
A Closer Look at Length-niching Selection and Spatial Crossover
in Variable-length Evolutionary Rule Set Learning
David Pätzel

University of Augsburg
Germany

david.paetzel@uni-a.de

Richard Nordsieck
XITASO GmbH

Germany
richard.nordsieck@xitaso.de

Jörg Hähner
University of Augsburg

Germany
joerg.haehner@uni-a.de

ABSTRACT
We explore variable-length metaheuristics for optimizing sets of
rules for regression tasks by extending an earlier short paper that
performed a preliminary analysis of several variants of a single-
objective Genetic Algorithm. We describe more in depth the algo-
rithm and operator variants used and document design decisions
as well as the rationale behind them. The earlier work identified
crossover as being detrimental for solution compactness; we take
a closer look by analysing convergence behaviour of the variants
tested. We are able to conclude that using one of the investigated
crossover operators trades prediction error outliers for more smaller
errors at the expense of solution compactness. The positive effects
of length-niching selection (holding off premature convergence to
a certain solution length) are undetectable in fitness values in the
settings considered. We further perform comparisons with already-
known rule-based algorithms XCSF and CART Decision Trees and
conclude that, even without parameter tuning, the best-performing
of the variants of the GA outperforms XCSF on the tasks considered,
comes close to being competitive with respect to test Mean Abso-
lute Error and creates similarly compact solutions as the Decision
Tree algorithm. The 54 learning tasks considered are synthetic and
in the limit learnable by rule-based algorithms.

CCS CONCEPTS
•Computingmethodologies→Rule learning; Supervised learn-
ing; Genetic algorithms.

KEYWORDS
Genetic Algorithm, Variable-length Representation, Metaheuristic
Rule Set Learning, Learning Classifier Systems

ACM Reference Format:
David Pätzel, Richard Nordsieck, and Jörg Hähner. 2024. A Closer Look at
Length-niching Selection and Spatial Crossover in Variable-length Evolu-
tionary Rule Set Learning. In Genetic and Evolutionary Computation Confer-
ence (GECCO ’24 Companion), July 14–18, 2024, Melbourne, VIC, Australia.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3638530.3664178

ACM ISBN 979-8-4007-0495-6/24/07
https://doi.org/10.1145/3638530.3664178

1 INTRODUCTION
Rule Set Learners (RSLs) are algorithms that build models consisting
of sets of rules. They are intrinsically interpretable [7] (as long as
the form of rules used is not too complicated and the number of
rules is not too high) and therefore an interesting family to consider
when explainability is one of the requirements for a model. While
there are approaches such as Decision Tree (DT) algorithms (e. g.
CART [8]) which use local heuristics to build a set of rules, there are
also algorithms that utilize metaheuristics to directly search rule
set space. Such a direct search often has advantages such as being
able to define user preferences more straightforwardly via fitness
functions, allowing rules to overlap and generally having a higher
algorithmic flexibility. Within this paper, we call these algorithms
Metaheuristic Rule Set Learners (MRSLs). Examples for families of
algorithms that fall into this category are Learning Classifier Sys-
tems (LCSs) [15, 39], Evolutionary Fuzzy Rule-based Systems [11]
and Ant-Miner [23]. We are particularly interested in systems that
optimize at the level of rule sets instead of at the level of individual
rules since they by design yield much more compact solutions (i. e.
fewer rules and therefore an increased interpretability) which has
also been observed in experiments [e. g. 18]. The present paper is
further restricted to regression tasks.

Recent work by Ryerkerk et al. [31, 32] stresses the importance
of using variable-length encodings and appropriate metaheuristic
operators if the problems being solved are variable-length—even
showing that variable-length algorithms can perform better than
fixed-length algorithms on tasks where optimal solution length
is known [33]. The task of finding well-performing rule sets is
inherently variable-length since not only rule parameters but also
the number of rules has to be optimized. Variable-length approaches
therefore seem to be a natural fit for MRSLs and while there have
been proposed MRSLs that do use variable-length approaches in
the past [e. g. 4, 6, 12], research attention for these has waned over
the years.

This motivated us to explore the idea of using variable-length
encodings in MRSL algorithms. A first short study within this di-
rection was [26] where a simplistic single-objective Genetic Al-
gorithm (GA) based on the corrected Akaike Information Criterion
(AICc) [1, 9, 20, 38] was used to perform a preliminary comparison
of two variable-length operators (spatial crossover [10] and length-
niching selection [31]) which had not been used in the context of
rule learning before but look promising on paper: Spatial crossover
is meant to promote building blocks in continuous parameter spaces
just like the ones defined by rule conditions whereas length-niching
selection tries to prevent premature convergence to a certain so-
lution length and consequent loss of diversity. However, due to
spatial constraints that earlier work was not able to fully describe

1779

This work is licensed under a Creative Commons Attribution International 4.0 License.
GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).

https://orcid.org/0000-0002-8238-8461
https://orcid.org/0000-0002-2043-3300
https://orcid.org/0000-0003-0107-264X
https://doi.org/10.1145/3638530.3664178
https://doi.org/10.1145/3638530.3664178
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638530.3664178&domain=pdf&date_stamp=2024-08-01

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Pätzel et al.

the algorithm used nor in depth document the design decisions
and rationale behind them properly. The present paper provides
such a description and closer look and further extends the analysis
of the earlier work by 1) performing an analysis of convergence
behaviour of the variants tested, 2) giving more insights into the
effects of crossover which earlier results indicated hurt solution
compactness and 3) baselining the best variant against two already
known algorithms for building rule sets, CART [8] and XCSF [42].
We publish our code as a Julia library [28, 29]. The synthetic learn-
ing tasks we use are generated such that they are, in theory (i. e.
in the limit of infinite training data), solveable by the systems we
consider and their progressive difficulty can be gauged.

2 RELATEDWORK
To our knowledge, neither spatial crossover nor length-niching
selection have been used in MRSL algorithms before.

In the LCS community, the algorithm we use would be called
a Pittsburgh-style system [15] as its metaheuristic operates at the
level of rule sets. While up to the mid 2000s, there have been de-
signed quite a few Pittsburgh-style systems, interest in these al-
gorithms has waned over the years. Urbanowicz and Moore [40]
present an extensive review of systems (both Pittsburgh- and other
styles) up to 2009 and show that at the time all known Pittsburgh-
style systems (and actually most of LCS research) specialize on
classification and similar discrete tasks whereas our work deals
with regression.

A variable-length encodingwhich is similar to the one used in the
present study is used by the GABIL system [12] and systems using
its representation [e. g. 4, 6]. However, these approaches focus on
concept learning or classification whereas we investigate regression
tasks.

The XCS classifier system [41] and its descendants [e. g. 42]
optimize a set of rules by applying local operators to each rule.
While they attempt to steer the system towards smaller rule sets
using implicit evolutionary pressures, in most cases, the resulting
rule sets are comparably large. The GA we use for our study and
the operators we consider are meant to be applied to entire rule sets
and not to individual rules which enables the designer to explicitly
model the optimization target at the rule set level (including a
preference for small solutions).

