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Future mobile networks (MNs) are required to be flexible with minimal infrastructure complexity, unlike current ones that
rely on proprietary network elements to offer their services. Moreover, they are expected to make use of renewable energy
to decrease their carbon footprint and of virtualization technologies for improved adaptability and flexibility, thus resulting in
green and self-organized systems. In this article, we discuss the application of software defined networking (SDN) and network
function virtualization (NFV) technologies towards softwarization of the mobile network functions, taking into account different
architectural proposals. In addition, we elaborate on whether mobile edge computing (MEC), a new architectural concept that uses
NFV techniques, can enhance communication in 5G cellular networks, reducing latency due to its proximity deployment. Besides
discussing existing techniques, expounding their pros and cons and comparing state-of-the-art architectural proposals, we examine
the role ofmachine learning and datamining tools, analyzing their use within fully SDN- andNFV-enabledmobile systems. Finally,
we outline the challenges and the open issues related to evolved packet core (EPC) and MEC architectures.

1. Introduction

The evolution towards a softwarized evolved packet core
(EPC) is expected to solve current mobile networks (MNs)
challenges and set the way for high data rate and low
latency 5G networks. Such changes should make it possible
to effectively cope with the anticipated mobile data traffic
explosion that will be mostly generated by smartphones,
portable devices, and new traffic types, such as machine-to-
machine (M2M) applications. Traditionally, as new services
are introduced into the mobile space, operators upgrade the
network infrastructure for a better management, while at the
same time still guaranteeing a target quality of service (QoS)
to their users. This introduces network complexity, as new
specific hardware is usually deployed into the network for
these purposes.The possibility of running network functions
(NFs) in software, instead of hardware devices, is seen as a
promising solution towards network complexity reduction.
This technique will permit dynamically scaling the network
resources for a more efficient network management.

Current research focusing on virtualizing the EPC func-
tions is surveyed in this article. Here, we review existing
EPC architectural proposals, paying attention to the different
strategies involved in virtualizing the EPC functions, the
adopted virtualization technology, open issues, and related
challenges. Also, we discuss the current technological trends,
their advantages, and drawbacks and, when possible, ana-
lyze their differences. Softwarization and virtualization of
resources and services are undoubtedly among the main
drivers of 5G and beyond 5G networks, as they will provide
flexibility and adaptability and will facilitate network main-
tenance and the update of all network functions. However,
to reap the full benefits of a virtualized architecture, this
technology must be combined with intelligent mechanisms
for handling network resources. For this reason, in this
paper we also address several optimization means, including
machine learning and data mining tools, and discuss how
these can be employed within a virtualized mobile network.

Vendors and researchers are targeting different ap-
proaches to use virtualization within EPC architectures, such
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as grouping the NFs, running the virtualized functions on
clouds, partitioning the NFs into slices, and redesigning
the network to only use network function virtualization
(NFV) technology. All these techniques are here discussed,
emphasizing the offered advantages, the existing similarities
among them, and the road ahead. In addition, we elaborate
on using energy harvesting (EH) hardware to make future
5G networks as much as possible energy neutral and discuss
how EH technology can be integrated into future softwarized
mobile systems.

Software defined networking (SDN) is an emerging
virtualization technology, which supports programmable
interfaces to provide flexibility and agility on the network
control management [1–3]. It basically consists of a num-
ber of network nodes such as switches, virtual switches,
routers, and firewalls, which are automated, controlled, and
reprogrammed through software commands. Open source
software such as Open Flow [4] can be used to dynamically
reconfigure network elements, through an SDN controller
which can handle multiple network switches at a time. An
SDN-based architecture allows dynamic and flexible network
operations by decoupling the network control plane from
the data plane, leveraging standard protocols which enable
remote management and operation. The SDN controller can
run on a commodity hardware and gives logically centralized
control towards multiple switches. This enables accurate
monitoring and control of traffic load within the network
and is also expected to minimize operational cost, while
improving load balancing and data traffic handling at the
edge, through the use of generic hardware [5].

Another virtualization technology is NFV, which has
recently emerged to virtualize the EPC network functions
and move them from proprietary to commodity hardware
platforms, as the use of specialized hardware devices has been
one of the limiting factors towards mobile evolution and the
fast deployment of new services within the mobile space [6].
Network functions may be firewalls, domain name servers
(DNS), network address translation (NAT) services, intru-
sion detection systems, caching services, and so forth. These
functions, which are of prime importance for the accurate
operation of any network, are migrated into software and ran
on top of general purpose servers. NFV is complementary
to SDN but the two technologies can coexist within the
same network: SDN tries to achieve a centralized control
approach on switching and routing elements, thus allowing
programmability of the network, while NFV moves NFs out
of dedicated hardware into software that is imported into gen-
eral purpose hardware. While these technologies do not pos-
sess any intrinsic cognition, they will give rise tomore flexible
networks, where resources could be controlled and combined
in a flexible manner. This is expected to facilitate network
management and to make it more efficient, moving the intel-
ligence that is required to manage network resources, such as
load balancing, intrusion detection algorithms, and firewalls
into NFs. Since SDN and NFV are drivers for 5G networks, it
is crucial to look at their applications within these systems.

As dictated by mobile edge computing (MEC), an
emerging architectural paradigm for the design and imple-
mentation of communication networks through NFV, the

virtualized network functions (VNFs) can then be deployed
at the BS, that is, at a MEC platform colocated with the BS, or
at an aggregation point (a central point that manages a set of
BSs located close to each other). MEC effectively moves the
network intelligence towards the network edge: the VNFs are
instantiated and executed over a hosting environment, and
the combination of NFV andMEC can help achieve dynamic
resource/service management and configuration. These new
network technologies, SDN, NFV, and MEC, are expected to
improve the quality of experience (QoE) of users, while at
the same time making legacy and current MNs more flexible,
quickly reprogrammable, and energy efficient [7].

As a last consideration, 5G technology is currently
adopting a so-called network densification approach, which
involves the deployment of a large number of base stations
(BSs), to increase the network coverage and provide higher
throughput to the users.This however results in higher energy
consumption, which is expected to considerably contribute
to carbon emissions into the atmosphere [8, 9]. In order to
minimize the carbon footprint of 5G MNs, we advocate for
the integration of energy harvesting (EH) into future base sta-
tions (especially small cells). This brings the notion of energy
harvesting BS (EHBS) and energy harvesting-powered MEC
(EH-MEC) systems to reduce the dependence of MNs on the
electricity grid. Besides helping to minimize the operational
expenses (OPEX), in terms of annual electricity bills, the
use of renewable energy will help extend network coverage
to areas where there is insufficient electricity, or to assist
during the case of a natural disaster scenario, where the
conventional electricity grid may become unavailable. At the
same time, the deployment of EH technology (batteries, solar
cells, etc.) entails a certain capital expenditure (CAPEX) and
whether or not this is convenient depends on the return
of investment time. Nevertheless, current trends in battery
and solar module costs are promising and suggest that in
the future this equipment will be cheap enough. Further
discussion and results on these aspects can be found in [10].

We stress that energy efficiency is a key consideration
in future networks and can be addressed as follows. First,
the network procedures have to be streamlined and carefully
orchestrated, and here is where virtualization technology
(also entailing new architectural designs) will play a crucial
role. This will allow for a more energy efficient network
operation. Second, a modern and flexible management can
be combined with EH technology to reduce the carbon
footprint of communication networks. In this paper, current
softwarization technologies, architectures, and trends are
reviewed with a special focus on energy efficiency.

The rest of the paper is structured as follows. In Section 2
we discuss the existing EPC architectural proposals, analyz-
ing the following virtualization techniques: (A) groupingEPC
functional entities (Section 2.1), (B) NFV-enabled network
clouds (Section 2.2), (C) network slicing (Section 2.3), and
(D) mobile edge computing (Section 2.4). In Section 3,
we discuss the use of machine learning, data mining, and
context-awareness within softwarized 5G networks. In Sec-
tion 4, we outline some challenges and open issues related to
the EPC andMEC proposals in the state of the art and, lastly,
in Section 5 we provide some final considerations.
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2. State-of-the-Art EPC
Architectural Proposals

The EPC network consists of a number of NFs, all intercon-
nected through an Internet protocol (IP) infrastructure to
provide packet data services to the access networks.The EPC
carries traffic between E-UTRAN Node Bs (eNBs for short)
and the Internet on behalf of the user equipment (UE) using
specialized hardware. This includes the packet data network
gateway (PGW), which is responsible for IP address alloca-
tion for the UEs, as well as for QoS enforcement and flow-
based charging, according to rules from the policy control
and charging rules function (PCRF). It is also responsible
for the filtering of downlink user IP packets into different
QoS-based bearers. The serving gateway (SGW) serves as
the local mobility anchor for the data bearers when the UE
moves across BSs. It also retains the information about the
bearers when the UE is in the idle state (known as EPS
connection management) and temporarily buffers downlink
data while the mobility management entity (MME) initiates
paging of the UE to reestablish the bearers. It also serves
as the mobility anchor for interworking with other 3GPP
technologies such as general packet radio service (GPRS)
and UMTS. The MME is the control node that processes the
signaling between theUE and the EPC,while at the same time
authenticating theUEwith the home subscriber server (HSS).
It is involved in the bearer activation/deactivation process and
is also responsible for choosing the SGWfor aUE at the initial
attach time and at time of intra-LTE handover involving EPC
node relocation. The non-access stratum (NAS) signaling
terminates at the MME, which is also responsible for the
generation and allocation of temporary identities to the
UEs. It checks the authorization of the UE to camp on the
service provider’s public land mobile network (PLMN) and
enforces UE roaming restrictions. The BS, SGW, and PGW
communicate over GPRS tunneling protocols (GTP tunnels),
traversing a network of switches and routers. The PCRF is
responsible for policy control decision making, as well as
for controlling the flow-based charging functionalities in the
policy control enforcement function (PCEF), which resides
in the PGW.The PCRF provides the QoS authorization (QoS
class identifier, QCI, and bit rates) that dictates how a certain
data flow is handled by the PCEF and ensures that this is done
in accordance with the UE’s subscription profile [11].

