, recall that Proposition 4.1(4.1) implies full intra-connectivity for α < 6
7 .

If this is not the case, i.e., for 6
7 ≤ α ≤ nR

nR+1 (which implies nR ≥ 6, i.e., a sufficiently
large number of agents), then there exist even pairwise stable networks where most
agents of one type have exactly one neighbor (recall Example 4.2). However, it is
necessarily the case that the agents of the other type are fully intra-connected. �

Until now, we set our focus on the existence of pairwise stable networks. In the
remainder of the section, we want to consider the segregation of pairwise stable net-
works. Recall that our segregation measures have the range [0, 1], where a value of 1
means total segregation. We can apply Theorem 4.5 to obtain very high segregation,
asymptotically approaching 1, for nR

nR+1 < α < 1. The corollary follows from a direct
computation based on the characterization of Theorem 4.5.
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Corollary 4.7 Consider the ICF-NCG with parameter α and k = 2 agent types. Let
nR

nR+1 < α < 1 and assume that G is pairwise stable. Then, GS(G) ≥ 1 − 1
nR

and

LS(G) ≥ 1 − 2
n .

Proof Let nR
nR+1 < α < 1 and assume that G = (V, E) is a pairwise stable network

for an ICF-NCG with cost parameter α.
We start with computing the global segregation. By Theorem 4.5, there are nB

bichromatic edges. Additionally,

|E | ≥ nB + 2

(
nB

2

)

+ nB(nR − nB) = nBnR .

Hence,

GS = |E | − nB

|E | ≥ 1 − 1

nR
.

For the local segregation, we need to compute the quantity fG (u)
degG (u)

for every agent
u. We can apply the characterization of Theorem 4.5 again to find

fG(u)

degG(u)
=

⎧
⎪⎨

⎪⎩

nB−1
nB

if u blue,
nR−1
nR

if u red and curious,

1 otherwise.

Consequently,

LS(G) = 1

n

(

nB
nB − 1

nB
+ nB

nR − 1

nR
+ (nR − nB)

)

= 1

n

(

n − 1 − nB

nR

)

≥ 1 − 2

n
. �

We know that segregation is low for sufficiently low parameter α, where cliques are
(uniquely) pairwise stable. Then, there is a transition at α = nR

nR+1 , where segregation
is provably high regardless of further parameters like the distribution of agents into
types. Once, the cost parameter increases to α ≥ 1, the picture becomes less clear.
Stars yield very high or very low segregation, i.e., the segregation measures attain
values close to the extreme values of 0 and 1.

Proposition 4.8 Consider the ICF-NCGwith parameter α ≥ 1. Then, for every n ≥ 2,
there exist pairwise stable networks G and G ′ with n nodes such that GS(G) =
LS(G) = 1 and GS(G ′) = LS(G ′) = 1

n−1 .

Proof Note that in the considered parameter range, the star Sn is pairwise stable
according to Proposition 4.1(4.1). If there are only agents of one type, then G = Sn
fulfills GS(G),LS(G) = 1. On the other hand, if there are two blue agents and
n − 2 red agents, consider G ′ = Sn where the center agent is blue. Then GS(G ′),
LS(G ′) = 1

n−1 . �
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The networks in the previous proposition have the drawback that we need to fix the
exact numbers of agents of each type to obtain the desired segregation. By contrast,
for α ≥ 4

3 , the double star is always highly segregated.

Proposition 4.9 Consider the ICF-NCG with α ≥ 4
3 . Then, the double star DSn is a

pairwise stable network with GS(DSn) = 1 − 1
n−1 and LS(DSn) ≥ 1 − 2

n .

Proof By Proposition 4.1(4.1), we already know that the double star is pairwise stable.
It remains to compute the segregation measures for the double star.

First,

GS(DSn) = nB − 1 + nR − 1

n − 1
= 1 − 1

n − 1
.

Second,

LS(DSn) = 1

n

(

nB − 1 + nR − 1 + nB − 1

nB
+ nR − 1

nR

)

= 1 − 1

n

(
1

nB
+ 1

nR

)

≥ 1 − 2

n
. �

5 Decreasing effort of integration

We consider the DEI-NCG. We start by collecting some results determining simple
stable networks for sufficiently small and large values of α, respectively. Recall that
we implicitly assume the restriction to two agent types when considering the networks
DSn and DSXn . All other statements hold for an arbitrary number of agent types.

Proposition 5.1 For the DEI-NCG the following holds:
1. If α < 1

2 , then Kn is the unique pairwise stable network.
2. If α < 1, then every pairwise stable network is fully intra-connected.
3. If α < 1, then every pairwise stable network G satisfies diam(G) ≤ 2.
4. The network Kn is pairwise stable if α ≤ n−nR

n−nR+1 .
5. If α ≥ 1, then Sn and DSn are pairwise stable networks.
6. If α ≥ 4

3 , then DSXn is a pairwise stable network.

As with Proposition 4.1, all bounds for α in Proposition 5.1 are tight:

1. If α ≥ 1
2 , then the star with red center and one blue and two red agents is pairwise

stable because the red leaf agent has no incentive to create a first bichromatic edge
for a cost of 2α. We discuss another interesting class of networks with a variable
number of agents in Example 5.2.

2. If α ≥ 1, then the star (or double star) is pairwise stable and not fully intra-
connected.

3. If α ≥ 1, then the double star is pairwise stable and has a diameter of 3.
4. If α > n−nR

n−nR+1 , the every red agent in a complete network has an incentive to
sever a bichromatic edge.
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Fig. 6 Pairwise stable network for 1
2 ≤ α ≤ nR

nR+1

5. If α < 1, then all leaf agents in stars and double stars have an incentive to create
a joint edge.

6. Ifα < 4
3 , then two leaves of different types have an incentive to create a bichromatic

edge. Interestingly, this determines the threshold for the pairwise stability ofDSXn

because every agent in DSXn is curious. By contrast, there is only an incentive to
create monochromatic edges for α < 1.

Proposition 5.1(5.1) and Proposition 5.1(5.1) imply that, for α < 1, every pairwise
stable network consists of two monochromatic cliques and one type of agents is curi-
ous. Still, there are highly segregated pairwise stable networks. Also, the upper bound
in Proposition 5.1(5.1) is equal to nB

nB+1 in the case of two agent types.
An interesting difference between the ICF-NCGand theDEI-NCG is that the agents

determining the pairwise stability of the complete network change. In the ICF-NCG,
the agents of theminority type have the least friends and therefore the largest gainwhen
severing a bichromatic edge. In contrast, in the DEI-NCG the agents of the majority
type have the highest marginal gain from severing a bichromatic edge because they
sponsor the smallest number of bichromatic edges. This is reflected in the respective
thresholds for the pairwise stability of the complete network in Propositions 4.1 and
5.1. Finally, we provide an example for α ≥ 1

2 but close to
1
2 with a variable number of

agents, in which the complete network is not the unique stable network. We consider
the case k = 2, but similar examples also exist for more than two types.

Example 5.2 Assume k = 2 and 1
2 ≤ α ≤ nR

nR+1 . Recall that nR is the size of the

majority type of agents. In particular, this covers the case α ≤ nB
nB+1 = n−nR

n−nR+1 .
Assume that nB ≥ 2 and let b∗ be some fixed blue agent, i.e., an agent from the
minority type. Consider the network G = (V, E) with

E = {vw : v,w ∈ R} ∪ {vw : v,w ∈ B} ∪ {vb∗ : v ∈ R},

i.e., the network is fully intra-connected and there is a special blue agent b∗ to which
all red agents are connected. There are no further bichromatic edges. For an illustration
of the network, see Fig. 6.

