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Abstract
Quantum thermal machines can generate steady-state entanglement by harvesting spontaneous
interactions with local environments. However, using minimal resources and control, the
entanglement is typically weak. Here, we study entanglement generation in a two-qubit quantum
thermal machine in the presence of a continuous feedback protocol. Each qubit is measured
continuously and the outcomes are used for real-time feedback to control the local
system-environment interactions. We show that there exists an ideal operation regime where the
quality of entanglement is significantly improved, to the extent that it can violate standard Bell
inequalities and uphold quantum teleportation. In agreement with (Khandelwal et al 2020 New J.
Phys. 22 073039), we also find, for ideal operation, that the heat current across the system is
proportional to the entanglement concurrence. Finally, we investigate the robustness of
entanglement production when the machine operates away from the ideal conditions.

1. Introduction

Quantum thermal machines are quantum systems coupled to two, or several, thermal reservoirs, which
exploit temperature gradients to perform useful tasks such as cooling, heating, timekeeping, and producing
work [1–3]. In contrast to their classical counterparts, these machines rely on quantum features, like
entanglement and tunneling. Therefore, they are promising testbeds for studying fundamental aspects of
quantum physics, such as the generation, stabilization, and control of entanglement in the presence of
thermal environments.

To this end, it was shown that a minimal quantum thermal machine, consisting of two coherently
interacting qubits coupled to two reservoirs at different temperatures, is able to produce stationary entangled
states [4]. The word ‘minimal’ refers to the minimal setup required to generate entanglement. The success of
this machine can be linked to the magnitude of the heat current flowing through the system [5]. However,
the entanglement generated in such a machine is typically weak and noisy. For example, it is unable to
perform well-known entanglement-based tasks such as teleportation or Bell inequality violation [6].
Therefore, in order to improve the entanglement production, it has been considered to supply the original
autonomous system with some additional resources. It has been found that heralding the output state of a
multi-dimensional autonomous quantum thermal machine, via a local measurement, can generate
maximally entangled states [7]. This type of approach also enables multipartite entanglement production
[8]. However, this requires coherent control of multi-level systems and the ability to perform non-demolition
filter measurements. An alternative approach is to introduce a third bath that is common to both qubits [9],
which leads to an improvement in the entanglement production. Another approach that improves the
entanglement is to perform a population inversion process in fermionic baths [6]. This amounts to bath
engineering, but can improve entanglement production to the extent that non-trivial teleportation fidelities
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are possible. Complementary to that, by implementing the minimal machine in a double quantum dot, a
large voltage bias can be applied across the system to generate entanglement that is nonlocal [10].

In this paper, we investigate how the entanglement of the quantum thermal machine of [3] can be
controlled and improved using measurement-based feedback control. This route is independent of the
experimental platform. We note that the idea of using measurement-based feedback to increase
entanglement is not new, but has previously been explored in optical systems [11–16], where qubits enclosed
in optical cavities are externally driven via feedback control. However, the lack of thermal environments and
time-independent coherent interactions in the cited literature is a clear distinction from our setup. Our
feedback protocol is based on a continuous parity measurement of the qubits, distinguishing whether one of
the qubits are excited or if both are in the ground or excited state. If only one qubit is excited, the warmer
bath is decoupled from the system, favoring coherent interactions between the qubits. If no or two
excitations reside in the system, the hot bath is re-coupled to the qubits. The protocol is modeled by
employing the quantum Fokker–Planck master equation presented in [17], which was developed to describe
continuous, Markovian feedback protocols like the one presented here. To facilitate a direct comparison with
previous relevant works, we use the concurrence to quantify the entanglement, as well as investigate
operational aspects of the nonclassicality of the produced entanglement [6]. We identify an optimal
operation regime where the concurrence significantly exceeds what was found in the elementary
machine [4]. Additionally, we find that the entanglement can violate the CHSH inequality and uphold
quantum teleportation. In particular, we find, in the optimal regime, that the concurrence is proportional to
the heat current flowing between the reservoirs, implying that a nonzero heat current is an entanglement
witness. This contrasts the elementary machine, in which the heat current must exceed a non-trivial
threshold to act as an entanglement witness [5]. We note that the results obtained in the optimal operation
regime are independent whether the thermal reservoirs are bosonic or fermionic. We also investigate the
robustness of the entanglement production when relaxing the ideal conditions. We find that the
entanglement decreases, while still being larger than in the absence of feedback.

The paper is structured as follows. In section 2, we briefly review the system and the concurrence as a
measure for entanglement. Section 3 introduces the feedback protocol and how it is modeled. In section 4,
we present our results, and section 5 concludes the paper.

2. System and entanglement

We consider two coherently interacting qubits coupled to two thermal reservoirs with temperatures TC and
TH (TC < TH) as depicted in figure 1. Note that the coherent interaction is autonomous, and does not rely on
external driving. The reservoirs can be fermionic or bosonic, but as many of the results are independent of
particle type, we introduce the system without specifying particle type, keeping the discussion general. If
particle type matters, we will clearly specify this. We consider the following Hamiltonian of the qubits,

Ĥ= ε(|1⟩⟨1|C ⊗1+1⊗ |1⟩⟨1|H)+ g(|01⟩⟨10|+ |10⟩⟨01|)+U|11⟩⟨11|, (1)

where |0⟩ and |1⟩ denote the ground and excited states of the qubits, 1 is the identity operator, ε is the energy
of the excited state of each qubit, g is the strength of the coherent flip-flop interaction, and U is the
interaction energy between the excited states. The last term naturally arises when the excitations carry charge.
This Hamiltonian can be experimentally realized in double quantum dots [18, 19] and superconducting
circuits [20]. In the double dot system, the interaction energy U corresponds to the Coulomb interaction
between electrons, and is non-zero. Typically, it is easy to establish a scenario where U→∞ is a good
approximation. For superconducting circuits, U = 0 (see the supplementary material of [20]).

