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Abstract—Rule-based machine learning (RBML) models are
often presumed to be very beneficial for tasks where explainabil-
ity of machine learning models is considered essential. However,
their models are only really explainable as long as their rule
sets are compact. This leads to the need for an optimizer to
take prediction error and rule count as objectives. Given the
highly complex fitness landscape of rule set learning tasks, good
hyperparameters of the optimizer as well as their robustness
against local minima is detrimental.

In this paper, we explore the use of four self-adaptive genetic
algorithms (SAGAs) for the optimization of a recent evolutionary
RBML system to reduce the number of hyperparameters to tune
and hopefully find better minima. To evaluate the advantages,
we benchmark against a non-adaptive genetic algorithm (GA)
on five real-world data sets. We find—with the support of a
rigorous statistical analysis—that some of the SAGAs deliver a
suitable alternative, which is easier to handle for non-experts in
GA configurations. This is crucial for a wider application of this
RBML method.

Index Terms—evolutionary machine learning, explainability,
self-adaptation, learning classifier systems

I. INTRODUCTION

With the increasing use of machine learning for decision
making, situations were stakeholders demand insights into why
certain decisions are made become more common. While some
stakeholders might be satisfied with exemplary explanations
or more palatable statistical analyses, others will request the
ability to look deeper into a machine learning models’ core in
order to be satisfied with its decisions [1].

Rule-based machine learning (RBML) models are generally
considered to be on the side of easier to explain models.
However, they are limited by key factors, such as the number
of rules, their individual complexity and their interaction to
make predictions, cf. [2]. One subset of RBML algorithms
is called Learning Classifier Systems (LCSs) [3], [4]. This
family of algorithms trains a set of rules that together ap-
proximate an unknown function. These rules are of an if-then
structure, so that they partition the input (or feature) space
and assign individual local models to each such partition.
An important distinction to tree-based RBML models is that
LCSs allow rules to overlap. If multiple rules are assigned
to the subspace where a specific data point lies, i.e. they
“match” this data point, a strategy to combine their individual
predictions, called mixing, is used. An often used mixing

strategy is to assign weights to individual rules, e.g. based on
their fitness, and to build a weighted average (for regression)
or perform majority voting (for classification or reinforcement
learning) accordingly. Typically, LCSs prominently feature the
use of metaheuristics (commonly, evolutionary algorithms) to
optimize their model structure, i.e. to determine the bounds
of the rules that make up the model and how many rules to
use. They have been used for all major learning paradigms in
the past and feature a long lasting [4] and still active [5]–[7]
research community.

A recently proposed LCS is the Supervised Rule-based
learning System (SupRB) [8]. The core feature of this LCS is
the separation of rule discovery from the construction of the
prediction model (Heider et al. [8] also refer to this as solution
composition), which can aid exploration and allows it to
construct substantially more compact models than established
LCS such as the well-known XCSF classifier system [9]
while maintaining competitive prediction errors [10]. For more
details on SupRB, see Section III.

One drawback we found is that, due to the separation of
rule discovery and solution composition into two independent
metaheuristics, SupRB has a lot of parameters to tune. This
is a difficult task for non-experts in GAs (and even for them
it is non-trivial) or would require a considerable amount of
compute for automatic tuning. Therefore, in this paper, we will
investigate the adaptation of four approaches for self-adaptive
genetic algorithms (SAGAs; cf. Section IV) from literature
into the solution composition component of SupRB. We test
the four new SupRB variants on five different real-world
datasets for regression and compare them to the originally
used genetic algorithm (GA). Details on the experiment setup
can be found in Section V-A while Section V-B features the
results of our benchmarking. We then discuss these results and
perform a rigorous statistical analysis in Section V-C.

II. RELATED WORK

The use of self-adaptive operators within the metaheuristic
optimizer of LCSs has been an object of research for decades:
Hurst and Bull [11] did build a fully self-adaptive ZCS [12]
(the LCS on which the more well-known XCS [13] is based).
They found that the self-adaptive parameters resulted in better
performance over static ones even in stationary environments



but especially in dynamic settings. Hurst and Bull [14] also
tested a self-adaptive mutation and learning rate in XCS and
showed that it improves XCS’s poor performance on long
action chain environments. Bull and Hurst [15] furthermore
used self-adaptive parameters for an LCS using small neural
networks as the individual rules and showed that this is
beneficial on different variants of maze running. Unold [16]
investigated whether self-adaptive mutation benefits the rule
discovery process of XCS and showed that it does for multi-
plexer tasks.

