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Abstract

The present scoping review investigated the current state of the art concerning

factors affecting physical and mental health and well‐being of workers using

collaborative robots (cobots) in manufacturing industries. Each identified factor was

classified using the SHELLO (Software‐Hardware‐Environment‐Liveware‐Liveware‐

Organization) conceptual model. Strengths and limitations of such an approach were

outlined. A total of 53 papers were included in the scoping review and analyzed

following PRISMA guidelines. In 35 papers at least one risk factor referred to the

SHELLO Liveware‐Hardware interaction, followed by factors concerning Liveware‐

Software (16 papers), Liveware‐Liveware (11 papers), Liveware intrinsic factor (10

papers), Liveware‐Organization (8 papers), and Liveware‐Environment (8 papers).

This work highlighted that methodological research is still primarily focused on

traditional risk assessment and physical safety. However, several research directions

concerning the design of cobots as active collaborators were identified, promoting

workers' mental health and well‐being, too. The SHELLO model proved to effectively

highlight human factors relevant for the design of cobots and can provide a systemic

approach to investigate human factors in other complex sociotechnical systems. To

the best of our knowledge, this is the first time the model is applied in the field of

human–cobot interaction.
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1 | INTRODUCTION

1.1 | Industry 4.0 and cobots

The Fourth Industrial revolution, also known as Industry 4.0, refers to

the profound digitalization and integration of information technolo-

gies into traditional manufacturing and industrial practices (Arnold

et al., 2016), including internet of things, machine‐to‐machine

communication, cloud‐based systems, big data, additive manufactur-

ing, and collaborative robots (Neumann et al., 2021). In this context,

the role of human workforce in manufacturing processes is shifting

toward supervision and collaboration with these new technologies

(Reiman et al., 2021).

One of the most rapidly evolving aspects of this digital

transformation is the increasingly advanced collaboration between

humans and machines (Yilma et al., 2019). The concept of a

collaborative robot, so‐called cobot, was introduced two decades

ago to describe a device enabling direct physical interaction between

humans and computer‐controlled manipulators (Peshkin & Colgate,

1999). The first cobots were passive and operated by humans, while

modern cobots have evolved taking the form of light–weight robotic

arms. Cobots are especially advantageous and most commonly used

in assembly tasks, where the high payload and repeatability

characterizing traditional robotic systems need to be combined with

the skills and flexibility of human operators (Matheson et al., 2019).

One of the classifications proposed to describe the different ways in

which cobots can work with humans distinguishes four levels of

increasing collaboration: coexistence, when operator and cobot only

share the same physical space without interaction; synchronization,

when operator and cobot share the same workspace, but work at

different times; cooperation, when they work in the same workspace

at the same time, but on separate tasks; collaboration, when they

execute a task together, with one's actions having immediate

consequences on the other (Vicentini, 2020). While early cobot

implementations often only entailed removal of protective fences, in

the near future applications involving full collaboration will increase,

with operator and cobot increasing cognitive interaction through

human actions and gesture recognition, voice command, and social

acceptance (Hentout et al., 2019). In this context, the human

operator and the cobot can be described as a dyad, capable of both

physical and cognitive interaction (Schmidtler, Knott, et al., 2015). In

view of the evolution of human–robot collaboration (HRC), it is

necessary to understand the risks and the challenges that workers

face when using cobots, in relation to both their physical and mental

health and well‐being.

1.2 | The role of human factors in workplaces
adopting cobots

The complex and nonlinear relationship between work, technology,

and health and well‐being can be tackled by looking at modern

workplaces as sociotechnical systems, where the social,

organizational, and technical levels are strongly and dynamically

interrelated (Carayon et al., 2015). Human factors and ergonomics

(HFEs) studies are aimed at investigating human interactions with

elements of these complex systems (Wilson, 2000). HFE is critical in

contemporary industrial environments, because human beings are

crucial players who allow smooth and physically safe workflows in

workplaces filled with increasingly interconnected technologies. Until

recently, however, HFE has been substantially overlooked in studies

concerning industry 4.0 implementation (Bragança et al., 2019):

cobots were primarily designed to promote optimal productivity

performance by reducing uncertainty and instability in their

cooperation with humans (Oliff et al., 2018), and research in

collaborative robotics has been mainly focused on the development

of technical solutions to implement human–robot physical interac-

tion, to preserve workers' physical safety (Khalid et al., 2016). One of

the most recent and comprehensive literature reviews looking at

industrial collaborative robotics from an HFE perspective (Gualtieri

et al., 2021) showed that the majority of studies still focus on classic

safety issues such as contact avoidance or detection, or focuses on

physical ergonomics such as motion planning and task scheduling.