By assuming weak system-bath and qubit-qubit interactions, the dynamics of the system can be written
as a local Lindblad master equation (we set h̄= 1),

∂tϱ̂=Lϱ̂= i
[
ϱ̂,Ĥ

]
+

∑
k∈{C,H}
l∈{0,1}

(
Γ+
klD
[̂
J†kl

]
+Γ−

klD
[̂
Jkl
])

ϱ̂, (2)

where we introduced the shorthand superoperator notation L, describing the dynamics of the system. The

dissipatorsD[̂Jkl]ϱ̂≡ Ĵklϱ̂J
†
kl −

1
2

{
Ĵ†kl Ĵkl, ϱ̂

}
, where ĴC0 = |00⟩⟨10|, Ĵ C1 = |01⟩⟨11|, ĴH0 = |00⟩⟨01|, and

ĴH1 = |10⟩⟨11| are jump operators describing bath-induced de-excitations of the qubits with corresponding
excitation (+) and de-excitation (−) rates

Γ+
kl =

Γk

e(ε+lU)/Tk ± 1
, Γ−

kl =
Γk

1± e−(ε+lU)/Tk
, (3)
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Figure 1. A sketch of the system. Two coherently interacting qubits are coupled, via the bare tunnel rates ΓC and ΓH, to two
separate thermal reservoirs of different temperatures (TC < TH). The strength of the coherent interaction is parametrized by g.

where Γk is the bare transition rate for bath k (see figure 1), and the+ (−) in the denominators corresponds
to fermionic (bosonic) reservoirs. Note that the chemical potentials of the baths are set to zero and we have
set the Boltzman constant kb = 1. From here on, we normalize all energies with respect to ε, i.e. effectively
setting ε= 1.

The stationary state of equation (2) takes the form

ϱ̂∞ =


ϱ00 0 0 0
0 ϱ01 α 0
0 α∗ ϱ10 0
0 0 0 ϱ11

 , (4)

when written in the computational basis {|00⟩, |01⟩, |10⟩, |11⟩}. Note that
∑1

i,j=0 ϱij = 1 and |α| ⩽√
ϱ01ϱ10

ensure the normalization and positivity of ϱ̂. This form in equation (4) arises because of the flip-flop
interaction in the Hamiltonian in equation (1) and the dissipative interactions between the system and the
reservoirs, only allowing coherent interaction in the subspace {|01⟩, |10⟩} such that the remaining
coherences vanish for long times. To quantify the entanglement in the stationary state, we use the
concurrence [21], which is an entanglement monotone for bipartite systems that can identify fully separable
and maximally entangled states. For the state in equation (4), the concurrence takes the form [6]

C (ϱ̂∞) =max{2(|α| −√
ϱ00ϱ11) ,0} , (5)

taking values between 0 and 1, where 0 corresponds to ϱ̂∞ being fully separable and 1 to being maximally
entangled. Values different from 0 and 1 correspond to states containing partial amounts of entanglement.
In [4] it was shown that the maximal stationary concurrence is given by C ∼ 0.09(0.25) for bosonic
(fermionic) particles. The difference in performance is due to U ̸= 0 for fermions, which is naturally the case
for, e.g. electrons. However, the entanglement generated this way is not useful in several operational notions
of nonclassicality, such as steering, nonlocality and teleportation [6].

3. Feedback protocol

To increase the entanglement, it necessary to transfer population from the {|00⟩, |11⟩} subspace to the
{|01⟩, |10⟩} subspace, while simultaneously maximizing the coherence α in the latter subspace, see
equations (4) and (5). To this end, we introduce a feedback protocol, controlling the coupling between the
system and the hot reservoir. The control procedure follows an on-off protocol [22] and is conditioned on
measuring the parity of the qubits, see the qualitative sketch in figure 2. Note that when measuring parity, it
is not possible to distinguish which of the qubits that is excited. Therefore, the measurement does not affect
the coherence α. When a single excitation resides in the system, the hot bath is decoupled from the hot qubit.
An excitation in the hot qubit can thus only interact with the cold qubit, and not dissipate into the hot bath.
This reduces ϱ00 and ϱ11, while increasing the coherently coupled populations ϱ01 and ϱ10. Also note that the
decoherence induced by the hot bath is suppressed, shielding the coherence of the system. With no, or two,
excitations in the system, the hot bath is re-coupled, again allowing thermal excitation of the hot qubit. Note
that it is not useful to additionally close the coupling to the cold reservoir, as excitations would oscillate
between the qubits indefinitely, preventing stationary entanglement production.

Mathematically, we formulate the feedback protocol in the following way. We continuously measure the
parity observable

Â= σ̂z ⊗ σ̂z, (6)

3
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Figure 2. A qualitative sketch of the feedback protocol. A detector with finite bandwidth γ is coupled to the system via
measurement strength λ, and performs continuous measurements of the observable Â= σ̂z ⊗ σ̂z. Based on the detector outcome
D, the coupling with the hot reservoir is switched on or off dependent on whether one excitation or no, or two, excitations reside
in the system. The black and grey dots illustrate the various excitation configurations.

where σ̂z is the Pauli-Z matrix. Note that [Â, ϱ̂∞] = 0 for the density matrix in equation (4). This results in a
backaction-free measurement, which is a class of measurements sometimes also known as quantum
nondemolition measurements [17, 23, 24]. This means that the coherence in equation (4) will not be affected
by the measurement. As a result, the measurement is not detrimental for the entanglement production. The
detector output D is noisy, with fluctuations around−1 when the system occupies |01⟩ or |10⟩, and around
+1 when occupying |00⟩ or |11⟩, see the time traces in figure 2. We thus interpret the signal as follows. When
D< 0, we assume that |01⟩ or |10⟩ is occupied. For D> 0, we assume that |00⟩ or |11⟩ is occupied.

To describe the dynamics of the system under the feedback protocol, we make use of the quantum
Fokker–Planck master equation introduced in [17]. This formalism allows us to describe the dynamics of any
quantum system undergoing continuous, Markovian feedback control. For our protocol, it reads

∂tϱ̂t (D) = L(D) ϱ̂t (D)− γ∂DA(D) ϱ̂t (D)+
γ2

8λ
∂2
Dϱ̂t (D) ,

where ϱ̂t(D) is the joint system-detector state, with ϱ̂t =
´
dDϱ̂t(D) being the system state independent of the

detector, and pt(D) = tr{ϱ̂t(D)} being the probability distribution of observing outcome D at time t. Note
that
´
dDtr{ϱ̂t(D)}= 1.