III. THE SUPERVISED RULE-BASED LEARNING SYSTEM

The Supervised Rule-based learning System (SupRB) [8]
is a rather new LCS that involves two alternating phases
of optimization. The training process initially starts with an
empty population. Subsequently, in the first phase, called rule
discovery, independent runs of (1, λ) evolution strategies (ESs)
each perform a search for a new rule, with the volume a rule
encompasses and its in-sample error serving as the fitness of
individuals. The initial candidate of this search is placed at
one data point (matching only this point) from the training
data for which the current model had a high prediction error.
It is selected randomly based on an error-weighted roulette
wheel selection. Mutation only allows the outward shifting of
rule bounds according to a half-norm distribution. This seems
to make for a more stable search [10]. After termination of
the ESs, these rules are added to a pool of rules, concluding
the first phase.

Then, in the second phase, called solution composition,
the current pool is used to compose a compact yet accurate
model based on a subset of the rules within the pool. The
fitness is based on a combination of in-sample prediction error
and the number of rules. If multiple rules out of a subset
match an example/data point, the prediction of this model is
based on a weighted average of the individual predictions.
Making predictions this way is called mixing. The weights
are determined by the error of a rule and how many training
examples it was given to fit its local model. The assumption
is that rules that saw very few data points should be deemed
unreliable and that rules with bad predictions should also not
partake in a model’s predictions.

In its original version, a GA is used for solution composition
and its fittest individual (one of the elitists) is returned to the
rule discovery component or the user if training is completed.
Wurth et al. [17] proposed to replace the GA with other
common metaheuristics and found that there is some problem
dependence but the GA is generally a good choice. In this
paper, we partially replace the GA with four self-adaptive
GAs but retain the remaining mechanisms of SupRB, including
the fitness during solution composition, the described mixing
approach, and the ES for rule discovery.

As we plan to benchmark the adapted SupRB on real-valued
regression tasks (cf. Section V-A), rules need to allow real-
valued inputs and outputs. Rule conditions (the if-part which
assigns responsibilities to rules) are based on hyperrectangles
using upper and lower bounds [18], as these are among the

easiest to explain options for such rules and we also deem the
explainability of LCS models as their core feature over possi-
bly more-potent machine learning approaches. Local models
of rules (the then-part which actually makes the prediction)
use linear models. Constant models are often too inaccurate in
their predictions and therefore inappropriate for complex real-
world datasets and higher-order models are, again, difficult to
interpret or even explain to non-experts. To fit the linear local
models we use linear least squares with L2-normalization.

IV. SELF-ADAPTIVE GAS

In this section, we discuss the four SAGAs we adapted to
be fit for the solution composition task in SupRB. To make
this paper easier to read, we decided to number them, even
if in their original paper, they were given a name. This also
reflects the fact that we had to do some changes to make them
suitable.

a) SAGA1: This GA [19] dynamically adapts crossover
and mutation rates to keep the genetic diversity in the popula-
tion high. Diversity is determined by the coefficient of average
solution fitness to the maximal fitness within this population.
Crossover and mutation rates are adapted inversely. The more
diverse a population is, the higher crossover and the lower
mutation will be.

b) SAGA2: Sun and Lu [20] adjust crossover and muta-
tion rates according to the diversity of the current population
and the similarity between the current and the preceding
generation. First, SAGA2 adapts the bounds available for both
rates on a global level and then individual rates are set dy-
namically between these bounds. Diversity is measures based
on minimal, maximal, and mean fitness. Similarity operates
directly on the sets of fitness values. Based on a combination
of diversity and similarity, bounds for mutation and crossover
rates are increased or decreased, similar to SAGA1. Individual
crossover rates are calculated for each operation based on the
overall bounds and the relative fitness of two selected parents
(using the mean of both) in comparison to the mean, min and
max fitnesses within the current population. A similar process
is used for mutation.

