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Abstract. Biological cells utilize membranes and liquid-like droplets, known as biomolecular
condensates, to structure their interior. The interaction of droplets and membranes, despite being
involved in several key biological processes, is so far little understood. Here, we present a first numer-
ical method to simulate the continuum dynamics of droplets interacting with deformable membranes
via wetting. The method combines the advantages of the phase-field method for multiphase flow
simulation and the arbitrary Lagrangian-Eulerian method for an explicit description of the elastic
surface. The model is thermodynamically consistent, coupling bulk hydrodynamics with capillary
forces, as well as bending, tension, and stretching of a thin membrane. The method is validated by
comparing simulations for single droplets to theoretical results of shape equations, and its capabilities
are illustrated in two- and three-dimensional axisymmetric scenarios.
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1. Introduction. Liquid droplets provide a mechanism for the spatial organiza-
tion in living cells [68, 9, 11]. These droplets, referred to as biomolecular condensates,
arise from condensation of protein-rich material through liquid-liquid phase separa-
tion. Examples of such condensates are nucleoli, Cajal bodies, P-bodies, and stress
granules [11, 16, 9]. One particularly interesting aspect of biomolecular condensates
is their interaction with biological membranes and vesicles via wetting [16, 80]. Re-
cent studies suggest that membrane-droplet interactions are involved in several key
biological processes [15, 69, 41, 10, 70, 20]. Understanding the dynamics of wetting
of biomolecular condensates on biological membranes requires developing a physical
model for the interplay between liquid droplets and deformable surfaces.

When a droplet and a membrane interact, surface tension \sigma f causes a reduction
in liquid/liquid surface area, which is typically achieved by increasing membrane
curvature. This is counteracted by the bending rigidity KB and the balance of the
two determines the elastocapillary length scale

\sqrt{} 
KB/\sigma f of the observed curvature

radius [42, 52, 27, 46]. Subsequently, membrane bending results in an apparent contact
angle that deviates from droplets wetting a planar surface. Theoretical descriptions
of membrane-droplet interactions were studied focusing on equilibrium configurations
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NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B807

and single droplets interacting with one vesicle [42, 43]. A full numerical method to
simulate the wetting dynamics on deformable membranes is yet missing.

Even in the absence of wetting, the continuum description of a moving elas-
tic membrane is a highly nonlinear, nonlocal moving boundary problem. Over the
past 15 years, various mathematical modeling approaches have been proposed to de-
scribe deformable surfaces immersed in a fluid, including immersed boundary meth-
ods [35, 67, 56], level-set methods [39, 64], mesh-free methods [61], particle methods
[54, 31], and the phase-field method [6]. Nowadays, efficient and unconditionally sta-
ble methods exist [13, 76, 29, 77]. In addition, in the last decade numerical methods
to simulate wetting on rigid structures have matured, yielding higher order and en-
ergy stable schemes to describe complex engineering applications [66, 78, 81, 38, 5].
However, the combination of these two fields, namely the continuum simulation of
wetting of deformable membranes, is so far unexplored. Computational methods are
currently limited to molecular dynamics simulations which fail to simulate the most
relevant time and length scales [44, 26], and a gradient descent minimization of surface
energies [65], which fails to produce the correct time evolution or hydrodynamics. To
our knowledge, only one preliminary attempt has been made to construct a dynamic
simulation method [57]. This approach, based on the lattice Boltzmann method, was
however not tailored to fluidic biological membranes, turned out to be relatively un-
stable and inaccurate, and produced spurious phases and a temporal lag between
membrane and fluid movement.

In this paper we present a first stable numerical method to describe the wetting
dynamics of liquid droplets on deformable membranes. We represent the membrane
as a dimensionally reduced (hyper-) surface, which enables the accurate resolution
of the high membrane curvature that is often observed as a cusp in experimental
images. On the other hand, droplets are described by a phase-field model with a
diffuse interface between the two liquids. This diffusive nature regularizes the stress
singularity at the contact line, making phase-field models a very natural approach to
describe wetting phenomena. The rigorous energy-based structure of the model allows
for consistent modeling of topological transitions (e.g., [34]) and enables energy stable
discrete formulations and robust time discretizations [66, 78, 5, 3].

In section 2.2, we introduce the model equations in a thermodynamically con-
sistent way. In section 3, we present the numerical method. Benchmark tests and
further illustrative simulations are carried out in section 4. Conclusions are drawn in
section 5.

2. Model. We investigate an elastic, closed lipid bilayer membrane immersed
in and surrounded by fluids; see Figure 2.1. The membrane is considered to have
negligible thickness. The fluids undergo phase separation, resulting in two distinct
phases: a condensed (droplet) phase and a dilute (ambient) phase. The interplay of
surface tension and bending rigidity causes the membrane to bend.

Mathematically, the fluid domain \Omega \in Rd is separated by the membrane \Gamma into
two subdomains \Omega out and \Omega in, referring to the outside and the inside of the membrane,
respectively. Figure 2.1 depicts the scenario of a droplet wetting a deformable vesicle
for d = 2. The thin membrane is represented as a hypersurface of dimension d - 1.
An order parameter \phi is introduced to describe the two-phase fluid, i.e., we define
\phi = 0 in the ambient phase and \phi = 1 in the droplet phase. For ease of notation,
we present the method for the case that phase separation occurs only on one side of
the membrane. Without loss of generality, we choose \Omega out as the phase separating
domain. The opposite case of phase separation in the interior of the membrane can
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B808 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

Fig. 2.1. Illustration of a droplet wetting a vesicle. A deformable closed membrane \Gamma separates
the fluid domain \Omega in and a two-phase fluid domain \Omega out. The two fluids in \Omega out are indicated by the
value of the phase-field function \phi . The fluid-fluid interface is diffuse with a thickness \varepsilon and surface
tension \sigma f. The membrane \Gamma has two distinct surface tensions \sigma 0 and \sigma 1 depending on whether it is
adjacent to the dilute or the dense phase, respectively (see inset). Two different contact angles can
be considered, where \alpha is the macroscopic Neumann angle, that can be measured in experiments,
while \theta is the local Young's angle between the droplet interface and the locally flat membrane.

be equivalently handled by the proposed method, as also demonstrated in the results
section.

To investigate the wetting and deformation of the membrane, two different contact
angles are considered in this work. The apparent contact angle \alpha , which is generally
easier to determine experimentally, is obtained by describing the membrane as having
a kink at the contact point with the droplet interface. However, since the membrane
has a bending rigidity, a kink at the contact point (d = 2) between fluid-fluid inter-
face and membrane does not occur. Instead, the membrane is curved smoothly (see
Figure 2.1, inset). This gives rise to the local contact angle \theta between membrane and
fluid-fluid interface at the contact point. The reaction of the membrane to bending
deformations depends on the bending stiffness KB of the membrane material, which
is assumed to be constant along the membrane.

2.1. Free energy. We consider the exemplary system for droplets which are
outside the membrane. The derivation for the general case of droplets being inside or
on both sides of \Gamma is analogous. The total free energy of the system E is composed
of contributions in the bulk (\Omega out and \Omega in) and on the membrane (\Gamma ), respectively:

E =E\Omega +E\Gamma ,(2.1)

with

E\Omega =Ekin +E\sigma \mathrm{f}
,(2.2)

E\Gamma =Ebend +E\sigma \mathrm{m}
+Estretch .(2.3)

The bulk energy E\Omega contains two contributions originating from the kinetic energy
of the bulk fluid Ekin and from the droplet interface E\sigma \mathrm{f}

. The membrane free energy
E\Gamma accounts for the bending energy Ebend, the surface tension along the membrane,
which leads to E\sigma \mathrm{m}

, and the stretching energy Estretch.
The various energy contributions are tightly coupled. The fluid velocity is in-

fluenced by both the phase field and the membrane forces. Concurrently, the defor-
mation of the membrane is affected by the velocity of the two fluids and the force
response of the membrane. The membrane forces depend on the fluid in contact with
the respective membrane region, i.e., they are dependent on the phase field.