The feedback-controlled dynamics of the system are described by

L(D) = θ (D)L+ [1− θ (D)] L̃, (7)

where L is given by equation (2) and describes the dynamics when the hot bath is coupled to the system,
while L̃ϱ̂= i[ϱ̂,Ĥ] +

∑
l∈{0,1}(Γ

+
ClD[̂J†Cl] +Γ−

ClD[̂JCl])ϱ̂ describes the dynamics when decoupling the hot bath.
The remaining two terms of equation (7) constitute a Fokker-Planck equation describing the time

evolution of the detector. In short, the detector’s dynamics are treated as those of a random walker relaxing
towards a value dictated by the state of the system. The superoperator drift coefficientA(D)ϱ̂≡ 1

2{Â−D, ϱ̂}
describes the coupling between the system and detector, and determines the average position of the detector,
dependent on the system state. Note that γ is the bandwidth of the detector, such that 1/γ gives the lag of the
detector. The last term describes the diffusion of the detector position, where the diffusion constant γ/8λ
corresponds to the noise of the detector. Here λ is the strength of the measurement. The limit λ→ 0
corresponds to a weak measurement. In this limit, the noise increases, and thus also the uncertainty of the
measurement. Here, no information can be extracted from the measurements and feedback is applied
randomly fifty percent of the times. The limit λ→∞ corresponds to a projective measurement, where the
noise vanishes, eliminating all uncertainty.

Here we focus on the regime γ ≫max{g,Γ±
kl }, where the detector is much faster than the dynamics of

the system. This is beneficial for entanglement production as the detector never lags behind the system,
reducing feedback mistakes due to detector delay. However, as the ratio between γ and λ determines the
magnitude of the noise, feedback mistakes due to noise can still occur. For a fast detector (γ ≫max{g,Γ±

kl }),
equation (7) can be reduced to a Markovian master equation for the system alone [17]. It is given by

∂tϱ̂t =Lfbϱ̂t, (8)

where the feedback-controlled dynamics are described by Lfb. In appendix A.1, we detail the derivation of
this equation, where we also give the general form of Lfb. In section 4.1, where we study ideal conditions, we
present a simple representation of Lfb.

4
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4. Results

4.1. Ideal operation
To optimize the entanglement generation in the system, it is useful to study limiting cases of various
parameters. Here we study two such limits, and refer to these as ideal operation conditions—this is
motivated in figures 4 and 5 below. The first limit is TC → 0, ensuring that the cold bath cannot thermally
excite the cold qubit (Γ+

Cl → 0), and thus reduces the population of |11⟩. The second limit is λ→∞, which is
physically motivated as the measurement is backaction-free. Therefore, this limit is not detrimental for the
entanglement generation. Additionally, this limit completely suppresses the noise in the detector, such that
feedback is always applied correctly.

Under these limits, the Liouville superoperator in equation (8) can, by vectorizing the nonzero elements
of the density matrix as ϱ̂= (ϱ00,ϱ01,ϱ10,ϱ11,α,α

∗)T, be written in matrix representation as

Lfb =



−Γ+
H0 0 Γ−

C0 0 0 0
Γ+
H0 0 0 Γ−

C1 i g −i g
0 0 −Γ−

C0 Γ−
H1 −i g i g

0 0 0 −Γ−
C1 −Γ−

H1 0 0

0 i g −i g 0 −Γ−
C0
2 0

0 −i g i g 0 0 −Γ−
C0
2


. (9)

Under ideal operation conditions, excitations are unidirectionally transported from the hot to cold reservoir.
This is beneficial for entanglement production as an excitation in the hot qubit only can interact coherently
with the cold qubit, thus reducing the population of |00⟩. Additionally, we note that the doubly excited state
|11⟩ is decoupled from the remaining states, and will thus vanish in the stationary state.

The null-space of Lfb corresponds to the stationary state of equation (8) and provides the following
stationary concurrence of the system (see appendix A.2)

C (ϱ̂∞) =
4gΓ−

C0Γ
+
H0

4g2
(
Γ−
C0 + 2Γ+

H0

)
+
(
Γ−
C0

)2
Γ+
H0

. (10)

The concurrence attains its maximum C(ϱ̂∞) = 1/
√
2≈ 0.71 when Γ+

H0 ≫ Γ−
C0 and Γ−

C0/g= 2
√
2, thus

significantly increasing the concurrence obtained in the absence of measurement and feedback [4]. The
condition Γ+

H0 ≫ Γ−
C0 ensures that an excitation quickly enters the system via the hot bath when the system

occupies |00⟩. This increases the population in the subspace {|01⟩, |10⟩}, favoring entanglement generation.
Note that increasing g indefinitely is detrimental for the entanglement production, as it enhances Rabi
oscillations in the coherently coupled subspace. Averaging over many oscillations reduces the entanglement
(see equation (10)).

We note that the same concurrence (10) was obtained in [10] when implementing the system in a double
quantum dot with U→∞ and an infinite external voltage bias across the system. For U→∞, |11⟩ cannot
be occupied, and with infinite bias, electrons can only move unidirectionally towards the bath with lowest
chemical potential. Thus, in the absence of measurements and feedback, the system autonomously evolves
according to equation (9), explaining why our result coincide with [10]. However, note that our result is valid
for finite U, even for non-interacting particles (U = 0).

As excitations are transported from the hot to cold bath, heat will flow through the system. Due to the
coherent interaction between the qubits, a nonzero heat current indicates the presence of coherence in the
system, and is necessary for entanglement production [4]. Under ideal operation conditions, the heat current
is given by (derivation in appendix A.5)

Q̇=−Γ−
C0tr

{
ĤD

[̂
JC0
]
ϱ̂∞
}
= εgC (ϱ̂∞) , (11)

with ϱ̂∞ =
´
dDϱ̂∞(D). Note that the derivation in section A.5 is valid in the regime of no net-power output.

This is a valid regime to consider whenever no potential bias is applied to the system, which is the case in this
paper. We stress that equation (11) is independent of particle type. The relation implies that the concurrence
can be directly inferred by measuring the heat current, and does not require quantum state tomography. This
implies that the heat current is an entanglement witness, where a nonzero current indicate the presence of
entanglement. However, it is important to notice that this result is only valid in the regime of a strong
interqubit interaction U, or for engines operating within the ideal operation conditions described above.