We prove pairwise stability of the network. First, no agent can sever a monochro-
matic edge. Red agents cannot sever the bichromatic edge, because this decreases the
distance to every blue agent by 1. The blue agent b∗ cannot sever a bichromatic edge,
because this increases her cost by 1 − α nR+1

nR
≥ 0. Also, further bichromatic edges

cannot be added since their cost is more than 1 for a blue agent while decreasing the
distance cost only by 1. �
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In the previous example, it was still possible to simultaneously have full intra-
connectivity while there are agents entertaining several bichromatic edges. This is not
possible anymore if we further increase α.

Lemma 5.3 Let k = 2 in the DEI-NCG. Consider a fully intra-connected and pairwise
stable network G.
1. If α > nB

nB+1 , then every red agent in G entertains at most one bichromatic edge.
2. If α > nR

nR+1 , then every agent in G entertains at most one bichromatic edge.

As a consequence,we can even characterize all pairwise stable networks for nR
nR+1 <

α < 1 and k = 2.

Theorem 5.4 Let k = 2 in the DEI-NCG. Assume that nR
nR+1 < α < 1 and consider a

network G. Then, network G is pairwise stable if and only if it is fully intra-connected
and its bichromatic edges form a matching covering VB.

Proof Clearly, if k = 2 and nR = 1, then the unique stable network consists of a
neighboring blue and red agent. Hence, the assertion is true. Thus, we may assume
that nR ≥ 2.

Let nR
nR+1 < α < 1 and assume first that G is a pairwise stable network. By Propo-

sition 5.1(5.1), the network is fully intra-connected. By Lemma 5.3, the bichromatic
edges form a matching. Finally, by Proposition 5.1(5.1), one type of the agents must
be curious, and therefore the matching covers the minority type of agents.

Conversely, assume that G is a fully intra-connected network such that the bichro-
matic edges form amatching covering one type of agents. Then, no edge can be severed
because monochromatic edges only decrease the neighborhood cost by α < 1 while
increasing the distance cost by 1. Also, bichromatic edges decrease the neighborhood
cost by 2α < 2 while increasing the distance cost by 2. Finally, it is impossible to
create another bichromatic edge. This edgewould be the second bichromatic edge inci-
dent to its endpoint from the minority type of agents. This agent would only decrease
her distance cost by 1 while increasing her neighborhood cost by 3

2α ≥ 3
2

nR
nR+1 ≥ 1,

where we use nR ≥ 2 in the last step. �
The second part of the above proof shows that the networks characterized in the

theorem are even stable for 2
3 ≤ α < 1. Putting together Proposition 5.1, Example

5.2, and Theorem 5.4, we have proven the existence of pairwise stable networks for
almost every DEI-NCG if k = 2 (except a limit case when nB = 1). By generaliz-
ing the encountered networks, we can show the existence of stable networks for an
arbitrary number of types in the next theorem. The generalization of the network in
Example 5.2 is straightforward, maintaining the property that there exists one specific
agent entertaining all bichromatic edges. However, the generalization of the network
in Theorem 5.4 is a bit disguised. We define the network by providing an efficient
algorithm. This algorithm initially considers a fully intra-connected network and adds
edges by having agents create bichromatic edges via specific better responses. In the
special case of k = 2, this results precisely in the matchings encountered in Theorem
5.4.

Proposition 5.5 In the DEI-NCG, there exists a pairwise stable network for every
n−nR

n−nR+1 < α < 1.
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Proof Suppose that T = {T1, . . . , Tk} with nT1 ≤ · · · ≤ nTk and, for each 1 ≤ j ≤ k,

VTj = {t1j , . . . , t
nT j
j }. We will construct pairwise stable networks for this parameter

range.
First, we will generalize the network of Example 5.2 to an arbitrary number of

agent types. Let j∗ = min({1 ≤ j ≤ k : nTj ≥ 2}∪ {k}), i.e., the index of the smallest
type of size at least 2 or the index of the last type if there exists exactly one agent per
type. Consider the network G = (V, E) with edge set defined by

• {t ij , t lj } ∈ E for 1 ≤ j ≤ k, 1 ≤ i < l ≤ nTj ,

• {t1j∗ , t ij } ∈ E for 1 ≤ j ≤ k, j �= j∗, 1 ≤ i ≤ nTj , and
• no further edges are in E .

We now provide conditions, under which the network G is pairwise stable.

Lemma 5.6 The network G is pairwise stable if

(i) j∗ = k and 2
3 ≤ α ≤ 1,

(ii) k = 2, j∗ = k, nTk ≥ 2 and 1
2 ≤ α ≤ 1, or

(iii) 2
3 ≤ α ≤ n−nTj∗

n−nTj∗ +1 .

Proof (i) Assume that j∗ = k and 2
3 ≤ α ≤ 1. Then, no monochromatic edge can

be severed because of α ≤ 1. Since j∗ = k, bichromatic edges cannot be severed
due to connectivity. Also, and creating an edge costs 3

2α ≥ 1 for an agent of type
different to k while it decreases her distance cost by exactly 1.

(ii) Next, consider the case that k = 2, j∗ = k, nTk ≥ 2 and 1
2 ≤ α ≤ 1. Then, again,

no monochromatic edge can be severed because of α ≤ 1. The unique bichromatic
edge cannot be severed as this would disconnect the network. Also, adding another
bichromatic edge must include a non-curious red agent. This agent would increase
her neighborhood cost by 2α ≥ 1 while only decreasing her distance cost by 1.

(iii) Now, assume that 2
3 ≤ α ≤ n−nTj∗

n−nTj∗ +1 . Again, monochromatic edges cannot be

severed as α < 1. Further, bichromatic edges incident to an agent t1j for 1 ≤ j ≤
j∗ − 1 cannot be severed as this would disconnect the network. Next, agent t1j∗
cannot sever another bichromatic edge, because this would increase her cost by

1− α
n−nTj∗ +1

n−nTj∗
≥ 0. Also, for j∗ < j ≤ k and 1 ≤ i ≤ nTj , agent t

i
j cannot sever

{t1j∗ , t ij }, because this increases the distance to at least nTj∗ ≥ 2 agents (in Tj∗) by
1 while decreasing the neighborhood cost by 2.
It remains to consider the creation of edges. Every agent in V \ VTj∗ entertains

exactly one bichromatic edge. Creating a second bichromatic edge costs 3
2α ≥ 1

while it decreases the distance cost by exactly 1. Together, the network is pairwise
stable. �
Second, we generalize the network from Theorem 5.4. To this end, we design an

algorithm that constructs pairwise stable networks. In the special case of two agent
types, it yields the networks encountered in Theorem 5.4. Note that this must specifi-
cally hold for the parameter range where the uniqueness of the theorem applies.
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Algorithm 1: Determination of Edge Set for Network G ′
Input: Set of agents V.
Output: Edge set E ′.

E ′ ← {{t ij , tlj } : 1 ≤ j ≤ k, 1 ≤ i < l ≤ nTj };
while there exist u, v ∈ V with d(V,E ′)(u, v) ≥ 3 do

E ′ ← E ′ ∪ {uv};
return E ′

Therefore, consider the network G ′ = (V, E ′) where the edge set E ′ is computed
according to Algorithm 1.

The algorithm startswith the fully intra-connected networkwithout any bichromatic
edges. Then, bichromatic edges are added whenever the distance between two agents
is too large. Clearly, this algorithm has to terminate by returning E ′ after at most

(n
2

)

executions of the while loop.