Traditional EPC networks are complex and rather inflex-
ible, use proprietary (costly) equipment, and incur high
signaling overhead. To overcome these limitations, an archi-
tectural evolution that will permit dynamically scaling the
EPC network functions while adapting to real world needs is
in order. This can be achieved through the use of softwariza-
tion techniques, and such potential can be observed in the
mobile network evolution trends [12]. These are illustrated
in Figure 1, where the changes in the access network and
EPC are shown.The evolution in the access network involved
the change from the use of base transceiver station (BTS)
into Node Bs. The management entity evolved from base sta-
tion controller (BSC) into radio network controllers (RNC),
which then became the MME. The serving GPRS support
node (SGSN), which acts as a gateway to the services within

the network, evolved into the SGW, and the gateway GPRS
support node (GGSN), which acts as a gateway to the outside
world, evolved into the PGW. In the last subfigure on the
right, the data and control planes are decoupled and the con-
trol plane interfaces are handled by SDN controllers (acting
on the data plane, indicated by gray boxes). In addition, the
controllers handle network slices, which consist of a logical
instantiation of a network, and enforce networkmanagement
rules. Also, the BS in this last subfigure possesses energy
harvesting capabilities, which is expected to reduce carbon
emissions from mobile networks.

The EPC architectural evolution has resulted in differ-
ent approaches being proposed by industry and academia
towards a unified goal of having an energy efficient EPC
architecture for 5G networks, thus resulting in fragmented
inputs from the research/technical community. Currently
available architectural designs/proposals somehow overlap in
terms of the functions being softwarized, technologies used,
and so forth. Therefore, it is difficult, if not impossible, to
come up with a coherent system design that can act as a
benchmark for future EPC designs. In this paper, we try
to shed some light on the main architectural approaches,
emphasizing their differences, pros, and cons.

The state-of-the-art EPC architectural proposals for next-
generation networks can be categorized into the following
strategies towards 5G network evolution:

(a) Grouping EPC functional entities (Section 2.1).
(b) Using NFV-enabled network clouds (Section 2.2).
(c) Network slicing (Section 2.3).
(d) Mobile edge computing (Section 2.4).
These strategies are discussed in greater detail in the

following subsections.

2.1. Grouping EPC Functions. Virtualization in the EPC can
be enabled by grouping the EPC network functional entities
into different segments to attain less control, signaling traffic,
and less congestion in the data plane [16, 17]. This can be
achieved by integrating the PGW with the SGW and place
them into a controller. In [16, 17] the MME is migrated
with the home subscriber server (HSS) front-end (HSS-FE).
The HSS-FE is an application that implements all the logical
functionalities of the HSS but does not contain the user’s
information database. It requests the user information from
the user-data repository (UDR, the central user information
database) and stores these data temporarily in its cache
memory. In this way, authentication and authorization are
processed internally, without performing any data transmis-
sion through the network. The PGW and SGW are migrated
into one virtual machine (VM) or into one virtual network
function (VNF), to minimize the number of nodes involved
in the data plane chain. Furthermore, the UDR, the online
charging system (OCS), and the offline charging system
(OFCS) are migrated into the PCRF. The idea behind this
migration is that the PCRF requests user information in order
to generate the required policies for each established bearer,
and thus information exchange is minimized resulting in low
latency for policy function generation.
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Figure 1: Illustration of the mobile network evolution trends enabling network softwarization [12].

The two approaches that we describe next [17, 18] both
group some of the EPC functionalities, although in different
ways.The SoftCell architecture in [18] involves disaggregation
of the PGW, SGW, and MME functions and then partially
implementing them in a distributed manner, as VNFs in
the controller and switches. The PCRF and PCEF, usually
implemented in the PGW, are grouped and implemented in
the controller, while the packet classification is performed by
the switches.The controller also performs theMME functions,
in its traffic management layer. The data bearers assignment,
usually performed by the SGW, is implemented by the
controller in advance, as soon as the UE moves near a new
BS. The architecture introduced in [17] adopts a “one plane
grouping” strategy; that is, the EPC and Radio Access Net-
work (RAN) entities are grouped into one common network
plane, in the presence of controllers deployed in an upper
plane. The network entities are virtualized and deployed in
one plane to achieve efficient interworking, and such allows
independent networks to be reconfigured in a flexiblemanner
and automatically on the same physical infrastructure. These
two architectures are discussed in greater detail next.

The SoftCell architecture [18] consists of softwarized
access switches that perform fine-grained packet classifica-
tion on traffic from UEs located at the EPC network edge.
Then, the controller computes and installs switching rules
that realize a high level service policy, specified based on
the subscriber’s profile. In [18], researchers try to provide
flexible policies in the EPCwithout compromising scalability.
To come up with an efficient EPC design, the factors affecting
the EPC scalability were considered and publicly available
network statistics were utilized. The EPC design consists
of commodity middleboxes (e.g., transcoders, firewalls, and

routers) and switches managed by a controller that supports
flexible high level service policies. It computes and installs
rules in the switches to direct traffic in both directions of a
connection, thus minimizing the use of specialized network
devices. The data traffic is then directed through a sequence
of middleboxes optimized to the network conditions and UE
locations, using the controller. In the data plane, hierarchical
addressing (grouped by BS) and policy tags (identifying
paths through middleboxes) are used in the EPC switches
to forward traffic and the packet classification is pushed to
the access switches, which are located at the EPC edge.There,
fine-grained rules are specified by the controller and applied
to map UE traffic into policy tags and hierarchical addresses.
The SoftCell architecture leverages some properties of the
EPC, that is, by considering that traffic begins at the network
edge. In this way, each BS has a serving access switch (e.g.,
an open vSwitch [19]), located at the edge of the EPC, that
performs fine-grained packet classification, whereas the radio
hardware in the BS is not modified: in fact, SoftCell only
changes how the BS communicates with the EPC, providing
softwarized EPC functional elements.

The EPC architecture proposed in [17] uses SDN, splitting
the network into three planes; (i) application plane, (ii) control
plane, and (iii) forwarding plane. In the forwarding plane,
the EPC coexists with the access network as all the control
functions are moved into the control plane. By doing so,
the forwarding plane consists of virtualized network devices
that perform switching and packet forwarding, according to
the SDN paradigm. To relieve the EPC from traffic load,
NFV is exploited to instantiate network functionalities such
as PGW in the access network, while SDN triggers path
reconfiguration of data traffic. In addition, data caching
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strategies are exploited to minimize the traffic that goes
through theEPC; that is,NFV techniques are used for caching
popular content and store it on the EPC and access network
when the network is idle, thus reducing the pressure in the
data links and SDN controllers. In this way, latency can be
minimized as content is cached locally, and better network
management can be achieved through the use of virtualized
EPC NFs.

Discussion. The proposed architectures [17, 18] differ from
one another. In [17], the networks, RAN and EPC, and the
VNFs are in one plane whereas, in [18], the distinction
between RAN and EPC is maintained, with only the EPC
entities being virtualized. However, both of them use an SDN
controller for network management and policy enforcement,
under different user mobility and traffic load variations.
That is, the infrastructures are deployed with simplified and
virtualized network devices, whose software is decoupled
from the hardware and centralized to the control entity.
Entities such as switches solely take the strategy developed
by the controller and forward traffic to access networks. The
architecture in [17] avails the potential of reducing latency
through traffic offloading and caching in the RAN and EPC
network. An advantage of [18], is the ability to “mix and
match” network devices from different vendors, which is also
possible in [17]. The challenge in [18] is that the centralized
controllermay become a source of bottleneck for the network
operation when the network scales up, due to the fact that all
the control functionalities are pushed towards it. To reduce
this burden, a wireless side of the network introducing the
concept of Cloud-RAN (C-RAN) is proposed in [17], where
the base band unit (BBU) pool has both control and data
forwarding functions, in addition to the controllers deployed
in the control plane. The logically centralized BBU pool has
the network wide view of the RAN and the EPC, yielding
a seamless integration of the wired and wireless parts of
the network. Through collaborative control, contents can be
optimally distributed and stored in diverse devices of the EPC
and the RAN via caching and broadcasting, thus overcoming
the bottleneck problem of [18].

Energy Efficiency. The emergence of a network paradigm
supporting social requirements is one of the aims of 5G.
With softwarization, information centric networking (ICN),
as one of the candidates, can be enabled where in-network
caching can be provided. The content cache server caches
contents passing through the node and then autonomously
selects which contents to cache based on the need of the
mobile users accessing the node, that is, based on the content
request frequency. This approach can reduce the overall
energy consumption within the network, since contents are
cached and stored in close proximity to mobile users. In
addition, in-network caching reduces the traffic (content
transmission) within the network and also facilitates in-
network data processing [14], whereby each network node
carries out some data processing and service provisioning.
This leaves some of the nodes within the network inactive,
thus enabling energy saving procedures (e.g., switching-
off unused nodes). The proposed architecture in [17] can

improve energy efficiency as it allows content caching in the
EPC and the RAN, while [18] does not employ any energy
efficient EPC procedures, except for implementing policies
for data traffic directions, which can also make some of the
middleboxes inactive.

