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A B S T R A C T

Throughout many societies around the globe, there is growing awareness of the urgent need for the transition
towards a sustainable economy. Research shows that buying firms have substantial leverage to initiate sus-
tainable development by controlling the sustainable performance of their suppliers. In that context, this article
presents a novel methodology based on inverse optimization to derive the implicit preferences of decision-
makers in the trade-off between traditional sourcing objectives and sustainability in the supplier selection and
order allocation process. The derived implicit preferences can then be used for further analyses to gain a better
understanding of the characteristics of purchasing managers and sourcing situations that come with particularly
high/low preferences placed on sustainability. Since the inverse optimization approach is computationally
resource-intensive and consumes a significant amount of time, we present a scalable state-of-the-art cloud ar-
chitecture that allows solving an arbitrary number of optimization programs in an acceptable amount of time. We
demonstrate the feasibility of the proposed methodology in a real-world case. In doing so, we test how important
sustainability aspects are in the supplier selection and order allocation decisions of one of the world’s largest
automotive parts manufacturers.

1. Introduction

Although the attention to green supply chain management has
increased due to environmental regulation and consumer pressure on
sustainability (Govindan et al., 2015) and even though the selection of
suppliers plays a vital role in providing ecological improvements for
firms (Mathiyazhagan et al., 2018; Liou et al., 2021), very little is known
about how sustainability objectives actually affect sourcing decisions.
From a general perspective, unsustainable supply chain links are slow-
ing the transition towards a sustainable economy; that is, they harm
natural environments and threaten human health and welfare – at least
in the long run. From a firm perspective, unsustainable supply chain
links increase the exposure of buying firms to future costs associated
with their suppliers’ social and/or environmental irresponsibility
(Kalkanci and Plambeck, 2020; Zhang et al., 2021). These costs stem
from compensation payments, damage to a brand’s reputation, and
supply disruptions, amongst others. Besides the possibility of hedging a
buying firm against a variety of costs stemming from their suppliers’
social and environmental irresponsibility, the consideration of sustain-
ability in sourcing decisions offers numerous opportunities for

purchasing companies, including the strengthening of their competi-
tiveness, an increase in their corporate reputation, and encouragement
of inter-organizational learning (Bai and Sarkis, 2010; Gopalakrishnan
et al., 2012).

On the one hand, the supplier selection literature is rich on different
approaches how to consider sustainability in purchasing decisions (e.g.,
Çalık, 2021; Chang et al., 2021; Karaer et al., 2020; Kellner et al., 2019;
Lo et al., 2018; Lo et al., 2021; Xing et al., 2022). On the other hand,
there is a lack of empirical examinations of how to determine to what
extent decision-makers in purchasing departments have actually
considered sustainability as an objective in past sourcing decisions. The
need for studying preferences (also known as ‘weights’ in the objective
function) of different objectives in sourcing decisions stems from the
request in cleaner production literature (e.g., Sinha and Anand, 2018)
that highlights the importance of selecting the right (i.e., socially and
ecologically sustainable) suppliers, for instance, in the context of prod-
uct development. However, direct approaches to determine preferences
such as surveys and interviews may suffer from self-reporting biases
among decision-makers and might not reveal the ‘real’ preferences.
Greenwashing in the supply chain might be one aspect of why it is
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important to understand the real preferences in sourcing decisions.
In this context, our research presents a model that allows us to derive

implicit preferences from real-world sourcing decisions. Our model
builds on the multi-objective optimization model proposed by Kellner
et al. (2019) and Kellner and Utz (2019). The model solves the
multi-criteria supplier selection problem with the objectives of costs,
logistics performance, supply risk, and sustainability in an a posteriori
setting, i.e., it determines the entire set of efficient supplier portfolios,
and we select the one nearest to the actual sourcing decision as the one
from which we derive the implicit preferences.

Overall, this research contributes to the sustainable configuration of
supply and value chains by proposing an approach that allows stake-
holders to empirically study the extent to which companies actually
integrate sustainability objectives into their sourcing decisions. In detail,
we propose a methodology that combines inverse optimization and
multi-objective programming to derive the sustainability preferences of
purchasing managers (or ‘decision-makers’ in general) in the trade-off
between traditional sourcing objectives and the suppliers’ sustainabil-
ity performances in the supplier selection and order allocation process.
This means that we derive and analyze ex-post to what extent decision-
makers in purchasing departments have actually considered sustain-
ability as an objective in past sourcing decisions, i.e., what sustainability
preferences decision-makers are implicitly placing on different pur-
chasing objectives when opting for a certain supplier portfolio. In this
context, a supplier portfolio refers to the selected suppliers and the
proportions of the purchasing company’s total demand ordered from
these sources. The derived implicit preferences can then be used to carry
out further analyses. One advantage of using derived implicit prefer-
ences is that they are derived from real-world decision situations, that is,
they are measured after the decision has been made and, thus, do not
suffer from self-reporting biases. Another advantage of applying inverse
optimization is its ability to explicitly include actual constraints that
represent the decision situation realistically. This eases the incorpora-
tion of domain knowledge and thus inverse optimization offers the
promise of models with enhanced prediction accuracy and interpret-
ability, compared with, for instance, common black-box machine
learning methods (Gupta and Zhang, 2022). In general, our research is
based on the key assumption of a rationally acting decision-maker who
needs to balance four purchasing objectives: costs, logistics perfor-
mance, supply risk, and sustainability.

Since applying the inverse optimization approach to derive the
purchasing managers’ sustainability preferences is, from a computa-
tional perspective, resource intensive and involves a certain amount of
time to generate the optimal solutions, we present a scalable state-of-
the-art cloud architecture that allows the user to solve an arbitrary
number of optimization programs in an acceptable amount of time. We
argue that the proposed architecture is generic enough to be used in
many other future research projects that involve solving many optimi-
zation problems, such as in the case of applications based on inverse
optimization.

We apply the suggested methodology to a real-world case from the
automotive industry and analyze the derived implicit preferences to gain
a better understanding of the characteristics of the purchasing managers
and sourcing situations that come with particularly high/low prefer-
ences on sustainability. This allows us to demonstrate the method’s
applicability and to empirically test how important sustainability as-
pects are in the supplier selection and order allocation process of one of
the world’s largest automotive parts manufacturers. Specifically, we
study a sample of 145 real-world purchasing cases and use the technique
of inverse optimization to derive the implicit preference parameters of
decision-makers in the trade-off between low purchasing costs, high
logistics quality, low supply risk, and the suppliers’ sustainability. We
are not aware of any research that used inverse optimization in the
supplier selection case before to derive implicit preferences from real-
world decisions. For sure, there is research that analyzed sustainabil-
ity considerations in purchasing decisions. For instance, Mansi and

Pandey (2016) studied the impact of demographic characteristics of
procurement professionals on sustainable procurement practices. How-
ever, these studies are typically based on questionnaires and might,
therefore, suffer from self-reporting biases. This paper intends to present
an alternative approach to the ‘classical’ self-reporting-based approach
for studying sustainability preferences in sourcing decisions.

The remainder of the paper is organized as follows: Section 2 posi-
tions this research in the stream of related literature. Section 3 develops
the general approach for estimating sustainability preferences in
sourcing decisions based on inverse optimization. Section 4 presents the
application of the proposed methodology to a real-world case. Section 5
discusses several aspects of the proposed approach and the results
observed in the application case. Finally, Section 6 contains concluding
remarks.

2. Related literature

Many scholars consider supplier selection as one of the most
important decisions in purchasing and supply chain management
(Golmohammadi and Mellat-Parast, 2012; Parthiban et al., 2013;
Wetzstein et al., 2016). This explains, at least partly, why supplier
evaluation and selection have been studied so intensively during the last
decades. Comprehensive literature reviews in this area are presented, for
instance, by Chai et al. (2013), Degraeve et al. (2000), and Ho et al.
(2010). These reviews, among others, state that supplier selection de-
cisions typically involve evaluating the performance of potential sup-
pliers against a broad range of often conflicting criteria.

2.1. Supplier evaluation and selection

Popular evaluation criteria in supplier selection are cost, quality, on-
time delivery, manufacturing capability, service level, performance
history, technology, research and development, finance, flexibility to
respond to unexpected demand changes, reputation, supply risk, and
safety and environment (Ho et al., 2010; Kannan and Tan, 2002).
Contemporary research (e.g., Saputro et al. (2024); Giannakis et al.
(2020); Bai and Sarkis, 2010; Saputro et al. (2024); Giannakis et al.
(2020); Ghadimi et al., 2018; Govindan et al., 2013; Govindan and
Sivakumar, 2016; Liu et al., 2018; Ma et al., 2022; Rashidi et al., 2020;
Schramm et al., 2020) shows that sustainability has become a more and
more important aspect during the last decade. Over the years, many
different approaches have been developed to solve the multi-criteria
supplier selection problem including AHP, ANP, DEA, DEMATEL,
ELECTRE, fuzzy set theory, genetic algorithms, mathematical pro-
gramming, neural networks, PROMETHEE, and TOPSIS. Besides the
aforementioned ‘individual’ decision-making approaches, several
‘combined’ techniques have been developed; e.g., ANP + TOPSIS, AHP
+ DEA, TOPSIS + DEMATEL, DEA + mathematical programming, and
AHP + goal programming (Chai et al., 2013; Ho et al., 2010; Kaur and
Singh, 2021; Nasr et al., 2021; Li et al., 2021; Tong et al., 2022).

Recently, Kellner et al. (2019) and Kellner and Utz (2019) combined
multi-objective optimization, the Markowitz (1952, 1959) portfolio
theory, and a posteriori decision-making to solve the multi-criteria
supplier selection and order allocation problem considering costs, lo-
gistics performance, supply risk, and sustainability. The authors show
that the combination of these individual techniques allows the user to
visualize and analyze the different trade-offs that come with a particular
supplier selection problem and to get a better understanding of the
decision-making problem at hand, – which finally allows for a more
informed decision-making process.

2.2. Sustainability in supplier selection

Environmental and social sustainability is a prominent topic in the
current supplier selection literature (e.g., Chai et al., 2013; Chai and
Ngai, 2020; Rashidi et al., 2020; Schramm et al., 2020). In this context,
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the literature on sustainable supplier selection and order allocation is
mostly based on approaches to determine the subjective preferences (or
weights) regarding the importance of sustainability for the
decision-maker.