Lemma 5.7 The following properties are valid.

• The diameter of G ′ satisfies diam(G ′) ≤ 2.
• Every triangle2 in G ′ consists of monochromatic edges only.
• Every agent is incident to at most k − 1 bichromatic edges in G ′.

Proof The first property is immediate from the definition of the while loop. We prove
the second property by contradiction. Assume that network G ′ contains a triangle
containing agents u, v, and w of at least two different types. Assume that uv is the last
edge that was added by the algorithm. At this point uw and vw were already present,
so d(V,E ′)(u, v) ≤ 2, which is a contradiction to adding uv.

For the third property, we observe that every agent can add at most one bichromatic
edge to an agent of each fixed type. Once this edge is added, the distance to all agents
of this type is at most 2 due to the intra-connectivity of the network. As there are at
most k − 1 other types, the assertion follows. �
It is easy to deduce the pairwise stability of network G ′.

Lemma 5.8 The network G ′ is pairwise stable for k
k+1 ≤ α ≤ 1.

Proof As in previous networks, monochromatic edges cannot be severed because of
α ≤ 1. Now, consider a bichromatic edge uv. Then, dG−uv(u, v) ≥ 3. Indeed, if
dG−uv(u, v) = 2, then edge uv is part of a triangle, contradicting the second statement
in Lemma 5.7. Hence, severing the edge uv increases the distance cost for uv by at
least 2 while saving a neighborhood cost of at most 2.

It remains to consider the creation of edges. As the network is fully intra-connected,
only bichromatic edges can be created. Hence, consider the creation of a bichromatic
edge uv. Its creation decreases the distance cost for agent u by exactly 1. Indeed, as
diam(G ′) ≤ 2, the distance to agent v is decreased by exactly 1, and the distance to
other agents is no shorter. On the other hand, as agent u is incident to at most k − 1

2 A triangle is defined as a complete subnetwork induced by three vertices.
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bichromatic edges, the creation of uv costs at least α
(
1 + 1

k

) ≥ 1. Hence, the total
cost for agent u cannot have decreased. �

To conclude the proof, we want to argue that we can cover the whole parameter
range of α. First, we cover the range until α = 2

3 . According to Proposition 5.1(5.1),
this is covered byKn if n − nTk ≥ 2. In particular, this is the case if k ≥ 3 or nT1 ≥ 2.
If k = 2 and nT1 = 1, we can apply case (ii) of Lemma 5.6 if nTk ≥ 2. If k = 2 and
nTk = 1, then the network consisting of two agents of different types, connected by
an edge, is pairwise stable.

Finally, consider the parameter range 2
3 ≤ α ≤ 1. If j∗ = k, then case (i) of

Lemma 5.6 applies. Otherwise, j∗ < k, and therefore n − nTj∗ ≥ k. This implies that
n−nTj∗

n−nTj∗ +1 ≥ k
k+1 , and the parameter range is covered by case (iii) of Lemma 5.6 and

Lemma 5.8. �
Combining Propositions 5.1 and 5.5, we also obtain the existence of stable networks

in the DEI-NCG.

Theorem 5.9 In the DEI-NCG pairwise stable networks always exist.

Finally, we want to consider the segregation of pairwise stable networks in the DEI-
NCG. Clearly, segregation only depends on the networks, not on the type of NCG.
Hence, based on our investigation of ICF-NCGs, we already know that that cliques
provide low segregation for small α and stars provide high or low segregation for
higher α, but require a specific distribution of agents into types. Independently of this
distribution, double stars provide high segregation and it is clear that GS(DSXn) =
LS(DSXn) = 0. Finally, for an intermediate range of α, high segregation, approaching
the extreme value of 1 for both segregation measures, is inevitable.

Corollary 5.10 Let k = 2 and nR
nR+1 < α < 1. Then, every pairwise stable network G

in the DEI-NCG with parameter α satisfies GS(G) ≥ 1 − 2
n and LS(G) ≥ 1 − 2

n .

Proof Consider a network G = (V , E) satisfying the assumptions of the corollary.
We start with the global segregation measure. According to Theorem 5.4, there are nB

bichromatic edges and a total of

nB + nB(nB − 1)

2
+ nR(nR − 1)

2
≥ nB + nB(nB − 1)

2
+ nB(nR − 1)

2
= nBn

2

edges. Hence,

GS(G) = |E | − nB

|E | = 1 − nB

|E | ≥ 1 − nB

nBn/2
= 1 − 2

n
.

Using the characterization in Theorem 5.4 once again, the computation of the local
segregation measure is identical as in the proof of Corollary 4.7. �
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6 Simulations

While our theoretical results indicate a clear structure of stable networks for α ≤ 1,
there is a broad range of possibilities for larger α. Therefore, we support our theoretical
findings for α > 1 by a detailed experimental analysis. To this end, we simulate best
response dynamics. These are a simple dynamic process based on distributed and
strategic edge creation and deletion over time, incentivized by agents optimizing their
individual cost functions.

The dynamics start with sparse initial networks (spanning trees or grids) and dis-
tribute agents of two equally-sized types such that the segregation of the initial network
is either very low or very high. In each step, a single agent is activated uniformly at
random and can either create an edge (if the other endpoint of the edge also profits
from this) or delete an edge. Recall that among the available creations and deletions,
the best responses are the options with the highest cost decrease for the activated agent.

We start with highlighting that despite the existence of stable networks proven
in Sects. 4 and 5, such dynamics are not guaranteed to converge. This means that
instances exist where an infinite sequence of best responses is possible, i.e., best
response dynamics might never converge to a pairwise stable network. This can be
shown by providing a best response cycle, i.e., a cyclic sequence of networks where
neighboring networks in the sequence only differ by a best response of some agent. For
the classical bilateral network creation game by Corbo and Parkes (2005), a similar
observation was already made by Kawald and Lenzner (2013) for a variant where
additionally bilateral edge-swaps are allowed. As this construction cannot be directly
transferred to our setting, we provide exemplary best response cycles for both the ICF-
NCG and the DEI-NCG with two types. This indicates that best response dynamics
have no convergence guarantee.

Example 6.1 Consider the sequence of networks depicted in Fig. 7. The instance
encompasses 10 agents from two types. The network G1 evolves from G0 by having
agent a sever the edge ab. Then, to obtain G2, edge gb is created. Further, networkG3
evolves by deleting the edge f a from network G2. Finally, if the edge f g is created
in network G3, we obtain a network isomorphic to G0 where a and g have swapped
their roles.

It can be shown that each step is a best response for the agent highlighted in green,
where we assume that 9 < α < 10 for the DEI-NCG and 108

13 < α < 60
7 for the

ICF-NCG. �
Despite not having a convergence guarantee, the dynamics for all our randomly

generated instances always converged. However, as shown in Fig. 8, this can take a
long time. To circumvent long convergence times, we only demand 1.01-approximate
pairwise stability in our experiments, as defined below. Moreover, the long conver-
gence times motivate us to additionally study an add-only variant of the model, where
agents can only create edges—this trivially guarantees convergence and a speed-up in
the involved computations. In the case of add-only dynamics, we speak of best addi-
tions instead of best responses. Such add-only dynamics are particularly natural when
modeling social networks, as confirmed by the observation that many real-world social
networks get denser over time (Leskovec et al. 2005). In both variants of the dynamics,
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Fig. 7 Sequence of networks with two agent types. Severed and created edges are indicated in green, where
the latter are dashed. We obtain a best response cycle for the DEI-NCG when 9 < α < 10 and for the
ICF-NCG when 108

13 < α < 60
7

if no improvement is possible, then the active agent’s strategy remains unchanged and
the agent is marked as content. The convergence process is iterated until eventually
all agents are found to be content and, hence, the network is (approximately) pairwise
stable. Finally, we measure the segregation strength in the obtained (approximately)
stable networks.

