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Abstract: Smallholder rainfed agriculture in West Africa is vital for regional food security and
livelihoods, yet it remains highly vulnerable to climate change. Persistently low crop yields, driven
by high rainfall variability and frequent climate hazards, highlight the urgent need for evidence-
based adaptation strategies. This study assesses the impact of climate change on maize yields in
Burkina Faso (BF) using a calibrated AquaCrop model and recent climate projections. AquaCrop was
calibrated using district-level maize yields from 2009 to 2022 and a genetic optimization technique.
Climate change impacts were then simulated using two socioeconomic scenarios (SSP2–4.5 and
SSP5–8.5) for the periods 2016–2045 and 2046–2075. Climate projections show that Burkina Faso
will experience temperature increases of 0.5–3 ◦C and decreased precipitation, with the most severe
rainfall reductions in the country’s southern half, including the crucial southwestern agricultural
zone. Maize yields will predominantly decrease across the country, with projected losses reaching
20% in most regions. The southwestern agricultural zone, critical for national food production, faces
substantial yield decreases of up to 40% under the SSP5-8.5 scenario. In light of these findings,
future research should employ the calibrated AquaCrop model to evaluate specific combinations
of adaptation strategies. These strategies include optimized planting windows, field-level water
management practices, and optimal fertilizer application schedules, providing actionable guidance
for smallholder farmers in West Africa.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) predicts that temperatures
across West Africa will increase by 2 ◦C to 5 ◦C by the end of the 21st century under high-
emission scenarios [1]. As a consequence, rainfall will become more variable, with some
regions experiencing increased rainfall and others facing declines, resulting in frequent
flooding and drought [2,3]. However, future warming and changes in rainfall patterns
are not uniform across Africa and vary regionally. The Sahel region in West Africa may
experience more intense and frequent rainfall events, compounded with the most significant
temperature rises [4,5]. These irregular and extreme climatic conditions in West Africa
are expected to exacerbate existing socioeconomic problems in the Sahel region, including
poverty and food security.

In the Sahel region, the majority of the population relies on rainfed agriculture. Climate
change, along with challenges related to climate variability, will amplify the vulnerability
of the population. Indeed, high rainfall variability and extreme weather events can lead to
crop failure or reduced yields, with a range of consequences for agricultural productivity,
food security, and economic stability in the region. Studies have shown that even small
deviations in rainfall patterns can significantly impact staple crops such as millet, sorghum,
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and maize [6–8]. Furthermore, temperature increases reduce the global yields of major
crops [9]. These impacts will also vary substantially for crops and regions based on a
complex interaction of changes in precipitation, temperature, and atmospheric CO2 [10].
For instance, maize crops have high water requirements; thus, inadequate rainfall and
increased evapotranspiration rates can limit water availability, affecting maize growth and
yields [6]. Additionally, temperature increases can lead to heat stress, negatively affecting
maize yields, especially during the flowering or grain formation stage [11].

To capture these complex interactions of climate variables more effectively, there is a
need for comprehensive climate-crop modeling that offers valuable insights for agricultural
management, research, and policymaking related to climate change [12–14]. Through
detailed simulations and analyses, crop models provide a framework to analyze how
changes in climate variables may affect crop yields. With climate change, the impacts on
future crop productivity and food security have been of key concern, and crop models
are extensively used to support the formulation of sustainable agricultural policies and
practices [15–17]. However, the combined effect of climate change scenarios and the
discrepancies among climate models in climate impact projections highlight the challenges
of examining the full range of climate change impacts on agriculture, thereby exacerbating
the gap in assessing the vulnerability of agricultural systems.

In this context, assessing the impact of climate change on crop production using
Coupled Model Intercomparison Project Phase 6 (CMIP6) data and the new set of Shared
Socioeconomic Pathway (SSP) scenarios of concentrations [18] is valuable for planning and
policy development in the agricultural sector. By providing a range of plausible future
scenarios that encompass both climate change and socioeconomic changes, CMIP6 and
SSPs enable the development of more targeted and effective adaptation strategies, leading
to enhanced food security under changing climatic conditions.