c) SAGA3: Kivijärvi et al. [21] assign each individual
new parameters for their respective mutation rates, crossover
operators, and a noise factor. We make a small adjustment for
SAGA3, in that we do not need the noise factor and instead
introduce a crossover rate behaving similarly to the mutation
rate. Parameters are generally propagated via crossover and
mutated along with the other parameters of an individual.
After selecting the parents, their bookkeeping parameters are
recombined by randomly selecting one of the parents’ param-
eters. Then, the new child’s parameters are mutated according
to a fixed probability of 0.05 as suggested by Kivijärvi et
al. [21]. Afterwards, crossover (of both parents) and mutation
are applied to the chromosome as per the current parameters
of the new child.

d) SAGA4: In this approach, inspired by [22], we adapt
only the population size rather than other parameters. They



also adapted mutation and crossover rates, but their exper-
iments were not as promising as the population adaptivity.
Instead of performing a generational replacement in the GA,
each individual receives an “age” attribute, which gets reduced
by one in each generation until the individual is eliminated by
dropping to zero. The age attributed is altered based on fitness,
i.e. individuals with a fitness better than the median receive an
extra generation to live, and overall size, i.e. if the population
becomes very large (10 times the original size) all individuals
below a dynamic fitness threshold loose two generations. All
individuals start with an age of three.

V. EVALUATION

In this section, we first present the experimental setup
including the tested dataset (cf. Section V-A), then display
the results (Section V-B) and, finally, perform an extensive
statistical analysis (Section V-C).

A. Experiment Setup

The code of our implementation of the self-adaptive GAs as
well as our experiments will be submitted for merge into the
respective official SupRB repositories1. In general, our setup
follows the general outline as described in [10].

The (non-adaptive) hyperparameters of our algorithms or
the GA, respectively, and SupRB’s remaining configuration
options were tuned for each learning task using a Tree-
structured Parzen Estimator in the Optuna framework [23] that
optimizes average solution error2 on 4-fold cross-validation of
training data. Our final evaluation uses eight different splits
of training and test data, where training data was always one
fourth of the data set. We evaluate each GA with eight different
random seeds for each train-test-split, resulting in a total of
64 runs.

We perform 32 iterations of SupRB, where each rule dis-
covery phase produces four rules with an (1, 20)-ES. This ES
is allowed to run until it did not find a new better rule for 146
generations (which is the default of SupRB). We automatically
tuned the σ of the ES’s mutation and the fitness weight
between the objectives of large and accurate individual rules.
The remaining options for the ES are statically configured as
described above. Each SAGA has slightly different parameters
which need to be configured but, in general, we tune the
number of generations, the selection operator and (for all
but SAGA3) the crossover operator to use. We crucially also
allowed the tuner to increase the number of generations in the
expectation that self-adaptivity can sometimes take longer to
arrive at a point of balance as extensive prior tuning. The GA
was tuned according to the guidelines given by Heider et al.
in the official repository.

All algorithms received equal tuning budgets in terms of
CPU hours and memory.

1https://github.com/heidmic/suprb for the algorithm itself and
https://github.com/heidmic/suprb-experimentation for the experimental
setup.

2Heider et al. [10] did tune for solution fitness but on the Pareto-front of
error and rule set size we deem error vastly more important for hyperparameter
selection.

Furthermore, SupRB expects inputs in an [−1, 1] interval
and its targets to be standardized (zero mean and unit vari-
ance).

Table I: Overview of the datasets we benchmark our proposed
SAGAs on.