6.1 Detailed experimental setup

For our simulations, we first generated an initial network and an initial agent-type
distribution. Then agents are activated at random and compute a best response. Recall
that an edge addition requires the consent of the other endpoint of the edge, i.e.,
this agent also has to strictly decrease her cost by adding the edge. This sequential
activation process is then run until no agent has a better response and a pairwise stable
network is found. We now discuss the details of this setup.

General setup Our experiments regarding the obtained segregation strength consid-
ered 1000 agents partitioned into two types with 500 agents each. For each run we
chose

• a random spanning tree or a grid as initial network,
• an integrated or perfectly segregated initial agent distribution,
• if best responses or best additions are performed,
• if the segregation strength is measured via the local segregation measure LS or via
the global segregation measure GS, and

• the value of α in 19 steps between 1 and 255.

In total this yielded 24 · 19 = 304 different configurations and for every configuration
we simulated 50 runs, yielding a total number of 15200 considered networks.

We also ran additional experiments to investigate the convergence dynamics inmore
detail. For these simulations we used a similar setup but only 500 agents partitioned
into two types of 250 agents each. We considered α ∈ {1, 2, 3, 4, 5, 10, 15} and for
each configuration we sampled 20 runs, yielding a total of 1120 experiments, where
we tracked the exact convergence trajectory, i.e., which agent performed which move,
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discriminating between the addition of monochromatic and of bichromatic edges and
the deletion of edges.

Generating the initial networks We considered random spanning trees and grids as
initial networks. For our experiments on the segregation strength we used grids of size
20 × 50, for evaluating the dynamics we used grids of size 20 × 25. Moreover, we
sampled the random spanning trees by the following scheme: starting from a single
node, add nodes one by one, and each new arriving node is attached by an edge to one
of the existing nodes chosen uniformly at random.

Generating the initial agent distribution We focus on two cases: perfectly segregated
and integrated initial states. An integrated initial state is sampled by a uniformly
random type assignment to each node. To generate a perfectly segregated spanning
tree, we generate two one-type spanning trees of 500 nodes (or 250 nodes) and join
thembyconnecting the initial nodes of each tree.Aperfectly segregated grid is sampled
by assigning one type to all 500 nodes (250 nodes) in the first ten rows and the other
type to the rest.

Random activation of the agents We start with marking all nodes as potentially dis-
content, i.e., as willing to improve. In each step of the algorithm, one agent is chosen
from the set of the potentially discontent nodes uniformly at random. This active agent
is searching for a best response. If no better response is possible, the agent is marked
as content. If the agent has a better response, the new strategy is applied to the net-
work, and all agents move back to being potentially discontent to be ready to become
activated again. The algorithm stops when the last agent is marked as content.

Convergence criteria Fig. 8 shows a representative timeline of the local segregation
of the obtained networks in each step of the best response dynamics starting from a
random tree with a random initial color distribution. We observe that the segregation
value quickly reaches a high value and remains in the interval [0.8, 1] until the end
of the execution of the dynamics. It illustrates the need for relaxation of the solution
concept to avoid long calculations. Therefore, our experimental study of the best
response dynamics uses 1.01-approximate pairwise stable states as solution concept.
We say that a network is a 1.01-approximate pairwise stable if no agent can improve
her cost by more than a factor of 1.01. The approximation factor is chosen empirically
to minimize the convergence time and the approximation gap.

Note that for the add-only dynamics, the process naturally stops at the latest when
a complete network is reached. Hence, the computation time is rather low compared
to the best response dynamics and we could consider exact pairwise stable networks.
However, as we will see, in some cases this leads to trajectories where many edge
additions happen that only yield a negligible cost decrease, which then leads to a
rather high number of edge additions compared to focusing on 1.01-approximate best
responses.
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Fig. 8 Trajectory of the local segregation of a network obtained by the best response dynamics for n = 50,
α = 15 starting from a tree with random color distribution in the ICF-NCG and DEI-NCG. The x-axis
displays the number of steps taken in the best response dynamics

Visualization of our results In our experiments regarding the qualitative behavior of
the dynamics we display the number of discontent agents over time or we show the
number of performed moves per agent, sorted decreasingly.

The results of our experiments on the segregation strength are visualized via box-
and-whiskers plots of the local and global segregation for the networks obtained by
the best response dynamics for n = 1000 over 50 runs. Lower and upper whiskers are
the minimal and maximal local segregation values over 50 runs of the algorithm. The
middle lines are the median values, while the bottom and top of the boxes represent
the first and the third quartiles.

We refer the reader to Appendix B for a detailed visualization of the results of our
simulations. In the remainder of this section, we restrict attention to representative
visualizations for the ICF-NCG. The behavior for the DEI-NCG is very similar, and
important differences are already discussed here.

6.2 Qualitative observations regarding the dynamics

Before our main experiment that concerns segregation in the obtained networks, we
want to get a feeling about the general behavior of the dynamics. For this, we ran the
smaller experiment with 500 agents for which we created more extensive data.

Number of discontent agents First, we want to get an understanding of how far we
are from pairwise stability during the execution of the dynamics. Figure9 displays
exemplary time lines for the number of discontent agents, i.e., agents that would want
to sever an edge or, together with another agent, create an edge. Initially, essentially
all agents are discontent, while most of the agents stay discontent for about half of the
dynamics. Then, the number of discontent agents starts to decrease more and more
rapidly. Consistent with the intuition that it is less beneficial to create edges when they
are more costly, the number of deviations decreases for an increasing cost parameter.
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Fig. 9 Time line of the number of discontent agents averaged over 20 runs when starting from a random grid
in the ICF-NCGwith n = 500 agents partitioned into two types of 250 agents each. Left: 1.01-approximate
dynamics. Right: Add-only dynamics

Even though the displayed figure assumes a random grid as the initial network, the
behavior is very similar for all other considered initial configurations.

Interestingly, while the add-only variant is faster than the exact best response
dynamics, it is significantly slower than the approximate dynamics. In fact, when
analyzing the approximate dynamics, we observed that it never deletes an edge. This
can be explained by the fact that our initial networks are very sparse. Hence, in the
simulations, the approximate dynamics is rather a refinement of the add-only than of
the exact improvement dynamics. The long run-time of the add-only dynamics is due
to a large number of edge additions that each yield only minuscule cost improvements.

Another interesting observation is that the add-only dynamics take significantly
longer for α = 1. Interestingly, the same behavior cannot be observed for the DEI-
NCG, where the case α = 1 is not an outlier (see Figs. 17, 18, 19, 20 in the appendix).
This observation might rely on a qualitative difference between the two games. In the
ICF-NCG, creating a monochromatic edge affects the cost for all edges created so far.
Hence, creating such an edge can reduce both the neighborhood and the distance cost.
In contrast, in the DEI-NCG, creating any edge only decreases the neighborhood cost.
This causes a stronger bias towards creating monochromatic edges in the ICF-NCG
compared to the DEI-NCG.

