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Abstract: Objectives: Virtual non-contrast (VNC) series reconstructed from contrast-enhanced cardiac
scans acquired with photon counting detector CT (PCD-CT) systems have the potential to replace
true non-contrast (TNC) series. However, a quantitative comparison of the image characteristics of
TNC and VNC data is necessary to determine to what extent they are interchangeable. This work
quantitatively evaluates the image similarity between VNC and TNC reconstructions by measuring
the stability of multi-class radiomics features extracted in intra-patient TNC and VNC reconstructions.
Methods: TNC and VNC series of 84 patients were retrospectively collected. For each patient, the
myocardium and epicardial adipose tissue (EAT) were semi-automatically segmented in both VNC
and TNC reconstructions, and 105 radiomics features were extracted in each mask. Intra-feature
correlation scores were computed using the intraclass correlation coefficient (ICC). Stable features
were defined with an ICC higher than 0.75. Results: In the myocardium, 41 stable features were
identified, and the three with the highest ICC were glrlm_GrayLevelVariance with ICC3 of 0.98
[0.97, 0.99], ngtdm_Strength with ICC3 of 0.97 [0.95, 0.98], firstorder_Variance with ICC3 of 0.96
[0.94, 0.98]. For the epicardial fat, 40 stable features were found, and the three highest ranked are
firstorder_Median with ICC3 of 0.96 [0.93, 0.97], firstorder_RootMeanSquared with ICC3 of 0.95 [0.92,
0.97], firstorder_Mean with ICC3 of 0.95 [0.92, 0.97]. A total of 24 features (22.8%; 24/105) showed
stability in both anatomical structures. Conclusions: The significant differences in the correlation
of radiomics features in VNC and TNC volumes of the myocardium and epicardial fat suggested
that the two reconstructions may differ more than initially assumed. This indicates that they may
not be interchangeable, and such differences could have clinical implications. Therefore, care should
be given when selecting VNC as a substitute for TNC in radiomics research to ensure accurate and
reliable analysis. Moreover, the observed variations may impact clinical workflows, where precise
tissue characterization is critical for diagnosis and treatment planning.

Keywords: radiomics; photon-counting detector CT; virtual non-contrast

1. Introduction

Radiomics is a field of medical imaging that extracts features from images via data-
characterization algorithms [1,2]. They can be used on their own or combined with other
data—such as patient demographics, histology, genetics, or protein profiles—to enhance
clinical decision-making and problem-solving [3]. Pyradiomics is an open-source package
providing a standardized way of computing such features in different medical imaging
acquisitions [4], such as computed tomography (CT) cardiac datasets [2,5,6]. CT texture
analysis allows objective assessment of lesion and organ heterogeneity beyond what is
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possible with subjective visual interpretation and may reflect information about the tissue
microenvironment [7]. Recently, recommendations have been provided to improve the
quality and reliability of radiomics research [8,9].

The analysis of the myocardium and epicardial adipose tissue (EAT) in cardiac CT
imaging is often performed in both non-and contrast-enhanced scans [10,11]. Photon
counting detector CT (PCD-CT) systems intrinsically enable the reconstruction of virtual
non-contrast data from contrast-enhanced cardiac spectral acquisitions. VNC reconstruc-
tions obtained from spectral PCD-CT data have the potential to replace native unenhanced
scans in clinical routine [12]. This helps reduce the number of acquisitions and the harmful
ionizing dose in comparison to energy-integrating CT systems [13]. However, the im-
age features of true and virtual non-contrast acquisitions differ due to higher signal and
contrast-to-noise ratio in virtual monoenergetic data [14]. This is especially critical for
image-based computer-aided solutions [15], which rely on the extraction of features from
CT non- and contrast-enhanced acquisitions [16,17]. Until now, there remains a knowledge
gap in understanding the quantitative differences between TNC and VNC reconstructions
and their impact on radiomics feature stability.

In this study, we, therefore, aim to quantitatively assess the interchangeability of the
TNC and VNC series of EAT and the myocardium by correlating radiomics features in all
series and volumes.

2. Materials and Methods
2.1. Study Population

The institutional review board (LMU Munich, project number 22-0456), with a waiver
for written informed consent, approved the protocol for this retrospective single-center
study. Consecutive patients with a clinically indicated ECG-gated CT scan of the heart on a
PCD-CT (NAEOTOM Alpha, Siemens Healthineers, Forchheim, Germany) between January
2022 and December 2022 were included. Inclusion criteria were (1) age > 18 years, (2) pre-
contrast TNC series for calcium scoring and contrast-enhanced coronary CT angiography
CTA (CCTA) series, and (3) availability of raw CT data for image reconstructions.

