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Quasimolecular orbitals in cluster Mott insulators provide a route to tailor exchange interactions, which
may yield novel quantum phases of matter. We demonstrate the cluster Mott character of the lacunar spinel
GaTa,Seg using resonant inelastic x-ray scattering (RIXS) at the Ta L3 edge. Electrons are fully delocalized
over Ta, tetrahedra, forming quasimolecular /., = 3/2 moments. The modulation of the RIXS intensity as
function of the transferred momentum q allows us to determine the cluster wave function, which depends
on competing intracluster hopping terms that mix states with different character. This mixed wave function
is decisive for the macroscopic properties since it affects intercluster hopping and exchange interactions
and furthermore renormalizes the effective spin-orbit coupling constant. The versatile wave function,
tunable via intracluster hopping, opens a new perspective on the large family of lacunar spinels and cluster

Mott insulators in general.

DOI: 10.1103/PhysRevLett.133.046501

With strong spin-orbit coupling, novel forms of quantum
magnetism may emerge from unconventional magnetic
moments that exhibit exotic exchange couplings. The
Kitaev spin liquid is a prominent example [1,2]. Bond-
directional Kitaev exchange has been realized in, e.g., 5d°
honeycomb iridates with spin-orbit-entangled j = 1/2
moments [3—7]. Another intriguing case is given by 5d'
Jj = 3/2 moments on an fcc lattice, e.g., in double perov-
skites. These moments experience bond-dependent multi-
polar interactions, giving rise to a rich phase diagram that
includes multipolar order and a chiral quantum spin liquid
with Majorana fermion excitations [8—11].

Exchange-coupled local moments exist in Mott insula-
tors, where electrons are localized on individual sites. A
new flavor is offered by cluster Mott insulators, which can
be viewed as the electronic equivalent of a molecular
crystal [12—17]. In these, electrons occupy quasimolecular
orbitals that are delocalized over a cluster, e.g., a dimer or
trimer, while intercluster charge fluctuations are suppressed
by Coulomb repulsion. The emerging quasimolecular
magnetic moments are the fundamental units determining
the macroscopic low-energy properties. Importantly, the
character of these moments can be tuned by internal
degrees of freedom. One example is an Ir,Oy dimer with
three holes as in the spin-liquid candidate Ba;Inlr,Oqg [18].
With increasing intradimer hopping, the dimer moments
change from Jg, = 1/2 to 3/2 [19,20]. In general, the
quasimolecular wave function depends on competing
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intracluster hopping terms and is highly sensitive to the
cluster shape. The ability to tune intracluster hopping via
external or chemical pressure offers the promising per-
spective to tailor the moments and thereby the character and
symmetry of intercluster exchange interactions with the
aim to realize novel magnetic quantum phases of matter.

We focus on the transition-metal M, tetrahedra in the
large family of lacunar spinels AM,Xgs (M =V, Ti, Mo,
Nb, Ta; A = Ga, Ge, Al; X =S, Se, Te) [12,21-24], see
Fig. 1. With one electron in a quasimolecular ¢, orbital,
ideal J.; = 3/2 moments forming an fcc lattice have been
claimed to be realized in 5d GaTasSeg [25,26].
Remarkably, a cluster Mott character has also been pro-
posed, mainly based on band-structure calculations,
for the 4d and even the 3d compounds, where smaller
hopping competes with larger on-site Coulomb repulsion U
[12,13,24,25,27-33]. However, a direct experimental proof
of quasimolecular electronic states in the lacunar spinels is
still lacking. Such a quasimolecular character is particularly
intriguing in light of the complex phase diagrams of the
lacunar spinels, which include multiple multiferroic and
skyrmion-lattice phases with, e.g., Néel-type skyrmions
carrying electric polarization [34-37], (anti-)ferroelectric
states with peculiar domain architectures [38—40], and
magnetism tied to polar domain walls [41]. The 5d Ta
compounds host a pressure-induced insulator-to-metal
transition followed by topological superconductivity
[13,42-44] and an avalanche-type dielectric breakdown
of the Mott gap [45].