While the concurrence indicates whether a state is entangled or not, it does not provide any information
on how useful the entanglement is for quantum information processing. Therefore, it is useful, as a

5
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Figure 3. Steady state results for the concurrence (a), CHSH (b) and teleporation fidelity (c) as a function of g and TH. These
plots were obtained by numerically solving equation (8), using close-to-ideal conditions, see specification of parameters at the
end of the caption. The blue dashed line in each plot marks the optimal value of g for entanglement generation. The grey, shaded
areas in (b) and (c) mark where the CHSH and transportation fildelity are below the classical limit. The three graphs were
obtained considering ΓC/ε= 10−3, ΓH = 100ΓC; λ/ε= 100; U/ε= 100; γ/ε= 1; TC/ε= 10−2.

complement to the concurrence, to evaluate if an entangled state is able to perform non-classical tasks in
quantum information processing. To this end, we evaluate whether the generated entanglement can violate
the CHSH inequality and perform quantum teleportation [6].

For the state in equation (4), the CHSH inequality may be expressed as CHSH⩽ 2, where [6, 10]

CHSH= 2

√
8α2 +(2∆− 1)2 −min

{
4α2,(2∆− 1)2

}
, (12)

with∆≡ ϱ01 + ϱ10. If CHSH> 2, the system state shows Bell nonlocality. For maximally entangled states
CHSH= 2

√
2. At maximum concurrence for ideal operation conditions, CHSH=

√
6≈ 2.45. In fact, this is

the maximum value the CHSH can attain under the feedback protocol, see appendix A.4.
To quantify how well ϱ̂∞ can perform quantum teleportation, we calculate the teleportation fidelity

F(ϱ̂∞) = [1+ 2F(ϱ̂∞)]/3, where F(ϱ̂∞) is the singlet titlefraction for a two qubit system ϱ̂∞ (see
appendix A.3) [25]. For states taking the form of equation (4), the singlet fraction is expressed as [6]

F(ϱ̂) =

{
α+ ∆

2 if (1+ 2α− 2∆)⩽ 0

max
{
α+ ∆

2 ,
1−∆
2

}
otherwise

. (13)

For a maximally entangled state, F(ϱ̂∞) = 1. A classical implementation of the protocol can at best
achieveF = 2/3 [25], implying that the state contains non-trivial levels of entanglement when F(ϱ̂∞)> 1/2.
At maximum concurrence, for ideal operation conditions, we obtain F(ϱ̂∞) = (4+

√
2)/6≈ 0.9. Note that

this is the maximum fidelity that can be achieved with the feedback protocol, see appendix A.3. In figure 3,
we plot the concurrence, CHSH, and teleportation fidelity, using close-to-ideal conditons.

4.2. Beyond ideal operation
Now we discuss the entanglement production when relaxing the ideal operation conditions. The ideal
conditions are relaxed one by one, such that the role of each parameter can be understood carefully. We also
discuss the effect of the last term of the Hamiltonian in equation (1). We focus on investigating how the
concurrence depends on the system parameters. For a similar analysis of CHSH and the quantum
teleportation fidelity, the reader is referred to appendix A.6. However, such an analysis does not provide any
additional information compared to the concurrence. The figures presented in this section focus on
fermionic reservoirs (see equation (3)), but a similar behavior is observed for bosonic reservoirs, see
appendix A.6.

By relaxing λ→∞, the detector becomes noisy—recall that the magnitude of the noise is determined by
λ/γ, as discussed under equation (7). A noisy detector introduces feedback mistakes. That is, the coupling to
the hot bath can remain open even though |01⟩ or |10⟩ are occupied. This increases the populations of |00⟩
and |11⟩, because an excitation in the hot qubit can re-enter the hot bath when |01⟩ is occupied, or enter the
hot qubit when |10⟩ is occupied. This reduces the entanglement in the system, see figures 4 and 5.
Additionally, the figures illustrate that it is favorable to use λ≫ γ, as seen in the previous subsection. We also
note that feedback mistakes increase the decoherence induced by the hot bath, as the coupling to the hot bath
can remain open even though |01⟩ or |10⟩ are occupied, see equation (A.8) in appendix A.2. We remind the
reader that the measured observable is backaction-free, such that the strength of the measurement does not
destroy the entanglement of the system.

6
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Figure 4. Steady state concurrence as a function of measurement strength λ and temperature of the cold reservoir TC for three
values of ΓH (see top of graphs). Here we focus on fermionic reservoirs (similar results are obtained for bosons, see
appendix A.6). All plots indicate that the concurrence decreases with the measurement strength λ, as feedback mistakes become
prominent. By increasing TC, the cold qubit can be thermally excited, increasing the population of |11⟩ and thus reducing the
concurrence. For ΓH ≫ ΓC, the hot bath quickly provides an excitation to the system when occupying |00⟩, reducing the
population of this state and favors entanglement generation. All of the above plots were obtained considering U/ε= 0,
ΓC/ε= 10−3, ΓC/g= 2

√
2 and TH/ε= 1, γ/ε= 1.

Figure 5. Steady state concurrence as a function of measurement strength lambda λ and the temperature of the cold bath TC for
three values of U. Here we focus on fermionic reservoirs (similar results are obtained for bosons, see appendix A.6). The
concurrence shows a similar behavior as in figure 4. When increasing U, the concurrence becomes invariant of TC, as the
population of |11⟩ vanishes, thus preventing thermal excitations of the cold qubit if the hot one is excited. The graphs were
obtained using ΓC/ε= 10−3, ΓH = 100ΓC; ΓC/g= 2

√
2 and TH/ε= 1, and γ/ε= 1.

For TC ̸= 0, Γ+
Cl ̸= 0, enabling thermal excitations of the cold qubit. The population of |11⟩ thus increases

as the cold qubit may be excited when occupying |01⟩, decreasing the entanglement. We also note that
Γ+
C1 ̸= 0 results in bath-induced decoherence, deteriorating the entanglement, see equation (A.8) in

appendix A.2. The overall effect of TC ̸= 0 is thus to decrease the entanglement—this is illustrated in
figures 4 and 5.