2. Materials and Methods
2.1. Study Area

Burkina Faso (BF) lies between 9.33 and 15.08 north latitude, 5.50 west longitude,
and 2.33 east longitude. It is located in the Sahel region of West Africa. The country is
mainly flat, with a mean altitude of about 300 m above sea level. The climate in BF is
characterized by two distinct seasons: a wet season from May to October and a dry season
from November to April. During the wet season from May to October, rainfall distribution
across the country follows predominantly a southward gradient, with mean annual rainfall
decreasing from more than 1100 mm in the south to around 300 mm in the north (Figure 1).
The daily mean temperature varies between 21 and 34 ◦C during the wet season across
BF [19].

BF’s economy and food production rely strongly on agricultural products, which are
rainfed and involve about 80% of the population [20]. The cultivated areas represent the
most dominant land use category, accounting for approximately 39% of the country’s total
land area in 2013 [21]. The staple crop production is subsistence-oriented and predomi-
nantly consists of sorghum (Sorghum bicolor), millet (Panicum sp.), and maize (Zea mays
L.). These crops are the main pillars of Burkina Faso’s food security. Indeed, agricultural
production contributes more than 30% to the GDP and is the main source of income for the
rural population [22]. Since 2000, maize has been ranked as the second cereal crop after
sorghum in terms of annual production at the national level [23].

2.2. Climate Projection Data

In this study, a 0.25 degree spatial resolution of downscaled historical and future
projections from the NASA Earth Exchange Global Daily Downscaled Projections (NEX-
GDDP-CMIP6) has been used (accessed on 5 September 2023) [24]. The retrieved climate
variables cover the period 1985–2075 and include daily precipitation, minimum and maxi-
mum near-surface air temperature, near-surface relative humidity, surface wind speed, and
surface downwelling shortwave radiation. The data are based on the SSP2-4.5 (SSP245) and
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SSP5-8.5 (SSP585) emission scenarios, which outline a variety of possible socioeconomic
futures in the Shared Socioeconomic Pathways (SSPs) [25,26]. These SSPs describe a full
range of forcing targets similar to the Representative Concentration Pathways (RCPs) used
in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The SSP245 scenario
represents a continuation of current trends without major deviations towards sustainability
or fossil fuel-intensive development and is based on a forcing level of 4.5 W m−2, whereas
SSP585 describes strong economic growth with a sustained use of fossil fuel and is based
on a forcing level of 8.5 W m−2.
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Burkina Faso. Rainfall data from the rain gages network have been provided by the National Mete-
orological Agency in Burkina Faso, while the LULC data were obtained from CILSS, 2016 [21]. 
Quantum GIS (QGIS) version 3.22, available at https://www.qgis.org/ (accessed on 10 March 2024), 
was used for the creation of the study area and LULC map. 
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Figure 1. Annual rainfall distribution (average of 1981–2010) in the study area is depicted in section (a),
and the Land Use, Land Cover (LULC) for the year 2013 in Burkina Faso is shown in section (b).
The agricultural zone is highlighted in yellow, with the highest density located in the southwest
of Burkina Faso. Rainfall data from the rain gages network have been provided by the National
Meteorological Agency in Burkina Faso, while the LULC data were obtained from CILSS, 2016 [21].
Quantum GIS (QGIS) version 3.22, available at https://www.qgis.org/ (accessed on 10 March 2024),
was used for the creation of the study area and LULC map.

A total of 15 Global Climate Models (GCMs) have been retained based on the avail-
ability of variables in historical, RCP245, and RCP585 datasets necessary to compute
evapotranspiration (ET) for the considered period (Table 1). Data processing, as well
as statistical and spatial analysis, has been performed using R software available at
https://www.r-project.org (accessed on 25 March 2024) in conjunction with the R packages
“tidyverse” and “raster”.

