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ABSTRACT
Asthma affects an estimated 334 million people world-

wide, causing over 461 000 deaths. Exacerbations or asthma
attacks can be predicted with new sensor technologies. We
explore how recordings of human voice, and machine learn-
ing can provide better diagnostics for pulmonary diseases
like asthma, as well as tools for helping patients better man-
age it. Past studies have focused on data collection pro-
cesses that either mimic traditional auscultation, or make
multi-sensor measurements, where the application of spe-
cialised recording hardware is required, possibly by expert
personnel. This is costly and places limits on the size of the
studies (e. g., number of study participants, and recording
devices). In this paper, we consider another avenue, that
of modelling self-recorded voice samples made using regu-
lar smartphones, along with self-reported clinical diagnosis
annotations; specifically of asthma. We propose the usage
of self-supervised learning that aims to reduce within-class
representation redundancy among heterogeneous samples as
an auxiliary task to promote robust, bias-free learning. The
application of our method achieves an absolute increase of
1.80% in area under the Precision-Recall curve, compared to
not using it, and a total of 3.54% compared to our baseline.

Index Terms— Asthma, speech-modelling, self-supervised-
learning, redundancy-reduction, dataset-bias-reduction

1. INTRODUCTION AND PRIOR WORK

Given the potential of machine learning (ML) based audio
modelling in disease diagnostics [1], a number of studies have
attempted to predict pulmonary function of subjects with res-
piratory illness [2, 3, 4, 5, 6, 7]. In this study, we focus only
on voice recordings made using the embedded microphone of
personal smartphone devices for predicting whether a subject
has been previously diagnosed with asthma, an illness that is
estimated to affect 334 million people worldwide [8].

Such recorders have been shown to be sensitive enough to
be able to mimic a spirometer in evaluating pulmonary func-
tion when used as part of an ML framework [9]. Most impor-

tantly, personal smart device data collection allows for large-
scale crowdsourcing of audio data along with self-reported
clinical annotations, as well as a plethora of other informa-
tive metadata (e. g., language, sex, smoking-status, recording
hardware type, etc.) [10]. We believe that such an approach
can be conducive to a more robust, realistic, and challenging
exploration of the asthma diagnosis prediction problem.

1.1. Related work

In a related domain-mismatch study [4], a model trained
on data recorded from one device type (e. g., smartphone,
or smartwatch) does not necessarily perform well on data
recorded using another without a feature adaptation step. The
authors offer a solution in which the adaptation step is su-
pervised, i. e., we need to know the recording device used.
We believe that assuming any domain knowledge of the test
set is a limiting requirement in the case of app-based, crowd-
sourced data collection. Other studies have side-stepped such
design challenges by focusing on subsets of a greater dataset,
e. g., on non-smokers [6] or English speakers [7].

The data recording process we use is not mimicking aus-
cultation from the trachea and chest that aims to detect crack-
les, rhonchi, and wheezes [5], which requires specialised
biosensor hardware. We are interested in users actively
recording themselves without the need for even a dedicated
microphone [11], in the interest of widespread application.

Apart from auscultation-based breath recordings, the au-
thors of [2] model smartphone-based cough sounds to predict
the effectiveness of inhaler usage on 55 Chronic Obstructive
Pulmonary Disease (COPD) patients. In the study performed
in [6], recordings from 26 non-smoking subjects with mild
atopic asthma that undergo a specialised methacholine in-
halation challenge [12] before being recorded reciting a text,
are segmented into speech and breathing clips, and undergo
ML modelling to predict abnormal lung function. More
comprehensively, the authors of [3] describe a smartphone
and smartwatch based dataset that includes various audio
recordings, like tidal breathing, coughing, sustained vowels,
and both spontaneous and read speech, as well as spirom-



etry measurements (including the methacholine challenge
[12]), breath count annotations, and smartphone accelerome-
ter recordings from a total of 228 subjects (asthmatic, COPD,
and healthy) used for breath rate prediction. The number
of subjects in the above studies is somewhat limited for a
robust, widely representative modelling attempt, even when
the number of samples per subject is high.