Below equation (10), we noted that Γ+
H0 ≫ Γ−

C0 was favorable for entanglement generation as the
population in the subspace {|01⟩, |10⟩} was increased. Relaxing this condition increases the population of
|00⟩, as it takes longer time for an excitation to enter the hot qubit when the system occupies |00⟩. Similarly,
when Γ−

C is small, the population of |00⟩ decreases, as an excitation stays longer in the system, favoring
coherent interaction between the qubits. Thus, relaxing the condition Γ+

H0 ≫ Γ−
C0 decreases the entanglement

as illustrated in figure 4.
So far, we have not made any assumptions about the interaction U in the Hamiltonian (1). In fact, under

ideal operation conditions (TC = 0 and λ→∞), the interaction does not play any role for the stationary
state of the system as the population of |11⟩ vanishes, see equation (9). However, when relaxing one, or both,
of the ideal conditions, U affects the stationary state as the population of |11⟩ becomes nonzero. In figure 5,
we illustrate the effect of U on the concurrence. We see that the concurrence is dependent on TC for
non-interacting excitations (U = 0), while a large U eliminates this dependence. This happens because the
population of |11⟩ vanishes for large U, preventing thermal excitations when |01⟩ is occupied.

For ideal conditions, we found that the heat current is proportional to the concurrence. In fact, this
proportionality holds true when relaxing the ideal conditions, but taking the limit U→∞, where the
population of |11⟩ vanishes, see appendix A.2. For finite U, this proportionality does not hold true anymore.
This agrees with the results derived in [5], where it was found that the qubits, in the absence of feedback, are
entangled if the heat current surpasses a critical heat current. In particular, we show that the developed

7
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protocol is capable of retrieving steady states with vanishing |11⟩ population. Through these we recover a
specific variation of the results obtained in [5]. In these cases, the absence of |11⟩ population, allows us to
indicate non zero heat currents as entanglement witnesses.

5. Conclusion and outlook

In this paper, we introduced a continuous feedback protocol aiming to increase the stationary entanglement
production of a quantum thermal machine consisting of two coherently interacting qubits, incoherently
coupled to two thermal reservoirs. In the absence of feedback, it was shown in [4] that a temperature
gradient between the reservoirs could weakly entangle the qubits. The feedback protocol only makes use of
local operations, measuring the parity observable of the qubits and controlling the coupling to the warmer
environment. Our investigation shows that the protocol increases the stationary entanglement production.
In particular, we identified an ideal operation regime where the entanglement significantly increases. This
involved putting the temperature of the colder bath to zero and performing projective measurements. In this
regime, we find that the heat current across the system is proportional to the concurrence. This implies that a
nonzero heat current acts as an entanglement witness. In addition, we investigated the operational usefulness
of the entanglement, and found that the entanglement is capable of violating the CHSH inequality and
performing quantum teleportation, which was not possible in the absence of the feedback protocol. We
additionally studied the entanglement production under non-ideal conditions. Decreasing the strength of
the measurement (performing nonprojective measurements) induces mistakes in the feedback, lowering the
entanglement production. Similarly, the entanglement decreases when the temperature of the cold bath is
nonzero, as the cold qubit can be thermally excited.

Extensions of the protocol involves, e.g. heralding [7], which has the potential of generating maximally
entangled states, and extensions to multipartite systems. Finally, we note that several experimental platforms
are available for realizing the protocol. Among these, semiconductor quantum dots and superconducting
qubits are promising candidates.
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Appendix

A.1. Derivation of equation (8)
In this section, we provide a derivation for equation (8). The method for this derivation was first presented
in [17]. We begin by writing equation (7) as

∂tϱ̂t (D) = L(D) ϱ̂t (D)+F (D) ϱ̂t (D) , (A.1)

where we introduced the superoperator

F (D) =−γ∂DA(D)+
γ2

8λ
∂2
D. (A.2)

We are interested in the fast detector regime where γ ≫max{g,Γ±
kl }. To this end, we can expand the density

matrix ϱ̂t(D) in powers of 1/γ. Following the procedure of [17] (see section II in the supplemental material
of [17]), we find, to zeroth order in 1/γ, that

ϱ̂t (D) =
∑
aa ′

πaa ′ (D)Vaa ′ ϱ̂t, (A.3)

8
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where ϱ̂t =
´
dDϱ̂t(D) is the state of the system, Vaa ′ ϱ̂= ⟨a|ϱ̂|a ′⟩|a⟩⟨a ′|, with |a⟩ being the eigenstates of the

observable Â= σ̂z ⊗ σ̂z, and

πaa ′ (D) =

√
4λ

πγ
e−

4λ
γ [D−(ξa+ξa ′ )/2]

2

, (A.4)

with ξa being the eigenvalues corresponding to the eigenstate |a⟩. By plugging equation (A.3) into
equation (A.1) and integrating over D, we find equation (8) with

Lfb = L [(1− η)(V00,00 +V11,11)+ η (1−V00,00 −V11,11)] (A.5)

+ L̃ [η (V00,00 +V11,11)+ (1− η)(1−V00,00 −V11,11)] , (A.6)

where we introduced the feedback error probability

η =
1

2

[
1− erf

(
2

√
λ

γ

)]
. (A.7)

By vectorizing the density matrix as ϱ̂t = (ϱ00,ϱ01,ϱ10,ϱ11,α,α
∗)T, Lfb can be written in matrix form as

Lfb =



−Γ+
C0 −Γ+

H0 (1− η) ηΓ−
H0 Γ−

C0 0 0 0

Γ+
H0 (1− η) −Γ+

C1 − ηΓ−
H0 0 Γ−

C1 i g −i g

Γ+
C0 0 −Γ−

C0 Γ−
H1 (1− η) −i g i g

0 Γ+
C1 η −Γ−

C1 −Γ−
H1 (1− η) 0 0

0 i g −i g 0 − 1
2

[
Γ+
C1 + ηΓ−

H0 +Γ−
C0

]
0

0 −i g i g 0 0 − 1
2

[
Γ+
C1 + ηΓ−

H0 +Γ−
C0

]


.

(A.8)

A.2. Steady state solutions to equation (8)
In this section, we provide the stationary solution to equation (8) for ideal operation conditions (λ→∞ and
TC → 0) and when taking the limit U→∞. We do not present the general stationary state of equation (A.8)
as the expressions are too long.

