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Abstract— According to the WHO, approximately one in
six individuals worldwide will develop some form of cancer
in their lifetime. Therefore, accurate and early detection of
lesions is crucial for improving the probability of successful
treatment, reducing the need for more invasive treatments,
and leading to higher rates of survival. In this work, we
propose a novel R-CNN approach with pretraining and data
augmentation for universal lesion detection. In particular, we
incorporate an asymmetric 3D context fusion (A3D) for feature
extraction from 2D CT images with Hybrid Task Cascade.
By doing so, we supply the network with further spatial
context, refining the mask prediction over several stages and
making it easier to distinguish hard foregrounds from cluttered
backgrounds. Moreover, we introduce a new video pretraining
method for medical imaging by using consecutive frames from
the YouTube VOS video segmentation dataset which improves
our model’s sensitivity by 0.8 percentage points at a false
positive rate of one false positive per image. Finally, we apply
data augmentation techniques and analyse their impact on the
overall performance of our models at various false positive
rates. Using our introduced approach, it is possible to increase
the A3D baseline’s sensitivity by 1.04 percentage points in
mFROC.

I. INTRODUCTION

As the second leading cause of death globally, cancer
represents one of the most dangerous diseases of our time.
According to the WHO!, 9.6 million people died as a
result of cancer in 2018, showing a growing trend with
10 million cases in 2020 [1]. Early detection of cancer
drastically increases the chance of survival, enabling an
early intervention to prevent further spreading. However, in
about 50 % of all cases, cancer is still only detected at an
advanced stage, resulting in a considerably worse course of
the disease [2]. According to Crosby et al. [2], one of the
five biggest challenges to enable an earlier detection is to
develop systems that are able to recognise biological changes
such as tissue alterations in a timely and accurate manner. To
this end, recent work focused on developing and improving
approaches for detecting lesions, an area of abnormal tissue
that can be either benign or malignant.

Lesions are usually detected using medical imaging meth-
ods such as Magnetic Resonance Imaging (MRI), Com-
puted Tomography (CT), X-ray or ultrasound [3]-[5] and
subsequently, are examined by a medical doctor based on

1Chair of Embedded Intelligence for  Healthcare  and
Wellbeing, University of Augsburg, Augsburg 86161, Germany
first.last@uni-a.de

2GLAM - Group on Language, Audio, & Music, Imperial College
London, London SW7 2AZ, UK

Thttps://www.who.int/health-topics/cancer

their shape, size, and location, following the commonly used
Response Evaluation Criteria in Solid Tumors (RECIST)
guidelines [6], [7]. However, studies have shown that human
error can lead to inaccurate conclusions in up to 3% of
all cases, resulting in serious consequences for patients [8].
In this regard, computer-aided disease screening approaches
can support physicians, contribute to earlier detection, and
improve the overall detection rate.

Computer vision for medical image analysis is a well-
established field of research and evolved considerably in the
last years. Convolutional Neural Networks (CNNs) demon-
strated their capacity to identify patterns in images and
formed the basis for architectures, such as R-CNN, enabling
a precise object detection [9], [10]. One limitation of these
methods constitutes their inability to learn 3-Dimensional
(3D) context from 2D input data which is crucial for dis-
cerning lesions [11]. To address this shortcoming, Yan et
al. [11] proposed integrating 3D context into 2D regional
CNN:gs, resulting in 3D context enhanced region-based CNNs
for lesion detection. More recently, Transformer-based archi-
tectures have been utilised to effectively model 3D context
found between slices [12]. Nevertheless, a drawback of
3D context models is that large 2D datasets (e.g., [13],
[14]) cannot be utilised for pretraining. More recent 3D
medical image approaches solved this challenge, introduc-
ing methods for combining 2D pretraining with 3D net-
works [15], [16]. In particular, these models are able to
learn 3D representations while initialising their weights from
2D convolutional kernels. Further, Yang et al. [17] proposed
an asymmetric 3D context fusion operator (A3D), a lesion
detection framework that uses different weights for fusing
2D slices, resulting in a considerable performance increase
and representing the current state-of-the-art on well-known
datasets, such as the DeepLesion benchmark [18], and is still
being expanded on, e. g., by adding Transformer-based slice
attention modules [19]. In the early days, it was common to
only recognise single types of lesions, such as skin [20] or
liver [21] lesions. However, large-scale datasets such as the
DeepLesion benchmark [18] tackled this challenge, enabling
the detection of various lesion types using one model for the
first time.