© 2024 American Physical Society
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Here, we address the cluster wave function, which is the
essential starting point for a comprehensive understanding
of the lacunar spinels. We study GaTa,Seg via resonant
inelastic x-ray scattering (RIXS) at the Ta L3 edge. RIXS
directly probes the quasimolecular nature of, e.g., intra-7}
excitations and pinpoints that the electrons are fully
delocalized over a Ta, tetrahedron while correlations
hardly affect the i manifold. We find that the quasimo-
lecular J = 3/2 wave function deviates from the ideal-
ized case assumed previously [25,26], since competing
intracluster hopping terms mutually mix the corresponding
bonding and antibonding orbitals. In GaTa,Seg, this mixing
reduces the effective spin-orbit coupling constant . by
roughly 1/3. Arising from strong hopping, the mixing is
not a small perturbation and can be expected to affect the
exchange interactions. Based on this mixing, the cluster
wave function is sensitive to structural changes due to, e.g.,
external pressure or chemical substitution, which provides
a new perspective on the entire family of lacunar spinels.

The delocalization of electrons over a cluster yields a
characteristic modulation of the RIXS intensity /(q) as
function of the transferred momentum q [46,47]. This
modulation reflects the dynamical structure factor S(q, )
and reveals the character and symmetry of electronic states.
For a dimer, RIXS can be described as an inelastic version
of Young’s double-slit experiment [46]. The corresponding
sinusoidal interference pattern has been observed recently
in BazCelr,0y and related dimer compounds [20,47,48].
Stunningly, a sinusoidal intensity modulation has also been
found in the Kitaev material Na,IrO; where it unravels the
bond-directional nearest-neighbor character of the mag-
netic excitations [7,49]. Careful consideration of these
interference effects is a prerequisite for the analysis of
RIXS in cluster Mott insulators and provides a powerful
tool to address the electronic states of GaTa,Seg.

Single crystals of GaTa,Seg were grown by chemical
vapor transport [50]. At 300 K, GaTa,Seg shows the
noncentrosymmetric cubic space group F43m with lattice
constant @ = 10.382 A [23], see Fig. 1. The short intra-
tetrahedral Ta-Ta distance d = 3.0 A suggests a quasimo-
lecular character. The optical conductivity characterizes the
lacunar spinels as narrow-gap insulators and reveals a Mott
gap of 0.12 eV in GaTasSeg [45,51,52]. Experimental
results for the magnetic moment per Ta, cluster yield
0.7-1.2 ug [23,53-55]. The magnetostructural transition at
T, =53 K is accompanied by a strong drop in the
magnetic susceptibility [53,55,56], but the crystal sym-
metry at low temperature is still under debate [24,55-57].
We first focus on cubic symmetry and then address the
effect of distortions.

We measured RIXS at the Ta L3 edge at Sector 27 at the
Advanced Photon Source [58]. The incident energy
9.879 keV resonantly enhances excitations within the
Ta 1,, orbitals [26]. We studied a (111) surface with the
(110) and (001) directions in the horizontal scattering

FIG. 1. (a) Simplified sketch of cubic GaTa,Seg [23]. Not all
Ga and Se ions are shown. The structure corresponds to a NaCl-
like lattice of tetrahedral (GaSe,)™ (red) and heterocubane
(Ta,Ses)™ units. Tetrahedral Ta, clusters (yellow) arise from
edge-sharing TaSeq octahedra (blue) and form an fcc lattice. The
intracluster Ta-Ta distance d = 3.0 A is much shorter than the
intercluster one (4.3 A, edges of green tetrahedron). (b) Bonding
quasimolecular xy, orbital, see Eq. (1). (c) #,(xy) orbital with
sizable antibonding character, see Eq. (3) for a = 2.

plane, using incident z polarization. An energy resolution
AE =76 meV was achieved using a Si(440) four-bounce
monochromator and a R =2 m Si(066) spherical diced
crystal analyzer. We measured RIXS spectra by scanning the
energy loss at constant (, see Fig. 2(a), and the intensity
modulation by scanning q at constant energy loss, see
Figs. 2(b), 2(c). We subtracted a constant background inten-
sity that was determined by averaging over a range of nega-
tive energy loss. All data have been corrected for geometrical
self-absorption [59]. We express q in reciprocal lattice units
(r.L.u.). The q resolution equals Aq = (0.10.10.3).

The RIXS spectra of GaTa,Seg show three peaks A, B,
and C at about 0.25, 0.62, and 1.2 eV, see Fig. 2(a). The
peak energies hardly show any dispersion but the intensity
strongly depends on q, in agreement with the data of Jeong
et al. [26]. This is a first indication of the local, quasimo-
lecular character of the electronic states. For the peak
assignment, we address the electronic structure of a single
Ta, tetrahedron, starting with a noninteracting picture in
the undistorted cubic case. Note that the RIXS data at 20
and 100 K, i.e., above and below the structural transition at
53 K, are very similar.