The ideal operation conditions are equivalent to η→ 0 (feedback always applied correctly) and Γ+
Cl → 0.

Under these limits, equation (A.8) simplifies to

Lfb =



−Γ+
H0 0 Γ−

C0 0 0 0
Γ+
H0 0 0 Γ−

C1 i g −i g
0 0 −Γ−

C0 Γ−
H1 −i g i g

0 0 0 −Γ−
C1 −Γ−

H1 0 0
0 i g −i g 0 − 1

2Γ
−
C0 0

0 −i g i g 0 0 − 1
2Γ

−
C0

 . (A.9)

The stationary state corresponds to the nullspace of Lfb, and is given by

ϱ̂∞ =
1

N


4g2Γ−

C0 0 0 0

0
(
4g2 +Γ−

C0
2
)
Γ+
H0 2i gΓ−

C0Γ
+
H0 0

0 −2i gΓ−
C0Γ

+
H0 4g2Γ+

H0 0
0 0 0 0

 , (A.10)

whereN = (Γ−
C0)

2Γ+
H0 + 4g2(Γ−

C0 + 2Γ+
H0) is a normalization constant. We note that the population of the

doubly excited state vanishes, even though we did not make any assumptions on U. By identifying α, ϱ00 and
ϱ11 (equation (4)), and using equation (5), we get the expression for concurrence given in equation (10). We
also stress that we have made no assumptions whether the baths are fermionic or bosonic, the results are
valid for both.

9
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We now look at the limit U→∞, corresponding to Γ+
k1 → 0. Equation (A.8) simplifies to

Lfb =



−Γ+
C0 −Γ+

H0 (1− η) ηΓ−
H0 Γ−

C0 0 0 0
Γ+
H0 (1− η) −ηΓ−

H0 0 Γ−
C1 i g −i g

Γ+
C0 0 −Γ−

C0 Γ−
H1 (1− η) −i g i g

0 0 0 −Γ−
C1 −Γ−

H1 (1− η) 0 0
0 i g −i g 0 − 1

2

[
ηΓ−

H0 +Γ−
C0

]
0

0 −i g i g 0 0 − 1
2

[
ηΓ−

H0 +Γ−
C0

]

 .
(A.11)

Note that all rates accompanied by 1− η correspond to transitions when applying feedback correctly, and all
rates with an η correspond to transitions when feedback is applied wrongly. Similar to the ideal operation
conditions, |11⟩ is decoupled from the remaining states in the stationary limit. Here we write the stationary
state as

ϱ̂∞ =
1

Ñ


ϱ ′
00 0 0 0
0 ϱ ′

01 α ′ 0
0 α ′∗ ϱ ′

10 0
0 0 0 ϱ ′

11

 , (A.12)

where Ñ is a normalization constant. The matrix elements and normalization constant are given by

ϱ ′
00 =

(
Γ−
C0 + ηΓ−

H0

) (
ηΓ−

C0Γ
−
H0 + 4g2

)
, (A.13)

ϱ ′
01 = 4g2Γ+

C0 +(1− η)Γ+
H0

[
Γ−
C0

2
+ ηΓ−

C0Γ
−
H0 + 4g2

]
, (A.14)

ϱ ′
10 = 4(1− η)g2Γ+

H0 + Γ+
C0

[
ηΓ−

H0

(
Γ−
C0 + ηΓ−

H0

)
+ 4g2

]
, (A.15)

ϱ ′
11 = 0, (A.16)

α ′ = 2i g
[
(1− η)Γ−

C0Γ
+
H0 − ηΓ+

C0Γ
−
H0

]
, (A.17)

Ñ = 8g2
[
Γ+
C0 +(1− η)Γ+

H0

]
+Γ−

C0

[
ηΓ−

H0

[
Γ+
C0 + ηΓ−

H0 +(1− η)Γ+
H0

]
+ 4g2

]
(A.18)

+ η2Γ+
C0Γ

−
H0

2
+ Γ−

C0
2 [

ηΓ−
H0 +(1− η)Γ+

H0

]
+ 4ηg2Γ−

H0. (A.19)

A.3. Optimizing teleportation fidelity
In this section, we show that the teleporation fidelity is maximized for the same parameters that maximizes
the concurrence in section 4. To do so, we work with the optimal operation conditions λ→∞ and TC → 0.
To carry out an optimization for the teleportation fidelity, we follow a standard optimization scheme and
consider the gradient∇≡ (∂g,∂Γ−

C0
,∂Γ+

H0
)T of equation (13) for a general steady state of the Liouvillian in

equation (A.9). Doing so leads us to the expressions

∇F(ϱ̂∞) =



N


2Γ−

C0Γ
+
H0

[
−2Γ−

C0g
(
Γ−
C0 + 2g

)
+
(
Γ−
C0

2 − 8g2
)
Γ+
H0

]
2gΓ+

H0

(
Γ−
C0

2 − 8g2
) (

g−Γ+
H0

)
2g2Γ−

C0

(
Γ−
C0

2
+ 4gΓ−

C0 + 8g2
)

 if 1+ 2α− 2∆⩽ 0

−N


−4gΓ−

C0
3
Γ+
H0

2g2Γ+
H0

(
Γ−
C0

2 − 8g2
)

2g2Γ−
C0

(
Γ−
C0

2
+ 8g2

)
 otherwise

(A.20)

whereN = (Γ−
C0

2
Γ+
H0 + 4g2Γ−

C0 + 8g2Γ+
H0)

−2. Using equation (A.20) we find that regardless of whether or
not 1+ 2α−∆⩽ 0, optimal fidelity is obtained for g= Γ−

C0/2
√
2, which is the same result obtained when

optimizing the system concurrence. By inserting this value of g in equation (13), we obtain

F (ϱ̂∞) =
1

3

(
1+

(
4+ 2

√
2
)
Γ+
H0

Γ−
C0 + 4Γ+

H0

)
, (A.21)

which is a monotonic function in Γ+
H . Thus, considering Γ

+
H0 ≫ Γ−

C0 we obtain the optimal solution
F(ϱ̂∞) = (4+

√
2)/6≈ 0.90 that we presented in section 4.