Another line of research that goes into a similar direction as the
one presented here is Drugowitsch’s work on a probabilistic frame-
work for LCSs [13] which has not seen any further development
since 2008 other than a replicability study a few years ago [24] and
is in its current state computationally too expensive to be meaning-
fully applied to problems with as few as two- or three-dimensional
input spaces.

We further should mention Heider et al.’s recent work on the
SupRB algorithm for regression tasks [e. g. 17, 19]. Other than our
algorithm, SupRB uses a fixed-length representation for the set
of conditions and uses two metaheuristics: One to build a pool
of well-performing rules and another one to optimize bit strings
that represent subset selections from that pool. In Ryerkerk et al.’s
terminology [32], this constitutes a hidden-metavariable represen-
tation and an extensive comparison with that system is definitely
warranted in the future. Note that we compared our system to

XCSF instead of SupRB in the present paper because, being a more
established algorithm, it lends itself better as a first baseline.

Fan and Gray [14] construct regression trees using metaheuris-
tics and compare the results with several other tree learning algo-
rithms. They use the Bayesian Information Criterion as their fitness
measure which is in form similar to the AICc we use but has a
different motivation (and different strengths and weaknesses [9]).
Tree-based rule sets are non-overlapping whereas our MRSL algo-
rithm explicitly allow rules to overlap which can result in more
compact models.

3 RULE SET MODELS
We start by defining the model family optimized by our MRSL
algorithm which we will propose in the next section. The learning
tasks we consider are supervised regression tasks: We’re looking
for an optimal model 𝑓 : X → Y that maps inputs 𝑥 ∈ X = RDX to
outputs 𝑦 ∈ Y = R. The sole resource for identifying this optimal
model is a training set, comprising 𝑁 inputs (𝑥𝑛)𝑁𝑛=1 = 𝑋 ∈ X𝑁
and outputs (𝑦𝑛)𝑁𝑛=1 = 𝑦 ∈ Y𝑁 .

Within this paper, a rule set model corresponds to a set of 𝐾 rules.
Each rule 𝑘 in the model consists of a condition 𝑚(𝜓𝑘 ; ·) : X →
{0, 1} with parameters 𝜓𝑘 and a local model which is in general
modelled as an input-dependent random variable𝑌𝑘 (𝑥). The overall
output of a model for a fixed input 𝑥 ∈ X is a random variable 𝑌 (𝑥)
which is a normalized weighted sum (𝛾𝑘 ∈ R is rule 𝑘’s mixing
coefficient) of the local model outputs of all the rules matching1 𝑥 :

𝑌 (𝑥) =
𝐾∑︁
𝑘=1

𝑚𝑘 (𝜓𝑘 ;𝑥)𝛾𝑘∑𝐾
𝑗=1𝑚 𝑗 (𝜓 𝑗 ;𝑥)𝛾 𝑗

𝑌𝑘 (𝑥) (1)

The role of the mixing coefficients 𝛾𝑘 is that of weighing rules
against each other in areas of overlap (more on that in Section 4.2).
Note that an expression similar to Equation (1) can be found in the
literature [25] but we explicitly normalize the mixing weights.2

We choose conditions to correspond to intervals inX. This means
that

𝑚(𝜓𝑘 ;𝑥) =𝑚((𝑙𝑘 , 𝑢𝑘);𝑥) =
{
1, 𝑥 ∈ [𝑙𝑘 , 𝑢𝑘)
0, otherwise.

(2)

Interval-based conditions are a common choice in MRSL algo-
rithms with real-valued input [e. g. 19, 42] because they are human-
comprehensible greater-/less-than statements and therefore often
yield models that are preferred due to their higher interpretabil-
ity [16] over other common choices such as ellipsoid-based condi-
tions [36].

Since the focus of the present work is analysing metaheuristic
operators in the variable-length setting, we chose the simplest
possible model family for the local models, namely, constant models.
In the context of the present paper, this has several advantages over
other common choices like linear regression local models (e. g. used
by some XCS variants [42] or SupRB [19]): The computational cost

1A rule 𝑘 with condition parameters𝜓𝑘 is said to match input 𝑥 if𝑚 (𝜓𝑘 ;𝑥) = 1.
2Mixing weight normalization makes it necessary for every point in the input

space to be matched by at least one rule (otherwise Equation (1) is not defined due
to division by zero). This can be easily solved by adding to any model a default rule
which matches every possible input, predicts the training data mean and has a mixing
weight very close to zero (so that it only significantly influences model output in areas
where no other rule matches).

1780

A Closer Look at Length-niching Selection and Spatial Crossover in Variable-length Evolutionary RSL GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

of fitting them is lower and a direct fair comparison with CART
DTs is possible (these DTs use constant local models as well [8]
and while there exist extensions to linear local models [e. g. 35],
they are not well-established so far). Further, constant models allow
us to put more focus on the metaheuristic aspects of the MRSL
algorithm: We argue that if an MRSL metaheuristic isn’t able to
optimize constant model placement for approximating noisy step
functions, it will probably not be able to optimize linear or even
higher-order models for more difficult tasks. We also expect using
constant local models to facilitate analysis of the metaheuristic’s
behaviour.

Of course, predictive performance of constant local models on
most real-world data sets is naturally lower than of more sophisti-
cated models with a higher parameter count. We account for this by
selecting the learning tasks considered in this paper to be noisy step
functions; these are (in the limit of infinite training data) learnable
optimally by models consisting of constant local models.

We define the output of rule 𝑘’s local model as being normally
distributed around a mean 𝜇𝑘 with variance 𝜎2

𝑘
—the latter being

the local model’s noise estimate. This can be written as 𝑌𝑘 (𝑥) ∼
N (𝜇𝑘 , 𝜎2𝑘). Since normally distributed variables are closed under
addition andmultiplicationwith scalars, this yields an overall model
output distribution which is normal as well:

𝑌 | 𝑥 ∼ N ©­«𝑦 |
𝐾∑︁
𝑘=1

𝑚𝑘 (𝑥)𝛾𝑘∑𝐾
𝑗=1𝑚 𝑗 (𝑥)𝛾 𝑗

𝜇𝑘 ,

𝐾∑︁
𝑘=1

(
𝑚𝑘 (𝑥)𝛾𝑘∑𝐾
𝑗=1𝑚 𝑗 (𝑥)𝛾 𝑗

)2
𝜎2
𝑘

ª®¬
(3)

We can make predictions for a given 𝑥 ∈ X by evaluating the output
distribution’s mean. Additionally, the distribution’s variance can
be interpreted as being a measure of confidence in the prediction.