To overcome the limitation of relying decision-making of supplier
evaluation on vague and subjective information, fuzzy-based ap-
proaches are frequently used to manipulate such vagueness and
subjectivity (Li et al., 2019). Adding to this discussion, Li et al. (2019)
extend the TOPSIS method for sustainable supplier selection by an in-
tegrated weighting method that considers both subjective and objective
weights. Gören (2018) also proposes a decision framework for sustain-
able supplier selection and order allocation. The framework applies a
fuzzy DEMATEL approach to calculate the preferences for sustainability
criteria and uses these preferences as inputs in Taguchi Loss Functions
for ranking. Jain and Singh (2020) use a Fuzzy Interference System (FIS)
for evaluating the sustainability performance index value of each sup-
plier in three sustainability dimensions, and suppliers are ranked for
final selection. Nasr et al. (2021) apply the fuzzy best-worst method to
select the most suitable suppliers according to economic, environmental,
social, and circular criteria in sustainable closed-loop supply chains to
minimize waste by circling back (repairing, reselling, or dismantling for
parts). Also, they use a fuzzy goal programming approach where they
transform the multi-objective mixed-integer linear programming into a
single objective model. This is an important aspect since fuzzy methods
are typically applied to reduce the dimension of objectives by deter-
mining fuzzy preferences and calculating one single performance index
that is the basis of the ranking of the suppliers. Another approach to
generating a single index is presented by Sinha and Anand (2018) who
develop a sustainable supplier selection index from a sustainability
perspective by analyzing the interrelationships between different attri-
butes of suppliers and selecting the suppliers best on the index value.

Other studies combine fuzzy techniques with multi-objective pro-
gramming. For instance, Mohammed et al. (2018) combine the fuzzy
techniques with AHP to assign the relative weights for sustainability
criteria, the fuzzy techniques with TOPSIS, and a multi-objective pro-
gramming model. The model aims to minimize the costs of trans-
portation, purchasing, and administration, the environmental impact
(particularly CO2 emissions), and the travel time of products, while
maximizing the social impact and total purchasing value. Vahidi et al.
(2018) propose a novel bi-objective two-stage mixed
possibilistic-stochastic programming model to address the sustainable
supplier selection and order allocation problem under operational and
disruption risks. A mixed sustainability-resilience objective function is
also introduced to select a resiliently sustainable supply base. Lo et al.
(2018) also combine different steps in a model that integrates the
best-worst method, a modified fuzzy TOPSIS, and fuzzy multi-objective
linear programming to solve problems in green supplier selection and
order allocation. Table 1 shows the diversity in the methodological
approaches that have been proposed so far to support the supplier
evaluation and selection process under sustainability considerations.

The methods in Table 1 have been conceptualized for stating

preferences that are known before the optimization stage and are
therefore input variables for the optimization. Based on these prefer-
ences, the decision-maker determines the optimal supplier portfolio. In
contrast, the methodology proposed in this research is not an additional
approach for selecting sustainable suppliers but an approach to derive
implicit preferences from actual sourcing decisions. This means that the
preferences used by the decision-maker are unknown to us. With our
inverse optimization model, we aim to derive these preferences from
actual sourcing decisions. The advantage of our approach is that it is not
biased by the setting in which the decision-maker sets her/his prefer-
ences (such as in surveys, interviews, or AHP).

2.3. Inverse optimization

The introduction of the notion of inverse optimization goes back to
Burton and Toint (1992), who derived the travel costs based on the
routes the users took in a network. Inverse optimization uncovers hidden
decision-making strategies from observed decision data, i.e., it generally
aims to infer unknown optimization models from decision data (Gupta
and Zhang, 2022). Thus, inverse optimization can be used as a means for
determining the preferences for certain objectives by assuming a general
shape of the objective function and identifying the preference parame-
ters that yield the actual decision (Rönnqvist et al., 2017). Actual de-
cisions from decision-makers can be considered as optimal
(near-optimal) solutions of an optimization model. Inverse optimization
is applied to elicit this unknown model from observations. An overview
of the theory and applications of inverse optimization is presented by
Chan et al. (2022).

Inverse optimization has been used in several disciplines, such as in
network optimization problems (Liu and Zhang, 2006; Zhang and Cai,
1998), radiation therapy planning (Babier et al., 2021; Chan et al.,
2014), investment portfolio optimization (Bertsimas et al., 2012; Utz
et al., 2014; Zagst and Pöschik, 2008), electricity demand forecasting
(Saez-Gallego and Morales, 2018), auction mechanism design (Beil and
Wein, 2003; Birge et al., 2017), biological systems (Burgard and Mar-
anas, 2003; Terekhov et al., 2010), optimal control (Hempel et al., 2015;
Westermann et al., 2020), capacitated vehicle routing problem (Chen
et al., 2021), and determining the expediting engineering projects by
studying how to schedule the number of labor in each process at the
minimum cost to achieve an extremely short construction period goal
(Peng and Liu, 2024). These contributions mainly focus on determining
an objective function that makes the observed decisions, given the
constraints of the problem, exactly optimal. Ahuja and Orlin (2001)
show a general tool for inverse optimization with linear forward opti-
mization problems that has been extended to be considered as conic
(Iyengar and Kang, 2005; Zhang and Xu, 2010), discrete (Bulut and
Ralphs, 2021; Schaefer, 2009), and nonlinear (Chow et al., 2014).

A relatively new stream of literature considers so-called data-driven
inverse optimization. In principle, the inverse optimization model is
applied to a decision in multiple instances, i.e., with different input
parameter values (Mohajerin et al., 2018). Data-driven inverse optimi-
zation increases the likelihood of finding an optimization model that has
true predictive power for future decisions in unseen instances (Gupta
and Zhang, 2022). The approach mitigates three key sources of noise in
the observations: measurement errors, bounded rationality of the
decision-maker, and model specification mismatch (Aswani et al., 2018;
Mohajerin et al., 2018). Also, in this direction, Gupta and Zhang (2024)
suggest a framework that constructs surrogate models that minimize the
decision prediction error. This error is defined as the difference between
the optimal solutions of the original and the surrogate optimization
problems.

3. A novel approach to derive implicit preferences in sourcing
decisions

This section presents a novel approach for deriving the extent to

Table 1
Supplier selection and sustainability: methodological approaches.

Example Methodological approach

Bai and Sarkis
(2010)

Grey approach; grey system and rough set theory

Saputro et al.
(2024)

AHP & quality function deployment; AHP & multi-objective
programming

Giannakis et al.
(2020)

ANP

Ghadimi et al.
(2018)

Multi-agent systems approach

Jain and Singh
(2020)

Fuzzy logic/numbers/inference systems, and/or fuzzy
TOPSIS

Wang et al. (2020) Multi-objective optimization
Liu et al. (2018) ANP-VIKOR
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which purchasing managers actually included sustainability as an
objective in the supplier selection process. The underlying idea is to
measure the importance of sustainability based on the preference a
decision-maker attributes to sustainability in an actual sourcing deci-
sion. This preference, which we refer to as sustainability preference, de-
termines the importance of sustainability in the sourcing decision
compared to traditional supplier selection objectives, such as low pur-
chasing costs. To determine the decision-maker’s sustainability prefer-
ence in a certain purchasing case, we employ inverse optimization to
deduce how the different purchasing objectives have been related to
each other to achieve the optimal solution. To put it more technically,
we aim to determine the weighting parameters, that is the preference
parameters of a specific decision-maker’s objective function. In the
following subsection (Section 3.1), we derive the general shape of the
objective function. In Section 3.2, we show how the inverse optimization
approach may be implemented.

3.1. Objective function in the inverse optimization model

The basic assumption for our model is that a decision-maker selects
the supplier portfolio that maximizes her/the company’s expected
utility of the overall logistics performance. The logistics performance re-
lates to the expected service experienced by the purchasing company. It
is a combination of different purchasing objectives such as low costs,
high supplier reliability, timeliness, and sustainability. In practice, the
logistics performance is often deemed to be high when the share of the
deliveries meeting the ‘six Rs of Logistics’ is high, i.e., the Right Product
is delivered in the Right Quantity and the Right Condition at the Right
Time, at the Right Place, and at the Right Price.

The formal setting of our model is as follows: For each supplier i and
each time t, each purchasing objective j can be described as a random
variable ω(t)

i,j , i = 1,…, n, j = 1,…, J. This means that the logistics per-
formance is uncertain ex-ante. Moreover, the available suppliers
perform differently concerning the single purchasing objectives; that is,
some suppliers perform better concerning costs or sustainability than
other suppliers, for instance. The exact performance of each supplier for
the single objectives is not exactly known at the time when the decision
needs to be made, however, it can be described in terms of expected
performance values and typical deviations from these performance
scores.

For one decision situation, assume that the supplier portfolio P
contains n suppliers. Let x ∈ Rn with

∑n
i=1xi = 1 be a vector of the

weights of portfolio P, reflecting the order shares placed at the available
suppliers. The random variable of the purchasing objective j of portfolio
P in time t is then defined as ω(t)

j,P =
∑n

i=1xi*ω(t)
i,j , where ω(t)

i,j is the random
variable describing logistic objective j and supplier i. We define the
overall logistics performance L(t)P of a supplier portfolio P in time t as a
linear combination of the random variables of the different j = 1,…, J
purchasing objectives L(t)P =

∑J
j=1δj*ω(t)

j,P, where δj is the weight of pur-

chasing objective j in the linear combination. The expected value of L(t)P
is finite if the random variables of the purchasing objectives have finite
expected values. It can be calculated as the weighted sum of the n x 1

vector of expected values μ(t)
j = E

[
ω(t)
j

]
:

μ(t)
P = E

[
L(t)P

]
=
∑J

j=1
δj*xTμ(t)

j . (1)

Accordingly, the variance of L(t)P is defined as

(
σ(t)
P
)2

=Var
[
L(t)P

]
=Var

[
∑J

j=1
δj*ω(t)

j,P

]

=
∑J

j=1
δ2j Var

[
ω(t)
j,P

]

+ 2*
∑

j<k
δjδkCov

[
ω(t)
j,P,ω(t)

k,P

]
, (2)

where Cov
[
ω(t)
j,P,ω(t)

k,P

]
represents the covariance between purchasing

objectives j and k. If the random variable of one purchasing objective is
deterministic, the variance of this random variable equals zero. For the
sake of clarity, we drop the time index (t) in the following since we
consider a portfolio decision on a particular date t0.