Once we reach a network containing a moderately large number of edges, buying
further edges hugely depends on the edge cost. If α is around 1, then creating a
monochromatic edge in the ICF-NCG costs less than 1 for any agent having a small
number of enemies (see also the cost update formulas in Lemma A.1), whereas the
cost for creating any edge is at least 1 in the DEI-NCG. Because the distance cost
is decreased by at least 1 whenever an edge is created, this causes monochromatic
edges to be build inevitably in the ICF-NCG. Hence, agents having a few enemies
become content only when they have created all possible monochromatic edges (with
other such agents). This also explains that, after initially making some agents content
quickly (the ones with only one or no enemies), the slope of making agents content
flattens again. Due to the uniformly random activation of agents, it now takes much
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Fig. 10 Distribution of the number of deviations averaged over 20 runs when starting from a random grid
in the ICF-NCG with n = 500 agents partitioned into two types of 250 agents each. Agents are relabeled
and sorted decreasingly by their number of performed deviations, e.g., agent 1 has performed the most
deviations while agent 500 had the least deviations. Left: 1.01-approximate dynamics. Right: Add-only
dynamics

longer to make agents content. In contrast, once α is larger, e.g., for α ≥ 2, there is
no necessity to build monochromatic edges, even for agents with a moderate number
of enemies and we do not observe this behavior.
Distribution of agent deviations Next, we want to explore the distributions of active
agents performing a deviation. Figure10 displays this for the ICF-NCG starting from a
random grid. We see that it is quite skewed with some agents performing significantly
more deviations than others. Again, the picture differs for the add-only dynamics with
α = 1. There are two large plateaus of agents performing approximately the same
number of deviations. When analyzing the specific edges created by these agents, it
becomes apparent that they essentially create the same set of edges. More specifically,
the two plateaus correspond to clusters of the two types of agents that form the same
monochromatic edges. A close look reveals that the plateaus encompass about the
same number of agents as the number of edges that these agents form. The first,
larger cluster, contains most of the agents of one type whereas the other cluster only
contains about 200 agents (i.e., 80% of the other type). This visualizes the creation
of monochromatic edges in the ICF-NCG as observed when discussing the number of
discontent agents over time above. Again, this behavior can be observed independent
of the starting configuration (in particular, regardless of whether it is integrated or
segregated) while it does not happen for the DEI-NCG or for larger cost parameters.

6.3 Analysis of the segregation strength

We now discuss the findings of our main experiment aiming at understanding the
segregation of networks. Figure11 and Fig. 12 consider the dynamics for the ICF-
NCGunder the 1.01-approximate version of the dynamics and for its add-only version,
respectively.
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Fig. 11 Local segregation of 1.01-approximate stable networks in the ICF-NCG obtained by iterative best
responses for n = 1000 over 50 runs starting on a random spanning tree or a grid as initial graph and
having a uniformly random or already strongly segregated initial distribution of the agent types. Note that
a uniformly random initial type distribution yields very low segregation. E.g., “segregated tree” is the case
where the initial graph is a random spanning tree and the initial type distribution of the agents is strongly
segregated

Fig. 12 Local segregation of pairwise stable networks in the ICF-NCG obtained by iterative best additions
for n = 1000 over 50 runs starting on a random spanning tree or a grid as initial graph and having a
uniformly random or already strongly segregated initial distribution of the agent types

Again, we see a qualitative difference between the ICF-NCG and DEI-NCG for the
add-only variant for small α. For α = 1, the segregation in the ICF-NCG is almost 1,
and decreasing until a value of α = 10 (compare Fig. 12 with Figs. 30 and 31 in the
appendix). This is due to the bias towards creating monochromatic edges as observed
in Sect. 6.2. While this effect is very strong for α = 1, it is still present for moderately
small α.

Once we reach a value of α = 10, the results for the ICF-NCG and DEI-NCG
are qualitatively the same. From this point on, the games generally behave similarly.
The experiments indicate that the segregation strength is proportional to α, with low
segregation for low α. For the DEI-NCG, this is true for the whole range of α, despite
the theoretical necessity of high segregation for α close to 1.3 The qualitative behavior
of the segregation strength does not depend on the segregation measure, i.e., we obtain
similar figures for the global segregation measure, see the appendix for details.

Moreover, except for high α, the initial agent distribution significantly influences
the segregation strength, with higher observed segregation strength when starting on

3 The provably high segregation for α < 1 close to 1 is not contradicting the experimental results for the
DEI-NCG. Just before we reach a cost parameter of α, we hit the sweet spot where buying monochromatic
edges is desirable while buying bichromatic edges is not.
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Fig. 13 Overview of our theoretical results. We display structural properties of pairwise stable networks,
explicit pairwise stable networks and findings about the segregation of pairwise stable networks. The two
models behave surprisingly similar

already segregated initial states. The structure of the initial network seems less impor-
tant for the qualitative behavior. Interestingly, the add-only version displays a similar
behavior for low α, but the behavior changes drastically for moderately high α. Instead
of high segregation, we find that initially integrated networks converge to only mod-
erately segregated states, whereas this is not true for initially segregated networks,
suggesting an escape route from segregation.

7 Conclusion

We have investigated two network creation games that consider heterogeneous
edge creation of agents acting according to homophily. Our main goal was to analyze
segregationwithin reasonable networksmeasured by pairwise stability.Our theoretical
results are summarized in Fig. 13.

Clearly, stable networks are highly integrated for a very small edge cost, when
agents can afford to buy all available edges. Once our cost parameter reaches the sweet
spot where agents need to balance neighborhood and distance cost, there is provably
high segregation, following from characterizations of stable networks. For slightly
higher edge cost, our theoretical results cannot give a clear tendency of the segrega-
tion strength. In principle, both low and high segregation can be achieved by stable
networks. Therefore, we performed an average-case analysis by running extensive
simulation experiments. These experiments provide general tendencies about segre-
gation contrasting the large theoretical spectrum for α ≥ 1. Most importantly, except
for a high cost parameter α, we consistently observe lower obtained segregation under
integrated initial conditions. While this difference seems to vanish for high α when
edges can also be deleted, in the add-only setting we even see a drastically increasing
difference in the obtained segregation strength for high edge price α. This yields a
possible escape route from segregation: by a high initial investment in integrated initial
states and by incentivizing agents to keep their established connections, permanent
integration might be reached.

123



M. Bullinger

Even though our two game models feature two seemingly orthogonal perspectives
based on a direct and an indirect consideration of homophily, their qualitative behavior
is surprisingly similar. This holds both for our theoretical analysis and our simulations
except for a parameter range close to α = 1. There, the creation of monochromatic
edges can cause a decrease of the neighborhood cost for already present edges in
addition to a decrease in distance cost for the cost function in the ICF-NCG. By
contrast, the creation of edges in the DEI-NCG only decreases the neighborhood cost.
We observe a creation of a large number of monochromatic edges in the ICF-NCG,
leading to highly segregated networks. In summary, we find a fairly robust segregation
strength across both models, except for a small sensitive range for the cost parameter.

There are several exciting avenues for future work. First, network creation games
can be considered for a broad range of cost functions and studying models with differ-
ent cost functions might lead to new discoveries. A natural idea would, for instance,
be to consider the average or maximum distance instead of the sum of distances as a
distance cost. However, considering the average distance merely scales the distance
cost by a factor of n , which does lead to an equivalent model when scaling α accord-
ingly. By contrast, considering the maximum distance leads to a qualitatively different
network creation game. Demaine et al. (2012) show that this change yields a different
price of anarchy, i.e., the worst-case ratio of the total cost in stable and cost-minimal
networks, in the single-typemodel by Corbo and Parkes (2005). It would be interesting
to get a better understanding of the nature of pairwise stable networks in our settings
and even in the base model by Corbo and Parkes (2005).