© 2024 Sebastian Aland. Published by SIAM under the terms of the Creative Commons 4.0 license
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NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B809

We model the individual energy terms as described in the following. The kinetic
energy is

Ekin =

\int 
\Omega 

\rho 

2
| v| 2 dV,(2.4)

where \rho denotes a constant fluid density, and v is the hydrodynamic velocity field
that is continuous across \Gamma . The different interfaces in the system are characterized
by three distinct surface tensions. The fluid-fluid tension \sigma f and the two membrane-
fluid tensions, \sigma 0 and \sigma 1 (see Figure 2.1). Furthermore, the phase-field function \phi has
to vary smoothly across the fluid-fluid interface leading to a thin diffuse interface of
width \varepsilon . The phase-field function \phi can correspond to the concentration of molecules
and the interface profile to a physical fluid-fluid interface [32, 73]. We follow [17] and
write the corresponding free energy:

E\sigma \mathrm{f}
= 6

\surd 
2\sigma f

\int 
\Omega \mathrm{o}\mathrm{u}\mathrm{t}

\biggl( 
\varepsilon 

2
| \nabla \phi | 2 + 1

\varepsilon 
W (\phi )

\biggr) 
dV ,(2.5)

where \sigma f is the surface tension of the interface between the droplet and the ambient
liquid, and W (\phi ) is the bulk free energy density, for which we choose a double-well
potential W (\phi ) = 1

4\phi 
2 (1 - \phi )

2
. This double-well potential is a simple model for

phase transitions in mixed systems, in particular describing the phase separation in a
binary mixture. The prefactor 6

\surd 
2 originates from our choice for W (\phi ) [2]. We use

the abbreviation \~\sigma f = 6
\surd 
2\sigma f in the following.

Moreover, the bending, tension, and stretching energy for the deformable mem-
brane are given as [21, 7]

Ebend =

\int 
\Gamma 

KB

2
\kappa 2 dA,(2.6)

E\sigma \mathrm{m} =

\int 
\Gamma 

\sigma m(\phi )dA,(2.7)

Estretch =

\int 
\Gamma 

KA

2
(J  - 1)

2
dA.(2.8)

Here, KB is the membrane bending stiffness and \kappa is the total curvature of the
membrane. The surface tension \sigma m (\phi ) represents the tension along \Gamma between the
membrane and the fluid indicated by the value of the phase field. We use the following
differentiable function of the phase field \sigma m (\phi ) = (\sigma 1  - \sigma 0)\phi 

2(3  - 2\phi ) + \sigma 0, which
implies \sigma m(0) = \sigma 0 and \sigma m(1) = \sigma 1. For flat surfaces this choice of \sigma m is expected
to result in correct contact angles for all level sets of the phase field as observed for
similar systems (e.g., [2]) and confirmed in section 2.2. Finally, KA is the area dilation
modulus and J the determinant of the deformation gradient tensor. The latter gives
the local area stretch of an infinitesimal surface area segment and is equal to 1 for an
undilated surface.

Remark. In three-dimensional (3D) elasticity theory, the response of an isotropic
elastic body to elastic deformations can be described by two material-specific parame-
ters: Young's modulus E and Poisson's ratio \nu . For a thin elastic material of thickness
d, these parameters are typically reformulated into surface parameters, for example,
the area dilation modulus KA and area shear modulus KS and the bending modulus
KB [50]. Considering a rectangular surface element, KA describes the response of
the membrane to in-plane area changes with a constant aspect ratio of the surface
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B810 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

element. KS provides information about the response to in-plane shear deformations
with constant area of the surface element. However, for lipid bilayer membranes, no
shear forces occur and, therefore, KS = 0. The elastic surface parameters can be
calculated directly from Young's modulus, Poisson ratio, and membrane thickness:

KA =
dE

2(1 - \nu )
, KB =

d3E

24(1 - \nu 2)
.(2.9)

2.2. Model derivation. To derive the dynamics of the system in a thermody-
namically consistent manner, we compute the time variation of the total energy (2.1).
The details of these calculations can be found in the supplementary material section
SM1. Assuming incompressible fluid flow (\nabla \cdot v= 0) and constant mass density \rho , we
obtain

dtE =

\int 
\Gamma 

\partial \bullet t \phi 

\biggl( 
\delta E\sigma \mathrm{m}

\delta \phi 
+ \~\sigma f\varepsilon n \cdot \nabla \phi 

\biggr) 
+ v \cdot 

\biggl( 
\delta E\sigma \mathrm{m}

\delta \Gamma 
+
\delta Ebend

\delta \Gamma 
+
\delta Estretch

\delta \Gamma 
 - \~\sigma f\varepsilon \nabla \phi (\nabla \phi \cdot n)

\biggr) 
dA

+

\int 
\Omega \mathrm{o}\mathrm{u}\mathrm{t}

\partial \bullet t \phi 
\delta E\sigma \mathrm{f}

\delta \phi 
+ v \cdot (\nabla \cdot (\~\sigma f\varepsilon \nabla \phi \otimes \nabla \phi )) dV

+

\int 
\Omega \mathrm{i}\mathrm{n}\cup \Omega \mathrm{o}\mathrm{u}\mathrm{t}

\rho v \cdot \partial \bullet t vdV,(2.10)

where \partial \bullet t = \partial t + v \cdot \nabla denotes the material time derivative and n denotes the normal
vector of \Gamma pointing to \Omega out. The variational derivatives are

\delta E\sigma \mathrm{f}

\delta \phi 
= \~\sigma f

\biggl( 
1

\varepsilon 
W \prime (\phi ) - \varepsilon \Delta \phi 

\biggr) 
,(2.11)

\delta E\sigma \mathrm{m}

\delta \phi 
= \sigma \prime 

m(\phi ) ,(2.12)

\delta E\sigma \mathrm{m}

\delta \Gamma 
= \kappa \sigma m(\phi )n - \nabla \Gamma \sigma m(\phi ) ,(2.13)

\delta Ebend

\delta \Gamma 
=KB

\biggl( 
\Delta \Gamma \kappa  - 2Kg\kappa +

1

2
\kappa 3

\biggr) 
n ,(2.14)

\delta Estretch

\delta \Gamma 
\approx KA\kappa (J  - 1)n - KA\nabla \Gamma (J  - 1) .(2.15)

The last term is a linear approximation, which is quite accurate for small stretch-
ing deformations. Since the area dilation modulus KA is large for membranes, taking
into account small stretching deformations is sufficient (J \approx 1). In the simulations
presented in this work, J deviates from the value 1 by less than 5\%. Consistent with
other derivations [18, 60, 7, 72], we recover in (2.10) the capillary stress of a diffuse
interface S\sigma \mathrm{f}

:= - \~\sigma f\varepsilon \nabla \phi \otimes \nabla \phi . We note that our derivation considered the membrane
to be impermeable, a condition which will be relaxed later to account for slow water
flux through the membrane [24].