2.2. NFV-Enabled Network Cloud for EPC. The virtualized
EPC on VMware vCloud NFV platform is introduced in
[20] to enable the degree of flexibility that will make it
possible to deploy services closer to the edge, while man-
aging, monitoring, and automatically scaling the heavier
workload. Such flexibility and diversity of the virtual EPC
combinations (availed by theVNFdeployment approach) can
be delivered over the virtual Cloud (vCloud) NFV platform
with lowered operational costs. It mainly abstracts the EPC
network functions, decomposing and allowing them to run
as software instances (virtual machines), on standard servers.
This allows service providers to customize services and
policies to design networks in new ways, to reduce costs and
simplify operations.

Another cloud-based approach that provides all network
and access functionalities is proposed in [21], where the
network cloud utilizes NFV for dynamic deployment and
scaling of the NFs. The key elements in this architecture are
(1) a data-driven network intelligence for optimizing network
resources usage and planning and (2) relaying and nesting
techniques: to support multiple devices, group mobility, and
nomadic hotspots. The EPC is virtualized into three parts,
namely, (i) control plane entity (CPE), which is responsible for
authentication, mobility management, radio resource control
and non-access stratum (NAS), and access stratum (AS)
integration, (ii) the user plane entity (UPE), acting as a
gateway, mobility anchor, and over-the-air (OTA) security
provisioner, and, lastly, (iii) the network intelligence (NI)
plane is for the extraction of actionable insights from big
data, orchestration, or required services and functionalities
(e.g., traffic optimization, caching). The realization of the
network cloud can be achieved by enabling virtual function
instances to be hosted in data centers when needed. The use
of virtualization techniqueswill enable quick deployment and
scalability of CPE and UPE functions. For example, in case of
a natural disaster, with this technology the local data center
is maybe unable to cope with the traffic upsurge; therefore,
additional capacity can be sourced quickly from other data
centers.

Discussion. The proposed architectures [20, 21] both use
a cloud-based approach with NFV platform that enables a
dynamic deployment of edge networks, the scaling of NFs,
network monitoring, and load management. Also, they can
pool capacity of resources when required, intelligently. The
difference between them is that, in [20], only the NFV
platform is available for enabling network services provision
while, in [21], the combination of SDN and NFV is utilized to
provide network control and to host the network intelligence.
The architecture proposed in [20] is commercially available.
The driving force behind such architectures is the use of vir-
tualization tools for instantiating each service when required,
and these tools are discussed in the following.

 6302, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2017/8618364 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



6 Wireless Communications and Mobile Computing

VirtualizationTools. Virtualizationwas introduced to primar-
ily optimize hardware utilization by overlaying one operating
system on top of another. Each of the systems consequently
shares hardware resources to support underlying processes.
The tools that enable virtualization can be categorized into
(i) hypervisors and (ii) docker engine and are discussed next.

(i) Hypervisors.These are functions which abstract or isolated
operating systems and applications from the underlying
computer hardware. This abstraction allows the underlying
“host machine” hardware to independently operate one or
more virtual machines as “guest machines” (also referred
to as “guest VMs”), allowing them to share the system’s
physical computing resources, such as processing time,
memory space, and network bandwidth. A new agnostic
OS is generated to manage the underlying resources. For
example, with a Windows system based hypervisor running
on underlying physical hardware, another system running on
virtual resources can be generated and Linux can be installed
on it. This second OS will be the guest OS. The base OS
(Windows in this example) simply adapts the underlying
physical hardware resources to accommodate the processing
requirements of the guest OS. Since hypervisors sit between
the actual physical hardware and the guest operating system
(OS), they are also referred to as virtual machine monitors
(VMMs). They are usually implemented as a software layer,
for example, VMware vSphere or Microsoft Hyper-V, but
they can also be implemented as code embedded in a
system’s firmware. Other existing hypervisors include Citrix
XenServer (Xen) and Kernel Virtual Machine (open source
KVM). Xen is based on the open source Xen Project [22].
This hypervisor is a bare metal virtualization platform that
has been included in the Linux kernel. It is used for a number
of different commercial and open source applications, such
as server virtualization, infrastructure as a service (IaaS),
desktop virtualization, security applications, and embedded
and hardware appliances. KVM is another hypervisor built
into the Linux kernel, that is, a special operating mode
of QEMU (which is a generic and open source machine
emulator and virtualizer) that uses CPU extensions for vir-
tualization via a kernel module. The kernel module provides
the core virtualization infrastructure and a processor specific
module. Using KVM, one can run multiple virtual machines
running unmodified Linux orWindows images. Each virtual
machine has private virtualized hardware: a network card,
disk, graphics adapter, and so forth. The kernel component
of KVM is included in mainline Linux, as of 2.6.20.

Another fundamental concept is that of a virtual machine
(VM), which is an operating system (OS) or application
environment that is installed on software, which imitates
dedicated hardware. Each VM includes a full copy of an
operating system, one or more apps, necessary binaries
(Bins) and libraries (Libs) taking up tens of GBs. The
hypervisor allows multiple VMs to run on a single machine.
In Figure 2(a), we observe that each VM has a virtual OS of
its own and the hypervisor provides the VMs with a platform
to manage and execute multiple guest OS and allows host
computers to share their resources among them. A drawback
of VMs is that they can be slow to boot.

(ii) Docker Engine. Docker is an open platform, or a software
technology written in the Go programming language, and
takes advantage of several features of the Linux kernel to
deliver its functionality, for developing and running appli-
cations. It runs natively on Linux systems, where it uses
Linux kernel features like namespaces, to provide isolated
workspace, and control groups (cgroups), a technology
that limits an application to a specific set of resources, to
create a loosely isolated environment called a container, thus
avoiding the overhead of starting and maintaining VMs.
Mainly, it provides tooling, that is, software packaging tools
that can package an application and its dependence in a
virtual container that can run on any Linux server, and a
platform to manage the containers lifecycle.

Containers are abstraction units for isolating applications
and their dependence, that can run in any environment.
They can run on the same machine, on top of the docker
engine, sharing the OS kernel with other containers. They
occupy less memory space than VMs, and this allows them
to have a shorter start-up time. Mainly, they enable OS level
virtualization whereas VMs provide hardware virtualization.
However, they are similar as they also have a private space
for processing, executing commands as root, and making use
of private network interface and IP addresses. The main dif-
ference between containers and VMs is that containers share
the host system’s kernel with other containers, and also they
do not bundle a full OS, instead only libraries and settings
required to make the software work are needed. Figure 2(b)
shows that containers only package up the user space and not
the kernel or virtual hardware, like aVMdoes. Each container
gets its own isolated user space to allow multiple containers
to run on a single host machine. We observe that the entire
OS level architecture is being shared across them. The only
parts that are created from scratch are the Bins and Libs.
This makes containers lightweight: by isolating application
environments, they achieve better resource utilization than
hypervisors. Each application uses its own set of resources,
without affecting the overall performance of the server. They
are therefore ideal for enterprises which concurrently run
multiple processes on the same server. Despite the process
isolation and lightweight character, containers are less secure
and more vulnerable compared to hypervisors. By only
accessing a couple of namespaces through libcontainers,
the default container format, and leaving out the rest of the
kernel subsystems, it is possible to crack and hack through
the OS. In [14, 15], a dockerized EPC is presented as one
architecture utilizing containers as a virtualization tool.

Discussion. NFV is envisioned to be a key virtualization
technology in 5G. One of the challenges to be faced by
developers is the selection of the appropriate virtualization
tool to use when developing the virtualized NFs platforms,
that is, either hypervisors or the docker engine, or to simply
let VMs and docker containers coexist in the same platform;
see [13]. Currently, the most commonly used architecture is
the one shown in Figure 2(a) (key platforms include VMware
vSphere, Microsoft Hyper-V, Citrix XenServer, or KVM).
However, the future looks different; docker will probably
coexist with hypervisors as the use of containers, running
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Wireless Communications and Mobile Computing 7
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Figure 2: An illustration showing the structure of virtual machines on top of the hypervisor (a) and containers on top of the docker engine
(b) [13].

on top of the docker engine, speeds up innovation, requires
less space and can be deployed across different platforms
and hypervisors, with VMs on top, and allows running
multiple applications on multiple VMs. The combination
of the virtualization tools can be beneficial as operators
cannot be restricted to one infrastructure; instead they can
simply develop applications once and then run them on any
infrastructure [13].

Energy Efficiency. The proposed architectures [20, 21] both
make use of NFV and cloud computing platforms. These
technologies avail the possibility of scaling down resources
when the demand is low and schedule resources based
on demand; that is, resources can be outsourced through
infrastructure as a service (IaaS) businessmodels during peak
hours. The dynamic scaling of resources avails opportuni-
ties for improving energy efficiency (EE) within the cloud
platform, as presented in [21]. Also, it allows the network
cloud to collect user-centric, network-centric, and context-
centric data. Through this information centric approach,
intelligent algorithms, mainly network optimization tools,
can be applied to the aggregated data in order to provide
useful input for network planning and resourcemanagement,
thus improving EE.

The virtualization tools used can also play a role towards
EE improvement within the network. For example, the
hypervisor can report resource usage to the orchestrator in
order to trigger system automated sleep mode states and
also to implement policies provided by management and
orchestration, which includes powermanagement and power
stepping [23]. Since VNFs provide on-demand access to a
pool of shared resources, where the locus of energy con-
sumption for components is the VM instance where the VNF
is instantiated. Therefore, the NFV framework can exploit
the potential possessed by the virtualization technologies in
order to reduce the energy consumption in future networks.

2.3. Network Slicing. Supporting the separation of the control
and user plane functions is one of the most significant
principles of the 5G EPC architecture. With the advent of
virtualization (NFV, SDN, and cloud technology), it is now

possible to build networks in a more scalable, flexible, and
dynamic way. The concept of flexibility applies not only
to the hardware and software parts of the network, but
also to its management. For example, setting up a network
instance that uses different network functions optimized
to deliver a specific service needs to be automated. With
virtualization technology, resources can be isolated resulting
in a so-called network slice, which refers to an isolated set of
(programmable) resources to enable network functions and
services. With network slicing, one physical network is sliced
intomultiple virtual ones, each architected and optimized for
a specific service or application.