A second direction for further research is a deeper investigation of best (or better)
response dynamics. While best response cycles are possible, it would be interesting
to see, whether dynamics possibly (or necessarily) converge under certain conditions.
Moreover, our simulations assume sparse initial networks. This makes sense in our
context as our focus is on understanding the process of creating a network. Still, this has
the effect that edge deletionsmay be negligible for the execution of dynamics (as in our
approximate dynamics). Moreover, the obtained networks might depend heavily on
the first created edges, which may affect the obtained segregation. To complement our
simulations, one could perform an analysis where initial networks are parameterized
by the initial average degree, or where initial networks follow the structure of networks
observed in real-world social networks.
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Appendix

A Missing proofs

In this appendix, we provide missing proofs.

A.1 Increasing comfort among friends

For the analysis of pairwise stability, we frequently have to compute an agent’s cost
change after creating or severing one edge. To clarify the calculations, we gather the
respective formulae in a lemma.

Lemma A.1 Consider a network G = (V, E) and an agent u ∈ V in the ICF-NCG.
Consider an agent v ∈ VT (u) of the same type and an agent w ∈ V \ VT (u) of a
different type. Then, the following statements hold:

1. aG+uv(u) − aG(u) = α
(
1 + fG (u)−degG (u)+1

(fG (u)+1)(fG (u)+2)

)
if uv /∈ E (creation of a

monochromatic edge),

2. aG−uv(u) − aG(u) = −α
(
1 + fG (u)−degG (u)+1

(fG (u)+1)fG (u)

)
if uv ∈ E (deletion of a

monochromatic edge),

3. aG+uw(u) − aG(u) = α
(
1 + 1

fG (u)+1

)
if uw /∈ E (creation of a bichromatic

edge), and

4. aG−uw(u) − aG(u) = −α
(
1 + 1

fG (u)+1

)
if uw ∈ E (deletion of a bichromatic

edge).

Proof We perform the calculations for each case accordingly. Let G ′ be the network
after the respective edge creation or deletion.

1. Creation of a monochromatic edge: aG ′(u) − aG(u) = (degG(u) + 1) ·
α

(
1 + 1

fG (u)+2

)
− degG(u) · α

(
1 + 1

fG (u)+1

)
= α

(
1 + fG (u)−degG (u)+1

(fG (u)+1)(fG (u)+2)

)
.

2. Deletion of a monochromatic edge: aG ′(u) − aG(u) = (degG(u) − 1) ·
α

(
1 + 1

fG (u)

)
− degG(u) · α

(
1 + 1

fG (u)+1

)
= −α

(
1 + fG (u)−degG (u)+1

(fG (u)+1)fG (u)

)
.

3. Creationof a bichromatic edge:aG ′(u)−aG(u) = (degG(u)+1)·α
(
1 + 1

fG (u)+1

)
−

degG(u) · α
(
1 + 1

fG (u)+1

)
= α

(
1 + 1

fG (u)+1

)
.

4. Deletionof a bichromatic edge:aG ′(u)−aG(u) = (degG(u)−1)·α
(
1 + 1

fG (u)+1

)
−

degG(u) · α
(
1 + 1

fG (u)+1

)
= −α

(
1 + 1

fG (u)+1

)
. �

Next, we provide proofs for the collected statements about ICF-NCGs concerning
structural properties of pairwise stable networks and simple pairwise stable networks.

Proposition 4.1 For the ICF-NCG the following hold:
1. If α < 6

7 , then every pairwise stable network is fully intra-connected.
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2. If α < 4
3 , then diam(G) ≤ 2 for every pairwise stable network G. In particular,

network G contains a curious type.
3. Let α < 1, let G be a pairwise stable network, and let C ⊆ V such that every

agent in C is curious and C ⊆ VT , for some type T ∈ T . Then, network G[C] is
a clique. In particular, every curious type of agents is fully intra-connected.

4. If α ≤ nB
nB+1 , then the complete network Kn is pairwise stable. Moreover for

α < min{ 67 , nB
nB+1 }, the network Kn is the unique pairwise stable network.

5. If α ≥ 1, then the star Sn is pairwise stable.
6. If α ≥ 4

3 , then the double star DSn is pairwise stable.

Proof We prove the statements one after another.

1. Let α < 6
7 . Assume that a network G = (V, E) is given that is not fully intra-

connected. Let u, v ∈ V be agents of the same type with uv /∈ E . Define G ′ =
G+uv. Wewill show that cG ′(u)−cG(u) < 0 (the computation for v is identical).
We can assume that degG(u) ≥ 1, because otherwise agent u’s cost would be
infinite and adding uv would be beneficial. We compute the difference in the
neighborhood cost, using Lemma A.1 in the first equality.

aG ′(u) − aG(u) = α

(

1 + fG(u) − degG(u) + 1

(fG(u) + 1)(fG(u) + 2)

)

= α

(
fG(u) + 3

fG(u) + 2
− degG(u)

1

(fG(u) + 2)(fG(u) + 1)

)

≤ α

(
fG(u) + 3

fG(u) + 2
− 1

(fG(u) + 2)(fG(u) + 1)

)

.

Now, consider the function f : R≥0 → R, f (x) = x+3
x+2− 1

(x+2)(x+1) . This function

attains its maximum for x = √
2 and is monotonically increasing for 0 ≤ x ≤ √

2
and monotonically decreasing for x ≥ √

2. Moreover, f (1) = f (2) = 7
6 . Hence,

the maximum attained by integer values is 7
6 . We conclude that aG ′(u)− aG(u) ≤

7
6α < 1. Since dG ′(u) − dG(u) ≤ −1, we obtain cG ′(u) − cG(u) < 0. Hence,
creation of the edge uv is beneficial for u.

2. Let α < 4
3 and consider a pairwise stable networkG. In particular,G is connected.

Assume that there are agents v and w of distance at least 3. We will show that
G ′ = G+vw is better for both of these agents, contradicting the pairwise stability
of G.
The same computations as in the proof of the first property show that the neigh-
borhood cost increases by at most 7

6α if vw is monochromatic. On the other hand,
if vw is bichromatic, then the neighborhood cost increases by at most 3

2α. Since
the distance cost decreases by at least 2, we conclude that cG ′(x) − cG(x) < 0 for
α < 4

3 and x ∈ {v,w}.
The curiosity of one agent type follows from the fact that two agents from different
types, which are both not curious, must have distance at least 3.
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3. Let α < 1 and assume that u is a curious agent of a networkG = (V, E). Consider
an agent v of the same type such that uv /∈ E and let G ′ = G + uv. Then,

aG ′(u) − aG(u)

= α

(
fG(u) + 3

fG(u) + 2
− degG(u)

(fG(u) + 2)(fG(u) + 1)

)

≤ α

(
fG(u) + 3

fG(u) + 2
− fG(u) + 1

(fG(u) + 2)(fG(u) + 1)

)

= α < 1.

The first equality is derived by the same computations as in the proof of the first
property. Consequently, cG ′(u) − cG(u) < 0. Hence, if v and w are both curious
agents of the same type, then the edge vw must be present in any pairwise stable
network.

4. We start to show that Kn is pairwise stable for α ≤ nB
nB+1 .

To this end, we show that no edge can be deleted by one of its endpoints. Consider
a pair of agents u, v ∈ V. If they are of the same type, then severing the edge uv

by u decreases her cost by

cG−uv(u) − cG(u) = −α

(

1 + fG(u) − degG(u) + 1

(fG(u) + 1)fG(u)

)

= −α

(

1 + fG(u) + 2 − n

fG(u)(fG(u) + 1)

)

+ 1

≥ − nB

nB + 1
· n

2 − n + 1

(n − 1)n
+ 1

≥ − n

n + 1
· n

2 − n + 1

(n − 1)n
+ 1 ≥ 0.