4 SEARCHING FOR VARIABLE-LENGTH RULE
SETS

It is generally understood thatMRSL algorithms perform bothmodel
structure optimization and parameter fitting [13, 15]. A rule set’s
model structure is the set of its conditions (to be more precise, the
number of rules in the set 𝐾 and the vector of all the rule’s condi-
tion parameters (𝜓𝑘)𝐾𝑘=1). Each model structure M =

(
𝐾, (𝜓𝑘)𝐾𝑘=1

)
defines a parametric model family whose parameters can be fit-
ted rather straightforwardly using common techniques since each
rule’s local model is assumed to be simple3 (e. g. constant or linear)
and can be fitted independently of the other rules’ local models.
Therefore, most of an MRSL algorithm’s computational effort goes
into model structure optimization which is the MRSL algorithm’s
metaheuristic’s task. Pätzel et al. [25] discuss these general concepts
more in-depth.

In the present work, the metaheuristic chosen is a Genetic Al-
gorithm (GA) similar to the one used by Ryerkerk et al. in their
paper on the length-niching selection operator [31] which will be
discussed in Section 4.3.5. Our GA operates on model structures,4
that is, genotypes are structured variable-length vectors of condi-
tion parameters that correspond to the set of conditions of a set of

3If local models were not simple, then the overall model is not interpretable any-
more and other (non-RSL) learning algorithms are probably a better choice anyways.

4This differs, for example, from the GA in systems like XCS which operates at the
level of individual rules [41].

rules. Ryerkerk et al. [32] calls such a structured representation a
metameric representation: In their terminology, each group of condi-
tion parameters belonging to a single condition is one metavariable
whereas each single parameter (i. e. each real-valued bound of one
of the intervals) is a design variable. For each genotype, the corre-
sponding phenotype is then a rule set model of the form given in the
previous section. Computing the phenotype involves fitting local
model parameters and finding mixing weights and is discussed in
Section 4.2.

4.1 Defining rule set fitness
In order to define the GA, we have to define a fitness function, that
is, a way to measure optimality of a set of rules given training data.
What constitutes an optimal set of rules is, however, not agreed
upon in the MRSL literature and especially unclear for regression
tasks [cf. e. g. 13]. A formal approach to this problem is made by
Drugowitsch [13], but the probabilistic model he uses is computa-
tionally infeasible even for low input space dimensionalities.

A central part of the optimality of a rule set is of course the
induced model’s predictive performance on the training data. This
can be measured in many ways and is typically done based on
predictive error (e. g. Mean Absolute Error). However, optimizing
for low predictive error alone optimizes towards having one rule
per training data point since that way the training error is minimal.
Such a solution is seldomly acceptable as it can not be expected to
generalize well to unseen data. Fitness measures therefore also have
to consider model complexity. A typical way to measure this is to
count the number of model parameters which is in the case of rule
sets proportional to the number of rules in the set. We therefore
have two optimization targets: Predictive error can be expected
to decrease when the number of (sensibly placed) rules increases.
There are several approaches to balance these targets against each
other.

One direction pursued by several approaches to build MRSL al-
gorithms [e. g. 2, 3, 22] is to perform multi-objective optimization.
A strength of these schemes is that they allow the system’s user
to choose a model from a set of pareto-optimal models. However,
this can at the same time be seen as a weakness: We argue that
most users already have some sort of preference with respect to
the tradeoff between solution size and predictive performance (e. g.
due to explainability requirements) and that this preference should
be used to direct the search process to preferred regions of solution
space. Exploring regions that are definitely not preferred by the user
during search is a waste of energy and time. Another approach in
multi-objective optimization is the practice of computing a mixture
model from the models on the pareto front (e g. to increase pre-
dictive performance [21]); however, if interpretability is preferred,
this isn’t an option either. We therefore opt for a single-objective
approach for our GA.

Another common choice to consolidate predictive error and
model complexity is to use a weighted sum or other form of combi-
nation of the targets as the fitness measure [e. g. 19]. This can, in
discrete or classification settings, also take on information-theoretic
forms such as the MinimumDescription Length [e. g. 5]. In a similar
spirit, and since we have an expression for the likelihood due to
knowing the output distribution (Equation (3)) we are able to use

1781

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Pätzel et al.

the negative Akaike Information Criterion [1] with the generally rec-
ommended small sample correction [9, 20, 38] (AICc) as the fitness
measure for our system and therefore define,

fitness(M) = 2 logL(M | 𝑋,𝑦) − 2𝜈M −
2𝜈M (𝜈M + 1)
𝑛 − 𝜈M − 1

(4)

where L(M | 𝑋,𝑦) is the likelihood of the model structure M
given the training data, 𝑛 is the number of training data points
and 𝜈M = 2𝐾DX + 2𝐾 is the number of parameters in the model
structure M. The AICc is well-understood and formally grounded
and allows for a principled model comparison; at the same time, it
can be interpreted as a weighted sum of a model complexity and a
predictive error term.

4.2 Fitting local models and mixing weights
Given a 𝐾-vector of condition parameters (𝜓𝑘)𝐾𝑘=1, a set of rules is
built by fitting local models and computing mixing coefficients. For
rule 𝑘 , we choose local model parameters based on the training data
that 𝑘 matches: We simply fit the local model’s output distribution
parameters (𝜇𝑘 , 𝜎2𝑘) to the matched outputs {𝑦 𝑗 | 𝑚(𝜓𝑘 , 𝑥 𝑗) = 1}
using the well-known Maximum Likelihood Estimation (MLE) for-
mulae for normal distributions without the Bessel correction. The
mixing coefficient of rule 𝑘 is chosen as the inverse of the expected
error, that is, 𝛾𝑘 = 𝜎−2

𝑘
. This is known to be a well-performing

heuristic [13] with the intuition being that lower-error rules con-
tribute more to the overall prediction than higher-error rules.

Given a model structure M, we can now compute parameters
for the full model given in Equation (3). The next section deals with
the operators used to search for well-performing M.

4.3 Searching for condition parameters
A high-level overview of the GA we use is given in Algorithm 1.
We will now discuss each of the operators used by it more in-depth.

4.3.1 Initialization. We want to initialize the rule set population
similarly to the initialization performed by Ryerkerk et al. [31]: They
enable the user to provide a range of solution (rule set) lengths from
which rule set lengths for an initial population are then drawn at
random. After that, rule sets of these lengths are drawn at random.

While we could draw a rule set of a given length 𝐾 by drawing
fully random rules (e. g. uniformly distributed interval bounds that
are then reordered correctly), we think that we can actually help the
metaheuristic by drawing at least somewhat sensible initial rule sets.
At that, we define somewhat sensible as the combined rule conditions
in the set should cover at least 90 % of the training data and each
condition should further cover some training data points that other
rules do not cover. This encodes two beliefs: We think it is less likely
to perform well for rule sets that cover only small parts of the
training data than for rule sets that cover most of the training data.
Further, in most cases, rules that only cover training data points
already covered by other rules add little value.