The dockerized EPC architecture using the FLARE node
(an open deeply programmable network node architecture)
is introduced as a network slicing architecture example in
[14, 15, 24]. The EPC is decomposed into network slices, each
implementing a network service as illustrated in Figure 3.
In this figure, there are a number of FLARE control slices
consisting of the virtualized MME, linked with the HSS and
SP-GW (integrating SGW and PGW) hosted in a docker
platform (a software container platform). In the data plane,
only the SP-GW is present for data management for each
FLARE slice. This architecture provides the EPC NFs in
each network slice. In [24], the FLARE architecture was
used to resolve technical challenges that include ease of
programming, reasonable and predictable performance, and
the isolation among multiple concurrent logics for a faster
and modular programming of the SDN data plane. To
facilitate programming, the Toy-Block networking program-
ming model [25] has been introduced and furthermore, the
combination of computational resources was introduced to
obtain a reasonable and predictable performance. To improve
performance, a lightweight resource virtualization technique,
called resource container for isolation of multiple logics, was
proposed. The cores were partitioned into groups, each
with a resource container. The isolation used virtualization
techniques.

Another architecture based on network slicing, called
mobile-central office rearchitected as a datacenter (M-
CORD), has been proposed [26]. M-CORD is expected to
deliver the agility of a cloud provider, also featuring software
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8 Wireless Communications and Mobile Computing

FLARE Slice 1 (c-plane) FLARE Slice 2 (c-plane)

Docker Docker
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Docker

FLARE Slice 2 (d-plane)FLARE Slice 1 (d-plane)
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Figure 3: Dockerized EPC on FLAREnode [14, 15].The slice “slicer” works as a controller to distribute packets to an individual slice according
to the input/output port the packets use or to the tag information that they may contain. PCI means “peripheral component interconnect”
and acts as an interface between the data and the control slices.

platforms that enable rapid creation of new services. Its
objectives are to enhance resource utilization, especially in
terms of radio spectrum, to provide customized services and
better QoE to customers and to offer an agile and cost-
efficient deployment through the virtualization of the EPC.
The EPC consists of sliced SGW for the user plane, and the
control functions of the EPC are hosted in an SDN controller.
The data plane of the EPC is expected to be connectionless
(no GTP), and the signaling side S11 (MME to SGW) will
be extended to an SDN controller. However, the S1-MME
interface (eNB to MME) will be largely intact. It is expected
that this architecture will involve the integration of vendor
solutions within the CORD service framework. Such include
the use of ONOS (for “open network operating system”) as an
SDN controller, through the development of an SGW/PGW
application in ONOS. The role of such application will be
to map restful APIs from the MME and the application of
Open Flow rules towards a Radisys SGW/PGW data plane
component.

Discussion. End-to-end (E2E) network quality is an impor-
tant consideration when using SDN technology. E2E QoS
depends on the radio access, the EPC, and the wired part
of networks, and 5G systems should have the capability to
tailor it by organizing functions and connectivity so as to
satisfy the system requirements, for example, mission critical
applications. Mobile users are supposed to be satisfied with
the quality, when using any applications anytime, anywhere.
Considering the wide variety of application domains to be
supported by 5G, it is necessary to extend the concept of

slicing to cover a wider range of use cases than those targeted
by the current SDN/NFV technologies and to also address a
number of issues on how to utilize slices created on top of
programmable software defined infrastructures. There exists
a gap between current SDN technology developments, as
noted in current technology reports [14], and the function-
alities that are required by 5G networks for E2E quality. For
example, current focus is towards coming up with robust
SDN controllers for network control and rules enforcement
in networks, that is, reducing bottlenecks, while the use of
SDN controllers to manage network slices is overlooked, yet
management of network slices, under latency constraints,
is one of 5G requirements whereby each slice needs to be
controlled in an efficient way for service provision, based on
the quantity of data and quality requirements. Apart from
slice(s)management, even the radio side of the network needs
to be managed for resource reservation, especially in cases of
disasters, thus guaranteeing end-to-end quality. In [14], the
slice “slicer” acts as a controller for packet distribution not
for slice(s) management; thus SDN technology advancement
must consider slice(s) management.

The observed similarities in the proposed architectures
[14, 26] are that both of them reorganize the network into
network slices, respectively, consisting of data and control
planes. Also, they have controllers which perform different
functions; the slice “slicer” works as a controller to distribute
packets to an individual slice in [14], whereas the SDN con-
troller in [26] performs the control functions. The difference
between them is that the MME and the integrated gateway,
SP-GW, are implemented in the docker platform for control
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Wireless Communications and Mobile Computing 9

purposes [14], whereas, in [26], the controller manages the
network as it performs control functionalities.

Energy Efficiency. In future mobile networks, network slicing
is considered as a key in realizing network flexibility [14];
therefore it is imperative that the RAN and EPC network
works jointly in executing the “extreme flexibility.” Achieving
efficient network flexibility will help to serve devices with dif-
ferent quality of service, through slice isolation and resources
provision. However, network slicing still poses a challenge
as there are many dimensions and technologies included in
this paradigm [27]. The challenges include RAN and EPC
reconstruction to support end-to-end network slicing, slice
management, and cooperation with other 5G technologies
[27]. In addition, focus towards energy efficiency in network
slicing is still lacking, as observed in [15, 26], yet resources
for the network slices can be set up based on various service
characteristics, for example, bandwidth demand and latency
demand, over the same or shared infrastructure. The slice
manager, if present, can be able to allocate resources per slice
and also trigger energy savings strategies in unused resources.
Since each slice provides customized connectivity and also
runs on the same, shared infrastructure, by employing “soft
resource scaling” (allocating reduced time for each resource
usage, by each VM) [28] resource usage can be minimized
thus improving energy efficiency within the EPC.

2.4. Mobile Edge Computing. The evolution towards 5G is
expected to bring about several new ways of designing net-
works, so that the promise of always on, high-bandwidth, low
latency, massive networks will become a reality. The concept
of MEC is one such evolution and it is based on NFV. MEC
makes use of the large amount of power and storage space
distributed at the network edge, which can yield sufficient
capacities to perform computation-intensive and latency-
critical tasks on mobile devices. Mainly, it aims at enabling
cloud computing capabilities and information technology
(IT) services in close proximity to end users, by pushing
computation and storage resources towards the network edge
(i.e., placing computing and storage resources in the access
networks to improve delivery of content/applications to end
users). The direct interaction between mobile devices and
edge servers through wireless communications brings the
possibility of supporting applications with ultra-low latency
requirements, prolonging device battery life and facilitat-
ing highly efficient network operations. This technology is
expected to enable operators to better adapt traffic to the
prevailing radio conditions, optimize service quality, and
improve network efficiency [29].

MEC uses a virtualization platform to run applications
at the mobile network edge and this can turn a cell/BS into
a computation hub. Some of the computing functions that
formerly only existed in the EPC are now moved out to
the network edge. By disaggregating network services and
functions out of the EPC, significant savings in cost, latency,
round trip time (RTT), traffic download time, physical
security (no need for security provision to facilities as the
network consists of virtualized network devices), and caching
efficiency [29] can be attained. Energy efficiency is a major

concern in the design of 5G systems and, as such, is also a
prime concern for the design of MEC architectures [30].

In the following subsections, we provide an overview of
(1) the reference ETSI MEC architecture, (2) the integration
of renewable energy into MEC systems, (3) the optimization
of MEC systems, and (4) we provide a discussion of relevant
use cases.

2.4.1. ETSI MEC Reference Architecture. MEC is a founda-
tional network architecture concept which is expected to help
5G networks deliver the significant capability gains that are
required by IoT, enhanced mobile broadband, virtual reality,
self-driving vehicles, andmany other applications. It will also
provide a set of services that can be consumed by applications
running on the MEC platform. These services will offer real
time network information such as radio conditions, network
statistics, and the location of connected devices to the run-
ning applications. Different architectures are being proposed
for future 5G MEC networks. In [31], a MEC NFV-based
architecture is proposed and new APIs are opened, availing
hosting environments for bothmobile operators and external
players, which can make use of the access network related
information for their services. This architecture consists of
the infrastructure plane, the control application plane, and
the management plane. In addition, there is an orchestration
and management plane hosting MECmanagement activities.
The hosting environment consists of hardware resources, a
virtualization infrastructure (virtual computation, storage,
and network resources), and a set of associated management
services for MEC applications. The major components of the
MEC reference architecture [32, 33] are the MEC application
platform, providing infrastructure services, radio network
information services (RNIS, which provides radio network
information systems features), and the user location services
(LOC, which provides UE location features). The services
are hosted on the MEC server deployed in proximity to the
BSs or colocated with it. Through the RNIS function, the
radio network data and other real time context information
can be exposed to authorized MEC network management
applications. The MEC platform functions and applications
are linked with the traffic offloading function (TOF), which
is located at the user’s data plane. The TOF is responsible
for service prioritization and routes selection, policy-based,
and user-data stream to and from applications. The overall
view of the deployed MEC servers is maintained by the
mobile edge orchestrator, which determines the optimum
location(s) for instantiating a MEC application, and the vir-
tualized infrastructure manager (VIM), which is responsible
for resource management of the virtualized infrastructure.
In the orchestration and management plane, an additional
manager is introduced, which is dedicated to managing the
MEC platform, including its services and the respective APIs.