10
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A.4. Optimizing CHSH
In this section, we show that the CHSH is maximized for the same parameters that maximizes the
concurrence in section 4. As in the case with fidelity, we carry out this optimization procedure by analytically
obtaining an expression for the gradient∇≡ (∂g,∂Γ−

C0
,∂Γ+

H0
) of equation (12) for ideal operation conditions.

This is carried out by separating the cases in which 4α2 − (2∆− 1)2 ⩽ 0 from all others. In the case where
4α2 − (2∆− 1)2 > 0, the gradient of equation (12) evaluated for the steady state of equation (9) returns

∇CHSH=


gΓ+

H0
2
Γ−
C0

2
(
64
√
2g2 − 8

√
2Γ−

C0
2
)

g2Γ+
H0Γ

−
C0

(
8
√
2Γ−

C0
2
Γ+
H0 − 32

√
2Γ−

C0g
2 − 64

√
2g2Γ+

H0

)
32
√
2

(
Γ−
C0

4
g3Γ+

H0
6√

Γ−
C0

2
Γ+
H0+4Γ−

C0g
2+8g2Γ+

H0

)
 . (A.22)

Setting equation (A.22) to zero and solving for g, Γ−
C0 and Γ+

H0 returns a maximum value of CHSH= 2 at

g=
Γ−
C0

√
Γ+
H0√

4Γ−
C0+8Γ+

H0

. However, if we instead carry out the optimization procedure, by considering the gradient of

equation (12) for 4α2 − (2∆− 1)2 ⩽ 0, we obtain

∇CHSH=



g2Γ+
H0

(
Γ−
C0

3
(
−64g2−32Γ+2

H

)
+16Γ−

C0
4
Γ+
H0+Γ−

C0(256g
2Γ+

H0
2
+512g4)−1024g4Γ+

H0

)
(Γ−

C0
2
Γ+
H0+4Γ−

C0g
2+8g2Γ+

H0)
2
√

Γ−
C0

2(32g2Γ+
H0

2
+16g4)−8Γ−

C0
3
g2Γ+

H0+Γ−
C0

4
Γ+
H0

2−64Γ−
C0g

4Γ+
H0+64g4Γ+

H0
2

Γ−
C0

2
gΓ+

H0(Γ
−
C0

2(128g2+32Γ+
H0

2)−32Γ−
C0

3
Γ+
H0−384Γ−

C0g
2Γ+

H0−256g2Γ+
H0

2)

(Γ−
C0

2
Γ+
H0+4Γ−

C0g
2+8g2Γ+

H0)
2
√

Γ−
C0

2(32g2Γ+
H0

2
+16g4)−8Γ−

C0
3
g2Γ+

H0+Γ−
C0

4
Γ+
H0

2−64Γ−
C0g

4Γ+
H0+64g4Γ+

H0
2

Γ−
C0g

2(384Γ−
C0

2
g2Γ+

H0−64Γ−
C0

3
g2+16Γ−

C0
4
Γ+
H0−512Γ−

C0g
4+1024g4Γ+

H0)

(Γ−
C0

2
Γ+
H0+4Γ−

C0g
2+8g2Γ+

H0)
2
√

Γ−
C0

2(32g2Γ+
H0

2
+16g4)−8Γ−

C0
3
g2Γ+

H0+Γ−
C0

4
Γ+
H0

2−64Γ−
C0g

4Γ+
H0+64g4Γ+

H0
2

 , (A.23)

which has optimal solution at g=
Γ−
C0

2
√
2
and Γ+

H0 ≫ Γ−
C0, where CHSH=

√
6≈ 2.45.

A.5. Heat current
Here we calculate the stationary heat current in the system. To this end, it is useful to decompose the
feedback Liouvillian as L(D) = θ(D)(LC +LH)+ [1− θ(D)]LC, where

Lk = Γ+
k0D

[̂
J†k0

]
+Γ+

k1D
[̂
J†k1

]
+Γ−

k0D
[̂
Jk0
]
+Γ−

k1D
[̂
Jk1
]
, k= C,H. (A.24)

The average energy of the system is given by E=
´
dDtr{Ĥϱ̂t(D)}. Taking the time derivative of this gives

Ė=−
ˆ ∞

−∞
dDtr

{
Ĥ∂tϱ̂t (D)

}
(A.25)

=−
ˆ ∞

−∞
dDtr

{
ĤL(D) ϱ̂t (D)

}
(A.26)

= tr
{
ĤLCϱ̂t

}
+

ˆ ∞

0
dDtr

{
ĤLHϱ̂t (D)

}
(A.27)

= Q̇C + Q̇H, (A.28)

where the minus sign decides the sign convention, i.e. a positive sign corresponds to heat flowing into the

baths, and we used that ϱ̂t =
´∞
−∞ dDϱ̂t(D),

´∞
−∞ dD

[
−γ∂DA(D)+ γ2

8λ∂
2
D

]
ϱ̂t(D) = 0, and we introduced the

following heat currents associated with the cold (C) and hot (H) baths,

Q̇C =−tr
{
ĤLCϱ̂t

}
and Q̇H =−

ˆ ∞

0
dDtr

{
ĤLHϱ̂t (D)

}
. (A.29)

In steady state, we get the heat current Q̇= Q̇C =−Q̇H. By using Q̇C, we get

Q̇= (ε+U)Γ−
C1ϱ11 + εΓ−

C0ϱ10 − εΓ+
C0ϱ00 − (ε+U)Γ+

C1ϱ01. (A.30)

Taking the limits TC → 0 (Γ+
Cl → 0) and λ→∞, we get, for γ ≫max{g,Γ±

kl }, that

Q̇= εΓ−
C0ϱ10 =−Γ−

C0tr
{
ĤD

[̂
JC0
]
ϱ̂∞
}
, (A.31)

as specified in equation (11) in the main text. By explicit calculation, using the stationary state in
equation (A.10), we obtain the relation Q̇= εgC as specified in the main text.

11



New J. Phys. 26 (2024) 053005 G F Diotallevi et al

Figure A.1. Statiornay CHSH for fermionic reservoirs as a function of the measurement strength λ and temperature of the cold
reservoir TC. Each heat map was then plotted for a different choice of the ratio ΓH/ΓC. The three graphs were obtained

considering ΓC/ε= 10−3, U/ε= 100; g= ΓC

2
√

2
; γ= 1 and TH/ε= 1.