Towards robust learning of representations encoding se-
quences, a number of Self-Supervised Learning (SSL) meth-
ods encourage minimising a measure of distance between
representations of samples that are supposed to encode simi-
lar content. In completely unsupervised SSL, the distance is
between a sample representation, and the representation after
having the original sample distorted via data augmentation.
For example, the study performed in [13] aims to minimise
the mean squared error of keyword speech representations,
and the Barlow twins method [14] aims to reduce represen-
tation redundancy by encouraging the correlation matrix of
the representations to be close to identity, as recently applied
in speech modelling [15, 16]. We consider such approaches
to be orthogonal to ours, and are also influenced by domain
adaptation SSL techniques [17, 18] and bias-free learning
[19] in treating various speaker/recording characteristics as
bias factors. An example is SelfReg [17], which aims to re-
duce squared Euclidean distance between the representations
of same-class, different-domain samples, i. e., disregarding
any markers unrelated to asthma recognition. Such a tech-
nique requires knowledge of the class to be predicted, but is
unsupervised with respect to the domain categories.

1.2. Contributions

We explore past asthma diagnosis prediction via modelling
self-recorded speech using personal smartphones and using
self-reported labels from a large-scale dataset that is hetero-
geneous in terms of the clinical, personal, and recording-
device metadata of the subjects. We propose a within-
class, cross-sample representation redundancy reduction
auxiliary task to regularise our main supervision task, in-
fluenced by Barlow twins [14], and show its efficacy in a
comparative study among recent approaches. The code to
preprocess the data and replicate the experiments can be
found in: https://github.com/glam-imperial/
asthma-within-class-barlow.

2. SPEECH MODELLING FOR ASTHMA

The prediction of whether a speech sample has been self-
recorded by a person that has been diagnosed in the past
with asthma is treated as a binary classification task. A deep
learning model fW (·) with parameter weights W is trained
to make such predictions by the supervised minimisation of a
binary cross-entropy cost function Lsup. We further consider
an auxiliary SSL task that acts as a regulariser (with corre-

sponding weight λSSL, and cost function LSSL) to the main
supervised task. The total loss is defined as follows:

Ltotal = Lsup + λSSLLSSL (1)

2.1. Acoustic model definition

What follows is a description of the core model that will
perform best in terms of experimental results in Section 5,
compared to other baselines. Let xi, yi ∈ D be the i-th
sample/asthma-label pair from the dataset D. yi is either 0 or
1, denoting a sample from a non-asthmatic or an asthmatic
subject, respectively, and xi is a sequential audio feature rep-
resentation, in this study a LogMel-Spectrogram. We follow
[10] in using a pre-trained VGGish [20] model to process
this input, which yields a sequence of latent frame embed-
dings of length T : {hi,t}. We use global average pooling
to aggregate this sequence into a single embedding hi that is
representative of the voice sample. A further submodel con-
sisting of two dense layers separated by a ReLU nonlinearity
yields the logit corresponding to the positive class, and a final
sigmoid activation produces the model-estimated probability
that sample xi is positive, denoted by ŷi = fW (xi).

2.2. Reducing within-class representation redundancy

We are inspired by the Barlow twins method [14], as well as
by recent SSL-based methods designed for improving cross-
domain generalisation [17, 18], like SelfReg [17].

We work on the latent space of audio sample represen-
tations hi, and our goal is to bring closer and reduce redun-
dancy between same-class audio representations, albeit with
potentially differing bias factors (i. e., sex, language, smok-
ing status, etc.). This is a ‘supervised’ SSL approach, in the
sense that we are utilising the main task class labels to form
positive pairs (see SSL taxonomy in [18]), as well as non-
contrastive, as it does not consider negative pairs. Denoting a
batch-wise cross-correlation matrix by Ck,l, our method fol-
lows the Barlow twins [14] approach of penalising the model
for cross-correlation matrices that deviate from the identity I;
that being said, we do not use it for audio representations that
arise from different distorted versions of the same sample, and
instead encourage bringing closer in a non-redundant manner
the representations of potentially heterogeneous data, similar
to SelfReg [17]. The Ck,l SSL loss are defined as follows:
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where k, l are the representation dimension indices, b is the
index of the batch, and λRR is the regularising factor for the



Partition Positives Negatives All
training all-three 1,694 3,352 5,046
training all-speech 2,140 3,582 5,722
training all-breath 1,944 3,505 5,449
training all-cough 2,056 3,480 5,536
development 862 1,624 2,486
testing 852 1,618 2,470

Table 1. Partition sizes for the asthma diagnosis prediction
dataset. These partitions are user-independent. We denote by
all-three the count of instances where users recorded all three
modalities. We further include counts of all available samples
of a particular modality. In development and testing we only
include instances with all three modalities available.

redundancy reduction term. The way we implement this, is
that we split each batch b into two equal size parts A,B. The
cross-correlation matrix is calculated between these two half-
batches. The effective reduction in batch size is acceptable
as the success of the redundancy reduction approach does not
depend on large batch sizes [14].