Research in cognitive ergonomics has been growing significantly in

the last years but few studies were carried out so far.

1.3 | The Software‐Hardware‐Environment‐
Liveware‐Liveware‐Organization (SHELLO) model

In the field of HFE, many models for complex work systems have

been proposed. Carayon classified these models based on the way

they describe and “slice” these sociotechnical systems: vertically,

functionally, or by domain (Carayon, 2006). To successfully describe

these complex systems, all these models need to facilitate our

understanding of the human–systems interactions.

In this domain, one of the few holistic models proposed to assess

risks related to working conditions is the SHELLO (Software‐

Hardware‐Environment‐Liveware‐Liveware‐Organization) model

(Chang & Wang, 2010) which is an evolution of the original SHEL

model proposed by Edwards, which comprised three components

(Software, Hardware, and Environment) interacting with humans,

defined as Liveware (Edwards, 1972). Software refers to the rules and

regulations that govern activities, but also includes procedures and

computational code; Hardware concerns the physical elements in the

setting; and Environment describes the physical location in which

activities occur. The human being is considered as the core of the

model, directly interconnected with the other components. The

original model was developed to analyze the dynamics of aviation

accidents (Licu et al., 2007). It was subsequently expanded to SHELL

model (Hawkins, 1987), with the addition of a second Liveware factor

referring to the person‐to‐person interaction, and used to investigate

risk assessment and error management in other contexts, such as

maritime settings (Chen et al., 2013), nuclear power plants (Kawano,

1997), community pharmacies (Croft et al., 2017), healthcare and

rehabilitation services (Molloy & O'Boyle, 2005), industrial and
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railroad maintenance (Metso et al., 2016; Rizzo et al., 2000). The

latest implementation is represented by the SHELLO model (Chang &

Wang, 2010), including the Organization component and the

Liveware‐Organization interaction. As illustrated in Figure 1, the

SHELLO model thus comprises a central human component (L) and

five related interactions: Liveware‐Hardware (L‐H), Liveware‐

Software (L‐S), Liveware‐Environment (L‐E), Liveware‐Liveware (L‐

L), and Liveware‐Organization (L‐O). The SHELLO model allows for

the assessment of risks related to each single component, including

organizational issues, but it may also be used for other purposes, for

example, to organize findings obtained in studies exploring the

impact of introducing collaborative tasks in manufacturing scenarios,

as exemplified by a case study conducted in a healthcare setting

(Antunes et al., 2008). It may provide a useful conceptual framework

to understand the interplay between elements influencing a complex

sociotechnical system, including interaction with technology, social

aspects, and organizational factors. Like the previous versions, this

expanded model considers the human worker as the prominent

component of the sociotechnical system, directly interconnected

with all other components. We decided to use the SHELLO model as

a conceptual HFE model in our work because of its demonstrated

flexibility and applicability in many research areas, its holistic

approach to risk assessment and its clearly defined interfaces

providing the necessary structure to disentangle the many facets of

collaborative work between humans and cobots.

1.4 | Aim and research questions

The overall aim of this study was to investigate the current state of

the art in the complex and multifaceted research field of physical and

mental health and well‐being of workers in manufacturing industries,

with a specific focus on collaborative robotics. Scoping reviews are a

type of knowledge synthesis which can be used in pursuit of various

goals, such as examining the extent and characteristics of evidence

collected about a certain topic, or summarizing findings from a

diversified body of knowledge (Tricco et al., 2018). Based on the

overall aim, we performed a scoping review to answer the following

research questions:

• Which factors affect physical and mental health and well‐being of

workers using cobots?

• What are these factors' implications on physical and mental health

and well‐being?

This study is contributing both to academia and practice: on the

one hand, it may supports researchers in finding new topics and

systematically address existing gaps in understanding consequences

on health and well‐being of risk factors during HRC. On the other

hand, it may assist occupational health and safety (OHS) profes-

sionals in the manufacturing sector by proposing a categorization of

risk factors within a sociotechnical system model (the SHELLO) to

allow a better understanding of their major OHS issues, improve risk

management and reduce risks during HRC.