Evapotranspiration (ET) is key variable in the study, since it is a key input for crop–
water balance and is therefore a critical component for crop growth and development.
Hence, the retrieved minimum and maximum near-surface air temperature, near-surface
relative humidity, surface wind speed, and surface downwelling shortwave radiation have
been used in combination with grid cell coordinates and Digital Elevation Model Data
(https://srtm.csi.cgiar.org/srtmdata, accessed on 27 March 2024) to compute ET based
on the reference evapotranspiration (ET0, using the FAO Penman–Monteith Equation
(Equation (1)), following the step-by-step instructions provided in FAO-56 [27]:

ET0 =
0.408 × ∆ × (Rn − G) + γ × 900

(T+273) × u2 × (es − ea)

∆ + γ × (1 + 0.32 × u2)
(1)

where Rn is the net radiation flux density on the crop surface (MJ m−2 d−1); G is the soil
heat flux density (MJ m−2 d−1); T is the average daily air temperature (◦C); u2 is the wind
speed at 2 m high (m s−1); es is the saturation vapor pressure (kPa); ea is the actual vapor
pressure (kPa); ∆ is the slope of the vapor pressure–temperature curve (kPa ◦C−1) and γ is
the psychometric constant (kPa ◦C−1).

We implemented these calculations in an R script, following the step-by-step instruc-
tions provided in FAO-56. This approach ensures consistency with established methodolo-
gies and allows for reproducibility.

https://www.qgis.org/
https://www.r-project.org
https://srtm.csi.cgiar.org/srtmdata
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Table 1. RCMs and emissions pathways used in this study.

GCMs
Reference Emission Pathways

Historical SSP2-4.5 SSP5-8.5

ACCESS-CM2

1985–2014 2016–2075 2016–2075

ACCESS-ESM1-5

CMCC-ESM2

CanESM5

GISS-E2-1-G

HadGEM3-GC31-LL

MIROC-ES2L

MIROC6

MPI-ESM1-2-HR

MPI-ESM1-2-LR

MRI-ESM2-0

NorESM2-LM

NorESM2-MM

TaiESM1

UKESM1-0-LL

2.3. Soil and Crop Data

Detailed soil information in crop models is essential for an accurate yield simulation
and effective agricultural management. Soil properties such as texture and organic matter
content determine the soil’s water-holding capacity, which affects the availability of water
to crops. In this study, soil information encompassing organic carbon and the fractions of
clay, silt, and sand were retrieved from the latest version (2.0) of the Harmonized World
Soil Database (HWSD) [28]. The dataset consists of raster files with a spatial resolution of
30 arc-seconds. Six soil layers have been considered in HWSD v2.0 for maize’s maximum
rooting depth (accessed on 20 December 2023). The first five layers are 20 cm deep each,
while the sixth layer is 50 cm deep, corresponding to a total of 1.5 m depth. These data are
further used to compute the dominant soil texture for each grid cell of 25 × 25 km resolution
in the study area, based on the USDA soil classification. From a total of 625 soil textures
within each grid cell, the texture corresponding to the statistical mode of the dataset has
been considered the dominant soil texture. To compute the soil hydraulic characteristics
for each soil layer, the dominant soil texture for each layer is linked to the soil hydraulic
properties table developed by the FAO and implemented in AquaCrop. This table provides
pre-calculated values for the upper limit of volumetric water-holding capacity (FC), the
lower limit of water-holding capacity (PWD), the drainage coefficient (τ), and hydraulic
conductivity at saturation (Ksat), which are essential for running AquaCrop [16]. Soil
texture for the first soil layer (0–20 cm) is presented in Figure 2a.