In order to fulfill this sensibility condition, we simply repeatedly
draw a single rule which matches at least one, as of yet unmatched,
training data point and stop as soon as at least 90 % of training
data points are covered by rules. In order to fulfil the first condi-
tion of the rule set having length 𝐾 , the distribution parameters
𝜃 for drawing a single rule have to be chosen properly. Since this

1 function ga()
2 elitist = nothing
3 pop = init()
4 evaluate!(pop)
5 update!(elitist, pop)
6 for iter in 1:n_iter
7 offspring = []
8 for (i1, i2) in randompairs(pop)
9 o1, o2 = recomb(pop[i1], pop[i2])
10 mutate!(o1); mutate!(o2)
11 repair!(o1); repair!(o2)
12 evaluate!(o1); evaluate!(o2)
13 append!(offspring, [o1, o2])
14 end
15 end
16 update!(elitist, offspring)
17 pop = select(pop ∪ offspring)
18 end
19 return elitist
20 end

Algorithm 1: The used GA. To keep notation concise, in-place
operations are marked by a trailing “!”.

proved to be difficult when done manually, we simply Monte-Carlo
sampled the process of drawing rule sets very often for randomly
drawn distribution parameters 𝜃 and took note of which parame-
ters 𝜃 led to which 𝐾 ’s given which input space dimensionality. We
then derived for all required 𝐾s and input space dimensionalities
the parameters 𝜃 by roughly approximating the posterior density
mode using a histogram.5 In the process of doing these steps, we
found that this kind of analysis to find optimal parameters could
be beneficial for many other metaheuristic operators as well.

4.3.2 Recombination: Spatial and cut-and-splice crossover. We com-
pare two of the crossover operators considered by Ryerkerk et al.
[32] in their survey of variable-length metaheuristics: Cut-and-
splice and spatial crossover.

Cut-and-splice is the variable-length version of the well-known
n-point crossover. In the case of the genotypes we consider, cut-and-
splice works by redistributing the conditions of the two possibly
different-length parents (𝜓𝑘)𝐾1

𝑘=1 and (𝜓𝑘)𝐾2
𝑘=1 between two children

at random. At that, each condition from either parent is given to
exactly one child and each child receives at least one condition
and at most 𝐾1 + 𝐾2 − 1. While cut-and-splice crossover seems
to be a common choice in variable-length metaheuristics [32], it
is considered very disruptive as it does not consider any kind of
dependency between the variables.

Spatial crossover [10] differs from cut-and-splice in that it does
consider certain dependencies between variables. In the case of the
genotypes we consider, we choose a random condition from either
of the parents and compute the corresponding interval’s center. We
then draw a plane through that point (with a random angle) which
partitions input space in two. This allows us to assign conditions
to the two children based on which side of the plane their center

5Out of brevity, we have to refer to our code [28] for more details.

1782

A Closer Look at Length-niching Selection and Spatial Crossover in Variable-length Evolutionary RSL GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

lies on, similarly to how 1-point crossover generates offspring in
binary settings. In the present case, spatial crossover can be seen
as an attempt to identify building blocks that are spatially close
groups of conditions which can be separated from the rest of the
conditions by a plane. See [32] for a more in-depth description
and an illustration of this concept. It should be noted that, to our
knowledge, spatial crossover has not been used before in MRSL
algorithms while cut-and-splice is a common method.

4.3.3 Mutation. Mutation of a rule set is performed just like in
the GA defined by Ryerkerk et al. [31]: We first go over each rule’s
condition and with a probability of 𝑝mut independently apply to
each interval bound a Gaussian mutation with variance 𝜎2mut. Then,
independently of that, with a probability of 𝑝add, a new rule (i. e.
new condition parameters) is added to the set, thus increasing
its length by one. The new rule is chosen such that it matches a
certain minimum number6 of training data points with data points
not matched by any other rule being preferred. Afterwards, again
independently and with a probability of 𝑝rm, an existing rule is
deleted from the rule set (decreasing its length by one)—but only if
this does not leave an empty set.

4.3.4 Repair. After crossover and mutation, there could be rules
in any of the rule sets that match too few training data points to
be considered sensible. We repair all rule sets by simply deleting
such rules. Within the present paper, we expect each rule to match
at least two training data points to not be deleted. Note that this is
a hyperparameter that could be tuned or be set according to user
preferences.

4.3.5 Selection: Length-niching and tournament selection. Finally,
the genetic algorithm performs selection. At that, we compare two
selection regimes: Ryerkerk et al.’s length-niching selection using
a biased selection window [31] and the well-known tournament
selection.

Length-niching selection [31] attempts to keep population diver-
sity higher than other selection mechanisms by defining a range
of solution lengths (niches) for each of which an independent lo-
cal selection is carried out. This way, solutions of a certain length
compete less directly with solutions of different lengths during
selection and population diversity with respect to solution length is
maintained. This is meant to help prevent premature convergence.
Ryerkerk et al. [31] proposed several methods to define the length
window which is the range of solution lengths that are propagated
to the next generation. Of the ones discussed, the biased window
approach was chosen for the present paper because it does not
require a priori knowledge of the optimal solution length but in-
stead updates the window during search based on search behaviour.
Biased-window length-niching selection has two hyperparameters,
the window length𝑤 and the bias decay 𝜆.

5 EXPERIMENTAL SETUP
This section describes how we performed experiments whose re-
sults we will then discuss in the next section.7

6We currently hardcode this hyperparameter to four since the repair operator
removes rules that match less than two training data points.

7The code for our experiments can be found on Zenodo [28, 29].

As was already mentioned above, the learning tasks we consider
are regression tasks and, more precisely, noisy step functions. In
order to obtain these step functions, we follow the procedure pro-
posed by Pätzel et al. [25] but use constant local models: For each of
three input dimensionalities considered (DX ∈ {3, 5, 8}), for each
of three model sizes (𝐾 ∈ {4, 8, 12}), we repeatedly draw random
data-generating processes (i. e. random parameters for Equation (1))
until we have 6 such models whose respective conditions jointly
cover 90 % of the input space (Monte-Carlo estimated). This yields
a total of 54 learning tasks8 from each of which we then generate
train and test data sets of different sizes (Table 1) to account for
increasing dimensionality.9 Test data sets were ten times as large
as training data sets and drawn independently.

Note that in the limit of infinite training data, the number of
rules in the data-generating process corresponds to the number
of rules of an optimal model for the corresponding learning task.
However, within the present paper, we try to use more realistic
training data set sizes and therefore this correspondence is likely
not fulfilled. Nevertheless, for a fixed input space dimensionality,
the number of rules in the data-generating process can be seen as a
direct indicator for expected task difficulty.

Table 1: Learning tasks used. DX is input dimensionality, 𝐾
is number of rules in the data-generating process, 𝑁 is size
of training data set.