In this paper, we extend the studies of Yang et al. [17],
proposing a novel R-CNN lesion detection approach eval-
vated on the DeepLesion dataset [4]. Our contribution is
twofold. First, we introduce a lesion detection framework
using cascading CNNs incorporated into an A3D architec-
ture. Second, we present a new video pretraining approach



for medical imaging using consecutive frames from the
YouTube VOS video segmentation dataset [22], thus taking
into account the importance of pretraining, emphasised in
previous works [17].

II. DEEPLESION DATASET

For our experiments, we use the DeepLesion dataset [4]
which is a large-scale, open-access dataset of medical images
comprising 32,735 types of lesions in 32,120 CT slices
derived from 10, 594 studies of 4,427 unique patients.

While the raw RECIST annotations from the radiologists
are provided, the National Institutes of Health (NIH) also
published generated bounding boxes with five-pixel padding
to the annotations. The patient’s age and gender are also
provided, as well as a flag for possible noisy scans. A
majority of scans are 512 x 512 pixels in size, while others
are 768 x 768 and 1024 x 1024. Additional slices 30 mm
above and below the key slices are contained in the dataset
for most CT images [4].

III. METHODOLOGY

Our approach for lesion detection with video pretrain-
ing is illustrated in Figure 1. In our experiments, we
choose the state-of-the-art A3D as the base model, as it
exhibits a promising slice fusion strategy. We use the trun-
cated DenseNet-121 backbone and Feature Pyramid Network
(FPN) from A3D and forward the generated feature map to
the Region Proposal Network (RPN) component that creates
bounding box proposals. Subsequently, we incorporate our
model with the Hybrid Task Cascade (HTC) architecture
composed of three Mask R-CNN branches for instance
segmentation. A brief summary of the backbone, FPN, and
HTC is provided in Sections III-A and III-B.

We start our approach by initialising the DenseNet-121
backbone with ImageNet [13] weights as done in A3D.
A pretraining is performed using samples from the class
“person” of the YouTube VOS dataset. Neighbouring frames
are considered as an equivalent to adjacent CT scan slices
(cf. Section III-C). The training process is then conducted as
outlined in Section IV-A until sensitivities converge.

A. Context Fusion

Unlike 3D fusion operators which rely on the spatially
symmetric transformation of 2D slices to ensure transforma-
tional equivariance, A3D acknowledges the uneven distribu-
tion of feature-relevant slices in medical imaging data [17].
A3D fuses the D x 5122 input features using an (asyn-
chronous) fusion matrix € RP*P*C densely connecting
over the slices’ (D) features individually for each channel
(C). We use D € {3,7} (slices) for our experiments. The
fused features are further integrated into an FPN, which
allows for small-scale lesion detection by integrating over
features of different resolutions. The convoluted features of
size O; x {1282,642,322}, C; denoting the channel size, are
fused together, forming a feature map € 512 x 1282 as input
into the sequential RPN module. The FPN utilises channel
sizes of C; € {256,512,1024}.

B. Instance Segmentation

We diverge from the A3D architecture by employing HTC
for Instance Segmentation. Instead of relying on a linear R-
CNN architecture, the HTC module utilises three interlaced
Mask R-CNN branches (stages) to generate segmentation
masks. Each Mask R-CNN branch integrates the updated
bounding box and mask predictions of the previous branch.
This allows for incremental predictions where the final
branch is finetuned on the preceding stages’ features.

C. Pretraining

Due to a lack of 3D imaging datasets, we aim to ex-
ploit the spatiotemporal information present in video data.
Temporally close frames in videos tend to have a high
correlation in pixels, and, as such, segmentation masks. In
sliced medical imaging data, e. g., lesions, the area of interest
spans over multiple neighbouring slices. We aim to learn
this spatial dependency by pretraining our model on the
Youtube VOS dataset, predicting segmentation masks on
moving images. For pretaining, the models learn exclusively
with the databases’ “person” class. The dataset contains
over 2,883 videos total, sampled at 30 fps and segmentation
mask annotations every fifth frame. Akin to the DeepLesion
dataset, we create bounding boxes from the annotated seg-
mentation masks, add padding of five pixels and convert the
frames to greyscale. In this context, each frame corresponds
to a slice of medical imaging data with an assigned thickness
of 1 mm. We employ a second pretraining approach denoted
as Random Spacing which randomly skips 0 to 4 frames and
adjusts the image thickness accordingly.