2.2. Image Acquisition (Image Protocol)

All patients received a pre-contrast scan for calcium scoring followed by a CCTA at
both 120 kV and a collimation of 144 × 0.4 mm. The reference tube current time product
was adjusted by setting the image quality level to 19 for TNC and 60 for CTA. For the
CTA, a triphasic contrast injection protocol following a test bolus was used. In the first
phase, 60 mL of nonionic iodinated contrast material (Iopromide 300 mgI/mL, Ultravist,
Bayer, Whippany, NJ, USA) was injected, followed by a 50% diluted mixture of 30 mL
contrast material and 30 mL normal saline solution and a saline chaser (60 mL). A flow of
6 mL/s was used in all three phases. If there was no clinical contraindication, 0.4 mg of
nitroglycerin was administered sublingually 5 min prior to the scan, and 5 mg of metoprolol
was administered intravenously in patients with a heart rate of more than 70 bpm [12].

2.3. Image Reconstruction

All reconstructions were performed on a dedicated research workstation (ReconCT,
Version 15.0.58331.0, Siemens Healthineers) [12]. For all patients, a TNC series based on
the pre-contrast raw data and a VNC series based on the CTA were reconstructed, all
at a virtual monochromatic level of 70 keV. For all reconstructions, a quantitative kernel
Qr36 with a quantum iterative reconstruction calcium-preserving (VNCPC) algorithm with
strength level 3 and a slice thickness/increment of 3.0/1.5 mm was used. Emrich et al.
recently provided a detailed description of the VNC algorithm [18].

2.4. Radiomics Features Extraction

The proposed study adheres to the CheckList for EvaluAtion of Radiomics research
(CLEAR) [8].
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The proposed method comprises two steps: (i) Definition of volumes of interest in
which Pyradiomics features are extracted, (ii) and computation of intraclass correlation
values for each feature in intrapatient acquisitions.

The first step of our study consisted of segmenting myocardium and epicardial fat in
TNC and VNC reconstructions of each patient. To segment the myocardium, the TotalSeg-
mentator was utilized in Python [19]. This method is based on the nn-Unet models [20],
which were pre-trained on full-body contrast and non-contrast CT acquisitions to seg-
ment multiple organs and anatomical structures (104 in total). To segment the epicardial
fat, the heart mask was first obtained on a dedicated workstation (Syngo.via, version
VB70A_CUT; Siemens Healthineers, using the CT Cardiac Risk Assessment application).
Then, to segment the epicardial fat within a heart volume, the lower and upper thresholds
were respectively set to −190 HU and −30 HU. The authors in [12] demonstrated how
these threshold values on VNC series derived from PCD-CCTA datasets are accurate in
segmenting epicardial adipose tissue with only minimal differences from the TNC series.
A visual inspection of the generated masks was conducted by a board-certified radiologist
with 5 years of experience in cardiac imaging (J.A.D.) to ensure the good quality of the
segmentation. Radiomics features were extracted in the volumes of interest (VOI) using
the Pyradiomics software (version 3.0.1, https://pyradiomics.readthedocs.io, accessed on
1 March 2023), a Python library proposed to standardize the extraction and computation
of biomarkers from medical images [4]. The Python version utilized in our experiments
is 3.9.15. In each VOI, shape features, first-order features, second-order features, gray
level co-occurrence matrix (GLCM), gray level dependence matrix (GLDM), gray level size
zone matrix (GLSZM), gray level run length matrix (GLRLM), and neighboring gray-tone
difference matrix (NGTDM), were extracted.

A summary of the proposed approach is available in Figure 1.
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Figure 1. Scheme of the first step of the proposed method. For each patient (#1. . .#84), radiomics
features are extracted in each VOI segmented in TNC and VNC reconstructions.

2.5. Statistical Analysis

The stability of the radiomics features between VNC and TNC was analyzed by using
the intraclass correlation coefficient [21], as defined [22]. The library psych (version 2.9.9)
available in R (version 4.2.2) has been used to compute the ICC coefficient. ICC3 estimate
has been utilized since two fixed CT reconstructions were used to analyze the results.
To compute per-feature ICC in each anatomical structure, the values of the same feature

https://pyradiomics.readthedocs.io
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extracted in the VNC and TNC reconstructions of all patients are used as input. Thus, the
number of extracted ICC values in each type of VOI equals the number of features. The
features with an ICC value higher than 0.75 are considered stable (“good reliability”) [23].