DX 𝐾 𝑁 = 200 · 10
DX
5 Number of learning tasks

3 4 796 6
3 8 796 6
3 12 796 6
5 4 2000 6
5 8 2000 6
5 12 2000 6
8 4 7962 6
8 8 7962 6
8 12 7962 6

We investigate the performance of a total of 7 variants of our
MRSL algorithm on these tasks. In doing so, we vary

• the crossover operator between spatial crossover, cut-and-
splice crossover and no crossover at all (if crossover is en-
abled, crossover probability is 0.3),

• the selection operator between length-niching (windowwidth
𝑤 = 7; bias factor decay like in the original paper [31], i. e.
𝜆 = 0.004) and tournament selection (tournament size 4),

• the probability of adding and/or removing rules during mu-
tation between being low (𝑝add = 𝑝rm = 0.05) or high
(𝑝add = 𝑝rm = 0.4).

The exact combinations of these options that we test are given in
Table 2.

In all experiments, we further
• set population size to 32,

8We publish learning tasks and experiment data on Zenodo as well [30].
9Note that we do not increase data set size directly proportional to dimensionality

but instead try to mimic a typical data set size for each dimensionality instead.

1783

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Pätzel et al.

Table 2: MRSL algorithm variants tested.

crossover spatial cut-and-splice off
𝑝add/rm low high low high low high

selection

length-niching × × × × ×
tournament × ×

• keep the GA running for 2000 generations with early stop-
ping if no changes in fitness were detected for 500 genera-
tions,

• initialize populations with genotypes having lengths drawn
from the range {3, . . . , 50} and

• use a standard deviation of 𝜎2mut = 0.05 for the Gaussian
mutation and apply said mutation to each real-valued in-
terval bound with probability 𝑝mut =

1
2𝐾DX

(such that on
average as many bounds are changed as there are in a single
condition).

Note that, aside from initialization where our configuration gen-
erates an expected number of 848 rules (divided over 32 rule sets),
mutation is the only way that entirely new rules can enter the
system. A rate of 𝑝add = 𝑝rm = 0.05 means that over the running
time 3200 new rules can be expected to be created whereas a rate
of 𝑝add = 𝑝rm = 0.4 implies creation of 25600 new rules.

Since our MRSL algorithm is non-deterministic, we repeat runs
for each of the data sets. However, we noticed that variance on
each of the data sets is rather low and therefore opted for only
performing five repetitions on each data set for the benefit of being
able to include more data sets per (DX, 𝐾) combination in the
analysis.

In order to gauge overall performance of our MRSL algorithm,
we also perform comparisons with CART DTs as implemented by
the DecisionTrees.jl Julia library [34] and XCSF as implemented by
Preen’s Python library [27]. We allow the DTs to have between 1
and 70 rules and XCSF to have between 1 and 1000 rules (XCSF is
notorious for being rule-hungry). Each of these algorithms is also
run 5 times on each of the tasks.

Hyperparameter tuning. We perform hyperparameter tuning for
both the DTs and XCSF independently on each of the data sets in
order to achieve a comparison at least not unfair with respect to
these baseline algorithms. For the DTs, we tune themaximum depth
and the minimum samples split parameters whereas for XCSF we
tune 𝜖0, 𝛽 , 𝜈 and the minimum condition spread parameters. For
the remaining parametrization we have to refer the reader to our
code [28, 29].

Hyperparameter tuning of our MRSL algorithm is out of the
scope of this paper; we first want to perform studies with respect
to the hyperparameter’s sensitivities and reduce hyperparameter
space this way instead of performingmanymore computations than
necessary. Therefore, the results reported constitute an estimated
lower bound for the performance of the presented MRSL algorithm
which we expect to improve with proper hyperparameter tuning
in the future.

6 EVALUATION AND DISCUSSION
The aforementioned earlier work [26] has already compared the
distributions of test Mean Absolute Error (MAE) when pooling
over all repetitions of all data sets of each combination of input
space dimensionality and data-generating process size. It came to
the conclusion that after a fixed number of 2000 generations there
was no practically significant—if any at all—difference in test MAE.
The number of rules used in the final solutions gave a slightly
different picture: 6 of the 7 variants performed equally (i. e. had a
visually indistinguishable empirical cumulative distribution) while
one variant used significantly fewer rules. That variant was the
only variant tested that did not use crossover, which is somewhat
surprising on first glance.

We therefore take a closer look at this by considering conver-
gence behaviour. Figure 1 shows, for each combination of input
space dimensionality and data-generating process size, three empir-
ical distribution statistics (empirical median and empirical central
80 % density interval) of the history of elitist fitness values. Since
different tasks may have different scales for fitness (AICc is not a
normalized measure), we normalize for each task with the mini-
mum andmaximum elitist fitness values observed over all algorithm
variants considered. We first notice that the lower bound of the
empirical central intervals for input space dimensionality 3 and
data-generating process size 4 for several variants extends down
to a relative fitness of 0. This is likely a fragment caused by fit-
ness normalization on this set of simplest tasks considered. Further,
there is a tendency for all variants that, for higher dimensionali-
ties and higher data-generating process sizes, convergence takes
longer (and may actually have barely been achieved within 2000
generations for some runs). This is expected since 1) for higher
input space dimensionalities, search space is exponentially larger
and 2) higher data-generating process sizes somewhat correspond
to higher learning task difficulties [25].

The ordering of the variants with respect to fitness is quite con-
sistent for all the settings with the variant with spatial crossover
and tournament selection achieving the highest fitness values and
the variant with spatial crossover and length-niching selection
being the runner-up. This may indicate that the benefits of length-
niching selection are not as relevant for this setting or that more
iterations are needed for them to be detectable in fitness values
(remember that length-niching selection mainly tries to prevent
premature convergence to a certain solution length); so far, length-
niching selection seems to decelerate fitness convergence without
any benefit.

Figure 1 further shows that, in every setting, elitist fitness of
the variant without crossover (we call this NOX for brevity in the
following paragraphs) is consistently smaller than the one of the
other variants. Given our previous findings [26] of NOX having a
lower parameter count (which by itself should yield a higher AICc-
based fitness), this can only be explained by a worse fit. While NOX
was indistinguishable from the other variants with respect to test
and train MAE, there is a slight difference to the disadvantage of
NOX in the distribution of train (and test)Mean Squared Error (MSE)
which might explain the worse fitness (Table 3 gives a summary of
the data involved—NOX has the highest mean and median MSEs on
more than half of the tasks): AICc-based fitness estimates goodness

1784

A Closer Look at Length-niching Selection and Spatial Crossover in Variable-length Evolutionary RSL GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

0.0

0.5

1.0

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

0.2

0.4

0.6

0.8

1.0

N
or

m
a
li
ze

d
 e

li
ti

st
 f
it

n
es

s

4
8

12

Generation

3 5 8

Algorithm
GA x:spt s:len

GA x:spt s:trn

GA x:off s:len m+

GA x:cut s:len

GA x:spt s:trn m+

GA x:cut s:len m+

GA x:spt s:len m+

Figure 1: Comparison of the tested variants of our MRSL algorithm. In the algorithm labels, “x:*” denote the crossover operator
used (spatial, cut-and-splice, off), “s:*” the selection operator (length-niching, tournament) and “m+” states that the higher
mutation rate was in place. Normalized (per task) elitist fitness history when pooling all the runs of each algorithm variant (i. e.
pool over 30 runs—5 repetitions and 6 data sets) for each combination of dimensionality DX (columns) and number of rules in
the data-generating model (rows). Lines are empirical medians while shaded areas denote the empirical central 80% interval.

of fit by the training data log likelihood. In the present case the
underlying distribution is a normal distribution (Equation (3)) and
the data log likelihood of such a distribution entails a quadratic
term that directly corresponds to MSE.