Name Abbreviation ndim nsample

Combined Cycle Power Plant CCPP 4 9568
Airfoil Self-Noise ASN 5 1503
Concrete Strength CS 8 1030
Physicochemical Properties of PPPTS 9 45739Protein Tertiary Structure
Parkinson’s Telemonitoring PT 18 5875

We test on five datasets part of the UCI Machine Learning
Repository [24]. An overview of dimensionalities and sam-
ple sizes is given in Table I. The Combined Cycle Power
Plant (CCPP) [25], [26] dataset has an almost linear relation
between features and targets. Airfoil Self-Noise (ASN) [27]
and Concrete Strength (CS) [28] are both highly non-linear
and we expect larger solutions being necessary to solve them
than for CCPP. ASN has less input features than CS but
should be the more difficult task. Physicochemical Properties
of Protein Tertiary Structure (PPPTS) [29] is even less linear
in its feature-target relations and considerably larger than the
others. Parkinson’s Telemonitoring (PT) [30] is the dataset
with the highest number of features (doubling those of PPPTS)
and also non-linear. The first three datasets were also used
in [10] and we extend this towards larger (in both number of
features and data set size) tasks to better test SupRB’s ability
on realistic real-world tasks and determine whether our SAGA
approaches find good solutions here.

B. Results

From the experiment results, we find that the original GA
performs relatively similarly to the four SAGAs. On one hand,
this is of course a good result, as it tells us that self-adaptation
is not needed (or at least not highly beneficial) to navigate
the optimization landscape relatively well and the GA does
not fall into the very first (and bad) local optimum. On the
other hand, the benefits of using self-adaptivity become less
clear at the very first glance. But of course, we still trade
in the need to configure a lot of hyperparameters for no (or
at least very little) performance loss by making some of the
previously static parameters self-adaptive, which can be a great
win. However, training got minimally slower with the SAGAs
(a summary of a detailed runtime analysis is found at the end
of this subsection).

When analysing the distributions of errors the 64 runs
produced per dataset, we find that, albeit marginally, the
GA, SAGA2, and SAGA3 outperform SAGA1 and SAGA4.
Figure 1 displays these distributions in detail, where each
dot represents one run’s elitist’s test scores. All 64 runs per
algorithm and dataset were performed with the parameters
determined by their individual tuning processes. Optically, it
is not easy to make definitive distinctions on performance due
to the shapes of the distributions. Other common forms of



(a) Distribution of errors on CCPP (b) Distribution of errors on ASN (c) Distribution of errors on CS

(d) Distribution of errors on PPPTS (e) Distribution of errors on PT

Figure 1: Distribution of runs’ errors on the test data. All datasets are standardized with unit variance, therefore, a trivial
model should at least achieve an error of 1.0. Note that the plots are on different scales, reflecting the varying difficulty of the
learning tasks.

displaying results such as violin or box plots obscure this
fact more but we find that this is an important results in
itself. The performance of the algorithms is not only based
on the data split but also the random seed and—even with
self-adaptivity—the evolutionary search is unable to converge
on the same value each time (despite the models themselves
being deterministic). From exemplary analyses of the pools of
rules after training, we assume that this has more to do with
the fact that some beneficial rules are missing (or others ill-
placed). However, the current solution composition approaches
are not free from a small responsibility for the performance
measured as they did not always converge optimally, especially
during the earlier training stages. An interesting observation
is the number of sometimes even relatively strong outliers
in performance, where individual runs underperformed vastly
compared to their peers.

During training, the (SA)GAs had a second objective to op-
timize besides errors: the number of rules (complexity) of their
individuals. When it comes to explainability, this is a crucial
parameter that determines the usability of a specific model.
Arguably, error is more relevant for many applications, but
in physical processes we are often confronted with situations
where tolerances for prediction errors exist and it is reasonable
to assume stakeholders would prefer models they can actually
analyse if all models in question perform similarly. In Figure 2,
we show complexities per algorithm and dataset in a similar
manner to the errors in Figure 1. Note that, in contrast to

prediction errors, all complexities have to be integers, which
makes these plots more neat looking but has no other direct
implications. We can clearly see that SAGA4 is the best
overall algorithm for complexity on this selection of datasets.
Second best seems to be SAGA2, followed by the GA. SAGA1
and SAGA3 are clearly worse. Especially on PPPTS, SAGA4
seemingly shifted strongly toward substantially more compact
solutions instead of more accurate ones. On the other sets,
SAGA4 showed vaguely similar errors while still maintaining
at least a small lead in terms of model complexity.