We follow the mean-variance approach as a standard practice in
multi-criteria decision making (Hosseininasab and Ahmadi, 2015;
Kellner et al., 2019; Talluri et al., 2010; Utz et al., 2014) and determine

Ψ
(
μP, σ2P, λ*

)
= − σ2P + λ*μP (3)

as the general version of the objective function that the manager applied
in the purchasing decision. In (3), λ* represents the decision-maker’s risk
tolerance (i.e., the preference parameter) regarding the expected logis-
tics performance. If varied over the non-negative portion of the real line,
maximizing Ψ causes expected utility to generate one candidate for an
optimal solution in the ‘logistics performance risk’-‘expected logistics
performance’ space for each value of the risk tolerance parameter λ*.
This risk tolerance parameter indicates how important expected logistics
performance is compared to logistics performance risk. The higher λ*,
the higher the additional logistics performance risk a decision-maker is
willing to take for one additional unit of expected logistics performance.
That is, a high number of λ* means that a decision-maker evaluates
expected logistics performance as more important than logistics per-
formance risk. A small number of λ* characterizes a decision-maker who
mainly wants to minimize logistics performance risk. This objective
function will be central to our inverse optimization process.

Substituting μP from Equation (1) and σ2P from Equation (2) in
Equation (3) results in

Ψ
(
μP, σ2P, λ

)
= −

∑J

j=1
δ2j Var

[
ωj,P

]
−2*

∑

j<k
δjδkCov

[
ωj,P,ωk,P

]

+ λ**
∑J

j=1
δj*xTμj. (4)

In this paper, we assume that all processes j are deterministic except the
first one. This means that Var

[
ωj,P

]
= 0 and Cov

[
ωj,P,ωk,P

]
= 0 for j > 1.

Costs and sustainability are typical examples of deterministic purchas-
ing objectives. Costs are usually predefined in the supplier’s/vendor’s
offer and therefore fixed for the decision situation. Moreover, while the
future sustainability of a supplier could be interpreted as a stochastic
quantity, the persistence of sustainability assessments of firms is high,
that is, these measures are rather stable on a year-to-year basis. There-
fore, we also consider it as being deterministic in our general model
specification. It should be noted that the approach is also able to include
additional nondeterministic (i.e., quadratic) objectives. For this paper,
without losing generalizability, we stick to the case with one quadratic
and J linear objectives. Thus, Equation (4) results in

Ψ
(
μP, σ2P, λ*

)
= − δ21Var

[
ω1,P

]
+ λ**

∑J

j=1
δj*xTμj . (5)

Dividing the entire equation by δ21 and using λj =
λ**δj

δ21
yields

Ψ
(
μP, σ2P, λ

)
= −Var

[
ω1,P

]
+
∑J

j=1
λj*xTμj . (6)

The preference functional (6) is to be maximized to find the supplier
portfolio that maximizes the decision-maker’s expected utility. The
optimal solution depends on the preference parameters λj since the J risk
tolerance parameters λ = (λ1,…, λJ) give a parameterization of the
(J+1)-dimensional set of candidates for optimal solutions (i.e., the
pareto-efficient or nondominated surface) in criterion space. To specify
this set of possible optimal solutions, multi-criteria decision-making
problems have a criterion space beside the decision space (i.e., the
feasible region S). In the criterion space Z⊂RJ+1, the dimension J+1 is
the number of objectives.
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3.2. Inverse optimization process

In the decision situation described above, each decision-maker has
her own set of λ-values. This section explains how the decision-makers’
preferences λ between the objectives from Equation (6) can be derived
using an inverse optimization process.

The notation of a specific sourcing decision is the following: Let I =
{1,…, n} be the set of suppliers that launched a bid. The vector x̂ = (x̂1,
…, x̂2,…, x̂3) represents the weights that are attributed to the single
suppliers in the actual sourcing decision. Note that, in the context of the
supplier selection and order allocation problem, x̂ represents the per-
centage share of the buying firm’s overall demand that is sourced from
the available suppliers. Also, note that the portfolio composition vector
x̂ adds always up to 1 to ensure that the buying firm’s overall demand is
satisfied.

In the proposed approach, one obtains implicit preferences derived
from a supplier portfolio composition vector for a given purchasing case
k. This approach differs from regular optimization as follows: In regular
optimization, an objective function with fixed parameters exists, and the
goal is to find the point in the feasible region that optimizes this
objective function. In inverse optimization, we start with a point x̂ in the
feasible region, that is, with the actual sourcing decision in terms of the
percentage order shares assigned to the available suppliers. For this
point x̂ that represents the optimal solution for the decision-maker, we
aim to derive the parameters of the objective function. To do so, our
endeavor is to identify the closest efficient point to x̂ for the feasible
region of the problem.1 For this closest efficient point, which we refer to
as x, we retrieve the values of preference parameters in Equation (6) that
would have generated x when optimizing the objective function. These
preference parameters refer to the closest efficient point only. However,
we consider them to be the implicit parameters for x̂ in the actual sup-
plier decision case. In summary, we apply the following four steps to
determine λ in Ψ :

1. Begin with a given sourcing decision x̂ for the purchasing case k. This
vector indicates the percentage shares of the buying firm’s overall
demand sourced from the individual suppliers.

2. Compute the efficient set for the given purchasing case k by either
using the method presented by Hirschberger et al. (2013) or by
solving a large number of quadratic optimization problems with
objective function Ψ over a grid of varying λ parameters. The result is
the (J + 1)-criterion efficient set, which we refer to as ℇ.

3. Find the x ∈ ℇ closest to x̂ (in Euclidean norm) from the set of all
efficient portfolio composition vectors ℇ.

4. Derive risk tolerance parameters λx as the implicit preference pa-
rameters from the x-vector that is closest to x̂.

Fig. 1 illustrates the process of the inverse optimization approach.
With n suppliers having submitted a bid for a specific supplier de-

cision k, the mathematical expression of the inverse optimization pro-
cess is as follows:

min
λ

‖x− x̂‖ (7a)

s.t. x ∈ ℇ(λ) (7b)

where ℇ(λ) is the nondominated set of a particular purchasing case
derived from the optimization model

max
x

Ψ(x,Σ,Ω, λ) (8a)

s.t. G(x) ≤ 0 (8b)

H(x)= 0 (8c)

where G(x) and H(x) are sets of real-valued functions in x that represent
(non-)linear constraints, Σ represents the covariance matrix of the first
(random) purchasing objective, and Ω is the matrix including all vectors
of the expected values of the J purchasing objectives. The solution x of
the outer minimization problem (7) is the efficient portfolio corre-
sponding to portfolio x̂.

4. Application

In this section, we show the feasibility of the proposed methodology.
Therefore, we empirically analyze the preferences of decision-makers
concerning sustainability versus traditional purchasing objectives in
the supplier selection and order allocation process based on a real-world
data set. The goal is to investigate how important sustainability aspects
are in the actual sourcing decisions of one of the world’s largest auto-
motive parts manufacturers.

4.1. Collaborating firm

The investigated sample comprises the most critical purchasing cases
in the calendar years 2019 and 2020 of one of the world’s largest
automotive parts manufacturers. This firm, which is a multinational
multi-billion-dollar revenue Tier-1 supplier, provided us with deep in-
sights into its current sourcing practices and processes, and into critical
key performance indicators, including the sustainability and the logis-
tics quality of its complete supplier base during the last three years, the
associated supply risk, and the real-world purchasing costs. There are
several reasons why we view the sample data as exceptionally useful.

1. Industry: The automotive industry is one of the world’s largest in-
dustries by revenue. On their websites and in their annual reports,
many car manufacturers claim that they will make sustainability a
strategic priority in the upcoming years. This includes the composi-
tion of the product portfolio but also the design and the imple-
mentation of business processes. As the automotive sector is
characterized by complex value chains and a deeply structured
supplier base, the integration of sustainability aspects into the
sourcing process is an essential element for guaranteeing that sus-
tainable practices cover the complete value chain.

2. Supply chain position and firm size: The collaborating firm is a Tier-1
supplier. Tier-1 suppliers are firms that supply parts, modules, and
systems directly to the original equipment manufacturers (OEMs).
They typically source a wide range of raw materials from a variety of
other firms to produce the products offered to their customers. Due to
the size of the collaborating firm and its position in the supply chain,
we have the chance to gain representative industry insights without
being limited to a certain geographical region, product and raw
material group (e.g., mechanics vs. electronics), customer/OEM
group, and Tier-2 sub-supplier group. The collaborating firm has an
active supplier base of more than 17,000 suppliers and operates more
than 100 production facilities in more than 60 countries to supply
virtually any automotive OEM. The employees who are responsible
for the sourcing decisions show great diversity concerning their
gender, age, and seniority.

3. Sample size: In this research, we study the preferences of decision-
makers concerning different purchasing objectives for one firm.
This approach assures the comparability of the single observations.
To be specific: if we tried to compare the purchasing decisions of
several firms, problems might arise concerning the measurement of
the single objectives. Different firms will use different approaches for
measuring the logistics quality, the supply risk, and the sustainability
of their suppliers. Thus, the attribution of preference will be affected
by the factors that determine the suppliers’ scores at the single1 We search for the closest efficient point since x̂ is not necessarily efficient.
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objectives. The advantage of the single-case approach is that the
measurement of the single objectives is the same across all pur-
chasing cases studied.

4.2. Data collection

From the great number of sourcing decisions that are made every
year in the collaborating firm, we concentrate on those that have been
classified as ‘critical cases’ by the collaborating firm. These decisions are
the best-documented ones and typically have a high and long-term
impact on the firm. Specifically, we study the firm’s most critical
sourcing decisions in the calendar years 2019 and 2020. There are
different reasons why a purchasing case may be classified as ‘critical,’
including cases of no competition or a lifetime purchase volume
exceeding a certain eight-digit Euro value. According to a senior pur-
chasing manager working at the collaborating firm, the critical sourcing
decisions are representative of the majority of the purchasing cases, with
the exception that they typically involve a greater purchase volume.
That is, the critical purchasing cases are representative of the diversity of
all purchasing processes concerning the geographical location of the
production facilities for which the raw materials are sourced, the raw
material group and the potential suppliers/Tier-2 suppliers, and the
decision-makers.

Between January 2019 and December 2020, there were a total of 591
critical purchasing cases. Not all purchasing cases can be used for our
analyses: For 42 (7.1%) of all critical purchasing cases no sourcing de-
cision was made. In 50 (8.5%) cases, no supplier placed a quote. And in
173 (29.3%) cases, there was only one supplier to choose from.2 After
having eliminated these purchasing cases from the initial list, it was
necessary to further reduce the set of the remaining 326 purchasing
cases because, for some suppliers, not enough information was available
for the quality and sustainability of the logistics. The final sample of
valid purchasing cases consists of 145 cases (24.5% of the 591 critical
purchasing cases in 2019–2020).