A scheme of the second step of the proposed step is available in Figure 2. The
computation of inter-feature correlation within each reconstruction and each anatomical
structure is also conducted. The Spearman correlation of each feature against all the others
is computed in R using the library stats (4.2.2). The results are provided in heat maps.
The comparison of the heat maps gives another insight into the distribution of features
computed in the two reconstructions for each anatomical structure.
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Figure 2. Scheme of the second step of the proposed method. For each feature, a pair of vectors is
built, each of them containing 84 values of the same feature extracted respectively in each type of
VOI from TNC and VNC reconstructions of all the patients. An ICC3 value is computed for each of
the 105 features for each type of VOI.

3. Results
3.1. Patient Characteristics

The final study cohort comprises 84 patients (median age 80 years, 48 female). In the
non-contrast series, the dose length product (DLP) and volumetric CT dose index (CTDIvol)
were 29.4 (22.3–41.9) mGy·cm and 1.4 (1.1–2.1) mGy, respectively. The size-specific dose
estimate (SSDE) was 1.9 mGy (1.6–2.4 mGy). For contrast-enhanced acquisitions (CTA), the
DLP and CTDIvol were 442.0 (329.0–583.0) mGy·cm and 26.6 (19.9–36.7) mGy, respectively.
The SSDE was 35.7 mGy (28.8–47.1 mGy). Table 1 summarizes the main characteristics of
the final cohort.

Table 1. Baseline study characteristics.

Final Cohort = 84 Patients

Age, years 80 (75–84)
Sex, female 48/84 (57.1%)

CT acquisitions Non-contrast (TNC) CTA
CTDIvol (mGy) 1.4 (1.1–2.1) 26.6 (19.9–36.7)
DLP (mGy·cm) 29.4 (22.3–41.9) 442.0 (329.0–583.0)

SSDE (mGy) 1.9 (1.6–2.4) 35.7 (28.8–47.1)
Data are presented as median value (with interquartile range) or percentage. CT computed tomography, SSDE
size-specific dose estimate, DLP dose length product, CTDIvol volumetric CT dose index.

3.2. Radiomics Feature Analysis

Figure 3 shows two example masks of the myocardium and epicardial fat in intra-
patient TNC and VNC images. The number of radiomics features extracted in each recon-
struction for every anatomical structure is 105. The complete list of extracted features is
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available in Figure 4 (x-axis). ICC values computed for VNC and TNC reconstructions
of myocardium and epicardial fat are available in Figures 4 and 5. The values of the ICC
coefficients are ordered in a descending fashion to better comprehend which features are
more correlated (i.e., remain more stable) between VNC and TNC acquisitions. In each
Figure, the blue square identifies the related ICC value, which is also reported, and the
extremities of vertical lines crossing each square represent the lower and upper bounds.
Figure 4 presents the ICC values computed for the features extracted from the myocardium.
Similarly, Figure 5 displays the ordered ICC values computed for the features extracted for
the epicardial fat.
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A total of 24 features remained stable across both anatomical structures, the my-
ocardium and epicardial fat, after analysis. The names of these stable features are listed in
Table 2.

Table 2. List of Stable Features between epicardial adipose tissue and the myocardium.