We did also measure runtimes for individual training and
evaluation runs in isolated environments3. We found that,
as expected, the GA is the fastest of the five algorithms
under investigation, albeit marginally (reducing the runtime
by less than 10% when compared to the others in most
cases). However, it has more parameters to tune, so as soon
as tuning comes into play, the algorithms become much more
equal. While specifics were highly dataset dependent, SAGA2
is roughly equal to the others on all but PPPTS, where it
took almost 55% longer than the GA. However, on CCPP,
where GA and SAGA2 were almost identical in runtime,
SAGA3 ran 30% longer than both. On the other datasets,
the algorithms were rather close all the time with very low
standard deviations (typically between 0.5% and 1.5% of the
total runtime). Low variance leads us to assume that runtime

3On a Ryzen 5 5600X desktop computer with 32GB RAM and Windows
11 that was not running any other tasks during the experiments.



(a) Distribution of complexities on CCPP (b) Distribution of complexities on ASN (c) Distribution of complexities on CS

(d) Distribution of complexities on PPPTS (e) Distribution of complexities on PT

Figure 2: Distribution of runs’ complexities (number of rules in the final elitist). Note that the plots are on different scales,
reflecting the varying difficulty of the learning tasks.

is not really dependent on the data split, the random seed of
the optimizer or even on the performance of the algorithm,
but purely a question of hyperparameters which are the result
of task difficulty.

C. Analysis

As the results of our algorithms are not allowing a con-
clusive decision based on visualization alone, we perform a
rigorous statistical analysis to aid us in the decision which al-
gorithm we should select or propose to others to try first when
using SupRB on their data. We begin with the application of
the model proposed by Calvo et al. [31], [32] to the gathered
data. This model gives us the posterior distribution over the
probability of that solution composition method performing
best. Figure 3 displays the results of this analysis. Note that
typical minimal thresholds for automated decision making are
80% (or usually even more) probability assigned to a single
algorithm [33]. Based on that we can clearly not make a
decision regarding which algorithm to choose. However, if we
were to pick a top 3, it would be GA, SAGA2, and SAGA3,
confirming our results from the visual inspection of results.

When performing the same analysis for complexity (cf.
Figure 4), we find that it is much clearer than on MSE,
confirming the results of our visual inspection. When choosing
one of these algorithms on any dataset similar to those tested,
we can expect SAGA4 to produce the smallest model in about
62% of runs. Second best is SAGA2 with about 17% and third
is the GA with marginally more than 10% of cases.

Overall, when small models are the goal, we should proba-
bly run SupRB with SAGA4 in most cases, however, recall that
we are still below the threshold typically used for automated
decisions and it seems to underperform in terms of predictive
performance (especially on PPPTS, cf. Figure 1d). If we
wanted to make a general recommendation based on these
results, SAGA2 seems like a plausible top candidate. Even
the original GA is not far off and, depending on tuning needs,
might be an okay middle ground approach.

To get closer to a decision, we now apply Corani and Be-
navoli’s Bayesian correlated t-test [34] between the algorithm
combinations in question. This test compares two solution
composition approaches directly and takes into account the
probability distribution of the difference in performance, i.e.
it tells us how much better we can expect an algorithm to
perform on a certain dataset. Note that while we did perform
this test for all relevant combinations, we will only show
the most interesting ones. Figure 5 shows the results for this
test between SAGA2 and the GA on errors. We can clearly
see that if one of these algorithms is better on one of the
datasets, it is most likely (with 99% probability) better for
all runs. However, when accounting for the effect size, this
difference is most likely not practically significant. Figure 6
shows the results for this test between SAGA4 and the GA
on errors. Expected effect sizes, i.e. the expected difference in
MSE when comparing both algorithms, are considerably larger
than for SAGA2 and GA. However, they seem only practically
significant for PPPTS and PT, although, this of course depends
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Figure 3: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution returned by the model of Calvo
et al. [31], [32] when applied to the MSE data. A probability value of p% denotes the probability of that solution composition
approach performing best with respect to MSE.
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Figure 4: Box plot (with standard 1.5 IQR whiskers and outliers) of the posterior distribution returned by the model of Calvo
et al. [31], [32], like Figure 3 but applied to the complexity data. Again, a probability value of p% denotes the probability of
that solution composition approach performing best with respect to the number of rules of the returned model.
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Figure 5: Density plot of the posterior distributions returned
by Corani and Benavoli’s Bayesian correlated t-test [34] when
investigating the difference in MSE between SAGA2 and GA.
Probability density to the right equates to the GA having an
expected lower error than SAGA2 and vice versa. Orange
dashed lines and numbers indicate the 99% HPDI (i.e. 99%
of probability mass lies within these bounds). HPDI bounds
rounded to two significant figures.
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Figure 6: Density plot of the posterior distributions like
Figure 5 but for the difference in MSE between SAGA4 and
GA. Probability density to the right equates to the GA having
an expected lower error than SAGA4 and vice versa.