4.3. Sample description

For each purchasing case k ∈ K = {1,…,145} of the final sample, we
derive the decision-makers’ preferences for the objectives ‘purchasing
costs,’ ‘logistics quality,’ ‘supply risk,’ and ‘sustainability.’ These four
objectives fit the general model introduced in Section 3 (cf., Equations
(4)–(6)) with two deterministic purchasing objectives (costs and sus-
tainability) and one non-deterministic (logistics quality, see below).
Each purchasing case is characterized by two types of data: (a) metadata
describing the setting of the purchasing case, and (b) data used for
deriving the decision-makers’ preferences. The meta-information in-
cludes the calendar year the sourcing decision was made, the person
who was responsible for the sourcing decision (gender, age, seniority),
the geographical location of the production facility supplied, and the
purchasing volume (target price in Euro). The data used for deriving the
decision-maker’s preferences for the different objectives in a specific
purchasing case k includes:

1. Supplier i ∈ I = {1,…,n}: In each purchasing case, there are between
two and eight suppliers (Tier-2 sub-suppliers) providing quotes for
the demand of the collaborating firm.

2. The supplier’s selling prices cki : For the further analyses, the sup-
pliers’ selling prices (quotes) have been normalized, with the highest
quote per purchasing case being set to 1 and all other quotes adapted
accordingly, that is, divided by the highest quote.

3. The supplier’s logistics quality lki : Following the collaborating firm’s
practice, a certain supplier’s overall logistics quality lki is measured
with the average logistics quality this supplier achieved during the
last twelve months before the purchasing decision. The logistics
quality of a certain sub-supplier in a certain month indicates, in turn,
the percentage share of the deliveries that meet the following five of
the six Rs of logistics in this month: The Right Product is delivered in
the Right Quantity and the Right Condition at the Right Time, and at
the Right Place.

4. The supply risk
∑k

ij = Cov
[
lki , lkj

]
: Supply risk refers to the fact that

the logistics quality of the single suppliers is typically not constant
over time but can vary to a more or less significant degree from one
month to another. The variability in the logistics quality of the
suppliers is measured with the variance of the monthly logistics

Fig. 1. Process of the inverse optimization approach.

2 The single-quote cases are partly due to a supplier’s monopoly for a certain
raw material, or the supplier is dictated by the OEM.
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quality achieved. Transferring the ideas of the Markowitz (1952,
1959) portfolio theory to sourcing decisions in supplier selection, the
overall supply risk is measured with the variance of the logistics
quality of the supplier portfolio as a whole. This implies that the
overall supply risk can be reduced by (a) opting for suppliers with a
low variation in the service offered (low standard deviation), or (b)
by assembling suppliers who ‘compensate’ each other, that is, when
one supplier shows a bad logistics quality, the other(s) performwell –
and vice versa. Or, to put it technically, the desirable situation is
achieved when the logistics qualities of the single suppliers are
negatively correlated. As stated in prior research (e.g., Hosseininasab
and Ahmadi, 2015; Kellner et al., 2019), some suppliers are, for
different reasons, simultaneously affected by certain supply disrup-
tions, and assembling a supplier portfolio of similar suppliers may be
crucial for when such disruptions occur. There are various reasons
for why two or more suppliers may break down simultaneously,
including situations where the suppliers are supplied by the same
sub-supplier, and/or a natural disaster occurs and the suppliers are
geographically located close to each other, and/or the suppliers use
the same means of transport, which breaks down or is delayed. In
accordance with Markowitz’s portfolio theory, these interactions in
the logistics quality between two suppliers i and j are measured with

the covariance Cov
[
lki , lkj

]
.

5. The supplier’s sustainability ϑk
i : The sustainability of the suppliers is

indicated with a sustainability score ranging from 0 (poor) to 1
(excellent). A specificity of this research compared to others is that
the suppliers’ sustainability is not reported based on self-made sus-
tainability performance indicators. Instead, the sustainability per-
formance scores ϑk

i originate from a self-assessment questionnaire
based on the Global Automotive Sustainability Guiding Principles.
These principles have been specified by ‘Drive Sustainability,’ which
is a partnership between ten leading OEMs (e.g., BMW, Daimler,
Ford, Honda, Scania, Toyota, and Volkswagen) aiming to drive sus-
tainability across the automotive supply chain by fostering an
aligned approach within the industry. The self-assessment ques-
tionnaire upon which the sustainability scores ϑk

i are based was
established in 2014. At present, it represents the common standard
for the sustainability rating of suppliers in the automotive industry.
Even if the approach of determining the sustainability performance
of the suppliers based on a self-assessment questionnaire is not as
sophisticated as other approaches that have been proposed in liter-
ature (e.g., AHP/ANP, DEA, PROMETHEE, TOPSIS), it enjoys some

important advantages (Kellner and Utz, 2019): First, the assessment
of the sustainability of third parties (as in the case of a purchasing
company rating the sustainability of its suppliers) is challenging as
good information of the suppliers’ performance in the different areas
of sustainability is necessary. We argue that it is easier for a company
to concentrate on its sustainability performance (self-assessment)
and communicate the results in a standardized way. Moreover, the
Global Automotive Sustainability Guiding Principles are a stan-
dardized approach for the assessment of the sustainability perfor-
mance of suppliers in the automotive industry. Based on a
questionnaire containing almost 60 items, suppliers are asked to
provide information about their practices in different sustainability
domains. The answers are then aggregated and an overall sustain-
ability score is calculated. The fact that the sustainability perfor-
mance is measured consistently (i.e., same questions and same
rating) across the whole industry allows for a better comparability of
the potential suppliers.

6. The actual sourcing decision (x̂k, the ‘optimal solution’): the actual
sourcing decision made by the person responsible for the purchasing
case.

7. Constraints: in each purchasing case, G(x) includes xi ≥ 0 ∀i to
ensure that all weights are non-negative and H(x) the constraint
∑n

i=1xi = 1 to ensure that the sum of the weights equals one.

Table 2 in Appendix A lists all parameters, formulas, and procedures
included in the order allocation models. This table shows the objective
function, which indicates that the four criteria for supplier evaluation
are (1) the suppliers’ selling prices, (2) the suppliers’ logistics quality,
(3) the supply risk, and (4) the suppliers’ sustainability performance.
Besides, budget constraints and overall logistics quality constraints are
taken into account. These are the criteria that the collaborating com-
pany uses to evaluate its (potential) suppliers. An overview of the sample
composition is presented in Table 3 in Appendix B. About one-third of
the investigated sourcing decisions have been made by female decision-
makers (53), most of the decision-makers are between 25 and 45 years
old, and the majority of the decision-makers are purchasing managers.
The histograms in Fig. 2 give an overview of the logistics and sustain-
ability performance of the available suppliers across all studied pur-
chasing cases. These histograms indicate that the purchasing managers
can select from a broad range of different supplier characteristics.

Fig. 2. Histograms for the logistics and sustainability performance of the available suppliers across all studied purchasing cases.
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4.4. Implementation of the inverse optimization process

A central element in our analyses are the implicit preference pa-
rameters λxμ, λxc , and λxϑ. As explained above, these parameters indicate,
for a given sourcing decision, the relative importance the decision-
maker attributed to the objectives ‘low purchasing costs’ (λxc ), ‘high lo-
gistics quality’ (λxμ), and ‘high sustainability’ (λxϑ), where the objective
‘low supply risk’ serves as the benchmark. The higher the λ-value, the
greater the relative importance of the corresponding purchasing objec-
tive is compared to the objective ‘low supply risk.’ To facilitate further
analyses, we study λ-values in the interval ranging from 0 to 3, that is,
λ ∈ [0;3]. We opted for this interval because our pre-experimental
testing showed that, for the investigated sample, all implicit prefer-
ence parameters (λμ, λc, λϑ

)
are located in this range.3 Thus, a λ-value of

0 for the objective ‘low purchasing costs,’ for instance, indicates a sit-
uation where the decision-maker gave absolute preference to the pur-
chasing objective ‘low supply risk’ when compared to the objective ‘low
purchasing cost.’ A λ-value of 3 for ‘logistics quality’ indicates a situa-
tion where the decision-maker gave high preference to the objective
‘high logistics quality’ compared to ‘low supply risk.’ Appendix C con-
tains more details on the calculation of the implicit preferences.

Since the inverse optimization approach is, from a computational
perspective, resource-intensive and involves a certain amount of time to
generate the optimal solutions, we developed a scalable state-of-the-art
cloud architecture that allows us to solve an arbitrary number of
(quadratic) optimization programs in an acceptable amount of time.
Appendix C explains this architecture in detail.

4.5. Summary statistics for the implicit preference parameters

Table 3 in Appendix B presents descriptive statistics for the three
implicit preference parameters λμ, λc, and λϑ. For each preference
parameter, we indicate the minimum, the mean, and the maximum
across the whole sample and per investigated variable. These summary
statistics indicate differences in the importance the decision-makers
attributed to purchasing costs, logistics quality, and sustainability.
Influencing factors might include the decision-maker’s age, gender, and
seniority, the distance of the decision-maker’s office location to the
supplied plant, and the purchase volume measured in Euro.

Table 3 shows that there is, across all variable characteristics, a
noticeable variability in the preference parameters λμ, λc, and λϑ, ranging
from 0 to 2.259. This indicates that there is a certain variability in the
preferences the decision-makers attributed to the single purchasing
objectives. As a consequence, we continue with a per-variable analysis.
When doing this, we focus on the mean λ-values, since the mean λ-values
indicate whether there are sub-groups in the investigated sample that
tend to place more importance on purchasing costs, logistics quality, and
sustainability than other sub-groups.