Observed crop yield data are used to fine-tune crop parameters through the process
of calibration, ensuring they accurately represent local conditions and crop responses [23].
We obtained maize crop production and cultivated areas from the Direction Générale des
Etudes et des Statistiques Sectorielles of the Burkina Faso Ministry of Agriculture, Animal
Resources, and Fisheries. These data are available at the province level, covering the
45 provinces in Burkina Faso, and span the period from 2009 to 2022. More information
can be accessed at https://www.agriculture.gov.bf/contact (accessed on 10 August 2024).

https://www.agriculture.gov.bf/contact
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We performed crop yield calculations (kg/ha) at a resolution of 0.25◦ × 0.25◦. The
yield for a specific grid cell is calculated using a composite weighted average that considers
all provinces that share the same grid [23]. The cultivated areas of the given provinces were
used as the weights in Equation (2).

Ygrid(kg ha−1) =
n=45

∑
i=1

wi × Yprovince(i)(kg ha−1) (2)

where Ygrid (kg ha−1) represents the crop yield at a grid cell location, Yprovince(i) represents
the crop yield in a province i, wi represents the fraction of crop land area of province i
within the grid cell, and n represents the number of provinces that share the area of the
targeted grid cell. The gridded average maize yield over the period 2009–2020 is presented
in Figure 2b.

2.4. Crop Planting Date Strategy

To mimic farmer strategies for planting, dynamic crop model simulations require a
starting date for the simulation known as the crop planting date [29]. Farmers’ planting
strategies are based on the fact that wet conditions during and a few days after the planting
date are necessary to ensure crop emergence and optimal first-stage development. Indeed,
the appropriate crop planting date can significantly enhance water use efficiency and
farmland productivity in water-scarce areas. Therefore, the adaptation of crop planting time
has been shown to significantly impact crop yields, emphasizing the strategic importance
of planting decisions in agriculture.

In the Sahel region in West Africa, rainfed agriculture relies on the onset of the rainy
season (ORS) as a potential planting date. In that region, crop failure and resowing might
be avoided if appropriate ORSs are adopted by farmers. Among ORS approaches to derive
potential planting dates, rainfall-based methods are well known in West Africa. These
methods are based on threshold values of agrometeorological variables such as rainfall
amount, the number of wet days, and dry spell lengths [30,31]. In this study, we apply the
approach proposed by [31] to derive suitable ORS dates for crop planting. This approach
applies fuzzy logic rules to agronomically sound definitions of planting dates to derive a
time window for crop planting. Indeed, based on [31], we defined three fuzzy functions:
(1) the cumulative rainfall amount within a 5-day span, (2) the number of rainy days within
a 5-day span, and (3) the longest dry spell length in the next 30 days following the planting
day. A defuzzification parameter, k, which varies between 0.1 and 1, is used to calculate
suitable ORSs.
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2.5. Crop Yield Simulation Based on the AquaCrop Model

AquaCrop is a model designed to simulate the yield response of various crops to
water, making it particularly useful for assessing the impact of climate change on crop
yield in water-limited areas. It is a process-based crop model developed by the Food
and Agriculture Organization (FAO) of the United Nations and is widely used to assess
agricultural productivity [32–34]. It is specifically designed to simulate and optimize crop
production, with a particular emphasis on water management in agriculture [16]. The
model considers various factors, such as climate, soil water retention characteristics, field
management, and crop-specific parameters, to simulate crop growth and development.
The required climate data include daily rainfall, minimum (Tn) and maximum (Tx) air
temperature, reference crop evapotranspiration (ET0), and carbon dioxide concentration
(CO2). Field management encompasses crop planting date, nutrient, and weed management
practices through weed cover and soil fertility rates.