Figure A.2. Stationary CHSH for bosonic reservoirs as a function of the measurement strength λ and temperature of the cold
reservoir TC. Each heat map was then plotted for a different choice of the ratio ΓH/ΓC.The three graphs were obtained

considering ΓC/ε= 10−3, U= 0, g= ΓC

2
√

2
; γ= 1 and TH/ε= 1.

We may also investigate the heat current for U→∞ (Γ+
k1 → 0). Under this limit, equation (A.30) is

simplified to

Q̇= ε
(
Γ−
C0ϱ10 −Γ+

C0ϱ00
)
. (A.32)

Using the expressions from appendix A.2, we get

|Q̇|=
4g2ε|(1− η)Γ−

C0Γ
+
H0 − ηΓ+

C0Γ
−
H0|

Ñ
= 2εg

|α ′|
Ñ

= εgC, (A.33)

where we used equation (5). This proves that the heat current is proportional to the concurrence when
U→∞.

A.6. Concurrence, CHSH, and teleportation fidelity beyond ideal operation conditions
In section 4.2 we studied the steady state concurrence of the system outside the regime of ideal operation
conditions, see section 4. In this section, we study CHSH and the teleportation fidelity for both bosonic and
fermionic reservoirs beyond the ideal operation conditions. For the bosons, we only consider U = 0, as the
reservoirs naturally would consist of photons or phonons, and thereby, do not carry charge.

Figure A.1 shows CHSH of the fermionic system as a function of λ and TC for different choices of ΓH.
Similarly to what we found in section 4, from figure A.1 we see that increasing the coupling to the hot
reservoir results in higher values of CHSH. However, a violation of Bell’s inequality is achieved only in the
limit ΓH ≫ ΓC. On the other hand, if we compare the results obtained for the fermionic system with the ones
obtained for the bosonic engine (see figure A.2), we notice that within similar parameter regimes the bosonic
engine is capable of producing higher CHSH values. This is due to the difference between the Bose–Einstein
and Fermi–Dirac distributions, which allows the bosonic engine to produce higher heat currents, see
equation (3). However, a stronger coupling to the hot reservoir is still required in order to violate Bell’s
inequality.

In figure A.3 we instead study the CHSH for the fermionic engine as a function of λ and TC for different
choices of interqubit interaction strength U. From these maps we see that for U/ε= 0 we recover the optimal
CHSH value when within the limit λ→∞ and TC → 0. Furthermore, increasing the value of U allows for

12
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Figure A.3. Stationary CHSH for fermionic reservoirs as a function of the measurement strength λ and temperature of the cold
reservoir TC. Each heat map was then plotted for a different choices of U. The three graphs were obtained considering

ΓC/ε= 10−3, ΓH = 100ΓC; g=
ΓC

2
√

2
; γ= 1 and TH/ε= 1.

Figure A.4. Teleportation fidelity for fermionic reservoirs as a function of the measurement strength λ and temperature of the
cold reservoir TC. Each heat map was then plotted for different choices of ΓH. The three graphs were obtained considering

ΓC/ε= 10−3, U/ε= 100; g= ΓC

2
√

2
; γ= 1 and TH/ε= 1.

Figure A.5. Teleportation fidelity for bosonic reservoirs as a function of the measurement strength λ and temperature of the cold
reservoir TC. Each heat map was then plotted for different choices of ΓH. The three graphs were obtained considering

ΓC/ε= 10−3, U= 0, g= ΓC

2
√

2
; γ= 1 and TH/ε= 1.

the region of optimal CHSH value to extend to higher values of TC, provided a high enough measurement
strength λ (note ΓH ≫ ΓC).

Figure A.4 shows the teleportation fidelity of the fermionic engine as a function of λ and TC for different
choices of ΓH. When comparing these plots with the ones for CHSH in figure A.1, we find that, in this
scenario, teleportation fidelity represents a weaker condition for the usefulness of the entanglement
contained in the engine, as the entanglement can uphold teleportation already for ΓH = 3ΓC, whilst,
according to CHSH, we required ΓH ≫ ΓC. Furthermore, we see that this is yet more apparent in the case of
the bosonic engine (see figure A.5), where the entanglement produced by the engine is operationally useful
already at ΓH = ΓC.

In figure A.6 we show the steady state teleportation fidelity for the fermionic engine as a function of λ
and TC, for different choices of U. As in the case of CHSH (see figure A.3) we see that increasing U allows the
engine to reproduce the optimal fidelity results (see section 4) at higher temperatures for the cold bath,
granted a high enough measurement strength λ.
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Figure A.6. Teleportation fidelity for fermionic reservoirs as a function of the measurement strength λ and temperature of the
cold reservoir TC. Each heat map was then plotted for different choices of U. The three graphs were obtained considering

ΓC/ε= 10−3, ΓH = 100ΓC; g=
ΓC

2
√

2
; γ= 1 and TH/ε= 1.

Figure A.7. Steady state concurrence for bosonic reservoirs as a function of λ and TC. The three graphs were obtained considering

ΓC/ε= 10−3, U= 0, g= ΓC

2
√

2
; γ= 1 and TH/ε= 1.

Figure A.8. Stationary concurrence, singlet fraction and CHSH as functions of ΓC and ΓH. All three plots show the presence of a
maximal entanglement region which is achieved for ΓH ≫ ΓC. The three graphs where obtained considering g/ε= 3.54 · 10−4,
λ/γ = 100, U/ε= 100, TH/ε= 1, TC/ε= 10−2, γ= 1.

Figure A.7, shows the stationary concurrence for bosonic reservoirs as a function of λ and TC. The results
are similar to those in figure 4, where we studied fermionic reservoirs.

Lastly, figure A.8 shows the the concurrence, singlet fraction and CHSH for the steady state of the
fermionic engine as a function of ΓC and ΓH (note that the results for the bosonic system are equivalent).
From it, we note that entanglement to be produced by this system both reservoirs must be coupled (i.e.
ΓH,ΓC ̸= 0). Furthermore, arbitrarily increasing the value of ΓC will result in diminishing returns, as this
will introduce additional dephasing into the system (see equation (A.11). We thus find that maximal
entanglement production is achieved in the limit ΓH ≫ ΓC.
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