Using the usual viscous and pressure stress S= \eta (\nabla v+\nabla vT ) - pI, we arrive at
the following evolution equations consistent with the second law of thermodynamics:
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NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B811

\partial t\phi + v \cdot \nabla \phi =M\Delta 
\delta E\sigma \mathrm{f}

\delta \phi 
in \Omega out ,(2.16)

\~\sigma f\varepsilon n \cdot \nabla \phi = - \delta E\sigma \mathrm{m}

\delta \phi 
on \Gamma ,(2.17)

n \cdot \nabla \delta E\sigma \mathrm{f}

\delta \phi 
= 0 on \Gamma ,(2.18)

\rho (\partial tv+ v \cdot \nabla v) =\nabla \cdot (S+ \chi outS\sigma \mathrm{f}
) in \Omega in \cup \Omega out ,(2.19)

\nabla \cdot v= 0 in \Omega in \cup \Omega out ,(2.20)

n \cdot [S+ \chi outS\sigma \mathrm{f}
]
out
in = - \delta E\sigma \mathrm{m}

\delta \Gamma 
 - \delta Ebend

\delta \Gamma 
 - \delta Estretch

\delta \Gamma 
on \Gamma .(2.21)

Here, the M is a mobility coefficient that is considered to be constant and \chi out

is the characteristic function of \Omega out, i.e., \chi out = 1 in \Omega out and \chi out = 0 in \Omega \setminus \Omega out.
Furthermore, [\cdot ]outin denotes the jump of the quantity in brackets across \Gamma . Note that
a boundary condition for velocity v across the membrane is not required, due to
our assumption of a continuous velocity field, which implies a no-slip condition along
both sides of the membrane. Note that the resulting contact angle condition (2.17)
can be rewritten to n \cdot \nabla \phi /| \nabla \phi | = (\sigma 0  - \sigma 1)/\sigma f using equipartition of energy E\sigma f

.
Geometrically, \nabla \phi /| \nabla \phi | is the normal vector of the phase-field level sets. Hence, the
above equation implies correct angles for all level sets of the phase field.

Equations (2.16)--(2.21) correspond to the incompressible Navier--Stokes equations
including a capillary stress, and thereby coupled to the Cahn--Hilliard equation for
the binary fluid domain, together with an interfacial balance of forces. Paired with
(2.10) we obtain nonincreasing total free energy,

dtE = - 
\int 
\Omega \mathrm{o}\mathrm{u}\mathrm{t}

M

\bigm| \bigm| \bigm| \bigm| \nabla \delta E\sigma \mathrm{f}

\delta \phi 

\bigm| \bigm| \bigm| \bigm| 2 dV  - 
\int 
\Omega \mathrm{i}\mathrm{n}\cup \Omega \mathrm{o}\mathrm{u}\mathrm{t}

\eta 

2
\| \nabla v+\nabla vT \| 2F dV \leq 0 .(2.22)

In summary, (2.16)--(2.21) are consistent governing equations of a membrane
wetted on one side. The opposing case of wetting inside the membrane follows by
interchanging the indices ()in and ()out. Wetting on both sides can be handled by
introducing one distinct phase field for each side of the membrane, together with a
second membrane surface energy and a second capillary stress tensor.

3. Discretization.

3.1. ALE discretization. We use a fitted finite element method to discretize
the system in space. The two subdomains \Omega out and \Omega in are discretized on two separate
but connected, moving numerical grid partitions. An arbitrary Lagrangian-Eulerian
(ALE) method is used to advect the grid with velocity w. Thereby, in the absence of
membrane permeability, grid points on \Gamma move with the material velocity, w= v. In
contrast, the grid points in the fluids move with a continuous harmonic extension of
this velocity in order to keep a proper shape of the mesh. When membrane perme-
ability is considered, the membrane allows percolation of ambient fluid. The resulting
difference between membrane and fluid normal velocity can be modeled as being pro-
portional to the pressure difference across the membrane [62]. Consequently, the grid
velocity is calculated in the two subdomains by solving the Laplace problem
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B812 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

\Delta w= 0 in \Omega in \cup \Omega out ,

w= v - P pdiff \phi dn on \Gamma ,

w= 0 on \partial \Omega /\Gamma .(3.1)

The slight membrane permeability is incorporated into the model by the term
P pdiff \phi dn from the boundary condition on \Gamma , with the material-specific permeability
P of the membrane. For zero permeability (P = 0), the approach corresponds to a
standard ALE method. The fact that membranes can be permeable to water on large
time scales [24] can be accounted for by P > 0. Water flux across the membrane
is driven by the pressure difference pdiff = (pout  - pin)  - peq with the pressures pi
in \Omega i. The pressure difference peq is the equilibrium pressure difference which may
result from osmotic pressure. Here, we choose peq equal to mechanical pressure jump
(pout - pin) in the spherical equilibrium state. Consequently, for small droplets in two
dimensions, peq is approximated by peq = \sigma 0/rm  - KB/(2r

3
m), where rm is the radius

of a spherical membrane with the same volume as the present membrane. In three
dimensions, the bending force of a sphere vanishes, and hence peq = 2\sigma 0/rm. The
indicator function \phi d(x) is designed to ensure that the droplets themselves are not
permeable. The permeability condition should only be imposed at a distance d away
from the droplet interface to prevent instabilities caused by high pressure differences
in the vicinity of the phase-field interface. This distance is dependent on the physical
properties of the system (shell size, droplet number, droplet size, etc.) and can be
obtained empirically. Hence, we use

\phi d(x) =

\left\{   1 if x\in \Gamma \cap \{ x| \phi (x)< 0.5\} \cap 
\biggl\{ 
x| min

x0.5\in \Gamma 0.5

\| x - x0.5\| >d
\biggr\} 
,

0 else,
(3.2)

where \Gamma 0.5 =\Gamma \cap \{ x| \phi (x) = 0.5\} . Further, a typical value for d is 3\varepsilon .
Finally, the calculated grid velocity w is subtracted in all convective terms of the

governing equations. Therefore, the material derivate \partial \bullet t is replaced by

\partial \bullet t \rightarrow \partial t,x\ast + (v - w) \cdot \nabla ,(3.3)

where \partial t,x\ast defines the time derivative of a quantity along a moving grid point.

Remark. The ad hoc introduction of permeability interferes with the thermo-
dynamic consistency of the system. In particular, the energy change in (2.22) is
augmented by an additional contribution of the flux of Cahn--Hilliard energy den-
sity through the membrane. Our approach to allow permeation only away from the
phase-field interface (through \phi d) minimizes this effect, but cannot eliminate it com-
pletely. Moreover, since the permeability itself is slow compared to the dynamics of
the membrane due to membrane/surface tensions and bending stiffness, the violation
of thermodynamic consistency is expected to be negligible in practice.

3.2. Time discretization. The problem is discretized with equidistant time
steps of size \tau . At each time step, the general workflow of the numerical solution pro-
cedure is as follows. First, the coupled system of momentum balance, mass balance,
and phase-field evolution, (2.16)--(2.21), is solved in one monolithic system. Afterward
the grid velocity w is computed as explained in section 3.1. Then in a last step, the
grid is updated, that is, each grid point is moved by the corresponding value of w.
An IMEX (implicit/explicit) Euler method is used to formulate a time discretization
of (2.16)--(2.21), which is linear in the solution variables. We denote quantities on

© 2024 Sebastian Aland. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

12
/0

3/
24

 to
 1

37
.2

50
.1

28
.2

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B813

discrete time points by a superscript, where ()n - 1 refers to the previous time step
and ()n refers to the current time step. In order to compute bending, stretching, and
surface tension forces, we compute the curvature vector κ= - \kappa \bfitn for the current time
step as a solution variable of the system, where we use the fact that \Delta \Gamma id\Gamma =  - \kappa n
with id\Gamma the identity map on \Gamma . This way, the stability of the system is increased by
an implicit treatment of all membrane forces.