2 | METHODS

Scoping reviews follow a systematic approach to comprehen-

sively summarize and synthesize evidence from a specific field

and are especially useful in emerging areas of investigation

(Colquhoun et al., 2014). This study was conducted according to

the PRISMA extension for scoping reviews guidelines (Tricco

et al., 2018).

F IGURE 1 The SHELLO (Software‐
Hardware‐Environment‐Liveware‐Liveware‐
Organization) model
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2.1 | Search strategy

The current scoping review encompassed empirical studies with

either qualitative or quantitative data, including conference papers

but excluding literature reviews. A comprehensive search for relevant

literature was conducted in June 2021 searching titles, abstracts and

keywords for a combination of keywords commonly used to describe

HRC (“cobots,” “cobot,” “collaborative robot,” “robot”), medical

subject headings pertaining to physical and mental health and well‐

being (“health,” “safety,” “mental health,” “well‐being”) and terms

associated with modern manufacturing workplaces (“industry 4.0,”

“workplace,” “manufacturing,” “enterprise”). The detailed search

strategy is reported in Table 1. We searched four electronic

databases (PubMed, Scopus, PsycINFO, Web of Science). Additional

studies were identified through reference searching in various online

research repositories and databases, and cross‐referencing was

applied to all papers, to identify further relevant studies.

2.2 | Inclusion criteria

Articles were considered for inclusion if they: (i) discussed potential

factors affecting physical and mental health and well‐being of

workers in workplaces during HRC; (ii) were written in English; (iii)

were published between 1st January 2011 and 30th June 2021, (iv)

contained primary data and (v) were available online in full‐text.

2.3 | Study selection

Study selection was performed by two independent reviewers. First,

titles and abstracts were screened removing duplicates and ineligible

records according to the inclusion criteria. Then, both reviewers

independently performed a preliminary eligibility check by reading

the remaining full‐text articles and screening them according to

inclusion criteria. To ensure the appropriateness of the identified

references, in a second detailed eligibility check both reviewers

discussed papers which had not been selected as fitting to reach

complete agreement.

2.4 | Data charting and reporting

A data‐charting table was developed to determine the variables to be

extracted from the included papers. We used a narrative descriptive

approach to summarize and report the findings (Mays et al., 2005;

Popay et al., 2006). In an iterative process, the reviewers indepen-

dently charted the data, discussed the results, and updated the data‐

charting table until they finalized it. The following data were

extracted from all papers: references, type of document, type of

publication, and identified factors.

Potential factors influencing physical and mental health and well‐

being of workers were extracted from the qualitative synthesis and

sorted into the relevant thematic categories according to the

SHELLO Model: Liveware (L) and the five related interactions: L‐H,

L‐S, L‐E, L‐L, and L‐O. We decided to classify factors associated with

the social aspects of HRC and interaction between collaborative

robots and humans within the L‐L interaction. This perspective is in

line with research in social robotics, which aims at providing robots

with a new set of skills related to natural interaction with humans

(Cross et al., 2019). Each factor was also classified as having mainly

physical, mental, or both physical and mental health implications for

the workers, according to the point of view of the reviewed

publications. The final overall classifications were decided through

consultation with the review team and by referring to supportive

data. It should be noted that the proposed subdivision is in no way

univocal.

3 | RESULTS

3.1 | Descriptive data

A flowchart of the review process is provided in Figure 2. Database

searching provided a total of 13,678 publications. Following the initial

screening phase, 264 full‐text papers were obtained. These papers

were read and assessed independently by two reviewers. This

preliminary eligibility check narrowed the initial list of publications to

141. After a second more detailed eligibility check, a total of 53

papers were selected for inclusion in the scoping review.

Only three papers published between 2011 and 2014 were

included in the study, while paper publication per year increased

significantly between 2015 and 2020, with over half of the included

papers published from 2019 onwards. As shown in Figure 3, the

majority of the documents were full‐length journal articles (55%, 29

documents) and the remaining were conference proceedings papers

(45%, 24 documents). Regarding the type of research, 36 papers

(68%) investigated the topic of interest using an experimental

approach to human participants, 17 papers (32%) were focused on

methodology and technical issues.