D. Data Augmentation

As the asynchronous nature of the models fusion process
has the potential to impair its translational equivariance, we
aim to improve on the data augmentations done in A3D [17].
We found that additionally applying Random Cropping [23]
with ratios between 0.9 and 1 with a chance of 30 % worked
best for this model, while rotational augmentation led to
worse results.

IV. EXPERIMENTAL SETTINGS AND RESULTS
A. Training Implementation

Our proposed model combines the A3D architecture with
HTC to generate refined segmentation mask proposals. The
A3D [17] module uses anchor ratios of (0.5,1.0,2.0) and
anchor scales of (16,24,32,48,96,192). We set the base
learning rate to 0.04 with a weight decay ratio of 0.1.
According to the linear scaling rule [24], this equals a
learning rate of 2 x 321 = 0.0025. The model is initialised
with pretrained weights from ImageNet. All experiments
were performed using the official DeepLesion [4] train, test,

and validation splits.

B. Results

The results of our experiments are listed in Table I. Due
to the computational costs, we execute our experiments
mainly using a slice depth of D = 3. Our best results



[ YouTube VOS Pretraining | ( Feature Extraction \

( Bounding Box Proposalsw

( Prediction Refinement \ Bounding Boxes
e

DenseNet with A3D modules
&
Feature Pyramid Network

Feature
—_—

—_
’ Map

Fig. 1.

Region Hybrid Task Cascade Masks
Region Proposal Network —— yor —
Proposals

Classifications
3 Branches —_—

High-level overview of our proposed approach comprising (i) video pretraining (YouTube VOS dataset), (ii) feature extraction (A3D + Feature

Pyramid Network), (iii) bounding box proposals (Region Proposal Network), and (iv) prediction refinement (Hybrid Task Cascade with three branches)

components. A detailed account of the approach is given in Section III.

TABLE I
COMPARISON OF ALL PROPOSED TECHNIQUES FOR THREE AND SEVEN INPUT SLICES. THE BEST RESULT FOR EACH FP IS BOLDFACED AND THE BEST
MEAN RESULTS (MFROC[0.5, 1, 2, 4, 8, 16]) ARE MARKED WITH GREY SHADING. AUG] = {FLIP, SHIFT, RESCALE, ROTATE},
AUG2 = AUG; U {CROP}.

FP@
Method Slices 0.5 1 2 4 8 16 mFROC
A3D [17] + Aug; replicated (baseline) 3 7259 80.99 87.07 9092 93.77 9595 86.88
A3D + Cascade R-CNN + Aug; ( [17]) 3 7203 80.74 8697 91.14 94.18 95.97 86.84
A3D + HTC + Aug, 3 7276 81.19 87.09 91.18 9425 9593 87.07
A3D + Cascade R-CNN + Augq (ours) 3 72.60 80.76  87.07 91.43 9440 96.29 87.09
A3D + Cascade R-CNN + Augo + Pretraining (ours) 3 7323 81.56 87.58 9153 9450 96.15 87.43
A3D + HTC + Aug, + Pretraining (ours) 3 7347 81.60 8793 9192 9479 96.25 87.66
A3D + HTC + Aug, + Pretraining + Random Spacing (ours) 3 74.06 81.78 87.87 92.10 95.13 96.60 87.92
A3D [17] + Aug; replicated (baseline) 7 78.54 85.16 89.66 93.04 95.18 96.78 89.73
A3D + HTC + Augy + Pretraining (ours) 7 78.36 8524 9041 9344 9579 97.07 90.05

are achieved with the Random Spacing adjustment during
pretraining. All models are evaluated at false positive rates
between 0.5 and 16 by changing the classification threshold
for the Mask R-CNN outputs. The experiments presented
below all employ a modified version of the A3D architecture,
using cascading R-CNNs’ enhanced bounding boxes and
segmentation mask prediction. We distinguish between the
base augmentations Aug, = {flip, shift, rescale, rotate} and
our extension Aug, = Aug, U {crop}.