The capillary stress \bfitS \sigma \mathrm{f}
is taken semi-implicitly by using \~\sigma f\varepsilon \nabla \phi n\otimes \nabla \phi n - 1. Note

that we define the involved tensor product such that

\nabla \cdot 
\bigl( 
\nabla \phi n \otimes \nabla \phi n - 1

\bigr) 
i
=
\sum 
j

\partial j
\bigl( 
\partial j\phi 

n\partial i\phi 
n - 1

\bigr) 
.

This treatment must be accompanied by using the new velocity field vn in the ad-
vective term of the phase field. Further, the nonlinear derivative of the double well
potential W \prime (\phi ) is linearized by a first order Taylor expansion. We end up with the
following time discrete system:

In each time step n, find vn, pnout, p
n
in, \phi 

n, \mu n,κn, fn\Gamma such that

\rho n - 1

\biggl( 
vn  - vn - 1

\tau 
+
\bigl( 
vn - 1  - wn - 1

\bigr) 
\cdot \nabla vn

\biggr) 
= - \nabla 

\bigl( 
\chi n - 1
out p

n
out + \chi n - 1

in pnin
\bigr) 
+\nabla \cdot 

\Bigl( 
\eta n - 1

\Bigl( 
\nabla vn + (\nabla vn)

T
\Bigr) \Bigr) 

 - \nabla \cdot 
\bigl( 
\chi n - 1
out \~\sigma f\varepsilon \nabla \phi n \otimes \nabla \phi n - 1

\bigr) 
 - \delta n - 1

\Gamma fn\Gamma 
\nabla \cdot vn = 0

\right\}             
in \Omega n - 1,(3.4)

\biggl( 
\phi n  - \phi n - 1

\tau 
+ vn \cdot \nabla \phi n - 1  - wn - 1 \cdot \nabla \phi n

\biggr) 
=M\Delta \mu n

\mu n = \~\sigma f\varepsilon 
 - 1

\bigl( 
W \prime \bigl( \phi n - 1

\bigr) 
+W \prime \prime \bigl( \phi n - 1

\bigr) \bigl( 
\phi n  - \phi n - 1

\bigr) \bigr) 
+ \~\sigma f\varepsilon \Delta \phi 

n

\right\}     in \Omega n - 1
out ,(3.5)

idn\Gamma = \tau 
\bigl( 
vn  - P pn - 1

diff \phi n - 1
d nn - 1

\bigr) 
+ idn - 1

\Gamma 

κ
n =\Delta \Gamma id

n
\Gamma 

fn\Gamma = \sigma m(\phi 
n - 1)κn + \sigma \prime 

m(\phi 
n - 1)\nabla \Gamma \phi 

n  - 
\biggl( 
\delta Ebend

\delta \Gamma 

\biggr) n - 1
2

 - 
\biggl( 
\delta Estretch

\delta \Gamma 

\biggr) n - 1
2

\right\}       on \Gamma .

(3.6)

Here, \mu =
\delta E\sigma \mathrm{f}

\delta \phi denotes the chemical potential, and the superscript n - 1 denotes the
corresponding quantities from the last time step, but after the applied change of the
grid point coordinates due to the mesh update. The bending force ( \delta E\mathrm{b}\mathrm{e}\mathrm{n}\mathrm{d}

\delta \Gamma )n - 
1
2 is

computed with a semi-implicit scheme which will be described in section 3.3.3, where
linear occurrences of the curvature vector κ are taken from the current time step.
The stretching force ( \delta E\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{c}\mathrm{h}

\delta \Gamma )n - 
1
2 mainly depends on the curvature vector and the

deformation gradient determinant J , which can be seen as the local membrane area
change A/A0. An implicit prediction of J is crucial to eliminate the numerical stiffness
of the coupling between shape evolution and hydrodynamics. As a consequence from
the Reynolds transport theorem on surfaces, J follows the evolution

\partial tJ +w \cdot \nabla J = J\nabla \Gamma \cdot w on \Gamma ,(3.7)

where we recall that w| \Gamma is the membrane velocity. Assuming that membrane perme-
ability is slow compared to the dynamics stemming from surface tension and bending
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B814 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

Fig. 3.1. Illustration of the numerical mesh. The membrane triangulation T\Gamma (red) is fitted to
the triangulations Tin (gray) and Tout. The phase field \phi representing the droplet is defined in Tout

and controls the adaptive refinement. The white line indicates the fluid-fluid interface as 0.5-level
set of \phi .

stiffness, we approximate the right-hand side by J\nabla \Gamma \cdot v. Thus, an implicit prediction
of Jn is given by updating the current value Jn - 1 according to

Jn = Jn - 1 + \tau Jn - 1\nabla \Gamma \cdot vn ,(3.8)

where Jn - 1 is computed from current coordinates of the surface grid. Note that the
convective term in (3.7) is no longer necessary as Jn - 1 is computed after the grid
movement with velocity w. The viscosity \eta depends on the subdomain and on the
phase field, i.e.,

\eta =

\Biggl\{ 
\eta in in \Omega in,

\eta out(\phi ) = \eta out,1\phi + \eta out,0(1 - \phi ) in \Omega out,
(3.9)

where \eta in, \eta out,0, and \eta out,1 are prescribed constants. The density \rho is chosen here
to be constant in all fluid phases. Considering variable densities formally requires
additional force terms for thermodynamic consistency (see [1]). However, the effects of
this would not be noticable in practice, as biomembrane wetting interactions typically
happen at Reynolds numbers < 10 - 6, where density variations don't matter.

3.3. Space discretization. In our finite element approach, we consider the
triangulations Tout of \Omega out and Tin of \Omega in, whereby the membrane \Gamma , which connects
the two domains, is triangulated by T\Gamma = Tout \cap Tin. In particular, the connection
is ensured by the fact that every grid point on the interface of \Omega out is also a grid
point on the interface of \Omega in. This fitted grid approach allows us to exactly enforce
continuity of velocity across \Gamma . The jump conditions of the stress are implemented by
definition of separate finite element spaces for Tout and Tin, such that each degree of
freedom on the membrane T\Gamma exists twice---one belonging to Tout and one belonging
to Tin. An example for the numerical mesh is shown in Figure 3.1.

We now present the combined discrete system of (2.16)--(2.21) in the weak form.
Adopting the approach from [49], we introduce the following finite element spaces:
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NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B815

Vh :=
\bigl\{ 
v \in C0(\Omega ) | v| k \in P2(k), k \in Tout \cup Tin

\bigr\} 
,

Ph,i :=
\bigl\{ 
q \in C0(\Omega i) | q| k \in P1(k), k \in Ti

\bigr\} 
, i= out, in ,

Ch :=
\bigl\{ 
c\in C0(\Omega out) | c| k \in P2(k), k \in Tout

\bigr\} 
,

Sh :=
\bigl\{ 
f \in C0(\Gamma ), | f| k \in P1(k), k \in T\Gamma 

\bigr\} 
.(3.10)

Here, Vh is the finite element space for the components of the velocity v. It ensures
continuity of the respective variables across T\Gamma . Note that in (3.10), i denotes a place-
holder for the distinction between the two fluid domains. The use of two separate
spaces, Ph,out and Ph,in, is motivated by the discontinuity of pressure across \Gamma caused
by the closed elastic membrane. The use of standard finite element spaces for the
discretization of the discontinuous pressure leads to poor numerical properties, with
an approximation order of only \scrO (

\surd 
h) w.r.t. to the L2 norm [28]. Accordingly, the

usage of two separate spaces, Ph,out and Ph,in, extends the standard Taylor--Hood
finite element space by additional degrees of freedom of the pressure at the interface,
such that the discontinuity can be exactly resolved. The finite element space Ch

refers to \phi and \mu in (3.5). The remaining finite element space Sh is used to compute
the force exerted by the elasticity of the membrane, namely surface tension, in-plane
stretching, and bending stiffness.