An optimal deployment ofMEC servers is key [34].There
are several options where the MEC server can be deployed
within the network edge, and the ETSI ISG specifies that the
MEC platform can either be part of eNB or be run on an
external server that can be deployed between the eNBs and
the EPC. Such approach allows different vendors to develop
applications and deploy them within the access network.
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10 Wireless Communications and Mobile Computing
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Figure 4: MEC-based network design with energy harvesting capabilities.The electromechanical switch (SW) is responsible for selecting the
appropriate source of energy for powering the base station (BS) and the MEC server, if they are colocated, or only powering the BS, if they
are not colocated.

To minimize latency, the MEC platform can be placed
inside the BS as it is the first connection point for the mobile
user. When considering colocated BSs, from one mobile
operator, it may be beneficial to place the MEC platform at
an aggregation point, a point within range to a set of BSs,
as this can centralize resources and avails BS management
without incurring significant amount of latency. The most
viable MEC-based network design, in the mobile operator’s
network, is shown in Figure 4. There, the MEC server is
placed between the base station (EHBS in the figure) and the
EPC. The MEC platform should be transparent to the GTP
protocol for IP packets encapsulation and decapsulation, after
MEC services have been provided to the user via the locally
hosted MEC applications, that is, the applications hosted by
the MEC platform located in proximity to the BS and mobile
user.The control plane is SCTP-based, S1-MME, and the user
plane is GTP-based, S1-U. Mainly, the MEC server(s) host
the applications (App) and MEC enabled-services, which
are accessible via the application programmable interfaces
(APIs). The access to the Internet (and operators services)
is via the SGi interface located between the EPC (present
in the MEC server as an EPC application, “EPC App”) and
the Internet, and the radio access is via the S1 interface.
In Figure 4, an energy harvesting enabled-BS is shown,
emphasizing the role of renewable energy for the energetic
self-sustainability of futuremobile networks (see also the next
subsection “energy harvesting”).

A new functional architecture that is worth mentioning
is proposed within the COMBO project [35], where a new
element called the universal access gateway (UAG) is intro-
duced. The EPC gateways (SGW/PGW) are moved into the
UAG. They are located in a central office closer to end users
so that they can access the national IP network and reach the
Internet sooner, thus enhancing latency and saving transport
resources. By placing themobile gateways closer to end users,

all traffic that does not need specific treatment is delivered
locally to the operator IP EPC network. A proper functional
integration is of great importance to offer virtual resources
at the mobile edge, while effectively adapting to the actual
network load.

2.4.2. Energy Harvesting. EH is orthogonal to what we have
discussed so far. In fact, up to now we have elaborated
on increasing the efficiency in the network management,
whereas the aim of energy harvesting is to supply network
apparatuses, reducing their carbon footprint. Current mobile
systems are powered using grid energy, which inevitably
emits large amounts of carbon into the atmosphere. Recently,
off-grid renewable energy sources such as solar radiation and
wind energy have emerged as viable and promising sources
for various IT systems due to the advancement of energy
harvesting techniques [36, 37]; see Figure 4. where the BS is
powered by either solar or wind energy. The authors in [38]
observed that solar energy ismore suitable forworkloadswith
high peak-to-mean ratio (PMR), while wind energy fits better
forworkloadswith small PMR.This avails the development of
proper strategies for renewable energy provisioning for edge
servers with the objective of eliminating any chance of energy
shortage. This can be achieved by selecting the appropriate
renewable energy source at each time instance taking into
account current and forecast traffic loads. Since MEC servers
are small-scale data centers, each of which consumes less
energy than conventional cloud data centers, it is expected
that powering theMEC infrastructure with renewable energy
sources will reduce the overall network energy consumption.
This is important, especially in light of the dense deployment
pattern that is foreseen in 5G systems. A challenge to be
addressed for renewable energy powered MEC systems is the
green-aware resource allocation and computation offloading,
which should take the renewable energy constraints into
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Wireless Communications and Mobile Computing 11

account (e.g., energy availability, battery charge/discharge
cycles). Also, with renewable energy sources, the energy side
information (ESI), which indicates the amount of available
renewable energy, will play a key role in decision making for
storage and computing applications. MEC devices may also
be energized throughwireless power transfer (WPT) [39, 40],
when the renewable energy is insufficient. WPT may be
exploited for computational offloading in mobile devices [41]
or data offloading for MEC in future networks [42, 43]. We
stress, however, that the energy transfer efficiency of current
WPT techniques is still very low, and that new methods are
required to increase it and make WPT appealing in practice;
see [44].

2.4.3. MEC Optimization. MEC servers can allow their
resources to be jointly managed for serving a large number
of mobile devices. However, as the network size increases
the resource management becomes a large scale optimiza-
tion problem with respect to offloading decisions, radio,
and computational resource allocation variables. For energy
efficiency reasons, it is desirable that MEC systems make use
of low complexity optimization algorithms with moderate
signaling overhead. Despite recent advancements in large
scale optimization algorithms for radio resource manage-
ment, these may be difficult to be verbatim-applied due to
the combinatorial and nonconvex nature of computation
offloading problems, which thus require ad hoc solutions
[45], able to handle huge traffic volumes. In the following
paragraphs, some optimization examples are discussed.

(1) Optimization in MEC Systems Using Renewable Energy.
The use of renewable energy inMEC systemswas investigated
in [46, 47], focusing on EH powered MEC servers and EH
powered mobile devices. In [46], a reinforcement learning-
based online algorithmwas used to enhance decisionmaking
for EH powered MEC systems in determining the amount
of workload to be offloaded from the edge servers to the
central cloud, as well as the processing speed of the edge
server, taking into account the congestion status in the EPC,
the computation workload, and the ESI. Furthermore, a
Lyapunov optimization technique based on channel state
indicator (CSI) and ESI was used to obtain dynamic offload-
ing policies for EH powered mobile devices [47]. Both opti-
mization techniques, reinforcement learning (online) and
Lyapunov optimization based, were used to study small-scale
MEC deployments, without taking into account large scale
networks. Further work shall be carried out to scale up and
this still poses a challenge to researchers as data demand
increases. Robust optimization algorithms for handling large
scale deployments of MEC servers have to be developed
under the ESI constraint. In [48], a new energy efficient
design principle for the BS (colocated with the MEC server)
to minimize its energy consumption, while ensuring self-
sustainable computation at the mobile devices (through
WPT), is investigated using the Lagrangian duality method.
A multiuser MEC system consisting of a multiantenna access
point and multiple users is assumed. Each mobile device is
equipped with two antennas, one for WPT and the other
for computational offloading. The antennas operate over

different frequency bands such that WPT and computational
offloading can be performed simultaneously, without mutual
interference. Users rely on their harvested wireless energy
to execute the latency-sensitive computational tasks either
via local computing or (possibly partial) offloading to the
MEC server. The optimal policy under energy harvesting
constraints is obtained leveraging the Lagrange duality [49]
and the ellipsoid methods [50].

(2) Optimization for MEC Offloading. During the MEC com-
putation offloading process, the energy consumption for
processing the task involves the energy spent by the mobile
device to transmit the data to the MEC server and that
involved in the computation at the server side. To minimize
the system energy consumption under latency constraints, a
three-stage energy optimization scheme, that is, (i) mobile
device classification, (ii) priority determination, and (iii)
radio resource allocation, is proposed in [43]. This algo-
rithm involves priority assignment and classification type
for mobile devices to reduce the problem complexity. The
problem is formulated as a special maximum cardinality
bin packing program [51], where mobile devices choose
their task allocation mode through binary strategies, tak-
ing into account the transmission interference with other
terminals and the limited radio resources. The obtained
numerical results demonstrate that the approach increases
the energy efficiency of the MEC system. A centralized two-
stage resource allocation optimization scheme is proposed
in [41] with the objective of minimizing the mobile energy
consumption in a MEC offloading system using TDMA and
OFDMA. The MEC server is assumed to have knowledge of
the local computation energy consumption, of channel gains
and fairness indices for all users. The resource allocation is
formulated as a convex optimization problem,whose solution
is obtained through dual-decomposition coupled with a
relaxation constraint on the cloud capacity.

(3) Optimization for Mobility Management in MEC Sys-
tems. Conventionally, mobile services are provided to users
through the operators EPC network; that is, the traffic goes
through the EPC from the Web server(s) hosted within the
Internet, while mobile users can move across radio cells.
However, mobility management in MEC systems poses a
significant challenge due to the fact that the systems will
be implemented in the heterogeneous networks (HetNets)
architecture consisting of multiple macro, small cell, and
eNBs. Thus, user’s movement will result in frequent han-
dovers among these radio access technologies (RAT). This
challenge implies that the way in which mobility is currently
handled may no longer be appropriate in MEC systems, and
some rethinking about how it can be best handled at the
network edge is in order. In [52], a mobility aware offloading
decision maker namedMob-aware is proposed. This scheme
estimates future network changes based on typical user’s
mobility patterns. In this paper, it is observed that user
mobility possesses some regularity [53], and this can provide
relevant information on what kind of changes can occur
within the network in the near future. For example, it is
possible to predict a sequence of networks to which users

 6302, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2017/8618364 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



12 Wireless Communications and Mobile Computing

will be connected and thus apply some sort of predictive
control policy in making offload decisions. The authors of
[53] developed amobility patternmodel and then used trace-
based simulation with real log data traces from 14 Android
users to validate the mobility regularity. Along the same
lines, in [54] user mobility patterns and cloudlets admission
control policies were investigated, and the minimization
problem for computation and offloading costs was modeled
using Markov decision processes (MDP). In [55], the contact
patterns regulated by mobile devices mobility were exploited
and opportunistic computation offloading strategies were
derived using convex optimization techniques. To maximize
the edge computation performance for a user, while keep-
ing the user’s communication energy consumption below
a certain threshold, a user-centric mobility management
scheme exploiting Lyapunov optimization [56] and multi-
armed bandits [57] has been proposed in [58]. Based on these
optimization techniques, an online algorithm was developed
by considering user-side state information (user location,
candidate BS, and workload rate) and BS-side state infor-
mation (background workload, maximum service rate, and
uplink channel conditions). The overall scheme is online and
was compared against an oracle-based look-ahead algorithm,
which has full knowledge of the system state information.The
performance of the online algorithm is satisfactory, providing
optimal delay performance when the energy constraint is
large and achieving a tradeoff between optimal delay and
optimal energy consumption otherwise, while still satisfying
the energy budget constraint.