Concerning the calendar year the decision was made, we notice an
increase in the mean λ-value referring to purchasing cost and a (slight)
decrease in logistics quality and sustainability from 2019 to 2020. This
indicates that, in 2020, the decision-makers placed, compared to risk,
more importance on the aspect of ‘low purchasing costs’ than in the
previous year and less importance on ‘high logistics quality’ and ‘high
sustainability.’ Concerning the gender of the decision-makers, the mean
and maximum values of the implicit preference parameters of the as-
pects of ‘purchasing costs’ and ‘logistics quality’ are higher in the female
sample than in the male one. The preferences of males for high

sustainability were slightly greater than the preferences of females. As
for the decision-makers’ age, the classes ‘35–45 years’ and ‘> 45 years’
show higher mean values on the purchasing objective ‘high sustain-
ability’ than the classes ‘< 25 years’ and ‘25–35 years.’ Furthermore, the
figures in Table 3 indicate that the classes ‘35–45 years’ and ‘> 45 years’
placed less importance on high logistics quality. Assuming that the
seniority of the decision-maker might affect the importance attributed to
the different purchasing objectives, we compare the corresponding
λ-values. Each decision-maker of the investigated sample belongs to one
out of three groups: PurchasingManager, Senior PurchasingManager, or
Head of Purchasing. According to the results presented in Table 3, the
Purchasing Managers placed, on average, noticeably more importance
on the aspect of ‘purchasing cost’ than decision-makers belonging to the
groups ‘Senior Purchasing Manager’ and ‘Head of Purchasing.’ As for
logistics quality, we do not notice a specific trend. Concerning sustain-
ability, the group ‘Head of Purchasing’ ranked this preference the
lowest. We also control for the distance between the decision-makers
location to that of the plant in which the sourcing decision is imple-
mented. It might be the case that the further away the plant for which
the sourcing decision is made, the more or less important the different
purchasing objectives are. Therefore, we calculate the great-circle dis-
tance between the office location of the decision-maker and the plant to
be supplied. The summary statistics in Table 3 do not indicate that the
distance affects the implicit preference parameters. Finally, the pur-
chasing volume measured in Euro appears to not influence the impor-
tance the decision-makers place on the single purchasing objectives.

We further test the figures in Table 3 for statistical inference.
Therefore, we use pairwise Wilcoxon rank-sum tests to test whether one
λ-value is different from another. We use this non-parametric test as we
cannot assume a specific distribution of the implicit preference param-
eters. Appendix D presents the p-values that result from the application
of this test. A given λ-value is classified as ‘significantly greater’ than
another if the corresponding p-value is below 10% (in the table in Ap-
pendix D, this is indicated by bold letters). According to the test results,
females placed significantly more importance on the purchasing objec-
tive ‘high logistics quality’ than males did. In addition, purchasing
managers placed significantly more importance on the aspect of ‘pur-
chasing cost’ than senior purchasing managers.

4.6. Differences in the implicit preference parameters λ

Themean λ-values in the last row of Table 3 indicate that, overall, the
decision-makers placed, compared to risk, more importance on pur-
chasing cost than on logistics quality and sustainability. In this section,
we go into more detail by focusing directly on the differences in the
implicit preference parameters the decision-makers attributed to the
different purchasing objectives. The idea is to understand whether the
decision-makers’ preferences differ significantly in favor of a certain
purchasing objective. In addition, we intend to learn whether the pref-
erence ranking for the different purchasing objectives differs depending
on the gender, age, and seniority of the decision-maker, the distance
from the decision-maker’s office location to the supplied plant, and the
purchasing volume.

To check whether a given λ-value is significantly greater or less than
another, we again apply the pairwise Wilcoxon rank-sum test. Our
findings, in terms of the resulting p-values, are summarized in Table 5 in
Appendix E. Again, we classify a given λ-value as ‘significantly greater’
or as ‘significantly less’ than another if the corresponding p-value is
below 10% (in Table 5, this is indicated by bold letters). As shown in
Table 5, we check for each variable characteristic whether the implicit
preference for low purchasing cost is significantly less/greater than for
high logistics quality (λc < λμ/λc > λμ), whether the implicit preference
for low purchasing cost is significantly less/greater than for high sus-
tainability (λc < λϑ/λc > λϑ), and whether the implicit preference for
high sustainability is significantly less/greater than for high logistics
quality (λϑ < λμ/λϑ > λμ).

3 We conducted optimization runs with different combinations of preference
parameters λμ,λc,λϑ ∈ [0; 20]. Due to the constraints on the weights, the grid λμ×

λc × λϑ ∈ [0; 3] × [0; 3]×[0; 3] covers all efficient portfolios. Extending the upper
bounds of the preference parameter ranges does not add new efficient portfolios
in our application case.
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The numbers in the last row of Table 5 indicate that, across all 145
purchasing cases, the responsible persons placed significantly more
importance on the sourcing objective ‘low purchasing cost’ than on ‘high
logistics quality’ and on ‘high sustainability.’ The pairwise comparison
for logistics quality and sustainability does not reveal any significant
differences. This preference ranking does not only apply to the whole
sample but also to a great share of the investigated purchasing cases.

5. Discussion

5.1. Summary of the application case findings

Having analyzed the real-world sourcing decisions, we arrive at the
following conclusions.

1. The way of implementing the inverse optimization process generated
a good match between the vector x̂, which represents the actual
sourcing decisions, and the x-vector that is closest to x̂ in Euclidean
norm. Thus, we can accurately derive the implicit preference pa-
rameters for the different objectives in the different purchasing cases.

2. Across the 145 purchasing cases, there is a noticeable variability in
the preferences the decision-makers attributed to the four purchasing
objectives, independent of the person’s characteristics and the pur-
chasing volume.

3. There are subgroups in the investigated sample that tend to place
more importance on purchasing costs, logistics quality, and sus-
tainability than other subgroups.

4. Across the 145 investigated purchasing cases, the decision-makers
placed significantly more importance on low purchasing cost than
on high logistics quality and high sustainability. Concerning the
direct comparison of the ranking of logistics quality and sustain-
ability, the results do not show any significant differences.

Interestingly, the senior purchasing manager with whom we worked
most closely in this project admitted that while she was not surprised
that cost is across all purchasing cases the dominating sourcing objec-
tive, there is no significant superiority when comparing logistics quality
and sustainability. Evenmore interesting is that her assumption could be
confirmed that due to the COVID-19 pandemic in 2020, the objective of
low purchasing costs received even more attention than one year before.

5.2. Possible additional analyses

In the previous sections, we presented a series of analyses to study
the implicit preference parameters of decision-makers derived from the
inverse optimization approach. In general, there are additional ways to
statistically investigate the set of implicit preference parameters. For
instance, the implicit preference parameters could be used to analyze
whether specific characteristics of decision-makers, such as gender and
seniority, have an impact on the importance of purchasing objectives in
sourcing decisions. For carrying out such analyses, one can apply
regression models. Another more sophisticated analysis could ha
differences-in-differences setting to elicit whether one decision-maker
increased the importance of sustainability objectives to a higher extent
than the other one. This might be interesting after a change in the
strategy of a department or business area, or after a change in the head
of the department.

In summary, the methodology proposed provides figures that act as a
basis for a wide range of empirical analyses of the importance decision-
makers attribute to sustainability in sourcing decisions. Since the im-
plicit preference parameters are derived from actual sourcing decisions,
they do not suffer from self-reporting biases of the decision-makers, as
survey or interview answers would.

5.3. Contribution, implications, scope, and applicability of this research
and of the methods used

Overall, the contribution of this research is twofold: (1) First, this
research contributes to the sustainable configuration of supply and value
chains by proposing an approach that allows different kinds of stake-
holders (researchers, purchasers, analysts, decision-makers) to empiri-
cally study the extent to which companies have actually integrated
sustainability objectives into their sourcing decisions. To do this, the
proposed methodology derives implicit preferences of the decision-
maker(s) for the different sourcing objectives from past sourcing de-
cisions. These preferences can then be used to carry out further analyses.
Thus, the proposed methodology is not another approach for selecting
sustainable suppliers but an approach to derive implicit preferences
from actual sourcing decisions. The benefit of this approach is that it is
based on actual sourcing decisions and is thus not biased by the setting
in which the decision-maker sets her/his preferences (such as in surveys,
interviews, or AHP). Since there exists no benchmark on the preferences
(since they are subjective), we cannot determine whether our approach
is empirically better or worse than existing approaches to determine
preferences. Moreover, we do not measure stated preferences but im-
plicit preferences. An advantage of using implicit purchasing prefer-
ences is that they are derived from real-world decision situations, that is,
they are measured after the decision has been made and, thus, do not
suffer from self-reporting biases. From an industry point of view, the
application of the proposed methodology allows managers, among other
things, to monitor whether the issued sourcing strategy (in terms of the
preferences set on the different purchasing objectives) has actually been
followed by the staff. Also, managers can identify what ‘type’ of staff
(gender, age, seniority, location, etc.) is putting particular importance
on the different purchasing objectives. From an academic perspective,
the application of the proposed methodology allows scholars, among
other things, to compare the preferences set on different purchasing
objectives between industries, geographical regions, age groups, and
more. This allows for deepening the understanding of the characteristics
of the purchasing managers and sourcing situations that come with
particularly high/low preferences on sustainability. (2) Another
contribution of this research is the presented cloud architecture, which
allows the user to solve an arbitrary number of optimization programs in
an acceptable amount of time. We argue that the proposed architecture
can be used in many other future projects that involve solving many
optimization problems. Both industry/management and academia may
build different applications on this architecture, for example, applica-
tions that involve inverse optimization or applications that aim to
identify optimal solutions for a high number of parameter settings/
scenarios.

5.4. Key assumptions and limitations

Even if the presented approach offers several benefits and innovative
features for practitioners and scholars, some aspects should be consid-
ered when applying the presented methodology. In the following, we list
the key assumptions of the study.

The first aspect refers to the assumptions concerning the objective
function, which assumes that the decision-maker needs to balance four
purchasing objectives: costs, logistics performance, supply risk, and
sustainability. This objective function may be criticized since one might
expect to include more, less, or other objectives. In addition, the aspect
of ‘supply risk’ could be modeled differently, i.e., not based on the
concepts of the investment portfolio theory. Our response to such critics
is that the objective function, as presented above, is based on best
practices and based on accepted research results (e.g., Hosseininasab
and Ahmadi, 2015; Kellner et al., 2019; Kellner and Utz, 2019; Talluri
et al., 2010). Also, it should be noted that objective functions may be
modified and adapted according to the specificities of the company
context. Thus, it is possible to extend the objective function by adding or

F. Kellner and S. Utz Journal of Cleaner Production 483 (2024) 144305 

9 



removing specific aspects. Also, it is possible to integrate supply risk as a
linear and not as a quadratic component in the objective function.

The second aspect refers to the constraints that are part of the
decision-making/optimization problem. As shown in Table 2, three
constraints have been considered in the real-world example, since no
more constraints have been communicated to us by the collaborating
firm. It is possible to extend the number of constraints in future appli-
cations of the proposed approach to reflect, for instance, situations
where a certain number of suppliers needs to be part of the portfolio or
to include a minimum number of suppliers that show certain
characteristics.

The third aspect refers to the fact that the observed results depend on
the data input and how exactly the different parameters, such as the
sustainability indicators of the different suppliers, have been measured.
Thus, problems might arise when trying to compare the preferences set
on the different purchasing objectives between several companies since
different companies might measure sustainability or supply risk in
different ways. As for the real-world case in this article, this aspect is a
minor problem since we assume that decision-makers used the same
data values for assembling the different supplier portfolios that were fed
into the optimization model.