While all equations are addressed within a unified coupled system, we opt to pres-
ent them individually in the following, segregated into fluid motion, phase separation,
and membrane forces, to enhance readability.

3.3.1. Navier--Stokes system. With the previous arguments, we can establish
a uniform weak formulation of the momentum and mass conservation equation for the
combined domain \Omega . The weak form reads as follows:

Find (vn, pnout, p
n
in)\in V d

h \times Ph,out\times Ph,in such that \forall (z, qout, qin)\in V d
h \times Ph,out\times Ph,in,

0 =

\int 
\Omega n - 1

\rho 

\biggl( 
vn  - vn - 1

\tau 
+
\bigl( 
vn - 1  - wn - 1

\bigr) 
\cdot \nabla vn

\biggr) 
\cdot z

+
\Bigl( 
\eta n - 1

\Bigl( 
\nabla vn + (\nabla vn)

T
\Bigr) \Bigr) 

:\nabla z dV

 - 
\int 
\Omega n - 1

\mathrm{o}\mathrm{u}\mathrm{t}

\~\sigma f\varepsilon \nabla \phi n \otimes \nabla \phi n - 1 : \nabla z+ pnout\nabla \cdot z dV

 - 
\int 
\Omega n - 1

\mathrm{i}\mathrm{n}

pnin\nabla \cdot z dV

 - 
\int 
\Gamma n - 1

fn\Gamma \cdot z dA,(3.11)

0 =

\int 
\Omega n - 1

\mathrm{o}\mathrm{u}\mathrm{t}

qout\nabla \cdot vn dV +

\int 
\Omega n - 1

\mathrm{i}\mathrm{n}

qin\nabla \cdot vn dV .(3.12)

3.3.2. Cahn--Hilliard system. The weak form of (3.5) equipped with bound-
ary conditions (2.17)--(2.18) reads as follows:

Find (\phi n, \mu n)\in Ch \times Ch such that \forall (\psi 1,\psi 2)\in Ch \times Ch,

0 =

\int 
\Omega n - 1

\mathrm{o}\mathrm{u}\mathrm{t}

\biggl( 
\phi n  - \phi n - 1

\tau 
+ vn \cdot \nabla \phi n - 1  - wn - 1 \cdot \nabla \phi n

\biggr) 
\psi 1 +M\nabla \mu n \cdot \nabla \psi 1 dV,(3.13)
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B816 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

0 =

\int 
\Omega n - 1

\mathrm{o}\mathrm{u}\mathrm{t}

\mu n\psi 2  - \~\sigma f\varepsilon \nabla \phi n \cdot \nabla \psi 2  - 
\~\sigma f
\varepsilon 

\bigl( 
W \prime \bigl( \phi n - 1

\bigr) 
+W \prime \prime \bigl( \phi n - 1

\bigr) \bigl( 
\phi n  - \phi n - 1

\bigr) \bigr) 
\psi 2 dV

(3.14)

 - 
\int 
\Gamma n - 1

\sigma \prime 
m(\phi 

n - 1)\psi 2 dA.

Let us note that the Cahn--Hilliard system is still directly coupled to the Navier--
Stokes system by the presence of vn in (3.13) and the presence of \phi n in (3.11). This
coupling removes time step restrictions for small interface thickness [3].

3.3.3. Membrane force system. The bending force (2.14) includes the total
surface curvature and its derivatives. In order to formulate a stable discretization,
these terms need to be included implicitly to the system. Therefore, we use the weak
formulation from Dziuk [21]:\int 

\Gamma 

\delta Ebend

\delta \Gamma 
ψ=KB

\int 
\Gamma 

1

2
| κ| 2\nabla \Gamma \cdot ψ+\nabla \Gamma κ :\nabla \Gamma ψ+\nabla \Gamma \cdot κ\nabla \Gamma \cdot ψ

 - 
\Bigl( 
\nabla \Gamma ψ+\nabla \Gamma ψ

T
\Bigr) 
P :\nabla \Gamma κ dA(3.15)

for any vector valued test function ψ. Derivations can be found in [21, 12]. How-
ever, we also derived (3.15) in the present notation in the supplementary material
section SM2. The resulting weak form of the combined membrane force system reads
as follows:

Find (κn, fn\Gamma )\in Sd
h \times Sd

h, such that \forall (s1, s2)\in Sd
h \times Sd

h,

0 =

\int 
\Gamma n - 1

κ
n \cdot s1 +\nabla \Gamma 

\bigl( 
idn - 1

\Gamma + \tau vn
\bigr) 
:\nabla \Gamma s1 dA,

(3.16)

0 =

\int 
\Gamma n - 1

fn\Gamma \cdot s2  - 
\bigl( 
\sigma m(\phi 

n - 1)κn + \sigma \prime 
m(\phi 

n - 1)\nabla \Gamma \phi 
n
\bigr) 
\cdot s2  - KB

\biggl[ 
 - 1

2

\bigl( 
κ
n \cdot κn - 1\nabla \Gamma \cdot s2

\bigr) 
 - \nabla \Gamma κ

n :\nabla \Gamma s2  - \nabla \Gamma \cdot κn\nabla \Gamma \cdot s2 +
\bigl( 
\nabla \Gamma s2 +\nabla \Gamma s

T
2

\bigr) 
Pn - 1 :\nabla \Gamma κ

n

\biggr] 

 - KA

\bigl[ 
(Jn  - 1)κn - 1 \cdot s2 +\nabla \Gamma (J

n  - 1) \cdot s2
\bigr] 
dA.

(3.17)

Note that the resulting force fn\Gamma is as well directly coupled to the Navier--Stokes--
Cahn--Hilliard system by the presence of vn in (3.16) and \phi n in (3.17). The force
itself is plugged into the Navier--Stokes system in (3.11). As the discrete system is
linear, (3.11)--(3.17) can be monolithically assembled and no subiterations are needed.

3.4. Remeshing. While the grid update method outlined in section 3.1 is well-
suited for minor deformations of the membrane, it encounters challenges when sub-
stantial membrane deformations occur. Particularly in the proximity of the contact
region between the droplet and the membrane, elements may be pushed toward each
other, resulting in distorted triangles/tetrahedra with small minimum angles, under-
mining accuracy and stability of the finite element method. Consequently, we use a
mechanism to reconstruct the mesh whenever the minimum angle of any triangle falls
below a specified threshold \alpha min (in the simulations, \alpha min has been chosen between
5\circ and 10\circ ). The following retriangulation steps are performed:

1. Extract the membrane grid points. Note that the adaptively refined grid has
to be used here in order to retain accurate information on the membrane
shape.
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NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B817

2. Generate a new (unrefined) mesh with gmsh [25], using the outer boundary
box and the membrane grid points from the old grid.

3. Interpolate the data of the solution \phi and the deformation gradient deter-
minant J to the new grid (see the step below). J is needed to preserve the
information of the unstretched initial state of the membrane. Refine the grid
afterward by refinement of all elements that are on the fluid-droplet interface
(i.e., where values of \phi are between 0.05 and 0.95). Repeat the step until
the refinement level of the old grid is reached. Always exclude elements from
the refinement, which have a size smaller than a prescribed minimum (typi-
cally in the order of the average element volume on the interface of the old
grid). This has to be done since for the new unrefined grid, grid points on
the membrane from the old refined grid have been used.