3. SELF-REPORTED ASTHMA DATASET

We base our analysis on the dataset that was collected in the
context of [10] for COVID-19 modelling based on human
speech, breath, and cough; we reformulate the partitions and
focus, instead, on predicting which samples are made by asth-
matic users. We wanted to avoid training with imbalanced
data, and, in fact, preliminary experiments showed dimin-
ished performance when all negatives were used, even with
upsampling and/or positive class up-weighting. We, thus,
elected to use a subset of the asthma-negative users in roughly
a 1:2 positive-negative user ratio, for a total of 6,774 users.
The dataset statistics are summarised in Table 1.

The dataset from [10] contained numerous metadata re-
lated to the users, apart from their asthma diagnosis sta-
tus. The ones we considered as related to this study are:
age group, sex, smoking status, language, the outcome of
COVID-19 testing (if any), COPD diagnosis, other pul-
monary disease, and other symptoms (possibly of COVID-
19), such as dry or wet cough, sore throat, and short breath,
as well as whether they have used the android or the iOS
version of the app to make their recording. We did not use the
samples from the web app described in [10], because there
was no user identification, and we wanted to avoid placing
samples from the same user in different partitions.

In the interest of a fair experimental comparison, such that
the models do not end up memorising such biasing character-
istics in training, and such that we do not explicitly exclude
any of them from the development and testing partitions, we
aimed for the formation of fair partitions that preserve the per-
centage mixtures of the above metadata in all partitions. We
used a recent algorithm initially designed for generating strat-

Method AU-PR AU-ROC F1 R

V
G

G
is

h all-speech 41.55 58.27 57.08 57.28
all-breath 36.00 52.07 52.02 52.81
all-cough 38.30 55.48 53.36 54.72

ba
se

lin
e VGGish+mt 39.22 56.29 54.94 55.33

VGGish+gr 39.32 55.93 53.98 54.97
ResNet 40.44 57.57 56.93 56.90

ho
m

VGGish 43.29 59.46 57.99 58.21
VGGish+mt 42.63 58.87 57.23 57.27
VGGish all-3 42.46 60.30 57.52 58.60

SS
L

Norm (.1) 44.61 60.06 58.64 58.68
RR (.1) 45.09 60.47 59.00 59.04
RR (.2) 43.73 60.14 57.74 57.67

Table 2. Results on the asthma diagnosis test set.

ified partitions of a multilabel dataset [21]. However, instead
of using it as intended, i. e., with multiple prediction labels
per data sample, we supplied it with the multiple metadata
categories that are associated with each user, thus generating
stratified user partitions, with respect to metadata.

4. EXPERIMENTAL SETUP

We calculate LogMel-Spectrograms with 64 Mel filterbanks,
as per [10]. For data augmentation, we use: SpecAugment
[22] with 2 time and 1 frequency masks of size 24 and 16, re-
spectively, and input jitter sampled from a zero-centred nor-
mal distribution with standard deviation equal to 1e-6. We
use a batch size of 8 (split into two sub-batches of 4 for the
redundancy reduction task). We use λRR equal to 5e-3.

On the development set, we monitor Area Under the
Precision- Recall curve (non-interpolated AU-PR) of the pos-
itive class with a patience of 200 epochs for model selection,
and use this model in testing. We also report Area Under
the Receiver Operator Characteristic curve (AU-ROC), and
macro-averaged F1 (F1) and recall (R) scores. For F1, we
identify the probability class threshold that maximises F1 on
the development set, and we utilise the same one for the test
set. This way, we observe at least as good performance on
F1, of up to 4 absolute points. In all cases, we performed 3
trials for which we report the mean outcome.

5. RESULTS & DISCUSSION

All experimental results are summarised in Table 2. In the up-
per block (VGGish), we make a comparison between single
modalities, using the pre-trained VGGish based architecture
described in Sub-section 2.1. We use all available samples
per modality, as shown in Table 1. We see that the usage of
the speech modality is the most informative, and continue as
such, unless specified.