2.4.4. MEC Use Cases Scenarios. There are several use cases
that will greatly benefit from pushing MEC towards the
edges of the network, into small cells, Wi-Fi access points,
media gateways, and even extending edge computing to
user devices themselves. The benefits of edge storage or
computation include low latency, traffic optimization, agility
and adaptability, and context-awareness. In combinationwith
visibility into prevailing radio conditions via theMEC’s RNIS
function, applications can adapt content delivery in real time
to ensure an adequate QoE to the end users [32]. Some of the
leading use cases are discussed next.

(1) Radio Access Network- (RAN-) Aware Content Optimiza-
tion. Video on demand is one of the services that constitutes
half of the mobile network traffic and expected to be 82% of
all consumer Internet traffic by 2021, up from 73% in 2016
[59], while at the same time the available network capacity
varies by an order of magnitude within seconds, as a result
of fluctuations in the radio channel condition. In the case of
rapidly varying channel conditions, the transmission control
protocol (TCP) may not be able to adapt fast enough, leading
to underutilization of radio resources. To overcome this prob-
lem, researchers in [29, 32] proposed to use MEC technology
to inform the video server of the optimal bit rate to use given
the channel state conditions. The idea behind this strategy is
to make use of analytics applications to estimate the through-
put at the radio downlink interface for a user and then use
packet headers to convey that information to the video server,
so that it can adapt the stream quality accordingly, at runtime.

(2) Edge Video Orchestration. From the traffic characteristics
observed in [60], it is observed that, during the time of a
big event, some of the BSs are underutilized. Thus, large
public venues are good candidates for MEC, especially where
localized venue services are important in exchange for BS
energy savings within the network. In this use case, the
video from the big event, for example, a soccer or baseball
match, can be served to on-site consumers fromaMEC server
running an appropriate application located, for example,
within the stadium premises. This type of service can be
linked with a dedicated RAN deployment at the venue such
that MEC servers can be colocated with RAN controllers
and the backhaul equipment. Edge orchestration requires that
the recorded video be locally stored, processed, and directly
delivered to the users at the event without backhaul connec-
tion to a centralized EPC. This enables the virtualization of
the EPC functions in the edge servers for fast data delivery.

(3) Geolocation. The availability of geolocation applications
in mobile devices can enhance device tracking for service
delivery as Geoanalytics application hosted in the MEC
server can make use of the real time information provided
by the network about the direction and location of the
mobile devices. Such MEC applications will enable location
based services for enterprises and consumers, for example,
in venues, retail locations, and coverage areas where GPS
coverage is not available. Moreover, geolocation can assist in
monitoring the health of individuals while on transit and in
case of emergency the device can send a report signal to the
nearest MEC platform for emergency assistance.

Energy Efficiency. To address power management challenges
in the context of virtualized data centers, either large ormicro,
the authors in [28] proposed a new power management tech-
nique called “soft scaling,” in addition to “hard scaling”where
the processor frequency is either scaled down/up depending
on the workload [61]. The idea behind soft scaling is to
mimic hardware scaling by allocating reduced time periods
for resource usage by each VM, using a VM scheduler. A
new architecture is presented by the authors together with
a two-tier policy approach, local and global policies, to be
applied on the available resources within the virtualized
data center. At global level, the system is responsible for
coordinating VMmigration (e.g., live migration), where VM
migration refers to a mechanism for migrating one VM
from its local server to another target server, within the data
center. The process at local level involves performing actions
corresponding to resource management procedures enforced
by the controller. From the obtained results in [28], it is
shown that the combination of hard and soft scalingmay yield
better energy savings. Nonetheless, it has to be noted that
the VMs are unaware of the power quantity they consume,
due to lack of power metering capabilities in virtualized
platforms. To provide visibility into VM power consumption,
the authors in [62] propose a mechanism for VM power
metering. They infer energy consumed from resource usage
by each VM and then develop individual system component
power models. From the obtained results, it is observed
that hard scaling is not suitable for virtualized environments

 6302, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2017/8618364 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Wireless Communications and Mobile Computing 13

since it affects the performance of all running VMs in the
server.The authors advocate for VMs power capping in order
to eliminate undesirable “noisy neighbors effect,” which is
prevalent in cases where sufficient isolation is lacking. In [63],
the authors propose an online algorithm, based on Lyapunov
optimization, for reducing the operational cost and satisfy-
ing carbon neutrality, within a data center, without future
workload information. In this work, the server is allowed to
autonomously tune its processing speed and to decide on the
amount of workload it can compute per time slot. Despite
the efforts made towards reducing power consumption in
data centers, as presented in [28, 61, 62], new management
approaches are required for handling energy consumption in
computing platforms as virtualization technology evolves, in
addition to the advent of MEC and ultra dense networking
(UDN).

With MEC being part of 5G network plans, energy
efficiency is also important in such computing environments,
as the microplatforms host virtualized mobile functions, and
the edge devices are empowered with computing and storage
capabilities to serve user’s requests locally. This requires edge
devices tuning and soft scaling the VMs running on top
of the hypervisors in order to improve energy efficiency in
virtualized platforms. In addition, the dense deployment of
MEC servers requires redesigning energy efficient procedures
as with edge computing BSs will provide computing services
apart from radio access services. In [64], the authors try to
address the issue of incorporating MEC into dense cellular
networks, where each small cell BS is considered to have a
computing platform colocated with it, and then propose an
online algorithm for jointlymanaging offloading andBS sleep
modes decision making, while keeping energy consumption
low. Furthermore, they developed a decentralized algorithm
for BS-BS cooperation in order to optimize sleep modes
and offloading decisions. To optimize the average delay cost,
the proposed online algorithm makes use of the Lyapunov
optimization technique.

However, to address 5G use cases in a more energy
efficient way, visibility into power usage is required for devel-
oping power management policies in virtualized computing
platforms.The computing platforms can either utilize on-site
renewable energy, off-site renewable energy, grid power, or
a combination of the sources depending on one’s demands.
Therefore, quantifying power usage can yield better power
management policies in data centers, resulting in energy
efficient 5G networks. The reader is referred to [65] for
a comprehensive review regarding VM power metering,
including server models, sampling, VM power metering
methods, and the accuracy of the methods.

2.5. Summary. Different strategies have been employed in the
design of the afore-discussed softwarized EPC architectural
proposals, as we summarize in Table 1. The main driving
force behind softwarization resides in the creation of more
flexible, fully reprogrammable networks, which are expected
to better handle the diverse and high volume mobile traffic
that is foreseen in future networks. The architectural pro-
posals that were investigated so far involve grouping the
virtualized EPC network functions [16–18] and using NFV

Table 1: Summary of EPC architecture proposals.

Softwarized EPC architectures utilizing SDN and NFV
technologies
(1) Grouping EPC functions [16–18]
(2) NFV enabled network cloud for EPC [20, 21]
(3) Networking slicing [14, 24, 26]
(4)Mobile edge computing [31, 34, 35]

techniques for the EPC cloud [20, 21]. Furthermore, it is
shown that network management can be facilitated by the
logical instantiation of a network, referred to as network slice.
This allows a complete separation of network portions, which
can be specialized to different purposes. Typical network
slices consist of integrated SGW and PGW and the MME
as proposed in [14, 24, 26]. With the emergence of MEC,
virtualized EPC NFs can be deployed in close proximity
to the BSs and this makes it possible to deliver services
within a short space of time. Recently, many delay sensitive
applications are emerging, and this has resulted in an increase
in computation demand, which exceeds what mobile devices
can deliver. Therefore, application-aware cell performance
optimization for each device in real time is desirable, as
this can improve the customer’s QoE. MEC has emerged
to enable data processing locally, at the network edge, and
edge devices are empowered with computing and storage
capabilities to serve user requests by significantly reducing
the transmission latency, as they are placed in proximity of
the end users. While many algorithms are being proposed, a
considerable amount of research still has to be carried out and
MEC optimization strategies need to be further investigated,
compared, and experimented in real systems. In Table 2, we
provide a summary of the strategies proposed for handling
MEC optimization problems. In [41, 43, 46–48, 52, 54, 58]
different strategies have been proposed towards offloading
decisions by taking into account different constraints. The
numerical results in these papers all demonstrate that MEC
can help optimize the energy efficiency of future mobile
networks.

The proposed EPC architectural designs exhibit some
similarities regarding energy efficiency (EE) improvements
for future networks.The shared similarities relate to enabling
sleep modes at low traffic periods [17, 64] and dynamic
scaling of resources within the virtualized domain [21, 28,
61, 63]. In the architecture of Section 2.1, through content
caching [17], at RAN and EPC, EE can be improved as content
transmission and delay, bandwidth usage can be reduced,
and in the architecture of Section 2.2 dynamic scaling of
resources can yield improved energy savings [21]. The lack of
slicemanager in the network slicing architecture (Section 2.3)
as observed in [15, 26] results in less efficient resource
utilization, and if present, efficient resource management
can be achieved over the shared infrastructure as unused
resources can be disabled, thus improving EE in virtualized
platforms. Lastly, in Section 2.4, the combination of soft
[28] and hard [61] scaling can improve the EE, while at
the same time using sleeping modes and cooperation can
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14 Wireless Communications and Mobile Computing

Table 2: Summary of MEC optimization strategies.