Because of the large cubic crystal-field splitting 10 Dg =~
3 eV [26], it is sufficient to consider the Ta ,,, states. Direct
o-type hopping ¢, = t,,, of order 1 eV [25] yields bonding
(b) and antibonding (ab) states at £t¢,. Adding z-type
hopping ¢, = t,,, results in the quasimolecular orbitals a;,
e, and 1, at low energy and further states at high energy, see
Fig. 3(a). With 7 electrons per Ta, cluster, the ground state
shows fully occupied a; and e orbitals plus a single electron
in the 1, states, aZe*r}. The three 1, orbitals are central to
our discussion. Because of 7, they are mixtures of bonding
and antibonding states of #,, see Fig. 3(a). We will show the
relevance of this mixture below but first follow the typical
assumption where only the bonding ones are considered.
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FIG. 2. RIXS data of GaTaySeg along (7.357.351). (a) Spectra acquired at 20 and 100 K show the three peaks A, B, and C. Changing
q strongly affects the intensity. (b) Color map of the RIXS intensity at 20 K. Independent of the cluster modulation, the elastic line is
suppressed around / = 5.4 due to a scattering angle 20 close to 90°. (c) Integrated intensity of peaks A, B, and C. Integration intervals are
given in the panel. The data of peak C are scaled down by a factor 5 to facilitate comparison. Peaks A and C show dominant sin?(z/4.9)
and cos?(zl/4.9) behavior, respectively. Solid lines: Results of the single-particle model, where the intensity has been adapted to the
experimental data. Very similar behavior of the q-dependent intensity is observed at 100 K, see Supplemental Material [60].

This yields [cf. Fig. 1(b)]

xy, = (xy) + xy2 + xy3 + xy4)/2 (1)

and equivalent for yz;,, and xz;,, where i = 1-4 denotes the Ta
sites. Projecting spin-orbit coupling ¢ onto the subspace of
these #} states yields a cluster Hamiltonian that is fully
equivalent to the single-site case [3], see Supplemental
Material [60]. It shows a J,; = 3/2 ground state and a J ., =
1/2 excited state at 1.5 [25]. The latter, the so-called spin-
orbit exciton, corresponds to peak A, while peaks B and C in
this non-interacting scenario are assigned to excitations
from e to Ji states, i.e., from e*7} to e*13, see Fig. 3(a).

(@)
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FIG. 3. (a) Single-particle energy levels of a Ta, tetrahedron.
Intracluster hopping (see bottom left) yields quasimolecular
orbitals and an a?e*t} ground state. Because of 1, the t, orbitals
show contributions of bonding () and antibonding (ab) states of
t,. Spin-orbit coupling within the 7} states forms a Ji,, = 3/2
ground state. A, B, and C refer to the RIXS peaks, see Fig. 2.
(b) The admixture of antibonding character renormalizes the
energy of peak A, see Eq. (3). Red (blue): single-particle result for
spin-orbit coupling within #, (all) states. Black: many-body
cluster calculation using Quanty [63], see Supplemental Material
[60]. Dashed lines: value of a derived from the q dependence and
corresponding excitation energy.

This peak assignment is supported by quantum chemistry
calculations [54] and is confirmed by the characteristic q
dependence of the RIXS intensity. Figure 2(b) is a color plot
for energies up to 1.6 eV for q along (7.357.351), while
Fig. 2(c) shows the corresponding integrated RIXS intensity
of peaks A, B, and C together with results of a single-particle
calculation (see below). Peak B hardly depends on q, while
A and C show a pronounced sin?(z//4.9) and cos?(zl/4.9)
behavior, respectively, reflecting the different symmetries of
the corresponding states. The period [, = 4.9 points to a
Ta-Tadistance of a/4.9 ~ 2.12 A that agrees with the c-axis
projection d/v/2~2.12 A of the intratetrahedral Ta-Ta
distance d. For h = k = 7.35 = 1.5l,, spectra for [ = [,
and [/ = 1.5/ correspond to extrema of the intensity modu-
lation, cf. Fig. 2(a).