Hence, no agent can improve her strategy by severing an edge to an agent of the
same color.
If u and v have different colors, the cost decrease is

cG−uv(u) − cG(u) = −α

(

1 + 1

fG(u) + 1

)

+ 1

≥ −α

(

1 + 1

nB

)

+ 1 ≥ − nB

nB + 1
· nB + 1

nB
+ 1 = 0.

Therefore, there is no better response for any agent in the network, which implies
that Kn is pairwise stable.
For the uniqueness, consider any pairwise stable network G = (V, E) and assume
that α < min{ 67 , nB

nB+1 }. Note that G is fully intra-connected according to Propo-
sition 4.1(4.1). Assume for contradiction that there are two agents u, v ∈ V with
uv /∈ E which have a different type.
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Then, creating the edge uv increases the neighborhood cost for each involved agent
by at most

α

(

1 + 1

fG(u) + 1

)

≤ α

(

1 + 1

nB

)

< 1,

while it decreases the distance to at least one node, a contradiction. Hence, uv ∈ E ,
which implies that G is a clique.

5. Let α ≥ 1. Consider a star graph Sn with central node c. To show that Sn is
pairwise stable, we need to prove that no two leaves can jointly create an edge.
Consider two leafs u and v. There can be a few possible situations. The first
two cases cover the case that c and one of u and v are of the same color, say
u ∈ VT (c). If v ∈ VT (c), then creating uv causes an increase in neighborhood cost
of aSn+uv(u) − aSn (u) = α

(
1 + 1

6

) = 7
6α ≥ 1, while the distance cost is only

decreased by 1. Hence, for α ≥ 1, creating the edge uv is not beneficial for u. If v

has a different color, then aSn+uv(u) − aSn (u) = 3
2α, and u would again prevent

the creation of uv.
It remains that u and v both have a different color from c. If v ∈ VT (u), then creating
the edge uv increases the neighborhood cost by α and decreases the distance cost
by 1 for both u and v. Thus, since α ≥ 1, this is not beneficial.
If all three nodes u, v, and c have different colors, then the creation of the edge uv

increases the neighborhood cost of u by 2α ≥ 2 and decreases her distance cost
by only 1.
Therefore, no pair of nodes can create an edge to improve their cost. Clearly, also
no edge can be unilaterally deleted. The assertion follows.

6. Let α ≥ 4
3 . Consider the double star DSn and let cB and cR be the blue and red

star center, respectively. Note that no agent can sever an edge, because this would
disconnect the network.
Also, no edge between a star center and a leaf node can be created, because it is
not profitable for the center node. Indeed, consider a pair of nodes v ∈ VR and the
central node cB . Adding the edge cBv improves the distance to only one node for
the agent cB , while the neighborhood cost increases by

aDSn+cBv(cB) − aDSn (cB)

= α

(

(degDSn (cB) + 1)

(

1 + 1

nB

)

− degDSn (cB) ·
(

1 + 1

nB

))

= α

(
nB + 1

nB

)

≥ 1.

Hence, the edge cBv will be rejected by the agent cB . Analogously, a new edge
between the center node cR and a node v ∈ VB is not profitable for the center node

cR , because it increases the neighborhood cost by α
(
1 + 1

nR

)
≥ 1 and decreases

the distance cost by 1.
Next, consider the case of creating a bichromatic edge between two leave nodes.
Then, the distance cost is decreased by 2, while the neighborhood cost is increased
by 3

2α ≥ 2.
Finally, consider the creation of an edge between two nodes u, v of the same
type, say type R. The new edge improves the distance cost by 1 for both agents
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but increases the neighborhood cost by α
(
2 ·

(
1 + 1

2+1

)
− 1 − 1

2

)
= 7α

6 ≥ 1.

Hence, DSn is pairwise stable for any α ≥ 4
3 . �

A.2 Decreasing effort of integration

The update formulas for the DEI-NCG are much easier then the formulas for the ICF-
NCG and can be directly obtained from the definition of aDEIG (u). For reference, we
collect them in a lemma analogous to Lemma A.1.

Lemma A.2 Consider a network G = (V, E) and an agent u ∈ V in the DEI-NCG.
Consider an agent v ∈ VT (u) of the same type and an agent w ∈ V \ VT (u) of a
different type. Then, the following statements hold:

1. aG+uv(u) − aG(u) = α if uv /∈ E (creation of a monochromatic edge),
2. aG−uv(u) − aG(u) = −α if uv ∈ E (deletion of a monochromatic edge),

3. aG+uw(u) − aG(u) = α
(
1 + 1

eG (u)+1

)
if uw /∈ E (creation of a bichromatic

edge), and

4. aG−uw(u)−aG(u) = −α
(
1 + 1

eG (u)

)
if uw ∈ E (deletion of a bichromatic edge).

We now provide the proofs of the statements collected in Proposition 5.1.

Proposition 5.1 For the DEI-NCG the following holds:
1. If α < 1

2 , then Kn is the unique pairwise stable network.
2. If α < 1, then every pairwise stable network is fully intra-connected.
3. If α < 1, then every pairwise stable network G satisfies diam(G) ≤ 2.
4. The network Kn is pairwise stable if α ≤ n−nR

n−nR+1 .
5. If α ≥ 1, then Sn and DSn are pairwise stable networks.
6. If α ≥ 4

3 , then DSXn is a pairwise stable network.

Proof We prove the statements one by one.

1. If some edge is not present, it has cost at most 2α < 1 and creating it decreases
the distance cost by at least 1.

2. Creating a monochromatic edge has cost α < 1 and decreases the distance cost by
at least 1.

3. Let α < 1. Assume that there are agents u, v ∈ V with dG(u, v) ≥ 3. Then,
creating uv increases the neighborhood cost by at most 2α < 2, while decreasing
the distance cost by at least 2 for each of its endpoints. Hence, G is not pairwise
stable.

4. Clearly, nomonochromatic edge can be severed. Now, consider a bichromatic edge

uv. Then, severing uv increases the total cost for v by 1 − α
(
1 + 1

n−nT (v)

)
≥

1 − α
(
1 + 1

n−nR

)
≥ 1 − n−nR

n−nR+1

(
1 + 1

n−nR

)
= 0. Hence, also bichromatic

edges cannot be severed.
5. No edge can be severed, because these networks are trees. Due to the sufficiently

large distance cost, no agent favors to create an edge if this only improves the
distance cost by 1.Hence,Sn is stable, the two centers ofDSn will not agree to build
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further edges, and leaves of DSn will not agree to create further monochromatic
edges. Finally, the cost for creating an edge between two leaves of different types
is 2α ≥ 2 which does not make up for a distance improvement of 2.

6. As forDSn , no edges can be severed, and the centers will not benefit from creating
further edges. Also, leaves have no incentive to create monochromatic edges.
Finally, the cost for a bichromatic edge between leaves of different types is 3

2α ≥ 2,
but creating such an edge yields only a distance improvement of 2. �

Lemma 5.3 Let k = 2 in the DEI-NCG. Consider a fully intra-connected and pairwise
stable network G.
1. If α > nB

nB+1 , then every red agent in G entertains at most one bichromatic edge.
2. If α > nR

nR+1 , then every agent in G entertains at most one bichromatic edge.