4. Interpolate the data of the solution v by solution of the following problem,
which ensures that the velocity remains divergence-free on the new grid:

vnew  - \nabla L= vold ,

\nabla \cdot vnew = 0 ,

where L acts as a Lagrange multiplier. The problem is solved with finite
elements on the new grid. However, the right- hand-side operator in the
weak form is of the form

\int 
T\mathrm{n}\mathrm{e}\mathrm{w}

vold \cdot ψ with the triangulation Tnew based
on the new grid and test functions ψ defined on the new grid. In contrast,
the ansatz functions are defined on the old grid. Computation of such an
integral involves identifying all intersections that an element on the new grid
has with the old grid. These intersections are then triangulated, and this
triangulation is utilized to calculate the integral on the respective element
on Tnew. In the implementation, this process is carried out within the dune

module dune-grid-glue. Further details can be found in [14].
5. Update all data structures to the new grid and solve the next time step with

the old solutions from step 4.

4. Numerical tests. We perform numerical tests to validate the proposed
method and to illustrate its potential. The majority of the physical parameters are
selected within the realm of realistic biological systems (see Table 4.1). Although
some parameters are well-established, others, such as viscosity and surface tension of
condensates, can exhibit significant variability, with observed ranges spanning four
orders of magnitude. Given that the aim of this paper is not to concentrate on a par-
ticular biological system, we intentionally vary parameters across a broad spectrum.
Despite the numerical method's capability to handle phase-dependent viscosity [8],
we choose constant viscosity throughout this work for simplicity.

4.1. Validation. To validate the numerical method, we consider membrane re-
modeling induced by a single droplet in two dimensions. Assuming an initially flat
membrane sheet, which is significantly larger than the droplet, enables the analytical
derivation of the stationary morphology based on shape equations (see the supple-
mentary material section SM3). To compare with these analytical shapes, we set up
the numerical method to simulate the evolution up to the stationary state. The mem-
brane ends are connected to the boundary of the domain with a free-slip condition.
Membrane stretching and permeability are neglected (KA = P = 0).

Figure 4.1 shows the comparison of stationary shapes between numerical and
analytical results. The given local contact angle \theta is related to the surface tensions
through the Young--Dupr\'e law,
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B818 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

Table 4.1
Characteristic parameters of membrane vesicles and biomolecular coacervates.

Parameter name Value Reference

bending rigidity KB 10 - 19  - 10 - 18Nm [22, 40]
surface tension coacervate \sigma f 10 - 4  - 1mN/m [74]

viscosity \eta 

cytosol 1 - 10Pas [75]
coacervate 0.1 - 103 Pas [74]

interface width \epsilon 5 - 10nm [71]

cytosol density \rho \sim 103 kg/m3 [53]
area dilation modulus KA 100 - 300mN/m [23, 58]

scaled permeability Pp\mathrm{d}\mathrm{i}ff 10 - 7  - 10 - 5m/s [55, 63]

cos \theta =  - 0.95, \sigma 0
\sigma \mathrm{f}

= 0.75, cos \theta =  - 0.75, \sigma 0
\sigma \mathrm{f}

= 0.75, cos \theta =  - 0.25, \sigma 0
\sigma \mathrm{f}

= 0.75,

\alpha = 168.15\circ \alpha = 153.62\circ \alpha = 135.95\circ 

cos \theta = 0.35, \sigma 0
\sigma \mathrm{f}

= 0.75, cos \theta =  - 0.25, \sigma 0
\sigma \mathrm{f}

= 1.25, cos \theta = 0.75, \sigma 0
\sigma \mathrm{f}

= 1.25,

\alpha = 138.32\circ \alpha = 124.22\circ \alpha = 71.79\circ 

Fig. 4.1. Comparison of stationary shapes obtained by simulations (dashed lines) and theoret-
ical model (solid lines) for a single droplet (blue) on an initially flat membrane (red). Compelling
agreement between the two solutions is even visible in the close-up around the three-phase contact
point. Parameters: Initial droplet shape is spherical (radius 50nm) in the theoretical model, and
half-spherical cap (radius 70.71nm) in the simulations. The used surface tensions can be determined
from (4.1) with \sigma f = 15\mu N/m. Further, KA = 0,KB = 8 \cdot 10 - 20Nm, P = 0 \varepsilon = 1nm.

cos\theta =
\sigma 0  - \sigma 1
\sigma f

,(4.1)

and differs from the apparent contact angle \alpha (see Figure 2.1), which in the limit of
both large droplets (compared to the capillarity length) and large vesicles (compared
to the droplet) is given by Neumann's law [36]:

cos\alpha =
\sigma 2
0  - \sigma 2

1  - \sigma 2
f

2\sigma f\sigma 1
.(4.2)

The surface tensions have been chosen such that different resulting shapes can be
compared, from a nearly spherical droplet with very low bending of the membrane,
Figure 4.1(a), over strong indentation of the membrane by the droplet, Figure 4.1(d),
to a lens-like shape of the droplet on the membrane Figure 4.1(f). For all different
parameter configurations chosen, we observe a perfect agreement between numerical
results and the results of the shape equations. This verifies that the numerical method
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NUMERICAL SIMULATION OF MEMBRANE WETTING DYNAMICS B819

Table 4.2
Experimental order of convergence (EOC) in space for a 2D test simulation with an initially

half spherical droplet (radius 1.5\mu m) on a spherical membrane (radius 5\mu m). The meshes for the
three test cases are illustrated in Figure 4.2. Here, x\ast = (x\ast ,0)T is the right membrane point on the
x-axis. All values are evaluated at the 10th time step. Parameters: \varepsilon = 0.02\mu m, KB = 8 \cdot 10 - 20Nm,
KA = 5 \cdot 10 - 3 N/m, P = 10 - 8m2s/kg, \eta = 10Pa \cdot s, \rho = 103 kg/m3.

Benchmark Grid size EOC
Quantity h h/2 h/4

x\ast 0.490525 0.490670 0.490716 1.66\int 
\{ \phi =0.5\} 1dA 0.5065 0.5022 0.5018 3.43\int 
\Gamma \| κ\| 2 dA 9.69082 7.98518 7.62019 2.22

Fig. 4.2. Meshes for the convergence test at initial state. The same base mesh (left, mesh size
h) is refined once (center, mesh size h/2) and twice (right, mesh size h/4), by splitting each base
triangle into four subtriangles. On the membrane, refinement is done such that it is still circular
after refinement, i.e., all membrane grid points have a distance of 5\mu m to the origin. While the
described refinement is performed globally before creation of the phase field, the images show the
meshes after adaptive refinement at the phase-field interface.

accurately incorporates all surface forces and resolves the locally high membrane cur-
vature in the triple contact point by the adaptive grid.

The hydrodynamics of the numerical method and the underlying flow solver have
been previously validated in various two-phase applications on cells and shells in
fluid flow [51, 19]. Furthermore, benchmark validations against other numerical codes
[8], experimental data [4, 3], and convergence studies [8, 49] have been successfully
conducted. Moreover, the wetting boundary conditions were validated for dynamic
situations and applied to scenarios of moving contact lines [48]. To assess the spatial
accuracy of the full droplet/membrane interaction, we conduct a very brief study in
Table 4.2 and find roughly second to third order convergence for different geometric
quantities.

Consequently, the method exhibits precise capabilities in capturing dynamic phe-
nomena, making it well-suited for application in future studies leveraging realistic
experimental data.