Table 3: For each of the 54 tasks considered, the number of
times that each variant had the highest mean or median MSE
(statistics pooled over the 5 repetitions performed).

Number of tasks with highest MSE
Variant Mean Median

GA x:off s:len m+ 32 29
GA x:cut s:len m+ 15 16
GA x:spt s:trn 3 3
GA x:spt s:len m+ 2 2
GA x:spt s:trn m+ 2 3
GA x:cut s:len 0 1
GA x:spt s:len 0 0

Note that similar MAE but a slightly higher MSE means that
NOX’s prediction error has more outliers than the prediction errors
of the other variants; this can likely be explained with the lower
rule count. In summary, using any of the investigated crossover
operators trades a few larger prediction errors for many smaller ones
at the expense of solution compactness. Finding a formal argument

explaining this effect is out of the scope of this paper and left for
future work.

In order to assess our MRSL algorithm’s performance with re-
spect to state-of-the-art RSL algorithms, we performed the same
experiments with both XCSF and DT. The results are shown once
more as empirical cumulative distributions in Figure 2 (same setup
with respect to pooling etc. as in Figure 1) which also includes NOX
since it is the variant of our MRSL best performing with respect to
MAE. The first thing we notice is that XCSF performs very badly
on all the tasks considered both in terms of MAE and number of
rules used. While the latter is hardly surprising since we did not
use any form of compaction10 (i. e. pruning techniques to reduce
the number of final rules), the former is quite unexpected since
XCSF has shown competive performance on problems of similar or
higher difficulty in the past [e. g. 37]. The best-performing of the
three model families in terms of MAE are DTs but our MRSL is a
rather close runner-up. With respect to the number of rules, there
can be made out no clear-cut winner.

7 FUTUREWORK
There are many opportunities for future work. The one most rel-
evant to the present paper is a deeper investigation into why
crossover yields higher rule counts. Furthermore, the presented
algorithm needs to be benchmarked against more algorithms such

10Note that compaction would very likely further degrade MAE performance.

1785

GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia Pätzel et al.

0.2 0.4 0.6

0.0

0.5

1.0

0.2 0.4 0.6

0.0

0.5

1.0

0.2 0.4 0.6

0.0

0.5

1.0

0.2 0.4 0.6

0.2 0.4 0.6

0.2 0.4 0.6

0.2 0.4 0.6

0.2 0.4 0.6

0.2 0.4 0.6

D
en

si
ty

4
8

12

Test MAE

3 5 8

101.0101.5102.0102.5103.0

0.0

0.5

1.0

101.0101.5102.0102.5103.0

0.0

0.5

1.0

101 102 103

0.0

0.5

1.0

101.0101.5102.0102.5103.0

101.0101.5102.0102.5103.0

101.0 101.5 102.0 102.5 103.0

101.0101.5102.0102.5103.0

101.0 101.5 102.0 102.5 103.0

101.5 102.0 102.5 103.0

D
en

si
ty

4
8

12

Number of Rules

3 5 8

Algorithm
DT (1–70)

XCSF (1–1000)

GA x:off s:len m+

Figure 2: Comparison of DT, XCSF and our MRSL algorithm. For DT and XCSF, the number ranges in the legend indicate the
allowed range of rule set sizes. Left: Empirical cumulative distributions of test Mean Absolute Error (MAE) when pooling all
the runs of each algorithm variant (i. e. pool over 30 runs—5 repetitions and 6 data sets) for each combination of dimensionality
DX (columns) and number of rules 𝐾 (rows). Right: Empirical cumulative distributions of number of rules in the final solution
when pooling the same way; note the log axis.

as SupRB [19]. We also indend to extend our Monte-Carlo sam-
pling–based analysis of our initialization operator to other opera-
tors in order to understand better their hyperparametrizations and
improve overall performance of this and similar systems. While we
do have preliminary results, a dedicated analysis of the merits of
our initialization scheme (for example, a proper study comparing it
with completely random initialization and an investigation of the
effects of initial coverage rates different from 90%) is also pending.

8 SUMMARY AND CONCLUSION
Extending an earlier preliminary study, we provided a more detailed
description of a variable-length Metaheuristic Rule Set Learning
(MRSL) algorithm for regression tasks which is based on a Genetic
Algorithm (GA) and uses interval-based conditions, constant local
models and inverse variance–based mixing. Fitness is based on the
corrected Akaike Information Criterion. Experiments were performed
on a set of increasingly difficult synthetic learning tasks of different
dimensionalities which are, in theory (given enough time, resources
and training data), learnable by the algorithms considered.

Previous work established that in the context of the used MRSL
algorithm, not using crossover performs better in terms of the final
model’s complexity (as measured by the number of rules) than using
any of the two crossover operators tested while all tested variants
performed indistinguishably with respect to test Mean Absolute
Error. We took a closer look by analysing convergence behaviour

and were able to identify a tradeoff induced by the crossover opera-
tors:Without crossover, models created are more compact and make
fewer but larger prediction errors whereas when using crossover,
models are less compact and make more but smaller prediction er-
rors. With respect to the benefits of length-niching selection, results
were unconclusive; its effect of holding off premature convergence
to a certain solution length may be too small in the setting consid-
ered (premature convergence is maybe not actually a problem in
our MRSL algorithm) or the effect only shows itself in fitness values
after more iterations than the ones performed for the study. Within
the 2000 iterations performed, length-niching selection seems to
decelerate fitness convergence and is outperformed in terms of
fitness by the variant with tournament selection.

We further compared performance of our MRSL algorithm with
two already-known Rule Set algorithms, namely CART Decision
Trees and XCSF. Of these two, only Decision Trees performed well
on the learning tasks consideredwhereas XCSFwas not able to learn
the tasks despite being known to solve tasks of similar difficulty.
While Decision Trees outperformed our algorithm in terms of test
Mean Absolute error by a close margin, they perform equally in
terms of model complexity. Overall, despite using mostly existing
metaheuristic operators that were agnostic to the fact that the
domain was Rule Set learning, the variable-length GA performed
well. We expect that operators that use more information (e. g.
amount of rule overlap and local rule error) perform even better.