The dominant sin(z1/4.9) behavior of peak A is a clear
fingerprint of the quasimolecular intra-} spin-orbit exciton.
In general, the RIXS intensity for an excitation from the
ground state |0) to a final state |f) is described by [65,66]

15(q.0) =] (713", DD, 0) \zamw “E) (@

where E denotes the excitation energy and D, (D}) is the
local dipole operator for resonant scattering at the Ta site
R,. This coherent sum of local scattering processes is
running over all R, from which the final state |f) can be
reached. For the quasimolecular states in GaTa,Seg, this
refers to the four Ta sites of a tetrahedron. For q along
(7.357.351) = (1.51y 1.51y 1), the physics is particularly
simple if we stick to the contribution of bonding states to
the quasimolecular ¢, orbitals, see Fig. 3(a), i.e., we employ
Eq. (1) and the associated J, states for spin-orbit coupling
within the 7, states, as discussed above. In this case,
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FIG. 4. Normalized RIXS intensity (symbols) along three q
directions for peaks A, B, and C at 20 K with integration ranges as
in Fig. 2. Lines: Results of the single-particle model for spin-orbit
coupling within the 7, states. Note that « is the only free
parameter. For peaks A and B, best agreement is obtained for
a=24+03 and 1.8-1.9, respectively. Dashed: Result for
a = oo, neglecting antibonding states. For the normalization,
an appropriate q point has been chosen for each panel.

Ig)c(l) o« cos?(xl/4.9) for all excitations from e to 1,,
while only the spin-orbit exciton is expected to show
1,4(1) o sin?(z1/4.9), see dashed lines in Figs. 4(a)—4(c).
This firmly supports our interpretation of peak A.

Our central goal is to determine the cluster wave
function. Thus far, we considered only the bonding con-
tributions to the ¢, orbitals, see Eq. (1), a common
approximation [25,26] that, e.g., led to a different peak
assignment in Ref. [26]. In this simple bonding picture,
I(1) describes the overall behavior of peak C but /(/)
does not explain the nearly q-independent intensity of peak
B. Furthermore, this approximation predicts the spin-orbit
exciton at 1.5¢, as for a single site, which is hard to
reconcile with the energy of peak A at 0.25 eV. The
equivalent excitation for weakly interacting Ta 5d' ions
has been observed in RIXS on Rb,TaClg at 0.4 eV [67],
resulting in { = 0.27 eV. Compared to 0.4 eV, the energy of
peak A is about 40% smaller. As shown below, these critical
issues are resolved by considering the admixture of anti-
bonding character to the 7, orbitals. With the intracluster
hoppings ¢, and t,, the eigenstate #,(xy) of the hopping
Hamiltonian reads

(xy) = vy = (Vzap = X2ap)/al/\/ 1 + (2/?) (3)
with the antibonding orbitals yz,, = (yz; —yz2o + y23 —y24) /2
and xz,, = (xz; — xzp — x23 + x24)/2. The approximation
of Eq. (1) corresponds to @ = oo. The mixing coefficient
reads

a=lto/tdl =3/2 4\ /(11 =372 + 2. (&)

Projecting spin-orbit coupling onto this 7} subspace yields
the same cluster Hamiltonian as above [60] but with re-
normalized coupling constant (i = ¢ - (o> — 1)/(a? + 2).
Accordingly, the peak assignment of Fig. 3(a) is still valid but
arenormalizes in particular the energy of peak A, cf. Fig. 3(b),
and changes the character of the quasimolecular J, states.
Using Harrison’s empirical d dependence of the Slater-Koster
parameters [64], we find |z,/t,] = 1.5|V 445/ V 4az| = 2.8.
This yields a first estimate a =~ 3.2. Taking into account
hopping fg. via the Se ligands reduces a, for instance to o = 2
for tg.~t,. The f,(xy) orbital for a« =2 is depicted in
Fig. 1(c).

Experimentally, the q-dependent RIXS intensity is the
ideal tool to determine the mixing coefficient a. Via the
matrix elements in Eq. (2), RIXS is directly sensitive to the
quasimolecular wave function and hence to the admixture
of antibonding orbitals. We calculated the RIXS response
in the single-particle picture for spin-orbit coupling within
the f, states, taking into account polarization selection
rules. Results for the normalized RIXS intensities of peaks
A, B, and C along (7.357.35[) and two further q directions
are plotted in Fig. 4. Along (k+0.15 k 4.8), the dominant
term for peak A is cos*(zk/4.9) while a more complex
behavior is observed along (hh1.65[10-A]). The single-
particle picture captures the behavior of all three peaks
surprisingly well. We emphasize that a is the only free
parameter in Fig. 4, reflecting the dependence of the wave
function on ¢, and 7,. These results unambiguously
establish the quasimolecular cluster-Mott character of
GaTa,Seg and that the admixture of antibonding character
is sizable, i.e., 1/a is not small.