Optimization problem Optimization technique
EE computation offloading under tasks delay constraints [43] Maximum cardinality bin packing problem
EE multiuser resource allocation [41] Dual decomposition, partial Lagrange
Joint computation and communication cooperation [48] Lagrange duality, ellipsoid method
Optimal offloading and autoscaling decision making in EH powered
MEC systems [46] Markov decision processes and reinforcement learning

Computation and offloading execution cost minimization for MEC
systems [47] Lyapunov optimization

Mobility aware offloading decision [52] Mobility patterns and heuristics
Minimizing computation and offloading costs under intermittent
connectivity [54] Markov decision processes

Maximizing edge computation performance under energy constraint
[58] Lyapunov optimization and multi-armed bandits

also yield EE improvements [64]. EH can also be integrated
with EE policies, reducing the carbon footprint of network
deployments. Since future EPC architectural designs will
consist of a virtualized infrastructure, understanding VM
powermetering is key towards reducing the power consump-
tion in virtualized data centers. This enables the design and
implementation of new power management algorithms that
improve EE within the network.

3. Machine Learning and Data Mining for 5G

The specific benefits of softwarization, network densification,
and energy harvesting must be combined in a timely and
efficient way, according to the system requirements, in order
to achieve high gains. For these reasons, application of
network optimization tools such as machine learning and
data mining, in combination with context-aware techniques,
is of importance, as they are expected to lower the network
management costs and enable network wide intelligence
and automation, resulting in self-organized networks. These
issues are discussed next.

3.1. Machine Learning. Future MNs are expected to learn the
diverse characteristics of users behavior, as well as renewable
energy source(s) variations, in order to autonomously and
dynamically determine good system configurations. Network
elements are expected to rely on sophisticated learning
and decision making procedures, for an efficient network
management. Machine learning (ML) techniques constitute
a promising solution for network management and energy
savings in cellular networks. According to [66, 67], they
can be categorized as supervised, unsupervised, or reinforce-
ment learning-based. Supervised and unsupervised learning,
respectively, indicate whether the samples from the dataset
are labelled or not. Reinforcement learning instead considers
an agent surrounded by a generally unknown environment,
whose actions are either rewarded or punished according to
a reward/cost model. The final objective is to teach the agent
to solve a certain task. Semisupervised learning is also possible
[68], although less explored: with it, the learner has access
to a small amount of labelled data and to a large number

of unlabeled examples. This is pretty common in practical
cases and, as such, it may eventually become the preferred
learning technology for many application domains.The basic
concept of ML algorithms and the corresponding applica-
tions according to the category of supervised, unsupervised,
and reinforcement learning is presented in [66].

ML can be used in modeling various technical problems
for next-generation systems. For example, the authors in
[46] use reinforcement learning-based resourcemanagement
algorithm to incorporate renewables into a mobile edge com-
puting platform. The algorithm learns on the fly the optimal
policy for dynamic workload offloading and edge server
provisioning to minimize the long term cost, that is, service
delay and operational cost. A significant learning rate was
achieved, from the use of the online learning algorithmwith a
decomposition of (offline) value iteration and reinforcement
learning. Also, an increase in runtime performance was
observed when compared with the Q-learning algorithm. An
ML based routing preplan solution for an SDN environment
is presented in [69], considering (i) flow feature extraction,
(ii) user requirement prediction, and (iii) route selection.
Under the SDN route planning context, the core idea is to
predict the user’s business requirements and then plan ahead
and set up routing policies, with a view of reducing delay
effects. To improve the effectiveness of SDN routing, relevant
features were extracted from the user’s historical data and
then utilized within a semisupervised clustering algorithm
for data classification. Through the extraction of user’s data,
flow, and data plane load features, the flow service demand
forecasts were then predicted using supervised classification.
The network structure was constantly updated by optimizing
the extreme learning method (ELM), and old data was
discarded upon completion of the training. In addition, based
on the flow feature extraction and flow demand forecasts,
a personalized route selection mechanism based on policy
making was introduced (the path computation involves the
use of linear programming and a set of cost functions).

Another learning technique inspired by a behavioral
psychological concept, in the context of machine learning, is
calledmetacognitive scaffolding [70].The concept of scaffold-
ing theory [70], a prominent tutoring theory for a student to
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learn a complex task, is based on the fact that the learning
process of human beings is metacognitive in nature, since
it involves what-to-learn, how-to-learn, and when-to-learn.
Such metacognitive learning approach can be extended to
cellular networks, more especially to remote access networks,
where the network can learn the environment behavior and
then adjust its network configuration with respect to the
observed and forecast changes. The authors in [71] use a
metacognitive scaffolding learning approach for identifying
(predicting) tool failures before they occur, in the context
of manufacturing processes. The conducted experimental
studies, using real-world data, show that the prediction
accuracy can be improved using a low complexity algorithm.
Such technique can be also used in remote 5G sites (off-grid)
to manage the BSs utilizing only renewable energy sources,
solar or wind, under traffic variation and battery constraints.
This can yield better edge network management, in the case
of MEC.

In conclusion, ML is concerned with the design and
development of means that allow network devices to learn.
ML applications in 5G networks involve channel estimation
or detection, spectrum sensing, cell/user clustering, han-
dover among HetNets, energy modeling and prediction, user
behavior analysis (including mobility and traffic profiling/
forecasting), intrusion (fault/anomaly) detection, channel
selection association, and so forth. The family of supervised
learning techniques relies on known labels, it can then be
applied to higher-layer applications such as discovering the
mobile user’s location and behavior.This can assist in improv-
ing the QoE being offered. Unsupervised learning makes
use of the input data to automatically discover patterns,
and it can be utilized for load balancing in HetNets. Lastly,
reinforcement learning relies on a dynamic iterative learning
and decision making process. Its recent evolution consists of
combining it with deep neural networks, leading to the so-
called deep reinforcement learning (DRL), which is becoming
a standard technique in modern learning systems [72]. RL
andDRL can be used for inferringmobile users policies under
unknown network conditions, for example, BS association
under unknown ESI of the BS, in EH networks. The reader
is referred to [66, 67] for a comprehensive review of ML
techniques applied to cellular networks.

3.2. DataMining. Theprocess of turning raw data into useful
information, such as discovering patterns in large datasets, is
referred to as data mining (DM). Due to the large amounts
of high quality data available in the mobile industry, mobile
operators can learn about the behavior of their customers and
develop effective marketing strategies. The datasets that can
be used to this end include call detail records, which contain
detailed information for each call made, and mobility traces,
that is, the sequence of serving cells.

In mobile communication systems, due to the conver-
gence of user behavior, there usually exists some typical
scenarios which exhibit different traffic patterns, for exam-
ple, stadium, campus, special (or big) events, and central
business district (CBD). Therefore, accurate traffic scenario
recognition and analysis are expected to lead to more effi-
cient resource management and better QoE provision. The

authors in [73] used the Louvain method [74] (a widely used
method for detecting communities in large networks) for
recognizing and analyzing the typical scenarios in wireless
cellular networks. In this paper, a modularity optimization
based method is used to discover the community struc-
ture, where researchers utilize previously measured spatial-
temporal wireless traffic datasets. The obtained experimental
results show that the proposed method can acquire satisfac-
tory performance in traffic scenario recognition and analysis,
which can lead to the development of efficient resource
allocation schemes.

3.3. Context-Awareness. A system is said to be context-aware
if it uses context to provide relevant information and/or
services to its customers, where relevancy depends on the
user’s task; see [75]. Context information can be divided into
two groups: (i) network context and (ii) user context. The
former describes the status of the network, for example, type
and position of devices, activity status, energy consumption,
capacity, and current load. Such information is operator-
related and it can be obtained via the backhauling/EPC net-
work. Then, the user context information is the information
on the user profile in terms of mobility and service require-
ments. This information is used for resource allocation, for
example, the position and quality of the available channels to
be allocated to the user [76].

The authors in [76] offer an overview of context man-
agement in future wireless networks, and they focus on
developing energy efficient resource management policies
and using user position information for channel quality
prediction. The considered strategies are based on radio
signal strength intensity (RSSI) estimation obtained through
propagation models and measurements provided by mobile
terminals. To produce accurate RSSI estimates, a fingerprint-
ing approach [77] using power maps is proposed, whereby
shadowing, fading, and non-line-of-sight (NLOS) effects are
captured.Thepowermaps are constructed by storing theRSSI
measurements for a terminal located at a certain position
during an offline phase. To increase the estimation accuracy,
the fingerprints were collected under various environmental
conditions (time of day, weather conditions, etc.). Although
this approach provides accurate databases, it is time consum-
ing and expensive. An improvement to it involves mobile
users in the creation andmaintenance of the power map; that
is, users with positioning capabilities (e.g., GPS) report their
position and RSSI observations to a database.

The collection of data from a limited number of phys-
ical (hardware) and virtual (software) sensors, towards the
development of network solutions, is of great importance.
However, as the number of devices being introduced into
the mobile space increases, it becomes difficult to process
all the data that is collected. Therefore, context-awareness
computing can play a crucial role in deciding what data needs
to be collected and processed, acting as a filtering block. Such
allows for the storage of context information linked to any
piece of data, so that its interpretation can be done easily and
be effective. From the context information, context reasoning
is applied to deduce newknowledge andbetter understanding
based on the available context [78]. The need for reasoning is
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16 Wireless Communications and Mobile Computing

due to the imperfection and uncertainty characteristics of raw
context. In addition, context reasoning techniques can also be
classified, similar to ML, into supervised and unsupervised.
If supervised, training data is first collected and then labelled
according to the expected results. A function that can gen-
erate the expected results using the training data is derived.
Such learning techniques can be used for activity recognition,
for example, public commuters and big events. Unsupervised
techniques find hidden structures in unlabelled data. Since
training data is not used, there is no error or reward signal
involved in the evaluation of a solution. This technique can
be used for situations where possible outcomes are unknown,
such as the detection of unusual user behavior.