TABLE 1 Search terms used for the scoping review

Word group 1: Robot and cobot
Word group 2: Physical and mental
health and well‐being Word group 3: Workplaces

“Cobots” OR “Cobot” OR
“Collaborative robot” OR “Robot”

“Health*” OR “Safety*” OR “Mental health*”
OR “Well‐being”

“Industry 4.0” OR “Workplace” OR
“Manufacturing” OR “Enterprise”

Note: *Medical subject headings used in the Pubmed database.
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3.2 | Risk factors and SHELLO classification

All factors identified in the papers as influencing HRC from a health

and well‐being perspective were extracted and classified within the

SHELLO model (Chang & Wang, 2010). Most of the studies (35

papers, 66.0%) identified at least one risk factor that we classified

within the L‐H interaction. The second most frequently investigated

risk factors were included in the L‐S interaction (16 papers, 23.2%),

followed by factors associated with the L‐L interaction (12 papers,

22.6%) and those associated with the Liveware (L) intrinsic compo-

nent (7 papers, 13.2%). Finally, the least common risk factors were

classified in the L‐E and L‐O factors (5 papers each, 9.4%). Figure 4

graphically shows paper distribution based on the types of

investigated risk factors classified using the SHELLO model: papers

dealing exclusively with factors associated with the L‐H interaction

were the relative majority (26 papers, 49.1%). Only 4 out of 12

papers investigating factors concerning the L‐L interaction mentioned

other types of factors. By contrast, no papers investigated L‐O

factors alone without considering any further factors.

3.3 | Risk factors and health

As shown in Figure 5, most papers discussing factors that we

classified within the L‐H component of the SHELLO model

mentioned exclusively their impact on the physical health and well‐

being of the cobot workers (20 factors, 57.1%). However, there were

also papers discussing the impact of L‐H factors only on mental

F IGURE 2 Flow chart for study selection

F IGURE 3 Distribution of analyzed papers (a) per year, (b) by type of document, and (c) by type of publication. Numbers in the pie charts
indicate the number of papers
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health and well‐being (eight factors, 22.9%), or both physical and

mental aspects (7 factors, 20.0%). Factors related to the L‐S

interaction were associated mainly to mental health and well‐being

aspects (9 factors, 69.2%), with only 4 factors (30.8%) being

associated to physical health and well‐being, too. Of the 5 identified

factors that were classified within the L‐E interaction, 1 factor was

associated to physical well‐being, 2 factors to mental well‐being and

2 factors to both physical and mental aspects. The 6 factors classified

in the SHELLO model within the L‐O interaction were associated by

the authors of the papers as impacting mental health and well‐being.

Among factors associated to the L‐L interaction, 9 factors were

associated to the workers' mental health and well‐being, while only 1

also mentioned physical implications. Similarly, factors classified in

the L intrinsic component were almost exclusively linked to mental

health and well‐being, with only 1 out of 7 factors which also

considered physical implications. A summary of all factors identified

in the reviewed papers and classified according to the SHELLO model

is shown in Table 2.

3.4 | L‐H factors

The L‐H interaction described in the SHELLO model is crucial for

maximizing safety, as it concerns the relationship between the worker

and the physical features. Physical safety of humans during HRC has

been extensively investigated as a key aspect of ergonomics and OHS

(Vicentini, 2020), and is nowadays incorporated in many industrial

regulations and international standards, such as the ISO/TS 15066

(2016), ISO 10218‐1 (2014), ISO 10218‐2 (2006), and ISO 8373 (2012).

In fact, much of the science of ergonomics is concerned with this

interface, and, not surprisingly, risk factors associated with this

interaction were frequently investigated by papers included in this

F IGURE 4 Graphical representation of paper distribution based on the type of investigated factors classified using the Software‐Hardware‐
Environment‐Liveware‐Liveware‐Organization (SHELLO) model. Each paper is represented by a small dot. L‐H, Liveware‐Hardware; L‐S,
Liveware‐Software; L‐E, Liveware‐Environment; L‐O, Liveware‐Organization; L, Liveware; L‐L, Liveware‐Liveware. Image is drawn using Di Venn
(Sun et al., 2019) website (https://divenn.tch.harvard.edu/)