4.2. Droplets on a vesicle. This section aims to showcase the outcomes of nu-
merical investigations involving droplets adhering to an initially spherical membrane.
We start with single droplets on the membrane. Afterward, multiple droplets on the
membrane are considered. To begin, we examine the interaction dynamics of two
closely positioned droplets and explore how the bending stiffness of the membrane
influences the interplay between these two droplets. Finally, we consider liquid-liquid
phase separation around the membrane with condensates of low, neutral, and high
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B820 MOKBEL, MOKBEL, LIESE, WEBER, AND ALAND

t = 0 s

\bfA \bfd \bfh \bfe \bfs \bfi \bfo \bfn : \sigma \mathrm{f} = 30\mu N/m, \sigma 0 = 15\mu N/m, \sigma 1 = 30\mu N/m

t = 0.5 s t = 1 s t = 3 s t = 18 s

\bfL \bfe \bfn \bfs \bfs \bfh \bfa \bfp \bfe : \sigma \mathrm{f} = 30\mu N/m, \sigma 0 = 30\mu N/m, \sigma 1 = 15\mu N/m

t = 0.5 s t = 1 s t = 3 s t = 18 s

\bfW \bfr \bfa \bfp \bfp \bfi \bfn \bfg : \sigma \mathrm{f} = 30\mu N/m, \sigma 0 = 16\mu N/m, \sigma 1 = 1\mu N/m

t = 2.5 s t = 5 s t = 10 s t = 18 s

Fig. 4.3. Time evolution for three different parameter configurations exhibit different cat-
egories of droplet-membrane interaction: adhesion (top row), lens shape (middle row), and
wrapped/endocytosis (bottom row). The single top snapshot shows the initial configuration of drop-
let (blue) and membrane (red). Oriented streamlines illustrate fluid velocity in the xy-plane colored
by magnitude in units of 10\mu m/s. All snapshots have been zoomed in for visibility and therefore
do not show all of \Omega . Parameters: Initially spherical membrane of radius of 5.4\mu m and half-
spherical cap droplet of radius 2.5\mu m, centered on the membrane. Other parameters are \varepsilon = 0.02\mu m,
KB = 8 \cdot 10 - 19Nm, KA = 5 \cdot 10 - 3 N/m, P = 10 - 7m2s/kg, \eta = 1Pa \cdot s, \rho = 103 kg/m3. Axisymmetric
simulations.

wettability, respectively. These simulations illustrate the capabilities of the present
model.

4.2.1. Single droplet. In the following we consider a single droplet situated
outside a spherical vesicle membrane. Three distinct combinations of surface tensions
were selected to explore shape evolutions into different categories of stationary states,
as introduced in [45]: adhesion, lens shape, and partially wrapped/endocytosis.

Case 1: Adhesion (Figure 4.3, top row). Here \sigma 0 is chosen smaller than the
other two tensions. As a result, the droplet indents the membrane slightly. During
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t = 0 s t = 0.5 s t = 1 s t = 2 s t = 5 s

Fig. 4.4. Inverted endocytosis: A small spherical vesicle (red) is absorbed by a larger drop
(blue). Time evolution of axisymmetric simulation. Vesicle can change shape due to imposed per-
meability. Parameters: \sigma f = 30\mu N/m, \sigma 0 = 31\mu N/m, \sigma 1 = 1\mu N/m,KB = 8 \cdot 10 - 17Nm,KA =
5 \cdot 10 - 3N/m, P = 10 - 7m2s/kg, initial radii 1.25\mu m (vesicle), 5\mu m (drop). Axisymmetric simula-
tion.

the indentation, all three fluids (droplet, ambient, intramembrane) are set in motion.
This motion decays as the system reaches a (nearly) stationary state around t= 18s.
The observed contact angle of approximately \alpha = 135\circ is lower than the theoretical
prediction of 151\circ from (4.2). This is due to the fact that droplet and membrane
radius are of the same order of magnitude, hence, Neumann's law does not hold.

Case 2: Lens shape (Figure 4.3, middle row). In the lens shape case, \sigma 1 is
smaller than the other two surface tensions. Hence, the droplet tends to cover more
of the membrane's surface, leading to a smaller contact angle (\theta \approx 85\circ ) and the
lens-like shape of the droplet in the stationary state.

Case 3: Wrapping (Figure 4.3, bottom row). For this test case, the values of the
surface tensions are chosen such that the capillary forces of the droplet are dominant
and there is a minimum influence of the membrane tension at the contact surface
between droplet and membrane. The droplet sinks completely into the membrane and
gets wrapped by it. Since the present ALE model is not able to describe topological
changes of the membrane, the simulations were stopped at t= 18s before a stationary
state was reached. As predicted by theory [45], the droplet should be completely
wrapped such that endocytosis happens. In this case, it is clearly observable that the
volume enclosed by the membrane decreases as the droplet sinks into it. This effect
occurs due to the interplay between in-plane elasticity (high KA) and membrane
permeability. The increase of membrane area which is necessary to wrap the droplet
is opposed by the dilational elasticity, leading to a high pressure inside the membrane,
pushing out fluid such that its volume decreases.

Inverted endocytosis. An opposite case of inverted endocytosis is illustrated
in Figure 4.4. Here, a small vesicle is absorbed into a larger droplet, driven by surface
tension forces. The surface tensions are chosen such that the extreme case of a contact
angle of \theta = 0\circ is approached. In this case, the full endocytosis can be simulated, since
the topological transition happens now for the diffuse fluid-fluid interface instead of
the membrane.

4.2.2. Multiple droplets. Another interesting test scenario is the inverted
Cheerios effect. This effect, which has been reported experimentally [33] and nu-
merically [7], describes the mutual attraction or repulsion of droplets, mediated by
elasticity of their underlying substrate. Here, we perform simulations in two dimen-
sions with an initially spherical membrane, where the two drops are represented as
spherical caps, placed outside the membrane with a small distance in between. An il-
lustration of the resulting dynamics is depicted in Figure 4.5 for two different values of
bending stiffness. Other parameters are chosen equal to the previous lens shape case.
Accordingly, at early times we observe a similar evolution for the two droplets as
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t = 10 s t = 50 s t = 130 s

t = 10 s t = 13 s t = 50 s

Fig. 4.5. Inverted Cheerios effect: Droplets repel each other mediated by membrane bending
(top, KB = 8 \cdot 10 - 17Nm). For low bending stiffness, the effect is not present and droplets coalesce
(bottom, KB = 8 \cdot 10 - 19Nm). Parameters: Initial membrane radius 10\mu m. Two droplets are placed
as spherical caps with radius r1 = 2.5\mu m and r2 = 3.5\mu m at the membrane, where the centers of the
two drops are c1 = (10,0)T and c1 = (7.1,7.1)T . The remaining parameters have been chosen equal
to the lens shape case of the single droplet simulations.

before, Figure 4.5. The droplets indent the membrane until the forces on the mem-
brane due to bending stiffness and surface tension are (nearly) in equilibrium around
t = 10 s. However, in the case of larger bending stiffness, the droplets are driven
apart from each other due to the high membrane curvature between the droplets,
Figure 4.5 (top row). This membrane-mediated droplet repulsion happens on a much
slower time scale than the initial indentation of the membrane. Contrarily, in the case
of smaller bending stiffness, Figure 4.5 (bottom row), the distance between the two
droplets decreases until both droplets merge and, as a result, the stationary shape is
a single lens shaped droplet comparable to that in Figure 4.3.

4.2.3. Phase separation around a membrane. Finally, we investigate phase
separation around a membrane. We study three different situations, namely phase
separation on the inside, on the outside, and on both sides of a vesicle. For each of
these cases, three different parameter configurations are studied: neutral (\theta = 90\circ ),
high wettability (\theta = 60\circ ), and low wettability (\theta = 120\circ ).

