
Towards Safe Dynamic Updates of Distributed
Embedded Applications in Factory Automation

Kilian Telschig
Corporate Technology

Siemens AG, Munich, Germany
kilian.telschig@siemens.com

Alexander Knapp
Institute for Software and Systems Engineering

University of Augsburg, Germany
knapp@informatik.uni-augsburg.de

Abstract—In future production systems the speed of adaptation
to changing market needs becomes increasingly important. As
automation processes are carried out by flexible, software-
defined machines like robots, adaptivity could be achieved largely
through software updates. For technical and economic reasons
it would be an advantage to update the automation system
without stopping production. The challenge is to enable consistent
software updates to running distributed embedded applications
while keeping the timing requirements of messages and tasks. We
describe the kinds of updates to be supported and give a brief
first outline of our technical solution for this problem: A real-time
container infrastructure that runs embedded components and is
able to reconfigure the running distributed application due to a
reconfiguration plan to be designed by the plant operator and to
be verified by the plant engineering system.

I. INTRODUCTION

In the age of digitalization keeping pace with the market is
more important than ever before. But in factory automation,
fast adaptation is difficult, because factories are built for very
dedicated purposes while engineering and commissioning can
take months and years. Therefore, changes to such a special
purpose plant are expensive, slow, and thus often unprofitable.
Any improvement on this leads to significant competitive
advantages and therefore the adaptation speed is becoming
a critical success factor for manufacturers.

Fortunately, production processes are increasingly carried
out by software-intensive systems controlling multi-purpose
machines like robots, 3D printers and CNC milling machines.
Such systems can potentially be adapted instantly by updates
that use the equipment in a different way. Moreover, future
automation systems will need to adapt constantly, whereas a
full shutdown of the overall plant would be uneconomical and
sometimes even technically impossible. Therefore, it must be
possible to roll out updates during production.

On the other hand, updating a running automation system
is challenging. As the software is embedded in a technical
process, it consists of tasks and signals with real-time require-
ments that need to be assured by the runtime environment
to avoid hazards. Additionally, the automation application
is distributed over multiple controllers. As synchronization
between nodes takes longer than common timing deadlines
of tasks there is no global state in which an update would be
safe (except when stopping production).

Thus, the challenge is to update distributed embedded
applications at runtime with at least the following guarantees:

• States and messages will not get lost.
• Real-time requirements of all continued tasks and all

valid messages will be met.
• The distributed system will be consistent at any instant.
Our vision is a real-time container technology, inspired by

modern software engineering practice. Container technologies
like Docker [1] and Linux Containers (LXC) [2] provide a
dynamic and lightweight mechanism for software isolation
and resource control, e.g. for continuous integration jobs or
as app execution context. On top of that, we need to add
reconfiguration mechanisms for dynamic updates of automa-
tion applications that ensure real-time requirements in the
presence of distributed dependencies. As a side effect, real-
time containers will provide additional benefits like enhanced
security, reliability and compatibility.

In the rest of this paper, we proceed as follows. The
next Sect. II refers to related future automation visions and
approaches and describes the scope of our research activities.
In Sect. III we outline our idea of real-time containers and re-
lated means supporting the reconfiguration. The final Sect. IV
concludes this paper and gives an outlook of our planned future
work towards safe factory updates.

II. RECONFIGURATION NEEDS OF FUTURE AUTOMATION
SYSTEMS

We refer to visions and approaches related to dynamic
reconfiguration of automation systems. Due to domain require-
ments and to the system complexity in automation speeding up
adaptivity also leads to an increased demand for automatic as-
surance and enforcement of quality attributes such as real-time
constraints, including consistency properties to be maintained
during reconfiguration.

A. Future Automation Visions

A recent trend of automation technology is the ability
to inspect the machine data of production systems via a
cloud-based analytics platform. Usually, an additional gateway
device needs to be placed into the factory that reads the data
from the Programmable Logic Controllers (PLC), e.g. using



the OPC UA standard [3]. To cope with limited transfer rates
and buffer sizes, but also with privacy, the gateway must
preprocess the data still inside the plant (also referred to as
edge-centric computing [4]). Depending on how critical a loss
of data would be in the related domain, preprocessing tasks
may have hard real-time requirements. When changing the
analytics application in the cloud, the gateways’ communi-
cation channels and the deployed preprocessing functionality
will need to be adapted accordingly. While being reconfigured
the gateway still must not lose any data. Therefore the ability
to update real-time systems with quality guarantees would be
beneficial for industrial analytics applications, even when not
changing the production system itself.