F IGURE 5 Factors identified in the reviewed papers are classified
according to as either impacting physical, mental, or both aspects of
health and well‐being
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TABLE 2 Included studies, investigated risk factors, and SHELLO classification

(Continues)
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(Continues)
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scoping review. The most common factors classified within the L‐H

interaction were those related to the risk of collisions between cobot

and worker. Collision avoidance is a classic research topic, extensively

studied by researchers, and promising technologies for preventing

human‐cobot impacts during HRC activities include virtual fencing

systems based on passive infrared sensors (Anand et al., 2018),

projection‐based safety system (Maurtua et al., 2017; Vogel et al.,

2013), augmented environments using computer vision (Mohammed

et al., 2017), inertial measurement units combined with global

localization systems (Corrales et al., 2012) and depth sensors (Flacco

et al., 2015; Hietanen et al., 2020; Magrini et al., 2020). Many papers

mentioned generic physical harm or physical safety as a risk factor to be

considered when designing collaborative interactions between humans

and robots (Kong & Yu, 2014; Marvel & Norcross, 2017; Ore et al.,

2019; Reddy et al., 2019), including studies on minimization of injuries if

a collision occurs. Injury minimization after an unwanted collision can be

pursued through mechanical compliance systems aiming at reducing

impact energy or strategies involving contact detection (Pang et al.,

2021). Robot speed and movements were also often mentioned as risk

factors, potentially impacting on workers' psychological conditions.

Excessive physical effort during HRC, leading to musculoskeletal

disorders was also mentioned in papers proposing methods to minimize

joint loading (Kim et al., 2021) or smart garment for real‐time ergonomic

risk assessment (Cerqueira et al., 2020). Most of the methodological

papers reviewed in the present work mentioned at least 1 of the L‐H

factors, highlighting that the classic approach concerning physical safety

is still very common. However, a growing area of research is also

focusing on the psychological consequences of the L‐H factors.

Especially movement predictability, smoothness, and speed (Etzi et al.,

2019; Fratczak et al., 2020; Hu et al., 2020) have been shown to impact

on mental health and well‐being: methods were proposed to design

trajectories allowing for less stressful movements, reducing anxiety and

increasing perceived safety (Koppenborg et al., 2017; Lasota & Shah,

2015; Rojas et al., 2020) and to detect stressful situations that may

require adapting the behavior of the cobot (Landi et al., 2018). A paper

proposing dynamic security zones demonstrated that the system was

deemed less stressful by cobot operators with respect to static security

zone systems (Long et al., 2018). A recent paper also showed that

different (anthropomorphic vs. functional) designs of the cobot may

have an impact on trust (Biermann et al., 2021).

3.5 | L‐S factors

The L‐S interaction represents the relationship between humans

and the nonphysical components of the system, such as policies,

norms, rules, procedures, checklists, and codes (Rizzo et al., 2000).

Most of the factors emerging in the papers and classified within

this interaction are related to the design of the collaborative task,

which should be performed safely and efficiently, minimizing risks

for procedural omissions or mistakes. In this context, experimental

studies have proposed optimization frameworks able to support

process engineers in generating task assignments balancing both

time and ergonomics (Mateus et al., 2019). Studies focusing on

psychological aspects of task allocation suggest that autonomy in

decision‐making increases workers' satisfaction and task identity

(Tausch & Kluge, 2022). Thus, increased attentional resources may

be needed owing to the changing role of the worker (Brun &

Wioland, 2021). An experimental study on workflow preferences

during human–robot teaming confirmed that situational awareness

might be compromised as the degree of robot autonomy increases

(Gombolay et al., 2017). Different cobot modes (autonomous and

manual) can also influence psychological and physiological stress in

human workers (Pollak et al., 2020). Clear instructional information

through graphical signage has also demonstrated its usefulness in

positively impacting on user feelings and performance during

human‐cobot interaction (Eimontaite et al., 2019). Another aspect

considered in the reviewed papers is the limited flexibility of the

cobot technology in responding to human and environmental

inputs. Hence, the creation of adequate standard operating

procedures is crucial for improving work efficiency and quality

(Kadir et al., 2018; Pearce et al., 2018). Cobots should be designed

to favor teaming with the worker, adapting their behaviors both to

the performed task and the worker's state, with potential effects

on higher productivity as well as higher social recognition (Rosen &

Wischniewski, 2018). Another study showed that quality of

collaboration also influences stress levels of the human coworker

(Müller et al., 2017). This evidence confirms the relevance of

designing truly collaborative tasks, where human workers and

cobots interact in ways enabling workers to perceive task

execution as challenging, motivating, and not frustrating, thus

contributing to fostering their health and well‐being.