Finally, we want to mention that we do not claim any generaliz-
ability of the results observed in the application case with 145 sourcing
decisions, such as the importance men/women or certain age groups are
putting on sustainability. Although the sample size is reasonable
compared with other case studies, the results only illustrate the behavior
of the decision-maker in the sample firm.

5.5. A multi-criteria decision-making framework for sustainable supplier
selection

The intention of Section 4 was to present empirical evidence on the
status quo concerning the importance decision-makers attribute to sus-
tainability and traditional purchasing objectives in the purchase order
allocations of one of the world’s largest automotive parts manufacturers.
Our results document, that in line with Ho et al. (2010) and despite the
need for more sustainability in supply chains, the objective of ‘low
purchasing cost’ is significantly more important than ‘high sustainabil-
ity.’ The next step after measuring the status quo is the search and
application of methodologies that support solving the multi-criteria supplier
selection problem under sustainability considerations.

This section summarizes our key findings from applying a multi-
criteria decision-making approach to analyze sensitivities between the
considered objectives. This is an extension of the approach introduced
by Kellner et al. (2019) and Kellner and Utz (2019), which supports
purchasing managers in assembling supplier portfolios while making
them aware of the trade-offs between the purchasing costs, the expected
logistics quality, the supply risk, and the overall sustainability of the
selected supplier base. The main idea is to model the supplier selection
and order allocation problem as a multi-objective optimization problem
and to solve it using an a posteriori approach. That means that, firstly,
the complete sphere of optimal solutions is determined and, thereafter,

the decision-maker can select the supplier portfolio that best matches
the goals of the purchasing company – after having seen the complete set
of optimal alternatives and after having studied all trade-offs that come
with the decision-making problem at hand (Mavrotas, 2009). All the
details on the implementation of this approach are presented in Ap-
pendix F.

The applied approach allowed us to carry out a series of sensitivity
analyses. It is particularly interesting to see that the results of these
analyses indicate that in the majority of the 145 purchasing cases, the
sustainability of the actual sourcing decisions can be substantially
improved with almost no deterioration in the traditional objectives.
Based on these observations, we conclude that in the image of an iceberg
(Fig. 3), methods ignoring the sustainability objective divide all possible
supplier portfolios into those nondominated in traditional purchasing
objectives (above sea level, i.e., visible to decision-makers) and those
better in sustainability, but worse in the traditional purchasing objec-
tives (below sea level and invisible to decision-makers). The applied
method can be considered as a tool that allows decision-makers to
reduce the sea level and, thus, to discover supplier portfolios that are
close to traditionally efficient portfolios but with substantially improved
sustainability. For this area, that is, slightly below the sea level, our
results document a high potential to improve sustainability with low
deterioration in traditional purchasing objectives. This pattern leads to
situations where the increase in sustainability is, in percentage values,
much greater than the increase in purchasing costs, for instance.

6. Conclusion

Research shows that buying firms have substantial leverage to
initiate sustainable development by accounting for and controlling the
sustainable performance of their suppliers (e.g., Gopalakrishnan et al.,
2021; Wu and Pagell, 2011). This article presented a methodology based
on inverse optimization to empirically study the importance
decision-makers attribute implicitly and in reality to sustainability when
opting for a certain supplier portfolio. In this regard, our paper fulfilled
its intention of presenting an alternative approach to the ‘classical’
self-reporting-based approach for studying sustainability preferences in
sourcing decisions. We applied the suggested methodology to study the
most critical sourcing decisions of a major automobile parts
manufacturer.

Future research may extend this study by making further use of the
concepts of inverse optimization to deepen the understanding of the
preferences decision-makers attribute to single purchasing objectives.
This will allow the discovery of decision-maker, decision-situation, in-
dustry, region, and company-specific characteristics that contribute to
certain behaviors. Another possibility is making use of the proposed
decision-making approach to study sensitivities of typical purchasing
situations – for instance, by focusing on certain industries or
geographical regions.

Fig. 3. Reducing the sea level.
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Appendix B

Table 3
Summary information for the 145 investigated sourcing decisions (Nb. = Number of cases, Avg = Average).

Aspect Variable Characteristic a) Nb.*, b) Avg λc (Cost) λμ (Logistics Quality) λϑ (Sustainability)

Min. Mean Max. Min. Mean Max. Min. Mean Max.

Decision Date Calendar Year 2019 a) 73 0.000 0.071 1.305 0.000 0.082 2.259 0.000 0.049 1.061
2020 a) 72 0.000 0.099 2.148 0.000 0.043 0.662 0.000 0.044 0.514

Decision-Maker Gender Female a) 53 0.000 0.111 2.148 0.000 0.106 2.259 0.000 0.032 0.293
Male a) 92 0.000 0.069 1.305 0.000 0.038 0.427 0.000 0.055 1.061

Age <25 years a) 16 0.000 0.097 0.649 0.000 0.113 0.662 0.000 0.036 0.293
25–35 years a) 47 0.000 0.057 1.895 0.000 0.078 2.259 0.000 0.019 0.211
35–45 years a) 58 0.000 0.096 1.305 0.000 0.042 0.427 0.000 0.055 1.061
>45 years a) 7 0.000 0.003 0.018 0.000 0.019 0.072 0.000 0.128 0.812

Seniority Purch. Manager a) 110 0.000 0.107 2.148 0.000 0.047 0.662 0.000 0.048 1.061
Senior Purch. Mngr. a) 18 0.000 0.002 0.018 0.000 0.043 0.280 0.000 0.054 0.470
Head of Purch. a) 3 0.000 0.012 0.035 0.000 0.044 0.133 0.000 0.010 0.029

Dist. Plant (km) Quartile 1 b) 154 0.000 0.161 1.895 0.000 0.104 2.259 0.000 0.070 0.812
Quartile 2 b) 593 0.000 0.042 0.547 0.000 0.036 0.662 0.000 0.042 0.514
Quartile 3 b) 1050 0.000 0.024 0.649 0.000 0.065 0.613 0.000 0.053 1.061
Quartile 4 b) 6581 0.000 0.110 2.148 0.000 0.044 0.375 0.000 0.021 0.211

Purchasing Vol. Budget (Euro) Quartile 1 b) 622,595 0.000 0.077 1.305 0.000 0.105 2.259 0.000 0.040 0.470
Quartile 2 b) 2,897,450 0.000 0.131 2.148 0.000 0.034 0.280 0.000 0.036 0.514
Quartile 3 b) 13,721,504 0.000 0.052 1.143 0.000 0.019 0.162 0.000 0.016 0.123
Quartile 4 b) 95,166,639 0.000 0.083 1.895 0.000 0.096 0.662 0.000 0.099 1.061

Overall ​ ​ a) 145 0.000 0.085 2.148 0.000 0.063 2.259 0.000 0.047 1.061
* If the total number of cases for a certain variable does not add up to 145, then this is due to missing information for some purchasing cases concerning this variable.

Appendix C

The process of inverse optimization, which is used to derive the decision-makers’ preferences (λμ, λc, λϑ
)
for the individual purchasing objectives in

the different purchasing cases, has been implemented mainly in Python and R. Following the procedure described in Section 3.2, we firstly take note
of, for each purchasing case separately, the actual supplier portfolio composition vector x̂, that is, the actual sourcing decision made by the responsible
person concerning the percentage shares of the total demand that are sourced from the available suppliers (Step 1). Next, we compute the efficient set
for the considered purchasing case (Step 2). To do this, we solve a large number of quadratic optimization problems with objective function Ψ over a
grid of varying λμ, λc, and λϑ parameters using Gurobi 9.1 with the default parameter settings and a flow control organizing the sequence of the
calculations. In detail, we solve a large number of quadratic optimization problems over the grid from 0 to 3 for all preference parameters, since our
pre-tests elicit that this range covers all efficient portfolios that we achieve by our inverse optimization. Since we intend to determine the distance of
the actual sourcing decision from the efficient set as precisely as possible, a detailed (dense) representation of the efficient set is required. A dense
representation of the efficient set can be achieved by opting for a dense grid of varying λ-values. This, however, implies an extensive computational
study. For computing the 145 efficient sets that refer to the investigated purchasing cases, we incremented all λ-values 51 times in an iterative manner
and solved the corresponding optimization problems. This implies that for each purchasing case, 132,651 (=51*51*51) quadratic optimization
problems are solved to optimality. This also implies that the results reported below, which refer to our observations for the final sample as a whole, are
based on the optimal solutions of 19,234,395 (=145*132,651) quadratic optimization programs.

Since solving almost 20 million quadratic optimization programs is, from a computational perspective, resource intensive and involves a certain
amount of time to generate the optimal solutions, we developed a scalable state-of-the-art cloud architecture that allows us to solve an arbitrary
number of (quadratic) optimization programs in an acceptable amount of time. The underlying idea of this architecture is to run the 19,234,395
quadratic optimization problems as a containerized application in a Kubernetes cluster. Fig. 4 gives an overview of this architecture.
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Fig. 4. Cloud architecture for solving the 19,234,395 quadratic optimization programs.

The first layer entitled ‘Data of the Purchasing Cases’ provides the data used for deriving the decision-makers’ preferences. In our case, this data is
stored as CSV files and made available for the next processing step through AWS Athena. Besides Athena, other AWS services can be used alternatively
(e.g., S3, RDS, Redshift). At the heart of the proposed architecture is a Kubernetes cluster, which is managed using Kubeflow and is based on a couple of
Amazon EC2 virtual computers. In detail, the cluster spins up, for each purchasing case separately, a Kubernetes Pod that contains the Gurobi
optimization engine and a Python file that holds the logic for reading the base data, for solving the mathematical problem, and for writing persistently
the solutions of the quadratic optimization problems. In this case, each Kubernetes Pod consists exactly of one Docker container, where the image is
pulled from a container repository (ECR). The latter is filled by a continuous integration pipeline based on GitHub Actions. The results calculated
inside the Kubernetes Pods are dumped to Amazon S3, from where the data is moved to a relational database (in this case, PostgreSQL) where the data
is joined with the meta information of the purchasing cases. From there the data is retrieved to carry out the subsequent analyses. At this point, it
should be noted that while we make use of AWS as the underlying cloud platform, other cloud service providers and the corresponding services can
also be used. In the Azure case, this would primarily be Blob Storage, SQL Database, and Virtual Machines. In the GCP case, this would primarily be
Cloud Storage, Cloud SQL, and Virtual Machine Instances. The implementation of this architecture took around twoman-days. Using this architecture,
we were able to solve the 19,234,395 quadratic optimization problems quickly. Depending on the underlying EC2 instances, it took around 9 min to
complete all the steps shown in Fig. 4. For comparison: the overall computation time was about 8 h on a single Win10 64-bit PC equipped with an Intel
i7-8550 CPU and 16 GB RAM. Finally, it is worth mentioning, that the proposed architecture is completely scalable, both vertically and horizontally, i.
e., it is easily possible to upgrade the underlying EC2 instances in terms of the numbers of CPUs and RAM (vertical scaling) and to add additional
Kubernetes Pods, for instance by adding additional EC2 instances (horizontal scaling). Thus, while the computation time will increase when more
purchasing cases are to be analyzed or when the density is increased from 51 to higher numbers in the case of one single computer, the time for running
the cloud architecture will remain constant (i.e., more or less 9 min) since the cluster can scale automatically the computing resources when there is a
higher computation demand. In Step 3, we determine, for each purchasing case individually, the Euclidean distances of the actual sourcing decision x̂
to each one of the 132,651 efficient supplier portfolios on the corresponding efficient set. We identify the portfolio composition vector x that is closest
to x̂ in Euclidean norm as the representative for the actual sourcing decision. Finally, in Step 4, we derive the preference parameters λxμ, λxc , and λxϑ as
the implicit preference parameters from the x-vector that is closest to x̂.