Thinking one step ahead, the next requirement is then to op-
timize the plant according to the gained analytical insights [5],
as also propagated by the DevOps movement [6]. Obviously it
would be a great benefit to let the production system continue
its job during the upgrade. This in turn increases the need for
quality assurance and enforcement, especially if also third-
party components from a digital marketplace are installed.
Even more critical are visions towards an industrial Internet of
Things (IoT) [7], where devices might reconfigure themselves
to adapt to changing demand and equipment [8]. In this regards
a dynamic reconfiguration mechanism with sufficient quality
guarantees would be a step towards a centrally managed self-
adaptive production system as favored by [9].

B. Required Reconfiguration Capabilities

To enable the previously described automation scenarios,
distributed embedded applications will need to be component-
based and support reconfiguration operations as described in
this section. Overall, the embedded application is distributed
over multiple nodes and consists of interconnected software
components that communicate with each other potentially via
network connections to control several machines in coordina-
tion. All of the basic interaction paradigms sender/receiver,
client/server and publisher/subscriber between components
shall be supported on the conceptual level closely following
the Generic Component Model of MARTE [10].

Such an application is complex even without reconfigu-
ration: The location and number of receivers, clients and
subscribers for all interfaces must be respected in the commu-
nication configuration. Additionally, operation calls and event
emissions trigger tasks in the corresponding components, influ-
encing their resource needs. As client-server-communication is
synchronous, the worst-case execution time (WCET) of a task
calling an operation depends on the location and the WCET
of the triggered task, which in turn might call operations.

Nevertheless, a plant operator shall be able to change such
a system’s configuration during its execution from a plant
engineering system: the set of component instances, how they
are connected with each other, how they are allocated to nodes
and which resources they are given. For this purpose, future
automation systems shall support changes to a running config-
uration consisting of the following reconfiguration operations:

1) Add Software Component to Running System

2) Move Running Software Component
3) Update Running Software Component
4) Remove Running Software Component
5) Update Running Software Composition
6) Add Equipment to Running System
7) Remove Equipment from Running System
To prevent damage to equipment, people and environment

dynamic updates must be applied very carefully. On the one
side, there is the impact on the technical process, which is
out of the scope of this work. On the other side, the quality
constraints of the distributed embedded application need to
be kept. Ideally, the whole system shall be consistent before,
during and after reconfigurations.

Our understanding of consistency is based on the ACID
properties of transactions in database systems [11] adding
the time dimension: Besides keeping all tasks’ deadlines, the
messaging constraints have to be ensured, even if a related
component is reconfigured (for example consider relocation,
update, . . . ). All components’ states need to be preserved
during the transition process. Additionally, fault detection
and failure reaction mechanisms need to be preserved as the
technical process continues. To make reconfiguration feasible
in practice it must be possible to permit temporary quality
degradation. Besides these exceptions at any instant either the
old or the new configuration must be fully working.

C. Existing Approaches

In factory automation the standard IEC 61131-3 [12] de-
fines programming languages for PLCs like Function Block
Diagrams (FBDs). The standard IEC 61499-1 [13] extends
this specification for distributed event-triggered FBDs. The
standard is well established and can be used for component-
based software engineering [14]. However, neither is re-
configuration of such a distributed FBD supported nor is
client/server-communication. Apart from that no end-to-end
quality contracts are used, which would be needed as input
for quality assurance and enforcement approaches.

A promising related approach in factory automation is the
recently proposed rtSOA [15]. It supports reconfiguration of
distributed manufacturing systems and automatically resolves
bus scheduling for inter-service communication with regard to
WCETs of tasks. One central restriction of the approach is
that it can only reconfigure the whole plant at once and when
production has stopped as each service is directly associated
with a production step. As a resulting architectural difference
the inter-service-communication is unidirectional and the tasks
associated with services are activated sequentially.

We think for future automation scenarios a holistic
component-based software engineering approach as described
by [16] needs to be adapted to dynamic distributed embed-
ded applications. We are aware of approaches from various
domains, e.g. the automotive standard AUTOSAR [17], which
does not support reconfiguration. To the best of our knowledge
no approach supports the capabilities described in II-B, e.g.
relocation of stateful real-time components in conjunction with
remote operation calls.



Fig. 1. An overview of the system architecture: The embedded application
controlling the equipment is distributed over multiple nodes. The plant
engineering system and the component repository are connected to each node
to enable reconfiguration at runtime.

III. RECONFIGURABLE FACTORY VISION

We describe our concept to make factory automation recon-
figurable without downtime of the overall system. It consists
of the following means (see Fig. 1 for a schematic overview
of the system architecture):
Real-Time Containers as isolated execution context for em-

bedded components providing resources as configured.
Reconfiguration Agents with privileges to execute reconfig-

uration instructions locally on a node.
The Plant Engineering System to design a working recon-

figuration plan for the distributed embedded system.
A Component Repository inside the factory that provides

component descriptions and binaries.