Note: Colors in table 2 are associated to the corresponding interaction of the SHELLO model.

Abbreviations: A, article; C, conference proceeding; Doc, type of document; Exp, experimental study; M, mental health and well‐being; Met,
methodological study; P, physical health and well‐being; Pub, type of publication.
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3.6 | L‐E factors

The positive and negative effects of the physical environment on job

performance and health have been extensively investigated in other

contexts (Kegel, 2017; Vischer, 2007). Some papers highlighted that

shop‐floor conditions such as ventilation, noise, temperature, humidity,

and light may represent risk factors during complex HRC tasks (Fletcher

et al., 2019). El Makrini et al. identified a potential risk in communication

difficulties between the worker and the cobot owing to noise, proposing a

novel collaborative architecture for human–robot assembly tasks mainly

based on face and gesture recognition (El Makrini et al., 2017).

Interestingly, the chromatic contrast of the robotic arm against the

background was also investigated as a potential distractor during HRC

(Schmidtler, Sezgin, et al., 2015). Research focusing on factors grouped in

the L‐E interaction suggest the necessity to consider how the introduction

of a cobot may produce an inadequate setting that can affect worker's

physical and mental health and well‐being if these aspects are not

considered (Petruck et al., 2019).

3.7 | L‐O factors

The L‐O interface—the interaction between the worker and the

organizational aspects of the system—concerns workload allocation,

management of the organizational structure, political environment,

financial constraints, resource management, and safety culture (Croft

et al., 2017). Previous research has highlighted the systematic oversight of

organizational human factors, hindering full exploitation of new

technologies (Charalambous et al., 2015). The most common potential

L‐O risk factors identified in the reviewed papers were related to job

displacement, reconfiguration, or loss owing to the introduction of cobots

in production lines (Rosen & Wischniewski, 2018; Welfare et al., 2019).

An experimental study exploring the relationship between work attributes

and automation (Elprama et al., 2017) showed that workers express some

concern about robots taking their jobs, but they also acknowledge robots'

contribution to reducing their mental and physical workload. Another

qualitative experimental study (Meissner et al., 2020) highlighted that

employees perceive the introduction of robots as a more drastic

organizational change compared to other technologies. Findings from

the reviewed papers suggest that the L‐O interaction factors play a

fundamental role especially in the early stage of cobot adoption, when

significant organizational challenges require a transition in the way

business is done, ultimately affecting human workers. Comprehensive

training programs for the workforce are also proposed, since

inappropriate preparation of the employees may negatively affect

organizational performance and effective use of the equipment

(Charalambous et al., 2015; Welfare et al., 2019).

3.8 | L‐L factors

For the purposes of this analysis, the L‐L interaction was looked at

from two main viewpoints: the effects of the cobot implementation

on the social environment, and the potential role of the cobot as a

social agent within an extended social environment. Regarding the

first facet, the impact of cobots on the relations among colleagues

has often been analyzed in the reviewed papers in negative terms, as

entailing the risk of reducing human‐human interactions, and favoring

social isolation (Elprama et al., 2017; Mühlemeyer, 2020; Welfare

et al., 2019; Wurhofer et al., 2015). However, this type of socially

protected environment might facilitate workers with specific condi-

tions, such as people with autism spectrum disorders (Khalifa et al.,

2020). Teamwork dynamics could also be affected with cobots taking

the role of team operatives, while humans are engaged in leadership

and supervision tasks (Bergman et al., 2019; Messeri et al., 2020;

Zhao et al., 2020), or mutual action and intention recognition

between human workers and cobots (Lindblom & Alenljung, 2020).

The second facet of the L‐L interaction is based on the view of

the cobot as a potential coworker, thus capable of socially interacting.