on the actual application.
Finally, we show an example t-test for the difference in

model complexity in Figure 7. We chose SAGA4 as the most
compact algorithm and the GA. We add an additional element
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Figure 7: Density plot of the posterior distributions like Fig-
ure 5 on the difference in model complexity between SAGA4
and GA. Probability density to the right equates to the GA
having an expected lower complexity than SAGA4 and vice
versa. The added green area is ±3 which is the threshold we
assume to be when difference in complexity has no meaningful
practical implications.

to highlight the area we deem practically insignificant, i.e.
if two models are only expected to diverge by 3 in any
direction in terms of complexity, they are equally good when it
comes to the task of performing manual inspection or similar
explainability analyses. The plots show us that we can expect
SAGA4’s models on PPPTS to be about 40 rules smaller
than the GA’s, to expect no relevant difference on CCPP, and
probably but not definitively smaller models for ASN, CS, and
PT.

VI. FUTURE WORK

An obvious next step to make SupRB easier to configure
would be to introduce self-adaptivity into the rule discovery
component. Possible options would be to make the mutation
rate or the λ parameter self-adaptive. Additionally, the number
of iterations (alternating phases of rule discovery and solution
composition) should probably be more dynamic to both pre-
vent stopping too early and also to avoid unnecessary runtime
if convergence of the overall system already occurred. Simi-
larly, the solution composition’s optimizer should be guided
more directly by its state of convergence rather than fixed
computation steps. Especially in the last iteration, we want
to increase the likelihood of selecting the optimal subset from
our pool of rules, but also in previous iterations, better models
could help the rule discovery to operate in more relevant
regions. While convergence does not give any guarantee that
we find a global optimum rather than a local one, we can
be relatively sure that an unconverged optimization process
should not yet be stopped if compute is available. For the
last step, this is especially critical as we might choose that

model for deployment in a productive environment. Therefore,
it seems plausible to slightly adjust SupRB’s flow of things
to give increased computation budget (or even use other
optimizers) for a final optimization after training is otherwise
completed. Here, it might also be beneficial not to use the
last elitist again to make it more likely to not run into local
minima (should a worse solution be found, we can always
take any previous elitist). Another interesting avenue could be
to make this final optimization process multi-objective and to
let relevant stakeholders decide which of the Pareto-optimal
models to deploy.

VII. CONCLUSION

Rule-base learning algorithms like Learning Classifier Sys-
tems (LCSs) are a promising candidate for all applications
where explainability is essential. However, due to their evolu-
tionary optimization heuristics, they often feature large num-
bers of tunable hyperparameters and have little convergence
guarantees. Setting hyperparameters that are critical to achieve
optimal results is a difficult task, especially for the many data
scientists working on everyday applications who are not well-
versed when it comes to genetic algorithms (GAs) and their
configuration.

In this paper, we chose to introduce different strategies
for self-adaptivity into the model construction method of a
recent LCS, called SupRB. We adapted four self-adaptive GAs
(SAGAs) from literature to be fit for this task and benchmarked
them against the GA originally proposed for SupRB on five
real-world regression tasks. We chose strategies that adapt
mutations and crossovers based on fitness metrics and one
strategy to adapt the population size based on relative fitness.

We found that the new strategies are competitive and do
outperform the GA in some cases. The GAs runtime is slightly
lower but that comes with the tradeoff of more parameters
to tune despite receiving largely similar results with tuned
parameters. We confirmed our visually-obtained results with
an extensive statistical analysis based on Bayesian model
analysis techniques and Bayesian correlated t-tests.
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