The single-particle picture is expected to work particu-
larly well for the intra-z} excitation of the spin-orbit
exciton, peak A. Peaks B and C with €73 final states will
be more sensitive to interactions. Peak C is the least
sensitive to a. The single-particle model reproduces the
overall q dependence but fails to describe the minima
quantitatively. To some extent, this may reflect a possible
background contribution of excitations across the Mott gap
at high energies. In contrast, peak B is highly sensitive to a.
Its nearly constant behavior as a function of q is reproduced
in a narrow window a = 1.8-1.9. For peak A, excellent
agreement is found for a = 2.4 £ 0.3.

These results for o fall in the range predicted above
based on Harrison’s rules. The precise value depends on
details of the model concerning the range of spin-orbit
coupling, distortions, subleading hopping terms, and cor-
relations. Above, spin-orbit coupling was projected onto ¢,
orbitals only. If we instead consider all orbitals, in
particular, including e and #; [see Fig. 3(a)], peak A is
best described for a = 2.9 4+ 0.4. Furthermore, we dis-
cussed regular tetrahedra but the symmetry is lower than
cubic below T,,, = 53 K. Recent x-ray and neutron results
on the pair distribution function [57] point to dynamical
local distortions up to temperatures far above 7,,,. For
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trigonally distorted tetrahedra, we find that RIXS is
sensitive to the distortion if a single orientation can be
studied while the average over different orientations is very
close to the cubic case, see Supplemental Material [60].
The latter applies to both 20 and 100 K and validates our
approach. However, a distortion of the tetrahedra with less
than trigonal symmetry affects the value of a for which
peak B is nearly independent of ¢, see Ref. [60]. Note that
different results were reported for the crystal symmetry at
low temperature [24,55-57], impeding an even more
precise determination of a at present.

In a cluster Mott insulator, electron-electron interactions
suppress intercluster charge transport. Within a cluster,
correlations compete with dominant hopping that deloc-
alizes the electrons in quasimolecular orbitals. To study the
effect on the RIXS response, we performed many-body
calculations for a single tetrahedron using Quanty [63], see
Supplemental Material [60]. Interactions yield a fanning
out of the a?e’13 energy levels that is relevant to explain the
width of peak C and the energies of B and C, supporting
our peak assignment. For peak A, we find that electron-
electron interactions have only a minor effect on both the
energy and the ¢-dependent intensity, in particular for
comparison with the case where spin-orbit coupling is not
restricted to 7,, see [60]. The many-body calculations thus
support the overall picture of the single-particle model.

The renormalized energy of the spin-orbit exciton, peak
A, provides an independent means to test our results for a.
Figure 3(b) shows the single-particle result for spin-orbit
coupling within t,, Eqq = 1.5 = 1.5¢(a? = 1)/(a? +2).
For comparison, the excitation energy is also given for spin-
orbit coupling acting on all states and for the many-body
cluster calculation. For the latter we change a by changing
t,, cf. Eq. (4), with all other parameters fixed. The overall
behavior is very similar. For all three cases, the dashed lines
denote the value of « that best describes the q dependence.
This yields an excitation energy of 0.9-1.0{ and hence
¢ ~0.27-0.30 eV, in very good agreement with both quan-
tum chemistry calculations [54] and the value 0.27 eV
reported for 5d' Rb,TaClg [67].

In conclusion, our results establish GaTa,Seg as a
fascinating example of a cluster Mott insulator. The valence
electrons are fully delocalized over a Ta, tetrahedron, while
intercluster charge fluctuations are suppressed. A thorough
analysis of the modulated RIXS intensity /(q) reveals the
quasimolecular wave function, which is the essential
starting point for exploring the physics of cluster Mott
insulators. The spin-orbit exciton, an excitation within the
¢} manifold, is particularly well described in a single-
particle scenario that is coined by competing hopping
terms, ¢, and t,,.. This competition shapes the wave function,
renormalizes the effective spin-orbit coupling constant by
roughly 1/3, and hence affects the nature of the quasimo-
lecular magnetic moment. We expect that this is decisive
for intercluster exchange coupling, calling for future

theoretical investigations. In general, the mixing coefficient
a also depends on t,;5s and on the indirect hopping via
ligands. Therefore, it is reasonable to assume that o can be
tuned in the lacunar spinels by external pressure and
chemical substitution, and one may speculate that even
temperature may tip the balance in certain cases. Our
results on the quasimolecular character, the particular role
of antibonding states, and the tunability of the wave
function are relevant for many of the open questions on
the large family of lacunar spinels.
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