In this study, AquaCrop has been calibrated over the period 2009–2022 and used to
simulate crop yield responses to the SSP245 and SSP585 emission scenarios for the periods
2016–2045 (H2030) and 2046–2075 (H2060). Climate data for the model calibration included
gridded precipitation data [35], temperature, and ET data from the fifth generation of
global climate reanalysis data from the European Centre for Medium-Range Weather Fore-
casts (ERA5) reanalysis dataset, available on https://cds.climate.copernicus.eu/datasets/
reanalysis-era5-single-levels?tab=overview (accessed on 10 March 2024), which provides
data at a spatial resolution of 0.25◦ × 0.25 and a temporal resolution of 1 h. The crop
planting date has been computed using gridded precipitation, following [31]. AquaCrop
maize is calibrated using observed maize yields through a genetic algorithm optimization
(GA) approach, which is used to derive the optimum value for the key parameters in
AquaCrop that need calibration, including weed cover and soil fertility rates [23,36]. GAs
are heuristic methods inspired by natural evolution. They mimic key operators of natural
evolution such as genetic recombination (crossover) and mutation. These algorithms en-
code a potential solution to a specific problem in a simple chromosome-like data structure
and apply recombination and mutation operators to these structures so as to preserve
critical information [31,36]. Details on the key parameters, including crop parameters and
management strategies used in the process of calibration using a GA, are presented in
Table 2. Further, the calibrated AquaCrop maize model is used in combination with climate
datasets for selected emission scenarios to assess future maize yield responses to climate
change. Figure 3 depicts the flowchart of the maize yield simulation.

Table 2. Minimum and maximum values of crop and management key parameters in study area.

Crop/Management Parameters Minimum Values Maximum Values

Crop

Growing period duration 80 days 120 days
Base temperature 8 ◦C 12 ◦C

Upper temperature 30 ◦C 35 ◦C
Number of plants 25,000 plants/ha 45,000 plants/ha
Length of building

up of Harvest Index 20 days 40 days

Reference Harvest
Index (HIo) 20% 45%

Management
Soil fertility rate 20% 80%

Relative cover of weed 10% 80%
Crop planting date 1 May 31 July

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
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Figure 3. Flowchart of maize yield simulation using SSP2–4.5 and SSP5–8.5 data in combination with
AquaCrop model.

3. Results
3.1. Performance of Calibrated Parameters

In the process of calibration, the crop and management parameters listed in Table 2
were optimized using a GA. Two metrics, the coefficients of determination (R2) and the
Relative Absolute Error (RAE), were used to analyze the performance of the calibration.
The results showed an R2 ranging from 0.20 to 0.70 (Figure 4a), while the RAE ranged from
5% to 40% (Figure 4b), with a majority of locations reaching values of R2 and RAE higher
(lower) than 0.41 (30%), respectively. The spatial distribution highlights a highest R2 and an
RAE between 21% and 30% in the southwest of Burkina Faso, the main agricultural zone
for maize cropping.
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3.2. Climate Projection Across BF
3.2.1. Precipitation Changes

Changes in precipitation are calculated by comparing annual precipitation projections
from the Shared Socioeconomic Pathways (SSPs) to historical data, both derived from
GCMs. The historical GCM data serve as the baseline for this comparison. Figure 5 shows
the average of and variability in precipitation changes for the ensemble of 15 GCMs. The
statistics are based on the scenarios SSP245 and SSP585 for the time horizons 2016–2045
(H2030) and 2046–2075 (H2060). Overall, precipitation is expected to change by −20% to
20% on average, with a standard deviation varying from 10% to 50% across BF. SSP245,
as well as SSP585, reveals for H2030 and H2060 an expected decrease in precipitation for
the southern half of BF, including the Southwestern BF, the main agricultural production
zone for H2030 and H2060. However, for H2060, an increase (less than 20%) is expected for
SSP585 for the northern half of BF. A north–south gradient is observed for the variability in
precipitation changes, with the highest variability in the Northern BF (annual precipitation
less than 600 mm) and the lowest variability in the Southern BF (annual precipitation
greater than 900 mm).
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3.2.2. Temperature Changes

The mean temperature calculated from the ensemble of 15 GCMs is expected to
increase by 0.5 ◦C to 2 ◦C and 1 ◦C to 3 ◦C for SSP245 and SSP585, respectively, in BF
(Figure 6). The lowest increase is expected for SSP245 and H2030, while the highest
increases are expected for SSP585 and H2060. For scenario SSP585, the Northern BF is
expected to be more affected by a higher increase in mean temperature. The variability
in temperature changes ranges from 1 ◦C to 2 ◦C across BF, with the highest variability
found for SSP585. However, the spatial distribution of this variability reveals higher values
(greater than 1.5 ◦C) in areas located between the isohyets of 600 mm and 900 mm in BF.
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3.3. Spatial Pattern of Maize Mean Yield Changes in the Future