Stable Features Between Two Structures Epicardial Adipose Tissue Myocardium

shape_MeshVolume 0.94 (0.91, 0.96) 0.94 (0.91, 0.96)
shape_VoxelVolume 0.94 (0.91, 0.96) 0.94 (0.91, 0.96)
firstorder_Energy 0.94 (0.9, 0.96) 0.94 (0.9, 0.96)
firstorder_TotalEnergy 0.94 (0.9, 0.96) 0.94 (0.9, 0.96)
glrlm_GrayLevelNonUniformity 0.92 (0.88, 0.95) 0.89 (0.83, 0.93)
shape_Maximum2DDiameterSlice 0.91 (0.86, 0.94) 0.95 (0.92, 0.97)
ngtdm_Coarseness 0.9 (0.84, 0.93) 0.91 (0.86, 0.94)
gldm_GrayLevelNonUniformity 0.89 (0.84, 0.93) 0.82 (0.73, 0.88)
firstorder_Skewness 0.88 (0.82, 0.92) 0.92 (0.87, 0.94)
ngtdm_Strength 0.85 (0.78, 0.9) 0.97 (0.95, 0.98)
shape_Maximum2DDiameterColumn 0.85 (0.78, 0.9) 0.96 (0.94, 0.97)
shape_MinorAxisLength 0.85 (0.77, 0.9) 0.91 (0.86, 0.94)
glcm_ClusterShade 0.84 (0.76, 0.89) 0.93 (0.9, 0.96)
gldm_DependenceNonUniformity 0.84 (0.76, 0.89) 0.87 (0.8, 0.91)
shape_LeastAxisLength 0.83 (0.74, 0.88) 0.94 (0.91, 0.96)
glcm_ClusterProminence 0.82 (0.74, 0.88) 0.91 (0.86, 0.94)
shape_MajorAxisLength 0.81 (0.72, 0.87) 0.92 (0.87, 0.95)
glcm_DifferenceVariance 0.79 (0.7, 0.86) 0.95 (0.93, 0.97)
glrlm_GrayLevelVariance 0.78 (0.67, 0.85) 0.98 (0.97, 0.99)
gldm_GrayLevelVariance 0.78 (0.68, 0.85) 0.96 (0.94, 0.98)
firstorder_Variance 0.78 (0.68, 0.85) 0.96 (0.94, 0.98)
shape_Maximum3DDiameter 0.77 (0.67, 0.85) 0.93 (0.89, 0.95)
shape_Maximum2DDiameterRow 0.77 (0.66, 0.84) 0.91 (0.87, 0.94)
gldm_SmallDependenceHighGrayLevelEmphasis 0.76 (0.66, 0.84) 0.91 (0.87, 0.94)

Table sorted in descending ordered by epicardial adipose tissue. Data are presented as the calculated ICC value
with the corresponding 95% confidence interval.
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Figure 4. Ordered ICC values for the radiomics features extracted in the myocardium in VNC and
TNC reconstructions. For each feature, the ICC coefficient is visually shown in blue, and its numerical
value is reported next to it; the horizontal lines represent the 95% confidence interval.
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Figure 5. Ordered ICC values for the radiomics features extracted in epicardial fat in VNC and
TNC reconstructions. For each feature, the ICC coefficient is visually shown in blue, and its numerical
value is reported next to it; the horizontal lines represent the 95% confidence interval.
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Stable features in the myocardium are 41, and the three with the highest ICC are
glrlm_GrayLevelVariance 0.98 [0.97, 0.99], ngtdm_Strength 0.97 [0.95, 0.98], firstorder_Variance
0.96 [0.94, 0.98]. For the epicardial fat, stable features are 40, and the three highest
ranked are firstorder_Median 0.96 [0.93, 0.97], firstorder_RootMeanSquared 0.95 [0.92,
0.97], firstorder_Mean 0.95 [0.92, 0.97]. Additional detailed information for 105 features, cat-
egorized by anatomical structure (epicardial fat and myocardium), is provided in separate
tables within the Supplementary Document as Supplemental Tables S1 and S2.

Supplemental Figures S1 and S2 present each of the two heat maps showing the inter-
feature correlation for myocardium and epicardial fat for the features extracted for VNC
and TNC reconstructions, respectively. The detailed visual representation of the data is
provided as extra information in another document. All heatmaps are presented in the
“Supplementary Document”. This approach was employed to make the research easier to
read by displaying the complex visual data in a form that is clear and understandable.

4. Discussion

This study investigated the interchangeability of the TNC and VNC series by correlat-
ing Pyradiomics features in EAT and myocardium. We found that there is a high variance
between TNC and VNC radiomics, which could affect the effectiveness of image-based
methods. In both TNC and VNC, about 40% of features showed good reliability, while only
about 23% of features (24/105) achieved this level of correlation in VNC and TNC for both
EAT and the myocardium.

Texture analysis based on radiomics features is a promising approach for improving
how we identify and understand medical images, with the goal of creating valuable
predictive or prognostic biomarkers. However, the variability that comes with different
image acquisition techniques can affect the consistency of pixel or voxel values, which might
compromise the reliability of texture analysis [24]. Thus, it is important to quantitatively
evaluate how stable or repeatable these texture features are, especially when comparing
VNC and TNC imaging [25]. In this regard, there is still a critical gap in understanding how
these two reconstructions are interchangeable, underscoring the need for more research
to ensure that texture analysis can be both dependable and consistent across various
imaging techniques.