In relation to this, the factor that was most frequently investigated in

the reviewed papers was the introduction of social elements in the

cobot. A study applying principles from character animation to

enhance HRC highlighted that social capabilities may increase

likeability and perceived sociability (Terzioğlu et al., 2020). In an

interesting experimental pilot test in a factory, cobots exhibiting more

social cues elicited workers' increased willingness to work with them

(Elprama et al., 2016). Another study investigating the effects of

social cues in HRC showed that workers in a manufacturing setting

rely significantly on social cues to understand the robot's behavior

(Sauppé & Mutlu, 2015). It is interesting to note that these social

elements do not only have an impact on workers' perceived trust, but

may also increase feelings of physical safety and protection (Bergman

et al., 2019).

3.9 | Liveware factors

Liveware (L), representing humans and their intrinsic characteristics,

is the most flexible component of the SHELLO model (Croft et al.,

2017). It includes all factors intrinsically related to the human

operator, and not necessarily associated to a specific interaction. In

the modern industrial framework, despite high automation, the role

of the human worker remains crucial to grant an optimal workflow

and avoid unsuccessful implementation of new technologies, which

lead people to feel neglected, frustrated, and overpowered (Bragança

et al., 2019). The intrinsic factors affecting the Liveware component

investigated in the reviewed studies are both physical and cognitive.

The most frequently mentioned factors were related to mental

processes, especially the ability to adapt to new situations and

cognitive load (Rajavenkatanarayanan et al., 2020). Knowledge and

training of the workforce are also mentioned (Kildal et al., 2018). An

online questionnaire completed by workers from different industries

identified soft skills such as continuous development and problem‐

solving as crucial (Leitao et al., 2020). Meissner et al. suggested that

knowledge and experience, trust and interest in robots, personality,

and moral values are also important to increase acceptance of HRC in
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assembly environments. Trust in robots is also a vital aspect of the

HRI relationship. Cobot workers should trust the safety strategy

adopted during a task, and should also have confidence that cobots

will not harm their welfare and interests (Kadir et al., 2018).

4 | DISCUSSION

In the Industry 4.0 era, manufacturing enterprises are facing the

challenge of aligning themselves to a new digital transformation

without moving the human worker from the central role he/she

deserves. We reviewed existing literature with the aim of investigat-

ing the state of the art related to physical and mental health and well‐

being of workers interacting with collaborative robots. We identified

a list of factors discussed in recent publications, and we provided a

sociotechnical systems perspective by proposing a possible classifi-

cation using the SHELLO model. As confirmed by recent literature on

HFE, such a socio‐technical perspective may help to overcome the

traditional techno‐centric approach to HRC, focused mainly on

physical and safety‐related aspects and less on the implications

related to the nature of the collaborative work, where the “coagency”

is the unit of analysis (Adriaensen et al., 2021).

Recent reviews in the field of HFE and cobot implementation

have focused on specific interactions which take place in socio-

technical systems: for example, two reviews focused on the

applications and features of HRC from a task planning and operations

management perspective, that we classified as L‐S interaction

(Hashemi‐Petroodi et al., 2020; Tsarouchi et al., 2016). Another

review demonstrated that HFE issues are rarely considered as

requirement when designing collaborative robotic workstations,

suggesting that further work should be undertaken to create a

comprehensive framework to allow an assessment of both physical

and mental workload during human‐cobot interaction (Cardoso et al.,

2021). Several authors reviewed methods to ensure physical safety in

industrial HRC applications (Reddy et al., 2019; Robla‐Gomez et al.,

2017), without considering aspects related to mental health.

Matheson et al. (2019) identified 35 case studies of industrial

applications, grouping them into three broad categories based on

their focus: productivity, safety, or human–robot interaction. A

further classification of research themes in industrial collaborative

robotics was performed by Hentout et al. (2019), who grouped the

reviewed papers into 7 categories and 39 subcategories ranked from

an architectural vantage point, including safety, and cognitive

human–robot interaction. A review focused on poorly designed

human‐machine interactions as potential risk factors for emotional

and mental stress (Robelski & Wischniewski, 2016), suggesting that

future research should focus on a detailed description of

human–machine systems to gain a comprehensive understanding of

their interactions. In one of the most recent and comprehensive

reviews, Gualtieri et al. (2021) looked at emerging themes in safety

and ergonomics in industrial collaborative robotics, identifying risks

such as contact avoidance, detection and mitigation (L‐H factors),

task scheduling, and motion planning (L‐S factors), minimization of

work‐related psychosocial risks including acceptability of the

collaborative systems by human coworkers. The authors conclude

that the most developed research category is safety, even though

cognitive and organizational ergonomics have been growing signifi-

cantly in the last years. This has been confirmed by a recent

experimental study looking at human factors during the implementa-

tion of cobots in distribution centers, focusing specifically on

resistance to change, organizational culture, and leadership

(Lambrechts et al., 2021).