1786

A Closer Look at Length-niching Selection and Spatial Crossover in Variable-length Evolutionary RSL GECCO ’24 Companion, July 14–18, 2024, Melbourne, VIC, Australia

REFERENCES
[1] Hirotsugu Akaike. 1974. A new look at the statistical model identification. IEEE

Trans. Automat. Control 19, 6 (1974), 716–723. https://doi.org/10.1109/TAC.1974.
1100705

[2] Rafael Alcala, María José Gacto, and Francisco Herrera. 2011. A Fast and Scalable
Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-
Dimensional Regression Problems. IEEE Transactions on Fuzzy Systems 19, 4
(2011), 666–681. https://doi.org/10.1109/TFUZZ.2011.2131657

[3] Michela Antonelli, Pietro Ducange, and Francesco Marcelloni. 2013. An efficient
multi-objective evolutionary fuzzy system for regression problems. International
Journal of Approximate Reasoning 54, 9 (2013), 1434–1451. https://doi.org/10.
1016/j.ijar.2013.06.005

[4] Jaume Bacardit. 2004. Pittsburgh genetics-based machine learning in the data
mining era: representations, generalization, and run-time. Ph. D. Dissertation. PhD
thesis, Ramon Llull University, Barcelona.

[5] Jaume Bacardit and Josep Maria Garrell. 2007. Bloat Control and Generaliza-
tion Pressure Using the Minimum Description Length Principle for a Pittsburgh
Approach Learning Classifier System. In Learning Classifier Systems, Tim Ko-
vacs, Xavier Llorà, Keiki Takadama, Pier Luca Lanzi, Wolfgang Stolzmann, and
Stewart W. Wilson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 59–79.

[6] Jaume Bacardit and Natalio Krasnogor. 2006. BioHEL: Bioinformatics-oriented
Hierarchical Evolutionary Learning. http://eprints.nottingham.ac.uk/id/eprint/482

[7] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Ben-
netot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel
Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. 2020. Ex-
plainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI. Information Fusion 58 (2020), 82–115.
https://doi.org/10.1016/j.inffus.2019.12.012

[8] Leo Breiman, J. H. Friedman, Richard A. Olshen, and C. J. Stone. 1984. Classifica-
tion and Regression Trees. Wadsworth.

[9] Kenneth P. Burnham and David R. Anderson. 2004. Multimodel Inference: Un-
derstanding AIC and BIC in Model Selection. Sociological Methods & Research 33,
2 (2004), 261–304. https://doi.org/10.1177/0049124104268644

[10] David M. Cherba and William Punch. 2006. Crossover gene selection by spatial
location. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation (Seattle, Washington, USA) (GECCO ’06). Association for Computing
Machinery, New York, NY, USA, 1111–1116. https://doi.org/10.1145/1143997.
1144175

[11] Oscar Cordón. 2011. A historical review of evolutionary learning methods for
Mamdani-type fuzzy rule-based systems: Designing interpretable genetic fuzzy
systems. International Journal of Approximate Reasoning 52, 6 (2011), 894–913.
https://doi.org/10.1016/j.ijar.2011.03.004

[12] Kenneth A. de Jong, William M. Spears, and Diana F. Gordon. 1994. Using
Genetic Algorithms for Concept Learning. Springer US, Boston, MA, 5–32. https:
//doi.org/10.1007/978-1-4615-2740-4_2

[13] Jan Drugowitsch. 2008. Design and Analysis of Learning Classifier Systems - A
Probabilistic Approach. Studies in Computational Intelligence, Vol. 139. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[14] Guangzhe Fan and J. Brian Gray. 2005. Regression Tree Analysis Using TARGET.
Journal of Computational and Graphical Statistics 14, 1 (2005), 206–218. https:
//doi.org/10.1198/106186005X37210

[15] Michael Heider, David Pätzel, Helena Stegherr, and Jörg Hähner. 2023. A Meta-
heuristic Perspective on Learning Classifier Systems. Springer Nature Singapore,
Singapore, 73–98. https://doi.org/10.1007/978-981-19-3888-7_3

[16] Michael Heider, Helena Stegherr, Richard Nordsieck, and Jörg Hähner. 2023.
Assessing Model Requirements for Explainable AI: A Template and Exemplary
Case Study. Artificial Life 29, 4 (2023), 468–486. https://doi.org/10.1162/artl_a_
00414

[17] Michael Heider, Helena Stegherr, David Pätzel, Roman Sraj, Jonathan Wurth,
Benedikt Volger, and Jörg Hähner. 2023. Discovering Rules for Rule-Based
Machine Learning with the Help of Novelty Search. SN Computer Science 4,
6 (12 Oct 2023), 778. https://doi.org/10.1007/s42979-023-02198-x

[18] Michael Heider, Helena Stegherr, Roman Sraj, David Pätzel, Jonathan Wurth,
and Jörg Hähner. 2023. SupRB in the context of rule-based machine learning
methods: A comparative study. Applied Soft Computing 147 (2023), 110706. https:
//doi.org/10.1016/j.asoc.2023.110706

[19] Michael Heider, Helena Stegherr, Jonathan Wurth, Roman Sraj, and Jörg Hähner.
2022. Separating Rule Discovery and Global Solution Composition in a Learning
Classifier System. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (Boston, Massachusetts) (GECCO ’22). Association for
Computing Machinery, New York, NY, USA, 248–251. https://doi.org/10.1145/
3520304.3529014

[20] Clifford M. Hurvich and Chih-Ling Tsai. 1989. Regression and time series model
selection in small samples. Biometrika 76, 2 (06 1989), 297–307. https://doi.org/
10.1093/biomet/76.2.297

[21] Yaochu Jin and Bernhard Sendhoff. 2008. Pareto-Based Multiobjective Machine
Learning: An Overview and Case Studies. IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 38, 3 (2008), 397–415. https:
//doi.org/10.1109/TSMCC.2008.919172

[22] Amiram Moshaiov, Yosef Breslav, and Eliran Farhi. 2021. Multi-Modal Multi-
Objective Evolutionary Optimization for Problems with Solutions of Variable-
Length. In 2021 IEEE Congress on Evolutionary Computation (CEC). 1193–1200.
https://doi.org/10.1109/CEC45853.2021.9504705

[23] Rafael S. Parpinelli, Heitor S. Lopes, and Alex A. Freitas. 2002. An Ant Colony
Algorithm for Classification Rule Discovery. In Data Mining. IGI Global, 191–208.
https://doi.org/10.4018/978-1-930708-25-9.ch010

[24] David Pätzel and Jörg Hähner. 2022. The Bayesian learning classifier system:
implementation, replicability, comparisonwith XCSF. In Proceedings of the Genetic
and Evolutionary Computation Conference (Boston, Massachusetts) (GECCO ’22).
Association for Computing Machinery, New York, NY, USA, 413–421. https:
//doi.org/10.1145/3512290.3528736

[25] David Pätzel, Michael Heider, and Jörg Hähner. 2023. Towards Principled Syn-
thetic Benchmarks for Explainable Rule Set Learning Algorithms. In Proceedings
of the Companion Conference on Genetic and Evolutionary Computation (Lisbon,
Portugal) (GECCO ’23 Companion). Association for Computing Machinery, New
York, NY, USA, 1657–1662. https://doi.org/10.1145/3583133.3596416