Recent research has highlighted the clinical value of using VNC cardiac imaging as an
alternative to TNC imaging. This is particularly true for evaluating EAT. A 2022 study found
that VNC reconstructions from photon-counting computed tomography angiography (PCD-
CCTA) datasets provide accurate measurements of EAT volume, with results closely aligned
to those obtained from TNC images. This approach can significantly lower patient radiation
exposure while maintaining high accuracy in CT value assessments [26]. Another research
from our clinic involved 42 patients and demonstrated that VNCPC reconstructions of
PCD-CCTA datasets can accurately measure EAT volume, with only slight differences in
CT values compared to TNC. Using VNCPC instead of TNC could significantly reduce
the radiation exposure of patients. Based on these results, our analysis also takes into
consideration VNC volumes reconstructed by using the Pure Calcium algorithm since it
obtains better performances than other algorithms [12].

CT-based extracellular volume (ECV) measurement has proven effective in assessing
myocardial health, especially for conditions like cardiac amyloidosis and fibrosis follow-
ing a myocardial infarction [27]. VNC series of the heart could potentially replace the
TNC series for assessing ECV in the myocardium by preserving diagnostic precision and
significantly decreasing patient radiation exposure. In a recent study, the authors utilized ra-
diomics features to compare different reconstructions obtained by spectral imaging dataset
obtained for an organic phantom and a cohort of 23 patients with PCD-CT scanners [2].
Furthermore, a different study analyzed whether myocardial texture changes can be iden-
tified by texture analysis depending on the severity of coronary artery calcification in
photon counting reconstructions [5]. Another report highlighted that the authors compared
features of interpatient acquisitions obtained with energy-integrating and photon-counting
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scanners [6]. In another study published in 2024, EAT radiomics features of 52 patients
undergoing PCCT were quantified using images reconstructed with VNCPC, series gener-
ated with another conventional reconstruction algorithm (VNCConv), and TNC data. This
study showed that VNCPC and VNCConv tend to underestimate EATVs and overestimate
EATDs [28]. The main difference between our study and previous research from 2024 is
that we examine both EAT and the myocardium. Furthermore, our findings are based
on approximately 60% more patients [28], enhancing the validity and applicability of the
results [29].

Despite this, the current study has some limitations. First, this is a single-centric retro-
spectively collected cohort of 84 patients, with 105 features evaluated, of which 24 exhibited
stability (ICC > 0.75) in both volumes. In comparison to prior human radiomic studies, our
sample size may be smaller, and the number of evaluated features is relatively high, which
could influence the power and generalizability of our findings. Larger cohorts may yield
more robust insights into feature stability. Second, only VNC pure calcium (VNCPC) recon-
structions were used, and no conventional VNC algorithms were used. However, multiple
studies showed higher suitability for this novel VNC algorithm to replace TNC [30–32],
which is why we chose it for this comparison. Third, there are significant differences in
the acquisition parameters, particularly the considerable discrepancy in radiation dose
between the TNC and CTA protocols from which the VNC was generated, which likely
contributes to the observed differences in radiomics features. This is because TNC is a
low-dose, high-pitch scan designed for coronary calcium scoring. However, our results
show that TNC and VNC may differ more than can be observed at first glance or by the
human eye. This raises the critical point that a simple substitution of TNC with VNC may
be not only challenging for radiomics studies but also for clinical routine. Further studies
are necessary to investigate this, emphasizing the clinical relevance of our findings, as the
observed differences are significant. In clinical routine and VNC research, the TNC series
should be replaced by the VNC series generated from CTA acquisitions. Therefore, from a
clinical point of view, we chose this series to stay as close as possible to clinically present
scenarios. Finally, no phantom imaging studies were included to validate the system’s
calibration or ensure that the radiomics features are comparable across different acquisition
protocols. Future studies should incorporate phantom imaging to assess the stability of
radiomics features under varying conditions and improve the robustness and applicability
of the findings.

5. Conclusions

In conclusion, while VNC reconstructions derived from cardiac PCD-CT datasets show
promise for reducing patient radiation exposure and maintaining diagnostic accuracy, the
variability in radiomics feature stability between TNC and VNC series in the myocardium
and the epicardial adipose tissue series indicates that further research is needed to optimize
these techniques for texture assessment to ensure the reliability of image-based analyses.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/diagnostics14222483/s1, Figure S1: Heatmaps showing the Spear-
man correlation values computed between each feature extracted in epicardial fat. The first Figure is
about the radiomics features extracted in VNC reconstructions. Figure S2: Heatmaps showing the
Spearman correlation values computed between each feature extracted in epicardial fat. The first
Figure is about the radiomics features extracted in TNC reconstructions. Table S1: Myocardium-ICC
Sorted Data. Table S2: Epicardial Fat-ICC Sorted Data.
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