Figure 7 presents the expected changes in maize yield for the scenarios SSP245 and
SSP585, considering the time horizons H2030 and H2060. At the grid-cell level, statistics
are based on the relative difference between simulated yields for the future (H2030 or
H2060) and the control period (1986–2015) for each of the 15 GCMs. The results show
that yield changes range from −40% to 20%, with a dominant decrease in yield across
BF, particularly for H2060. The emission scenario SSP245 reveals a lesser magnitude of
decrease in maize yield compared to SSP585. The spatial pattern of yield changes indicates
that the Southwestern BF will be more affected, with a higher yield decrease of more than
10% for SSP245 and more than 20% for SSP585.
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3.4. Variability in Maize Mean Yield Changes in the Future

For each GCM, we investigate the variability in yield change for SSP245 and SSP585
over the two periods, i.e., H2030 and H2060. As a result, Figure 8 shows that a high
frequency (greater than 75%) in the annual yield deviation is negative, regardless of the
considered time horizon and GCM. However, regarding the magnitude of variability in
maize yield deviation, higher values are observed for SSP245 (under H2060) and for SSP585
(under H2030). Among the GCMs, yield deviation based on SSP585 is found to be more
variable for ACCESS-CM2, ACCESS-ESM1-5, and NorESM2-LM, regardless of the time
horizon. For SSP245, all GCMs reveal that yield deviation is more variable for H2060
compared to H2030.
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4. Discussion

The climate projections and maize yield simulations presented in this study provide a
comprehensive analysis of how climate change might affect maize yields in Burkina Faso,
using the latest climate change projection data and crop simulation approach associated
with the AquaCrop model. The projections from CMIP6 under the SSP2-4.5 and SSP5-8.5
scenarios indicate substantial changes in both temperature and precipitation patterns across
Burkina Faso. They reveal a complex pattern of changes in precipitation and temperature
across the country. The projected decrease in precipitation for the southern half of the
country, including the key agricultural zone in the southwest, is particularly concerning. In
addition, the northern part of Burkina Faso, characterized by lower annual precipitation,
is expected to experience higher variability, which could lead to increased uncertainty in
water availability for crops. This aligns with findings from other studies in West Africa
that have highlighted the vulnerability of the region to climate change [7,37,38]. The
north–south gradient in precipitation variability, with higher variability in the drier north,
suggests that already marginal agricultural areas may face increased uncertainty in rainfall
patterns.

Regarding the mean temperature, the projected increases of 0.5–3 ◦C, with higher
increases under the SSP5-8.5 scenario, are consistent with broader regional projections
for West Africa [39,40]. The more pronounced warming in Northern Burkina Faso could
exacerbate existing challenges in these semi-arid areas, potentially pushing some regions
beyond the threshold for viable rainfed agriculture. For instance, an increase in mean
temperatures could exacerbate heat stress on crops, particularly during critical growth
stages such as flowering and grain filling. This aligns with the literature that emphasizes
the vulnerability of annual crops to temperature extremes, which can significantly impair
yield potential [11].