Using the original configuration provided in [17], we were
not able to achieve the exact same results. Therefore, we
compare our experiments with the replicated A3D results
(~ A1%). As A3D is used universally throughout our ex-
periments, we deem this to not have any effect on the relative
changes in mean Free Response Operating Characteristic
(mFROC) scores.

1) A3D + Cascade R-CNN + Aug,: In this configu-
ration, we substitute the Mask R-CNN component of the
baseline [17] with the Cascade R-CNN and employ the set
of augmentations (flip, shift, rescale, and rotate) introduced
in [17]. The results show that this approach works better than
the baseline when higher FPs (> 4) are considered.

2) A3D + HTC + Aug,: Here, we replace the Mask R-
CNN component with HTC and apply the original set of
augmentations (Aug;) [17] demonstrating an improvement
of the sensitivity for all FPs except FP@16.

3) A3D + Cascade R-CNN + Aug,: We observed that
the augmentation with Random Cropping improves the
mFROC by 0.25 percentage points compared to the original
augmentations (random horizontal flip, shift, rescaling and
rotation) [17].

4) A3D + Cascade R-CNN + Aug, + Pretraining:
Pretraining the initialised ImageNet weights on the Youtube
VOS dataset allows the model to capture longer spatiotem-
poral dependencies. Accordingly, we further increase the
mFROC by 0.55 percentage points compared to the A3D
+ Cascade R-CNN + Aug, model. The results for all
FPs (except for FP@16) demonstrate the efficacy of using
sequential, interconnected frames as a potential substitution
for 3D imaging data within the pretraining process.

5) A3D + HTC + Aug, + Pretraining: The culmination
of previously mentioned methods leads to an overall increase
of 0.78 mFROC.

6) A3D + HTC + Aug, + Pretraining + Random Spacing:
Utilising Random Spacing during pretraining we aim to make
the model resilient towards variability in slice thickness. The
results show an absolute increase of 1.04 mFROC.

7) A3D + HTC + Aug, + Pretraining (7 slices): Also
when a higher number of slices (7 instead of 3) are applied,
our model outperforms the A3D base model at all FPs
(except for FP@0.5).

V. CONCLUSIONS

We have introduced a novel pretraining and machine learn-
ing framework incorporating an A3D with HTC for universal
lesion detection. We utilised the truncated DenseNet-121
backbone of A3D and pretrained it with videos from the
YouTube VOS dataset [22]. We also employed Random
Spacing as a second pretraining approach that adjusts the
image thickness by randomly skipping O to 4 frames. Further,
we applied Random Cropping for data augmentation. Finally,
we have tested a set of combinations of all proposed methods



and demonstrated their efficacy in improving the overall
sensitivity. We believe that A3D is a highly promising
approach also in terms of its adaptation to new components
facilitating modular ablation studies.

VI. LIMITATIONS AND FUTURE WORK

Currently, most Mask R-CNNs perform at high false
positive rates, which restricts their real-world usage. It is
sometimes necessary to choose a low classification threshold
for high sensitivity in order to achieve high confidence scores
for correct predictions. Since we pretrained on only one class
of the YouTube VOS dataset, future work could make use
of all available classes. Moreover, backbone optimisation,
e. g., by swapping the A3D’s backbone (DenseNet-121) with
EfficientNet [25], or ResNeXt [26] could yield enhanced
feature maps. A Feature Pyramid Network with feature map
outputs at multiple stages can also be tested for further
improving the detection of lesions of different sizes.

Zhang et al. [27] introduced Variable Dimension Trans-
form (VDT) (this work was not available during the for-
mation of this study), which seems to be a very promising
approach. By using 2D semantic annotations, the proposed
VDT [27] enables the learning of discriminative and invariant
3D feature representations for 3D medical imaging tasks.

For future research, personalised machine learning meth-
ods (e.g., [28]) should be considered for addressing the
heterogeneity of medical data, characterised by different
ages, genders, and physical characteristics of each individual.
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