In order to simulate phase separation, the phase field was initialized with random
values around the membrane (\phi \in [0.2,0.3] uniformly). An illustration of the re-
sulting dynamics is shown in Figure 4.6 (neutral), Figure 4.7 (high wettability), and
Figure 4.8 (low wettability). In the neutral case (\theta = 90\circ ), numerous small droplets
initially appear in the proximity of the membrane at t = 0.5 s. Subsequently, these
droplets undergo growth by coalescence and Ostwald ripening. During this process,
the membrane morphology increasingly adjusts, since larger droplets induce stronger
deformations.

In the cases of high and low wettability (Figures 4.7, 4.8), we initialize the or-
der parameter with larger values (\phi \in [0.2,0.8] uniformly) such that larger droplets
emerge. Consequently, we observe enhanced membrane remodeling, accompanied by
strong fluid motion. For high wettability (\theta = 60\circ ) the rich dynamics also enable
the emergence of transient droplets of the ambient fluid. Membrane remodeling gen-
erally seems to assist the coarsening and merging of droplets, such that only a few
droplets remain at final time. However, when condensate is present on both sides of
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outside only

inside only

inside and outside

t = 0 s t = 0.5 s t = 2 s t = 10 s

Fig. 4.6. Droplet/ambient phase separation outside (top row), inside (middle row), and on both
sides (bottom row) of a spherical membrane with contact angle \theta = 90\circ . In the light blue region at
the initial state t= 0 s, the phase-field value is prescribed as random number \in [0.2,0.3] in each grid
point. For the other time points, the droplets (\phi \geq 0.5) are illustrated in blue, the membrane in red,
and the ambient fluids in white (outside) and gray (inside). After phase separation, coarsening sets
in, such that small droplets vanish (Ostwald ripening) and larger droplets grow. All droplets interact
with the membrane and with each other. Parameters: \sigma f = 15\mu N/m, \sigma 0 = 30\mu N/m, \sigma 1 = 30\mu N/m,
KB = 8 \cdot 10 - 20Nm, KA = 5 \cdot 10 - 5 N/m, \varepsilon = 0.025\mu m, and P = 0m2s/kg. Initial membrane radius
is 2.5\mu m. Random initial values for \phi are set in a ring with internal radius 1.5\mu m and/or external
radius 3.5\mu m.

the membrane, the opposite behavior is observed. Droplets within and outside the
membrane exhibit a tendency to attract each other, forming zigzag patterns along
the membrane. In this case, the membrane slaloms between the droplets on either
side, keeping droplets distant, thereby preventing further coarsening (Figures 4.7, 4.8,
bottom row).

Phenomenologically, these results fit well to the experimental observations shown
in [37] and supplementary movies S3 and S7. However, more detailed studies are
necessary to understand the rich phenomenology and dynamics.

5. Conclusion and outlook. In this work we presented a first numerical method
to simulate the continuum dynamics of droplets interacting with deformable mem-
branes via wetting. We derived a thermodynamically consistent model which couples
bulk hydrodynamics with capillary forces as well as bending, tension, and stretching
of a thin membrane. The model combines the advantages of the phase-field method
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outside only

inside only

inside and outside

t = 0.05 s t = 0.25 s t = 1 s t = 8 s

Fig. 4.7. Droplet/ambient phase separation outside (top row), inside (middle row), and on
both sides (bottom row) of a spherical membrane with contact angle \theta = 60\circ . The initial phase-field
value is chosen to be a random number \in [0.2,0.8] on a ring around the membrane. The droplets
(\phi \geq 0.5) are illustrated in blue, the membrane in red, and the ambient fluids in white (outside)
and gray (inside). Parameters: \sigma f = 30\mu N/m, \sigma 0 = 15\mu N/m, \sigma 1 = 30\mu N/m, KB = 8 \cdot 10 - 20Nm,
KA = 5 \cdot 10 - 5 N/m, \varepsilon = 0.025\mu m, and P = 0m2s/kg. Initial membrane radius is 2.5\mu m. Random
values for the phase field are set in a ring with internal radius 1.5\mu m and/or external radius 3.5\mu m.

for simulation of multiphase flow with those of the arbitrary Lagrangian-Eulerian
(ALE) method for an explicit description of the elastic surface. Diffusivity of the
liquid-liquid interface stabilizes the motion of the three-phase contact line, prevents
contact line singularity and locking, and enables simulation of topological changes,
such as droplet coalescence and break-up. On the other hand, the fitted finite ele-
ment approach used to represent the membrane exactly resolves the discontinuities
of pressure, viscosity, and liquid concentration across the membrane. Paired with
adaptive mesh refinement, the method can accurately resolve the high curvature at
the apparent membrane cusp observed at the three-phase contact line. In addition
to grid movement by the ALE method, we introduced a remeshing algorithm which
enables us to track large deformations of membranes up to a topological change.

We validated the method by comparing simulations for single droplets to the the-
oretical results of shape equations. Very good agreement was found, even for the high
membrane curvature at the three-phase contact point. In a series of numerical tests,
we illustrated the capabilities of the proposed method in 2D and 3D axisymmetric sce-
narios. We provided a first simulation of the dynamics of mutual droplet/membrane
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outside only

inside only

inside and outside

t = 0.05 s t = 0.25 s t = 1 s t = 8 s

Fig. 4.8. Droplet/ambient phase separation outside (top row), inside (middle row), and on
both sides (bottom row) of a spherical membrane with contact angle \theta = 120\circ . The initial phase-field
value is chosen to be a random number \in [0.2,0.8] on a ring around the membrane. The droplets
(\phi \geq 0.5) are illustrated in blue, the membrane in red, and the ambient fluids in white (outside)
and gray (inside). Parameters: \sigma f = 30\mu N/m, \sigma 0 = 30\mu N/m, \sigma 1 = 15\mu N/m, KB = 8 \cdot 10 - 20Nm,
KA = 5 \cdot 10 - 5 N/m, \varepsilon = 0.025\mu m, and P = 0m2s/kg. Initial membrane radius is 2.5\mu m. Random
values for the phase field are set in a ring with internal radius 1.5\mu m and/or external radius 3.5\mu m.

remodeling. Moreover, an inverted endocytosis was simulated, where a smaller vesicle
is absorbed into a larger drop by capillary forces. Additionally, we found an inverted
Cheerios effect, evidenced by membrane-mediated repulsion of two droplets. Finally,
we provided simulations of liquid-liquid phase separation around a vesicle membrane.
The rich dynamics of which illustrate that numerical simulations are indispensable to
systematically study these highly nonlinear phenomena.

Despite its potential for such toy problems, the presented method represents only
a first step toward biologically relevant simulations of wetted membranes. The biolog-
ical system comprises a variety of complex features which are not yet accounted for,
including spontaneous curvature, line tension, and membrane binding [79]. Recog-
nizing that bending stiffness generally depends on droplet contact [47] underlines the
need for wetting-dependent bending stiffness. In this case also the Gaussian bending
stiffness which is linked to KB [30] is no longer negligible and poses conceptual chal-
lenges as additional coupling terms will arise in the phase-field evolution. Moreover,
to address complex nonaxisymmetric geometries will require full 3D simulations, the
computational effort of which demands parallelization, new remeshing strategies, and
highly stable time stepping.
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A clear limitation of the present method is given by the grid-based approach which
excludes topological changes of the membrane. To handle membrane fusion and fission
will require fundamentally different membrane representation and different numerical
techniques.
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