The results of yield simulations under climate change highlight the significant chal-
lenges that climate change poses to agriculture in the region, especially for rainfed crops
like maize that are crucial for food security [41]. Indeed, the predominant decrease in pro-
jected maize yields across Burkina Faso, particularly under the SSP5-8.5 scenario, highlights
the vulnerability of the country’s agricultural sector to climate change. The southwestern
region, currently a major agricultural production zone, appears especially at risk, with
projected yield decreases exceeding 20% under SSP5-8.5. This aligns with studies that have
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identified maize as particularly sensitive to climate change in West Africa [42,43]. The
findings are also consistent with other research indicating that climate change could lead to
reduced agricultural productivity in West Africa [43,44]

The high frequency of negative annual yield deviations across all GCMs underscores
the robustness of the projected decline in maize productivity. However, the variability in
yield projections between GCMs, particularly for ACCESS-CM2, ACCESS-ESM1-5, and
NorESM2-LM under SSP5-8.5, highlights the uncertainty inherent in long-term agricultural
projections. This variability emphasizes the need for adaptive strategies to mitigate these
impacts, therefore responding to a range of potential future conditions such as heat stress
and water scarcity. Given the projected decline in maize productivity and the associated
uncertainties, policymakers should consider a multifaceted approach to agricultural adap-
tation. This should involve innovative farming techniques suited to changing climatic
conditions, improved early warning systems to help farmers make informed decisions, and
robust crop insurance programs to assist farmers in managing climate-related risks.

For maize as a staple crop in the country, the projected reduced yields could exacerbate
existing challenges related to food availability and affordability. To address these challenges,
it is important to adjust the planting dates associated with crop-growing periods and to
adopt improved agricultural practices [23,45]. The spatial pattern of yield changes suggests
that adaptation strategies may need to be regionally tailored, with a particular focus on
the southwestern region, where impacts are projected to be most severe. The use of the
AquaCrop model, well-suited for water-limited areas [32], is particularly useful for regions
like Burkina Faso, where rainfed agriculture prevails and water scarcity is a critical concern.
Moreover, the integration of socioeconomic pathways (SSPs) in the analysis allows for a
more nuanced understanding of how socioeconomic factors might influence the region’s
capacity to adapt to climate change [46].

While this study provides valuable insights, several limitations should be acknowl-
edged. While AquaCrop is suited for simulating water-driven yield responses, it may not
capture other stress factors effectively, such as nutrient deficiencies, pests, and diseases.
This study assumes that current management practices remain constant, which may not
reflect future adaptations by farmers. Additionally, the 0.25◦ × 0.25◦ resolution of cli-
mate data and crop simulations may not capture the fine-scale variability important for
local decision-making. Moreover, a great deal of caution should be exercised when using
process-based crop models, which are developed to operate on a field scale but are driven
by coarser-scale GCMs [47]. Indeed, the uncertainties of GCMs significantly increase the
biases in climate impact studies focusing on agriculture. While this study examines the
impacts under SSP5-8.5 to explore potential high-end climate risks, it is important to note
that the SSP5-8.5 scenario represents unlikely worst-case scenarios for exploring extreme
situations [48], rather than a likely pathway. This is due to its assumptions about future
fossil fuel expansion, which are increasingly considered implausible [49].

5. Conclusions

In conclusion, this study reveals significant changes in regional temperature and
precipitation, with profound implications for agricultural sustainability. Projected mean
temperature increases of 0.5 to 3 ◦C, combined with decreased precipitation in the southern
half of the country, pose substantial risks to agricultural productivity. This is particularly
evident in the southwestern agricultural zone, where crop yield simulations indicate signif-
icant declines in maize production, up to 40% under the SSP5-8.5 scenario. To address these
climate risks, specific adaptation strategies should be implemented. Where our results
show increased heat stress, the introduction of drought-resistant varieties such as improved
maize cultivars offer alternatives to traditional maize. In areas experiencing precipitation
decline, a cost-effective combination of field-level water management practices and organic
fertilizers could optimize limited water resources. The effective implementation of these
strategies requires strengthening the capacities of agricultural extension services, integrat-
ing seasonal climate forecasts into agricultural planning processes, and supporting farmers’
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adoption of resilient practices. Future research should expand beyond maize to include
multi-crop modeling, to better understand crop–climate interactions and explore a wider
range of local adaptation options. These modeling efforts, combined with participatory
research methods, will help refine strategies and build more resilient farming communities
better equipped to face climate change impacts.
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