Looking at the larger picture of Industry 4.0, a review highlighted

that most articles focus on the technologies driving this revolution,

rather than on worker's health and safety: Kadir et al. (2018) applied a

broader search for contributions in the field of HFE applied to

Industry 4.0 and found that only a minority of the 40 papers

reviewed were journal articles. Our review, too, included a significant

number of conference proceedings, confirming that the quality of

literature looking at mental and physical aspects of HRC is still

growing (Kadir et al., 2018).

Compared to the mentioned reviews, our study classified all

identified factors into a model such as the SHELLO to provide a more

comprehensive picture of the sociotechnical system in which the

HRC occurs. Our grouping is in no way univocal but it allowed to

identify which aspects received greater attention in the scientific

literature. Our review confirms that safety issues related to the

physical interaction with the cobot, which we classified into the L‐H

SHELLO interaction, are the predominant topic. However, a growing

research area on motion planning and predictability and its influence

on the psychological state of the worker has also emerged. We also

showed that there is a need for more research into factors affecting

mental health and well‐being, which are still poorly investigated and

mostly address the remaining SHELLO interactions. The systemic

human factors approach given by such a socio‐technical perspective

provides insights for the design, implementation and operation of

cobot systems that may not be achieved through traditional

nonsystemic methods.

4.1 | The SHELLO model: Value and limitations

The SHELLO model helps to identify and examine the individual

psychological and behavioral elements that play an important role in

complex sociotechnical systems (Croft et al., 2017; Metso et al.,

2016). This global and systemic investigation approach is in line with

the Reason model of error (Reason, 2000), highlighting the

complexity of human–system interactions (Molloy & O'Boyle, 2005).

The SHELLO allowed to achieve a further aim of this study,

which was to establish how the classification of within‐ the model

factors would relate with the implications for physical and/or mental

health that were discussed in each of the reviewed papers. Our

findings suggest that factors associated to the interaction between

the human operator and the physical components of the system

(the L‐H interaction) are predominantly investigated in view of their

impact on physical safety and are still influenced by a classic
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“hard‐safety” approach, while factors classified in all other SHELLO

components were predominantly associated to mental and psycho-

logical health and well‐being.

We also identified drawbacks and limitations concerning the use

of the SHELLO model. The classification of factors was not always

straightforward, and considerable discussion was needed to reach a

consensus among authors regarding some of these factors. In

addition, the aspect of social interaction between the cobot and

the worker was hardly classifiable using the classic SHELLO

subdivision. We decided to extend the definition of Liveware to

include this facet, but we acknowledge the potential limits of such

approach. Finally, the SHELLO is a broad descriptive model, allowing

for a structured classification of data but not providing a systematic

methodology to analyze and sort the classified factors.

Further limitations of the present work concern methodological

aspects. The search strategy could be improved by including the

terms “human factors” and “ergonomics” to better address HFE

aspects. In addition, the use of the term “Industry 4.0” as an

alternative for within the word group associated to workplaces may

be misleading since it is not strictly synonym, but rather a

phenomenon and trend of modern industrial reality.

We also decided to exclude secondary sources such as reviews

from the literature search to focus exclusively on the scientific basis

provided by primary sources. However, for this reason, some relevant

papers may not have been considered in the present review.

5 | CONCLUSIONS

The overall aim of this study was to provide a global view of factors

highlighted in the scientific literature as affecting physical and mental

health of workers during HRC, by taking into account social and

organizational aspects, too. In the current scenario of human–cobot

interaction and collaboration, our work confirmed that methodo-

logical research is still primarily focused on traditional risk assessment

and physical safety, which are major issues for cobot producers and

users. However, the present scoping review highlighted several

research directions concerning the design of cobots as active

collaborators which also promote workers' mental health and well‐

being. We believe that the systemic approach characterizing the

SHELLO model can be useful for the classification of factors affecting

workers' health in modern industries using cobots, and can assist

researchers in finding new topics and systematically addressing

existing gaps.
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