[26] David Pätzel, Richard Nordsieck, and Jörg Hähner. 2024. Length-niching Selection
and Spatial Crossover in Variable-length Evolutionary Rule Set Learning. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Melbourne, VIC, Australia) (GECCO ’24 Companion). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3638530.3654308

[27] Richard John Preen and David Pätzel. 2023. XCSF. https://doi.org/10.5281/zenodo.
8193688

[28] David Pätzel. 2024. dpaetzel/RSLModels.jl: v0.2.0. https://doi.org/10.5281/zenodo.
10955477

[29] David Pätzel. 2024. dpaetzel/RunRSLBench.jl: v0.1.1. https://doi.org/10.5281/
zenodo.11143388

[30] David Pätzel. 2024. Learning tasks and result data for the 2024 IWERL@GECCO
paper A Closer Look at Length-niching Selection and Spatial Crossover in Variable-
length Evolutionary Rule Set Learning. https://doi.org/10.5281/zenodo.11143818

[31] Matt Ryerkerk, Ron Averill, Kalyanmoy Deb, and Erik Goodman. 2020. A novel
selection mechanism for evolutionary algorithms with metameric variable-length
representations. Soft Computing 24, 21 (01 11 2020), 16439–16452. https://doi.
org/10.1007/s00500-020-04953-1

[32] Matt Ryerkerk, Ronald C. Averill, Kalyanmoy Deb, and Erik D. Goodman. 2019.
A survey of evolutionary algorithms using metameric representations. Genet.
Program. Evolvable Mach. 20, 4 (2019), 441–478. https://doi.org/10.1007/s10710-
019-09356-2

[33] Matthew L. Ryerkerk, Ronald C. Averill, Kalyanmoy Deb, and Erik D. Goodman.
2017. Solving metameric variable-length optimization problems using genetic
algorithms. Genetic Programming and Evolvable Machines 18, 2 (01 Jun 2017),
247–277. https://doi.org/10.1007/s10710-016-9282-8

[34] Ben Sadeghi, Poom Chiarawongse, Kevin Squire, Daniel C. Jones, Andreas Noack,
Cédric St-Jean, Rik Huijzer, Roland Schätzle, Ian Butterworth, Yu-Fong Peng,
and Anthony Blaom. 2022. DecisionTree.jl - A Julia implementation of the CART
Decision Tree and Random Forest algorithms. https://doi.org/10.5281/zenodo.
7359268

[35] Yu Shi, Jian Li, and Zhize Li. 2019. Gradient Boosting With Piece-Wise Linear
Regression Trees. arXiv:1802.05640 [cs.LG]

[36] Patrick O. Stalph and Martin V. Butz. 2012. Guided Evolution in XCSF. In Pro-
ceedings of the 14th Annual Conference on Genetic and Evolutionary Computation
(Philadelphia, Pennsylvania, USA) (GECCO ’12). Association for Computing Ma-
chinery, New York, NY, USA, 911––918. https://doi.org/10.1145/2330163.2330289

[37] Anthony Stein. 2019. Interpolation-Assisted Evolutionary Rule-Based Machine
Learning - Strategies to Counter Knowledge Gaps in XCS-Based Self-Learning
Adaptive Systems. Doctoral Thesis. Universität Augsburg.

[38] Nariaki Sugiura. 1978. Further analysis of the data by Akaike’s information
criterion and the finite corrections: further analysis of the data by Akaike’s.
Communications in Statistics-theory and Methods 7, 1 (1978), 13–26.

[39] Ryan J. Urbanowicz and Will N. Browne. 2017. Introduction to Learning Classifier
Systems. Springer. https://doi.org/10.1007/978-3-662-55007-6

[40] Ryan J. Urbanowicz and Jason H. Moore. 2009. Learning Classifier Systems: A
Complete Introduction, Review, and Roadmap. Journal of Artificial Evolution and
Applications 2009 (2009).

[41] Stewart W. Wilson. 1995. Classifier Fitness Based on Accuracy. Evolutionary
Computation 3, 2 (1995), 149–175.

[42] Stewart W. Wilson. 2002. Classifiers that approximate functions. Natural Com-
puting 1, 2 (01 6 2002), 211–234. https://doi.org/10.1023/A:1016535925043

1787

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TFUZZ.2011.2131657
https://doi.org/10.1016/j.ijar.2013.06.005
https://doi.org/10.1016/j.ijar.2013.06.005
http://eprints.nottingham.ac.uk/id/eprint/482
https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1177/0049124104268644
https://doi.org/10.1145/1143997.1144175
https://doi.org/10.1145/1143997.1144175
https://doi.org/10.1016/j.ijar.2011.03.004
https://doi.org/10.1007/978-1-4615-2740-4_2
https://doi.org/10.1007/978-1-4615-2740-4_2
https://doi.org/10.1198/106186005X37210
https://doi.org/10.1198/106186005X37210
https://doi.org/10.1007/978-981-19-3888-7_3
https://doi.org/10.1162/artl_a_00414
https://doi.org/10.1162/artl_a_00414
https://doi.org/10.1007/s42979-023-02198-x
https://doi.org/10.1016/j.asoc.2023.110706
https://doi.org/10.1016/j.asoc.2023.110706
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1145/3520304.3529014
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.1093/biomet/76.2.297
https://doi.org/10.1109/TSMCC.2008.919172
https://doi.org/10.1109/TSMCC.2008.919172
https://doi.org/10.1109/CEC45853.2021.9504705
https://doi.org/10.4018/978-1-930708-25-9.ch010
https://doi.org/10.1145/3512290.3528736
https://doi.org/10.1145/3512290.3528736
https://doi.org/10.1145/3583133.3596416
https://doi.org/10.1145/3638530.3654308
https://doi.org/10.5281/zenodo.8193688
https://doi.org/10.5281/zenodo.8193688
https://doi.org/10.5281/zenodo.10955477
https://doi.org/10.5281/zenodo.10955477
https://doi.org/10.5281/zenodo.11143388
https://doi.org/10.5281/zenodo.11143388
https://doi.org/10.5281/zenodo.11143818
https://doi.org/10.1007/s00500-020-04953-1
https://doi.org/10.1007/s00500-020-04953-1
https://doi.org/10.1007/s10710-019-09356-2
https://doi.org/10.1007/s10710-019-09356-2
https://doi.org/10.1007/s10710-016-9282-8
https://doi.org/10.5281/zenodo.7359268
https://doi.org/10.5281/zenodo.7359268
https://arxiv.org/abs/1802.05640
https://doi.org/10.1145/2330163.2330289
https://doi.org/10.1007/978-3-662-55007-6
https://doi.org/10.1023/A:1016535925043

	Abstract
	1 Introduction
	2 Related work
	3 Rule set models
	4 Searching for variable-length rule sets
	4.1 Defining rule set fitness
	4.2 Fitting local models and mixing weights
	4.3 Searching for condition parameters

	5 Experimental setup
	6 Evaluation and discussion
	7 Future work
	8 Summary and conclusion
	References