The approach of Steps 3 and 4, that is, the identification of the purchase order allocation x that is closest to the actual sourcing decision x̂ and the
derivation of the corresponding λ-values, is shown in Fig. 5. The figure shows, for a given purchasing case, a sample of 1000 alternatives out of the
132,651 efficient supplier portfolios, where each optimal supplier portfolio is represented by a line spanning from the leftmost axis over all other axes
to the rightmost axis in the parallel coordinates plot. In the considered purchasing case, six suppliers (S_1 to S_6) provided quotes. From the left, the
first vertical axis is a count number for the considered 1000 efficient supplier portfolios. The remaining six vertical axes range from 0 to 1 and the line
of a respective case intersects the axis at the value of the portfolio share of the respective supplier in the efficient portfolio represented by this line. The
red line indicates the supplier portfolio that has actually been selected, that is, the actual sourcing decision x̂. In this x̂, Supplier 1 has a share of about
0.7, Supplier 5 has a share of 0.3, and Suppliers 2, 3, 4, and 6 have a share of 0. For each efficient supplier portfolio, we measure for each potential
supplier the distance between the respective component of x̂ and the supplier share of the considered portfolios (in Fig. 5, some portfolios are
highlighted with purple color for illustration. The distances between the red and the purple lines are used to calculate the overall Euclidean distance
between vector x̂ (red line) and a certain efficient supplier portfolio (purple line). As each efficient supplier portfolio originates from a certain
combination of λ-values, we can derive λμ, λc, and λϑ from the vector x that realizes the minimum Euclidean distance to x̂.
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Fig. 5. Inverse optimization process: Steps 3 and 4.

In summary, we find that the dense representation of the efficient set allows us to achieve a good match between the actual sourcing decision x̂ and
the x-vector that is closest to x̂: across all 145 purchasing cases, the minimum distance between x̂ and the x-vector that is closest to x̂ is 0.000, the
median is 0.000, the mean is 0.127, and the maximum is 1.366. Fig. 6 presents a histogram of the distances between x̂ and the x-vector that is closest to
x̂ over all purchasing cases of the final sample.

Fig. 6. Histogram for the distance (on the x-axis) between x̂ and the x-vector that is closest to x̂.

Appendix D

Table 4
Comparison of the λ-value using the pairwise Wilcoxon rank-sum test (Nb. = Number of cases, Avg = Average).

Aspect λc (Cost) λμ (Logistics Quality) λϑ (Sustainability)

Variable Characteristic a) Nb.*, b) Avg Ch. 1 Ch. 2 Ch. 3 Ch. 1 Ch. 2 Ch. 3 Ch. 1 Ch. 2 Ch. 3

Decision Date Calendar Year 2019 a) 73 ​ ​ ​ ​ ​ ​ ​ ​ ​
2020 a) 72 0.425 ​ ​ 0.617 ​ ​ 0.978 ​ ​

Decision-Maker Gender Female a) 53 ​ ​ ​ ​ ​ ​ ​ ​ ​
Male a) 92 0.183 ​ ​ 0.069 ​ ​ 0.148 ​ ​

Age <25 years a) 16 ​ ​ ​ ​ ​ ​ ​ ​ ​
25–35 years a) 47 0.437 ​ ​ 0.980 ​ ​ 1.000 ​ ​
35–45 years a) 58 0.437 0.437 ​ 0.980 0.980 ​ 1.000 1.000 ​
>45 years a) 7 0.263 0.437 0.437 0.980 0.980 0.980 1.000 1.000 1.000

Seniority Purch. Manager a) 110 ​ ​ ​ ​ ​ ​ ​ ​ ​
Senior Purch. Mngr. a) 18 0.021 ​ ​ 0.893 ​ ​ 0.361 ​ ​
Head of Purch. a) 3 0.865 0.892 ​ 0.893 0.893 ​ 0.545 0.545 ​

Dist. Plant (km) Quartile 1 b) 154 ​ ​ ​ ​ ​ ​ ​ ​ ​
Quartile 2 b) 593 1.000 ​ ​ 1.000 ​ ​ 1.000 ​ ​
Quartile 3 b) 1050 0.081 0.026 ​ 1.000 1.000 ​ 0.822 0.665 ​
Quartile 4 b) 6581 0.292 0.149 1.000 1.000 1.000 1.000 0.822 0.665 1.000

Purchasing Vol. Budget (Euro) Quartile 1 b) 622,595 ​ ​ ​ ​ ​ ​ ​ ​ ​
Quartile 2 b) 2,897,450 1.000 ​ ​ 1.000 ​ ​ 1.000 ​ ​
Quartile 3 b) 13,721,504 1.000 1.000 ​ 1.000 1.000 ​ 1.000 1.000 ​
Quartile 4 b) 95,166,639 1.000 0.994 0.896 1.000 1.000 1.000 1.000 1.000 1.000

The numbers in the last nine columns show the p-values of the pairwise Wilcoxon rank-sum tests between the characteristic (Ch. 1, Ch. 2, Ch. 3) indicated by the
column and the characteristic indicated by the row. For instance, Ch. 1 in the decision date group means the calendar year 2019. The null hypothesis is that the
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characteristic indicated by the column has a greater λ-value than the characteristic indicated by the row.
* If the total number of cases for a certain variable does not add up to 145, then this is due to missing information for some cases with respect to this variable.

Appendix E

Table 5
Differences in the implicit preference parameters (Nb. = Number of cases, Avg = Average).

Aspect Variable Characteristic a) Nb.*, b) Avg λc < λμ λc < λϑ λϑ < λμ λc > λμ λc > λϑ λϑ > λμ

Decision Date Calendar Year 2019 a) 73 0.510 0.510 0.510 1.000 1.000 1.000
2020 a) 72 0.125 0.007 0.903 1.000 1.000 0.292

Decision-Maker Gender Female a) 53 0.220 0.220 0.530 1.000 1.000 1.000
Male a) 92 0.261 0.081 0.766 1.000 1.000 0.704

Age <25 years a) 16 0.984 0.984 0.718 1.000 1.000 1.000
25–35 years a) 47 0.869 0.869 0.869 1.000 1.000 1.000
35–45 years a) 58 0.280 0.066 0.809 1.000 1.000 0.579
>45 years a) 7 0.477 0.394 0.724 1.000 1.000 0.983

Seniority Purch. Manager a) 110 0.377 0.196 0.694 1.000 1.000 0.921
Senior Purch. Mngr. a) 18 0.072 0.094 0.391 1.000 1.000 1.000
Head of Purch. a) 3 1.000 1.000 1.000 1.000 1.000 1.000

Dist. Plant (km) Quartile 1 b) 154 1.000 0.941 1.000 0.619 0.691 0.426
Quartile 2 b) 593 1.000 0.679 1.000 0.804 0.804 0.394
Quartile 3 b) 1050 0.015 0.031 0.258 1.000 1.000 1.000
Quartile 4 b) 6581 0.164 0.164 0.386 1.000 1.000 1.000

Purchasing Vol. Budget (Euro) Quartile 1 b) 622,595 0.158 0.041 0.752 1.000 1.000 0.757
Quartile 2 b) 2,897,450 1.000 1.000 1.000 1.000 1.000 1.000
Quartile 3 b) 13,721,504 1.000 1.000 1.000 0.682 0.682 0.682
Quartile 4 b) 95,166,639 0.036 0.020 0.567 1.000 1.000 1.000

Overall ​ ​ a) 145 0.085 0.021 0.717 1.000 1.000 0.851
* If the total number of cases for a certain variable does not add up to 145, then this is due to missing information for some purchasing cases with respect to this

variable.

Appendix F

Introduction to the multi-criteria supplier selection model

The applied multi-criteria decision-making approach solves the following optimization model with four different objective functions

min σ2P = xT
∑

x (9)

min cP = cTx (10)

max μP = μTx (11)

max ϑP = ϑTx (12)

s.t. x ∈ S (13)

where σ2P measures the supply risk of supplier portfolio P, cP are the average per-unit purchasing costs of the portfolio, μP is the average logistics
quality, and ϑP is the average supplier sustainability of the portfolio. Model (9)–(13) is presented in multi-criteria format. The first two objective
functions are to be minimized, while the latter two are to be maximized over the feasible region S, that is, the possible combinations of different
possible suppliers. In multi-criteria decision-making, the feasible region S is referred to the decision space and contains all possible portfolio vectors
x ∈ S⊂Rn with n ∈ N is the number of suppliers submitting a bid for the purchasing case. The criterion space of Model (9)–(13) with four objectives is

Z=
{
z∈R4 ⃒⃒ z1 = σ2P, z2 = cP, z3 = μP, z4= ϑP, x∈ S

}
. (14)

Since z1, z2 are to be minimized and z3, z4 are to be maximized, a z ∈ Z is nondominated in Model (9)–(13) if and only if there exists no z ∈ Z such
that z1 ≤ z1, z2 ≤ z2, z3 ≥ z3, z4 ≥ z4 with z ∕= z.