Proof The proof of both statements follows from a unified approach. Let G = (V, E)

be a fully intra-connected and pairwise stable network. Let u ∈ V. By full intra-
connectivity, severing one of several bichromatic edges incident to u, increases the
distance cost of u by exactly 1 while decreasing the neighborhood cost by � =
α
eG (u)+1
eG (u)

. If α > nR
nR+1 , then � > 1 and severing a bichromatic edge is beneficial

for u. This proves the second statement. If even α > nB
nB+1 and u is an agent of the

majority type, then eG(u) ≤ nB , and � ≥ α nB+1
nB

> 1. �

B Detailed experimental results

In this section we provide the detailed results of our experimental analysis comple-
menting Sect. 6. We first present the results for our experiments that shed light on
the general behavior of dynamics. Then we discuss additional experimental results
regarding the obtained segregation strength.

B.1 Additional experiments regarding the number of discontent agents

We provide additional simulation results on the number of discontent agents during
the convergence process for the ICF-NCG and the DEI-NCG.

Number of discontent agents in the ICF-NCG In addition to the plot in Fig. 9 in the
main body of our paper, we present in Figs. 14, 15, 16 the corresponding plots for the
number of deviations when the process is started on a spanning tree with a uniformly
random initial agent placement, and on grids or spanning trees with a segregated initial
agent placement.

We find that in all cases the observed behavior is very similar to our observations
from Fig. 9.We consistently see that the case α = 1 has a specific behavior for the add-
only dynamics. This is no surprise since the same arguments as discussed in Sect. 6.2
apply. Overall, we see that the initial network and agent placement have no significant
impact on the observed number of discontent agents.
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Fig. 14 Time line of the number of discontent agents when starting from a random tree in the ICF-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 15 Time line of the number of discontent agents when starting from a segregated grid in the ICF-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 16 Time line of the number of discontent agents when starting from a segregated tree in the ICF-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics
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Fig. 17 Time line of the number of discontent agents when starting from a random grid in the DEI-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 18 Time line of the number of discontent agents when starting from a random tree in the DEI-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Number of discontent agents in the DEI-NCG For the DEI-NCG we show the plots
regarding the number of discontent agents in Figs. 17, 18, 19, 20. We find that all
settings behave very similarly and in particular, we do not find the exceptional behavior
for the case α = 1. As discussed in Sect. 6.2, this relies on the fact that the increase in
neighborhood cost cannot be belowα, so there is no necessity to createmonochromatic
edges as in the ICF-NCG.

B.2 Additional experiments regarding the number of deviations per agent

Next, we consider the distribution of deviations among agents. In addition to the plots
in Fig. 10, we present the corresponding plots for all other initial settings for both the
ICF-NCG and the DEI-NCG.
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Fig. 19 Time line of the number of discontent agents when starting from a segregated grid in the DEI-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 20 Time line of the number of discontent agents when starting from a segregated tree in the DEI-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 21 Distribution of the number of deviations when starting from a random tree in the ICF-NCG. Left:
1.01-approximate dynamics. Right: Add-only dynamics
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Fig. 22 Distribution of the number of deviations when starting from a segregated grid in the ICF-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 23 Distribution of the number of deviations when starting from a segregated tree in the ICF-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Deviation distribution in the ICF-NCG We present the results for the ICF-NCG in
Figs. 21 to 23. We find a very consistent behavior to what we already observed in
Fig. 10. For α = 1, the size of the plateaus changes depending on the initial setting.
Recall that the plateaus are caused by the necessity of creating monochromatic edges
by agents that have at least a small number of enemies at some point. The number of
such agents changes. While it concerns many agents for a uniformly random initial
distribution, there are far less agents sponsoring bichromatic edges in segregated net-
works. This is most extreme for the case of segregated trees, which only have a single
bichromatic edge initially.
Deviation distribution in the DEI-NCG The results on the distribution of performed
agent deviations for theDEI-NCGare shown in Figs. 24 to 27.Wefind a very consistent
behavior in all settings. In particular, we do not observe plateaus for the case α = 1.
Thus, for the DEI-NCG the exact initial setting only has a very low impact on the
observed convergence process.

123



Network creation with homophilic…

Fig. 24 Distribution of the number of deviations when starting from a random grid in the DEI-NCG. Left:
1.01-approximate dynamics. Right: Add-only dynamics

Fig. 25 Distribution of the number of deviations when starting from a random tree in the DEI-NCG. Left:
1.01-approximate dynamics. Right: Add-only dynamics

Fig. 26 Distribution of the number of deviations when starting from a segregated grid in the DEI-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics
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Fig. 27 Distribution of the number of deviations when starting from a segregated tree in the DEI-NCG.
Left: 1.01-approximate dynamics. Right: Add-only dynamics

Fig. 28 Local segregation of 1.01-approximate pairwise stable networks in the ICF-NCG obtained by the
best response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

Fig. 29 Local segregation of pairwise stable networks in the add-only ICF-NCG obtained by the best
response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

B.3 Additional experiments regarding the local segregationmeasure

We provide additional simulation results for the local segregation measure for the
ICF-NCG and the DEI-NCG.
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Fig. 30 Local segregation of 1.01-approximate pairwise stable networks in the DEI-NCG obtained by the
best response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

Fig. 31 Local segregation of pairwise stable networks in the add-only DEI-NCG obtained by the best
response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

Local segregation strength in the ICF-NCG For the sake of comparison, we include
the results for the local segregation measure for the ICF-NCG again. Figures28 and
29 are identical to the respective figures in Sect. 6.

They show that high segregation of stable networks can be avoided by a lower cost
of the connections (α < 30) and if started from an initially integrated state. Moreover,
as shown in Fig. 29, this even holds for high connection cost if the add-only dynamics
starts with an initially integrated network.

Local segregation strength in the DEI-NCG Compared to the results in Figs. 28
and 29, the following results in Figs. 30 and 31 for the DEI-NCG clearly show the
difference in segregation strength for small α as discussed in Sect. 6.3. For larger α, the
structure of the networks is highly similar. In particular, the tendency of decreasing
segregation in case of the add-only version of the dynamics with integrated initial
networks is observed for both games.

B.4 Experiments regarding the global segregationmeasure

We now consider the global segregation measure. We illustrate the dependence of
the global segregation measure on the parameter α and the initial state in both the
DEI-NCG and ICF-NCG. The observations are similar as for the local segregation
measure, highlighting the robustness of our results.
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Fig. 32 Global segregation of 1.01-approximate pairwise stable networks in the ICF-NCG obtained by the
best response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

Fig. 33 Global segregation of pairwise stable networks in the add-only ICF-NCG obtained by the best
response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

Fig. 34 Global segregation of 1.01-approximate pairwise stable networks in the DEI-NCG obtained by the
best response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids

Global segregation strength in the ICF-NCG The results for the global segregation
measure for 1.01-approximate networks in the ICF-NCG and pairwise stable networks
in the add-only ICF-NCG are presented in Figs. 32 and 33.

Global segregation strength in the DEI-NCG The results for the global segregation
measure for 1.01-approximate pairwise stable networks in the DEI-NCG and pairwise
stable networks in the add-only DEI-NCG are presented in Figs. 34 and 35. Also these
results are in line with the corresponding results for the local segregation measure.
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Fig. 35 Global segregation of pairwise stable networks in the add-only DEI-NCG obtained by the best
response dynamics for n = 1000 over 50 runs starting from initially integrated or initially segregated
random spanning trees or grids
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