A. Real-Time Containers

A real-time container shall be an execution wrapper for a
component that needs to be isolated from but at the same
time connected to other components and resources, i.e., hard-
ware access. The underlying architecture of the distributed
embedded application shall be time-triggered as proposed by
[18]. The container is responsible for the timely execution
of a component’s tasks and for the propagation and delivery
of messages to and from other components’ containers. Only
via the container, components can interact with the runtime
environment, with the hardware and with each other. The real-
time container has to interact with the underlying RTOS to run
the component accordingly (see Fig. 2):

• It requests execution of the component’s tasks (translating
event triggers to time triggers).

• It relays incoming and outgoing messages (signals, oper-
ation calls, events).

• It conveys system operations to provide the required
hardware access.

• It watches the timing quality of tasks and messages and
triggers failure reaction hooks of the application and the
runtime environment.

For this purpose the real-time container needs a config-
uration compatible to the component’s interface. The func-

Real-Time Container
Component

Cyclic Tasks

Required
Interface

Provided
Interface

Provided Operations

Event-Triggered Tasks

Send Values,
Serve Operation Calls,
Trigger Events

Receive Values,
Call Operations,
Subscribe to Events

Read / Write
Signals

Activate Tasks

Real-Time Operating System

Life-Cycle API
and Hooks Reconfiguration

Agent

Configuration and
Communication

Fig. 2. Real-time containers: All instantiated components are executed in a
dedicated container that ensures timely task execution and inter-component
communication and supports life cycle operations for reconfiguration.

tional part of the interface declares the tasks that realize the
functionality of the component and the required and provided
interfaces for communication with other components and re-
source access (i.e. the ports). Additionally, the quality contract
describes the timing behavior and constraints of a component’s
ports and tasks. However, the isolated component’s interface
alone is not sufficient, as its quality properties depend on
remote communication and execution delays, too. Therefore
the container configuration has to be created at the plant
engineering system with the complete configuration of the
distributed embedded application in mind (see Sect. III-C).

B. Reconfiguration Agent

The reconfiguration agent is a script execution engine
running on each node. Its task is to receive and execute
reconfiguration instructions from the plant engineering sys-
tem as part of a global reconfiguration plan to be executed
concurrently on all nodes while the embedded application is
running. The reconfiguration agent shall provide the following
reconfiguration capabilities:
Container Life-Cycle Management: Create/destroy,

start/stop, snapshot/restore real-time containers.
Container Interception: Queue/forward specific messages,

suppress tasks, inject/extract component state.
Runtime Environment Configuration: Create/delete bus

signals, allocate/free container memory, modify task
schedule.

Inter-Agent Coordination: Send/receive status messages
from/to other agents.

Administration Connection: Receive reconfiguration
scripts, download component binaries and container
configurations.

Obviously, the procedure resulting from a reconfiguration
plan has to be prepared and checked carefully at the plant
engineering system before rolling it out.

C. Plant Engineering System

The plant engineering system helps the plant operator
creating a safe reconfiguration plan. Its main task is to prevent



dangerous violations to the component contracts by checking
each reconfiguration plan before rolling it out to the production
system. This also includes checking the quality of service both
of the new version of the distributed embedded application
and the transition to this new version when executing the
reconfiguration plan. For this check, the plant engineering
system uses the component interfaces (including the timing
regulations) and its knowledge about the network topology and
the mapping of components to nodes, i.e. the configuration.
An important note is that the effect of the reconfiguration
to the technical process being controlled by the distributed
embedded application is out of the scope of our concept and
to be considered by the plant operator.

In the reconfiguration plan, the plant operator specifies a
sequence of reconfiguration operations (e.g. move a com-
ponent) using the reconfiguration instruction supported by
the reconfiguration agent (see Sect. III-B). Besides sequential
execution, he or she can also configure operations to run
concurrently according to the atomicity principle, i.e. to take
effect virtually instantaneously.

When the plant engineering system discovers that a given
reconfiguration plan would lead to a non-feasible new system
configuration, it shall deny the plan. If the resulting config-
uration is feasible, but the plant engineering system cannot
find a reconfiguration procedure for which the integrity of the
production system can be guaranteed during the update, then
the plant operator either has to specify bounds of intermediate
quality degradation to make the reconfiguration feasible, or to
postpone the update to the next downtime of the factory. In
no case the plant engineering system shall allow a plan that
would violate the quality contract without explicit permission.