Sensitivity analysis

A major benefit of the proposed approach is that the user gains an overview of the decision-making problem at hand as well as deeper insights into
it. This allows her to make a more informed decision by considering and balancing multiple aspects in the purchase order allocation problem. In the
following, we will provide a comprehensive summary of the sensitivities of traditional portfolio objectives for changes in portfolio sustainability.
These sensitivities indicate the additional ‘costs’ incurred in terms of higher purchasing costs, lower logistics quality, and higher supply risk when
increasing the sustainability of the supplier portfolio.
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Table 6 shows the sensitivities for three different portfolios (the minimum purchasing costs portfolio, the maximum logistics quality portfolio, and
the minimum supply risk portfolio) and five panels, where each panel represents a certain level of portfolio sustainability. For establishing these five
panels, we determine, for each purchasing case separately, the difference between the maximum sustainability achievable in this purchasing case and
the sustainability of the respective actual supplier portfolio (i.e., the reference value for the portfolio sustainability is the sustainability of the actual
portfolio decision). We refer to this difference as ‘sustainability gap’ for each purchasing case k. Panel 1 shows the average relative change in pur-
chasing costs, logistics quality, and sustainability over the 145 purchasing cases for the minimum purchasing costs portfolio, the maximum logistics
quality portfolio, and the minimum supply risk portfolio compared to the actual sourcing decision when there are no further sustainability re-
quirements – which reflects the initial situation. In the cases of Panels 2 through 5, we show the same figures but with increased sustainability re-
quirements, which means that only those portfolios can be selected that cover a certain percentage of the sustainability gap, namely 10%, 20%, 50%,
and 100%. Note that 100% sustainability gap coverage (Panel 5) forces the decision-makers to choose those supplier portfolios that maximize the
overall portfolio sustainability in each purchasing case. This results in only one portfolio, the maximum sustainability portfolio, and therefore we
report only one portfolio in this panel.

The numbers in Table 6 are average relative changes in the portfolio characteristics (purchasing costs, logistics quality, and supply risk) when
moving from the actual portfolio decision to a portfolio with a better sustainability. For instance, the rows 4–6 of Panel 1 (Column ‘All’) read as
follows: Compared with the actual portfolio decision, the maximum logistics quality portfolio (Max. Log. Quality) with the same portfolio sustainability
level as the actual portfolio decision has on average 8% higher purchasing costs, 4% better logistics quality, and 28% higher supply risk. The respective
three rows in Panel 3 (Column ‘All’) show the average relative changes in each portfolio characteristic for the portfolio with the highest logistics
quality among all portfolios covering additional 20% of the sustainability gap. These portfolios are on average 10% more expensive than the actual
portfolio, have a 3% higher logistics quality than the actual portfolios, and observe a 30% higher risk.

A comparison of Panel 1 and Panel 3 shows that covering additional 20% of the sustainability gap imposes only marginal deterioration of the
portfolio characteristics (purchasing costs, logistics quality, and supply risk) for the three considered portfolios. These results show the main benefit of
the application of the multi-criteria decision-making framework with sustainability as an additional objective. Applying this framework elicits
portfolios that increase the portfolio sustainability substantially without serious costs on the traditional three objectives. The results for the portfolios
that reduce the sustainability gap by 50% show that even this group, although its relative changes are consistently worse than those of the no-increase
in sustainability portfolios, performs acceptably in the traditional characteristics compared to a substantial improvement in sustainability. Panel 5
shows the averages of the maximum sustainability portfolio. Achieving maximum possible sustainability comes with an 21% increase in purchasing
costs, a 2% reduction in logistics quality, and a 251% increase in supply risk.

These overall results might be biased by the size of the possible improvement in sustainability. For instance, low improvement potential might exist
for decision situations where all possible suppliers have similar sustainability or the actually selected suppliers already show very high sustainability.
Therefore, we try to capture this bias in two ways: First, we group the average relative changes by the size of the sustainability gap and present these
numbers for different ranges of the sustainability gap in Columns 5–8 in Table 6. The sustainability gaps range between 0.00 and 0.73. In about one
third of the sourcing decisions (51 cases), the sustainability gap is 0, that is, sustainability cannot be improved compared to the actual sourcing
decision. For the further analyses, we subdivided the other 94 sourcing cases into tertiles as a function of the sustainability gap. The lower and the
upper bounds of these tertiles are shown in Table 6 in the rows titled ‘LB’ and ‘UB.’ Second, we group the average relative changes by the sustainability
of the actual portfolio and present these numbers separated by quartiles of the actual sustainability in Columns 10–13 in Table 6.

The results indicate that the average relative changes do not show a clear structure based on the possible biases. Thus, we apply line-wise cor-
relation tests between the relative changes and the sustainability gap (actual sustainability). The correlation coefficients of these tests are presented in
Columns 9 and 14, respectively, with the corresponding p-values being represented by asterisks. For supply risk, we find no indication that the relative
changes are influenced by the level of the sustainability gap or by the actual sustainability. However, purchasing costs and logistics quality deteriorate
strongly with higher sustainability gaps and lower levels of sustainability.

Table 6
Sensitivity analysis (LB/UB: lower/upper bound, Obs: Observations, CC: Correlation Coefficient).

Portf. Objective All Sustainability gap Act. sustainability

LB All 0.00 0.00 0.08 0.22 CC 0.06 0.56 0.75 0.85 CC

UB 0.00 0.08 0.22 0.73 0.56 0.75 0.85 1.00

Obs 145 51 31 31 32 36 36 36 37

Panel 1: No increase in the sustainability
Min. Purch. Cost Purch. Cost ​ −5 0 −7 −8 −8 −0.1*** −6 −7 −5 −1 0.0***

Log. Qual. ​ −1 0 0 0 −4 −0.2*** −2 −2 0 0 0.1***
Suppl. Risk ​ 133 4 55 525 36 0.0*** 36 472 24 5 0.0***

Max. Log. Quality Purch. Cost ​ 8 0 −3 17 23 0.3*** 20 11 1 2 −0.4***
Log. Qual. ​ 4 1 3 8 5 0.3*** 5 5 4 1 −0.2***
Suppl. Risk ​ 28 0 40 46 42 0.1*** 27 46 36 3 0.0***

Min. Supply Risk Purch. Cost ​ 15 1 16 24 27 0.2*** 18 25 16 2 −0.2***
Log. Qual. ​ 0 0 −1 2 −1 0.1*** 0 0 0 0 −0.1***
Suppl. Risk ​ −26 −8 −16 −38 −54 −0.6*** −50 −28 −18 −10 0.5***

Panel 2: 10% sustainability gap reduction
Min. Purch. Cost Purch. Cost ​ −3 0 −4 −5 −5 0.0*** −3 −5 −3 0 0.0***

Log. Qual. ​ −1 0 0 0 −4 −0.2*** −2 −2 0 0 0.1***
Suppl. Risk ​ 130 1 53 518 32 0.0*** 26 472 22 1 0.0***

Max. Log. Quality Purch. Cost ​ 9 0 0 17 23 0.3*** 20 11 3 2 −0.4***
Log. Qual. ​ 3 0 2 7 5 0.3*** 4 5 3 1 −0.2***
Suppl. Risk ​ 26 1 39 44 36 0.1*** 22 46 35 2 0.0***

Min. Supply Risk Purch. Cost ​ 15 1 17 23 27 0.2*** 17 23 16 2 −0.2***
Log. Qual. ​ 0 0 −2 2 −1 0.1*** 0 0 0 0 −0.1***

(continued on next page)
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Table 6 (continued )

Portf. Objective All Sustainability gap Act. sustainability

LB All 0.00 0.00 0.08 0.22 CC 0.06 0.56 0.75 0.85 CC

UB 0.00 0.08 0.22 0.73 0.56 0.75 0.85 1.00

Obs 145 51 31 31 32 36 36 36 37

Suppl. Risk ​ −23 −5 −11 −33 −52 −0.6*** −46 −22 −14 −8 0.4***

Panel 3: 20% sustainability gap reduction
Min. Purch. Cost Purch. Cost ​ −1 0 −1 −2 −2 0.0*** −1 −3 0 0 −0.1***

Log. Qual. ​ −1 0 −1 0 −5 −0.2*** −2 −3 0 0 0.1***
Suppl. Risk ​ 132 1 54 518 41 0.0*** 28 479 24 0 0.0***

Max. Log. Quality Purch. Cost ​ 10 0 3 18 24 0.3*** 21 12 5 2 −0.3***
Log. Qual. ​ 3 0 1 7 4 0.3*** 3 4 3 0 −0.2***
Suppl. Risk ​ 30 1 42 57 38 0.1*** 24 59 36 2 0.0***

Min. Supply Risk Purch. Cost ​ 15 1 17 23 27 0.2*** 17 24 16 2 −0.2***
Log. Qual. ​ 0 0 −2 2 −1 0.1*** 0 0 0 0 −0.1***
Suppl. Risk ​ −17 −4 −3 −17 −49 −0.4*** −43 −8 −8 −7 0.3***

Panel 4: 50% sustainability gap reduction
Min. Purch. Cost Purch. Cost ​ 5 0 9 7 8 0.1*** 7 4 8 2 −0.2***

Log. Qual. ​ −2 0 −2 0 −6 −0.1*** −3 −3 0 0 0.1***
Suppl. Risk ​ 163 −1 85 530 142 0.1*** 89 518 47 2 −0.1***

Max. Log. Quality Purch. Cost ​ 13 0 11 20 26 0.2*** 22 14 12 3 −0.3***
Log. Qual. ​ 1 0 0 5 1 0.2*** 1 2 2 0 −0.1***
Suppl. Risk ​ 71 −1 79 168 83 0.1*** 69 150 61 4 0.0***

Min. Supply Risk Purch. Cost ​ 16 1 18 25 28 0.2*** 19 26 17 2 −0.2***
Log. Qual. ​ −1 0 −2 1 −3 0.0*** −2 −1 0 0 0.0***
Suppl. Risk ​ 27 −3 45 112 −25 0.0*** −15 100 26 −2 0.0***

Panel 5: Maximum (100% sustainability gap reduction)
Min. Purch. Cost Purch. Cost ​ 21 0 25 25 46 0.2*** 28 29 24 4 −0.2***

Log. Qual. ​ −2 0 −3 1 −5 −0.1*** −3 −2 0 −1 0.0***
Suppl. Risk ​ 251 −1 230 657 280 0.1*** 283 540 168 19 −0.1***

Columns 5–8 and 10–13 indicate the average relative changes (in %) in the min. purchasing costs, max. logistics quality, and min. supply risk achievable over all 145
purchasing cases compared to the actual sourcing decisions, when setting the sustainability increase to the level indicated in the respective panel. Columns 9 and 14
contain the results of a correlation test (i.e., the coefficient and its significance level) for each row between the relative changes and the sustainability gap/actual
sustainability.
*p-value < 0.1.
**p-value < 0.05.
***p-value < 0.01.

Data availability

The data that has been used is confidential.
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