Next, we attempted a baseline comparison with another



architecture (i. e., instead of the pre-trained VGGish, we used
an untrained ResNet model that performed well in [23]), as
well as two multi-task regularisation attempts. VGGish+mt
also attempts to model the various user metadata (summarised
in Sub-section 3) pertaining to the samples; the sum regulari-
sation weight for all these tasks is conservatively set to .2, and
they all share the same weight amongst them. VGGish+gr is
a similar setup, albeit there is a gradient reversal layer before
the prediction blocks for the metadata, as proposed in [19] for
bias-free learning. We see that none manage to surpass the
VGGish-based baseline.

In order to go through with the SSL auxiliary task related
experiments, we need batches that are homogeneous (hom)
in terms of the main prediction class, i. e., either all positives,
or all negatives, so we re-run select baselines in that setup.
VGGish is the so-far best baseline using all speech samples,
VGGish+mt refers to the addition of the multitask regulari-
sation, and we also perform an experiment where we use all
available samples from all three modalities (all-3). We use
a separate VGGish model per modality, and we aggregate
the three hmod

i via max pooling before applying a common
dense prediction block. For VGGish and VGGish+mt we see
that this kind of same-class batching has yielded an improve-
ment in all measures, thus formulating a stronger baseline, for
stricter comparison with the SSL methods, although VGGish
still performs better than the latter. As for VGGish all-3, it
manages to surpass VGGish in two out of four measures (non-
strict improvement), albeit at a multiple execution time cost
(not just for processing three modalities, but also requiring
roughly twice the epochs until patience-based training termi-
nation), and, as such, we opted not to continue with it.

In the best performing variation cluser of the study, we
experiment with SSL based auxiliary regularisation. Our pro-
posed method, denoted by RR is used both with λSSL equal
to .1 and .2. We further compare with a squared Euclidean
distance loss (Norm (.1)) instead of the one based on cross-
correlation, including the use of a projection layer, as per
[17]. We see that both Norm (.1) and RR (.1) outperform the
stronger, homogeneous batch baseline in all measures, with
RR (.1) achieving the best results in this study. We also at-
tempted a higher focus on the SSL auxiliary task, in RR (.2),
however it managed to surpass hom-VGGish in only two out
of four measures. This is promising still, however, indicative
that in this auxiliary/regularisation setup, the parameterisation
sweet-spot should lean towards the main task.

5.1. What works best for recognising asthmatic speech?

As an outcome of this study, we should take that for predicting
whether a voice sample is produced by an asthmatic subject,
the speech modality is the most informative. This is in con-
trast with the study performed in [6], where the use of breath
sounds outperformed speech, and also [10], where cough out-
performed both speech and breath sounds. That being said,

the former study was limited to 323 voice samples from 26
subjects, whereas the latter study was focused on predicting
COVID-19. In both these studies and ours, the combination
of all modalities was comparable to the performance of the
best modality. In terms of bias-free learning, we verify that
SSL-based approaches are better than older baselines, like
multi-task learning (which may overfit to undesirable charac-
teristics), or gradient-reversal bias-free learning [19] (which
may hinder learning of useful features). We show here that
the cross-correlation based redundancy reduction approach
proposed in the Barlow twins study [14] is indeed useful not
just in its initial, completely unsupervised, augmentation-
based formulation, but also in a supervised, positive-pairs,
non-contrastive learning SSL framework in this audio mod-
elling task. We use a relatively small batch size, which is
halved in the way we propose to use redundancy reduction,
and the results are still very promising, since redundancy
reduction is known to not require large batches.

6. CONCLUSIONS & FUTURE WORK

We first explored the task of predicting whether an audio sam-
ple has been produced by a subject suffering from asthma,
in a self-reported, self-recording smartphone setup, which al-
lows for the possibility of attracting more, and more hetero-
geneous users compared to similar studies. Our redundancy
reduction based, self-supervised learning approach as an aux-
iliary task, has exhibited improved performance and shown
that such techniques can also be used for addressing such
heterogeneous datasets. That being said, our best perform-
ing method can still only be considered to address one of
the challenges presented by this dataset; that of heterogeneity.
Promising avenues for future extensions would be the combi-
nation of our SSL approach with existing SSL methods with
well-known performance benefits, like augmentation-based
Barlow twins for audio [16, 15], or the addition of a full self-
supervised pre-training step [14], as well as introducing meta-
learning methods for addressing the potential of noisy labels
[24] introduced by the self-reported nature of the dataset.
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