D. Component Repository

The component repository stores component binaries along
with their interfaces. While the plant operator creates a
reconfiguration plan, the plant engineering system uses the
repository to check the existence of the required component
versions and the compatibility of their interfaces. During
reconfiguration, the reconfiguration agents download compo-
nents from the component repository. Therefore it must be
located inside the factory.

The plant operator can add and remove components to and
from the repository, possibly via a central marketplace. The
component repository ensures the integrity of the components
for security (e.g. proof of origin), but also for quality (i.e.
accordance of the component binaries to their interfaces).
When using open-source components, it may also download
and compile the code. For all components, the component
repository shall also manage licenses and payment.

All in all the component repository is an important quality
gateway for the production system.

IV. FUTURE WORK

We proposed a real-time container infrastructure aimed
at facilitating safe reconfiguration of distributed embedded
applications in factory automation. Real-time containers shall

be an execution context for embedded components that on the
one hand need to communicate with each other and with the
equipment, but on the other hand need to have independent life
cycles. Besides containers, a reconfiguration agent is running
on each node of the distributed system. It does not control
the technical process, but executes reconfiguration instructions
according to a global reconfiguration plan designed beforehand
by the plant operator at the plant engineering system. And
finally, there shall be a component repository inside the factory
that stores components and acts as quality gateway.

Our next step is a more systematic literature study to
identify blind spots, including approaches from similar do-
mains like automotive and avionics. In parallel we continue
prototyping the real-time container infrastructure to get a better
understanding of the problem and to evaluate the suitability
of our architecture. Additionally, we are going to validate
the approach in close cooperation with related projects inside
Siemens using the prototype to implement a future automation
scenario that requires dynamic reconfiguration (see Sect. II-A).
Our hope is that one day the real-time container infrastructure
will be a standard technology in factory automation.

REFERENCES

[1] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, 2014.

[2] linuxcontainers.org, “LXC,” 2017, [Online; last visited May 8, 2017].
[3] S.-H. Leitner and W. Mahnke, “OPC UA–Service-oriented Architecture

for Industrial Applications,” ABB Corporate Research Center, 2006.
[4] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,

A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
Computing: Vision and Challenges,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 37–42, Sep. 2015.

[5] J. S. Michels, “Industrial Connectivity und Industrial Analytics,
Kernbausteine der Fabrik der Zukunft,” in Industrie 4.0 grenzenlos,
U. Sendler, Ed. Springer Berlin Heidelberg, 2016.

[6] O. Thomas, A. Varwig, F. Kammler, B. Zobel, and A. Fuchs, “De-
vOps: IT-Entwicklung im Industrie 4.0-Zeitalter,” HMD Praxis der
Wirtschaftsinformatik, vol. 54, no. 2, pp. 178–188, 2017.

[7] L. Da Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,”
IEEE Trans. on Ind. Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.

[8] J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-physical Systems Archi-
tecture for Industry 4.0-based Manufacturing Systems,” Manufacturing
Letters, vol. 3, pp. 18–23, 2015.

[9] N. Kaur, C. S. McLeod, A. Jain, R. Harrison, B. Ahmad, A. W. Colombo,
and J. Delsing, “Design and Simulation of a SOA-based System of
Systems for Automation in the Residential Sector,” in ICIT, 2013.

[10] UML Profile for Modeling and Analysis of Real-time and Embedded
Systems (MARTE), Object Managment Group Std., Rev. 1.1, 2011.

[11] T. Haerder and A. Reuter, “Principles of Transaction-oriented Database
Recovery,” ACM Comput. Surv., vol. 15, no. 4, pp. 287–317, 1983.

[12] IEC 61131-3:2013. Programmable controllers - Part 3: Programming
languages, International Electrotechnical Commission Std., 2013.

[13] IEC 61499-1:2012. Function blocks - Part 1: Architecture, International
Electrotechnical Commission Std., 2012.

[14] W. Zhang, W. A. Halang, and C. Dietrich, “Specification and Verifica-
tion of Applications based on Function Blocks,” in Component-Based
Software Development for Embedded Systems. Springer, 2005.

[15] T. Kothmayr, A. Kemper, A. Scholz, and J. Heuer, “Schedule-based
Service Choreographies for Real-Time Control Loops,” in ETFA, 2015.

[16] M. Panunzio and T. Vardanega, “A component-based process with
separation of concerns for the development of embedded real-time
software systems,” Journal of Systems and Software, vol. 96, 2014.

[17] Specification of RTE, AUTOSAR Std., Rev. 4.3.0, 2016.
[18] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-

bedded Applications. Springer Science & Business Media, 2011.