Discussion. The network elements of future mobile networks
should be appropriately configured with the aid of learn-
ing techniques. Operators can employ ML to exploit user,
network, and mobile traffic datasets to better understand
their subscriber base and to analyze network traffic for
network management procedures. They may also apply these
approaches to boost services or to identify why users do not
adopt them.

The applications ofML andDM techniques, coupled with
context-awareness, are expected to be a point of strength of
MEC platforms for edge network management. A possible
model for information retrieval and processing is as follows.
Through the RNIS function, the radio network data and other
real time context information can be exposed to authorized
MEC applications for network management purposes. In
addition, the user location services (LOC, which provides
UE location features) can obtain user mobility patterns at
runtime and then share them with authorized applications
for handover management procedures. Having the network
visibility, combined with observed mobility patterns, proper
resource planning can be achieved resulting in an efficient
network. If the network service charge can be effected at the
MEC platform, through a charging function (or application)
linkedwith the TOF, traffic load statistics can be obtained and
then, ML tools can be utilized to understand the traffic pat-
ternswithin the network edge, thus availing adaptive resource
allocation, for example, adaptive BS power transmission for
conserving energy and MEC servers provisioning.

We finally stress that while it is clear that ML, DM, and
context-awareness will be among themost crucial elements of
5G and beyond-5Gmobile networks, the current unavailabil-
ity of mobile traffic datasets obtained from operators limits
the progress towards research aimed at building effective
management algorithms based on them.

Energy Efficiency. Different machine learning frameworks
have been proposed for imitating human intelligence, model
complex relationships between inputs and outputs, extract
statistical structure, and then identify patterns in observed
data [79]. In the context of mobile networks, mainly in the
EPC, network and user behavior prediction is required for
designing efficient management strategies for computational
resource allocation, content caching, improving quality of
service and reliability. Application of network optimization
tools is important towards EE improvement. The context

and social information can be used to enable mobile edge
caching and computing, thus reducing delay and in-network
data traffic (content transmission), as well as improving EE
in virtualized environment through VM consolidation and
switching-off idle servers [46]. To realize optimal strategies
for EE, ML tools can be used to predict users content
request distributions, mobility patterns, and content request
frequency. In addition, they can be used to learn about
computing center workloads variation, and then allocate
computing resources/tasks based on the learned informa-
tion to minimize computation durations. This avails energy
savings opportunities, as user behavior can be learned in
advance, and then allocates the required computational
resources to serve the predicted/inferred quantity of mobile
users. The authors in [80] propose a new architecture
where content popularity is estimated by applying machine
learning tools in the harnessed big data. They also show
how this architecture can enable caching at the edge and
yield backhaul offloading gains, thus leaving some network
nodes inactive. For example, deep spiking neural networks
(SNNs) as part ofML optimization tools are shown to possess
a potential for improving latency and EE through event-
based computation [81]. The authors in [81] introduce a
novel technique for differentiating spike events using error
backpropagation mechanism. In this work, the membrane
potentials of spiking neurons are treated as differentiable
signals and discontinuities as noise at spike time. Using this
strategy, it is shown that the proposed method surpassed all
previously reported results. Despite the promising strategies
towards network learning procedures and usage, the access
to big data, mainly call detail records, is still a limiting factor
towards energy efficient procedures utilizing ML tools.

4. Challenges and Open Issues

Next, we discuss some challenges and open issues that are
key to the development of efficient, self-adaptable, and fully
softwarized networks.

4.1. EPC Related

4.1.1. EPC Control Strategies for BS Energy Management and
Big Data Analytics. The power consumption in BSs can be
minimized by considering strategies that allow tuning their
energy consumption to the network load. For example, by
adapting the transmission power in relation to the offered
traffic demand [82, 83]. This can overcome the radio access
network architecture limitations which is provisioned to
handle maximum expected network load, yet for each BS
the load fluctuates over time due to different usage patterns
and mobility. To enable power transmission adaptation and
load balancing across BSs, traffic load information (operator
mobile traffic datasets) obtained from the EPC can be utilized
to extract relevant demand patterns to design dynamic BS
management mechanisms [84–86]. Optimization based on
mobile traffic datasets from the operator, obtained from
multiple network elements, will make it possible to minimize
the amount of time it takes to steer traffic on a real time basis.
These datasets hold a very promising potential when it comes
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to mobile network system analysis, as they can capture the
traffic dynamics over time and space, at unmatched scales.
Their use is expected to pave the way towards very efficient
and self-adaptable network solutions.

4.1.2. Deployment and Nature of the EPC Control Logic. The
lack of a centralized controller for eNBs is discussed in
[87], and it is noted that the absence of such may result
into an inefficient radio resource control. Virtualization has
introduced the use of a centralized controller exploiting SDN
in the EPC; however, this approach still lacks efficient power
consumption management strategies, as it does not take
into account daily traffic variations. Another management
strategy that has to be investigated entails the use of a
distributed approach [88], where somedecisionsmay bemade
locally (e.g., at the BSs) to configure instructions remotely
within a centralized controller. For example, in the case
where the MEC platform is colocated with the BS, it can
collect traffic statistics, make local decisions (thus ensuring
fast reaction to data traffic and mobility variations), and then
share them with the central controller when required, for
example, when a BS has to be deactivated. The traditional
SDN architecture is centralized [89], with the controller
assuming the management responsibility for processing the
entire network load. However, as the number of devices
receiving network services increases, the processing load
also increases. Thus, a centralized controller can potentially
be a point of failure, despite its large computation and
communication capacity. The placement of SDN controllers
has been investigated in [90], where authors provide an
analysis about the determining factors that have to be taken
into account. This analysis provides useful guidance for
SDN operators and application designers, although there are
currently no placement rules that apply to every network.
Also, the EPC is aware of the aggregate traffic load per BS,
but it does not have any knowledge about the energy side
information (ESI) in the BSs (energy consumed, harvested,
etc.). The lack of such information motivates the need for
mobility and energy-aware procedures that can be deployed
in the EPC, either in a centralized SDN controller or within
subcontrollers (SC) as proposed in [88]. These shall perform
mobility management tasks, while at the same time being
aware of the available energy in the (energy harvesting)
BSs. This will ease the energy management tasks in the
BSs, by taking into account the current and forecast traffic
load.

4.1.3. EPC Procedures for Disaster Management. During nat-
ural disaster, it is important to provide support for highly
mobile field communication and to possibly deploy mobile
networks on the spot in a short time (as the standard
telecom infrastructuremay be down), for example, to provide
coverage and network access for rescue teams. Towards this,
an isolated E-UTRAN [91] operation (IOPS) BS may be a
good option.This requires agile strategies tomanage the IOPS
enabled-BS along with colocated virtualized EPC functions.
Achieving energy saving in such situation is of utmost interest
when renewable energy sources are also utilized, and the
network has to be operated off-grid.

4.2. MEC Related

4.2.1. Resource Reservation for Scheduling in MEC Systems.
MEC server scheduling requires the user offloading priority
order, channel gains, and latency requirements and these
depend on the user’s location and mobility pattern. Usually,
the user’s statistical profile consists of varying information as
the user traverses the mobile network. This (time varying)
information can enhance the design of adaptive servers
that regenerate the scheduling order from time to time. To
efficiently schedule mobile devices tasks, we can accurately
predict users mobility profiles and channel state information,
while at the same time using the GPS location trajectories
to identify the nearest MEC server(s). Another alternative
is to reserve resources that can enhance the server schedul-
ing performance taking into account forecast computation
offloading requests.

4.2.2. Green Large Scale MEC Systems. MEC servers are
expected to be deployed close to end users, along with
small cells, and this will result in dense deployments, which
still raise the concern of energy consumption in wireless
systems. Since MEC servers are dimensioned for high speed
computation, they still consume energy even during their
idle state, similar to the always on approach of eNBs, and
this calls for the development of means that will allow the
servers to consume energy in a way that is proportional
to their computational load [92]. Another option to save
energy in idle MEC servers is to adopt sleep modes (which
have also been proposed as an energy saving strategy for
BSs). However, such approach might degrade the user’s QoE;
therefore proper workload variation prediction strategies
have to be considered. In this way, it can be determined
which MEC servers are to be deactivated and which ones
are to remain active to handle mobility with minimal impact
for the users. Moreover, by exploiting the spatial diversity
in the workload patterns, MEC servers can coordinate to
serve mobile users according to their location [38]. This load
balancing approach can help improve the energy efficiency
of the lightly loaded edge servers. Finally, we observe that,
despite the presented benefits, in renewable energy powered
MEC systems, ESI and CSI are still required for decision
making; thus the MEC system must be able to acquire this
information from the RNIS.

4.2.3. MEC Server Selection for Computation. Designing EE
computational offloading mechanisms for MEC networks
is a challenge, as mobile devices have to decide where to
offload their task under wireless channel quality fluctuations.
The selection strategies that have been proposed so far [43]
aim at minimizing the energy consumption of the offloading
system, by taking into account the cost associated with
task computing and data transmission (depending on the
multiaccess characteristics of 5G systems). The proposed
algorithm optimizes energy consumption for task offloading,
under latency constraints. However, this problem can be
extended by allowing mobile devices to acquire knowledge
of the computational power of the MEC servers within their
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proximity, in addition to the above energy costs. This is
expected to result in energy efficient MEC server selection
that will also take the availability and the resources of the
servers into account.

4.2.4. Mobility Management in MEC Networks. Mobility
management has been extensively investigated assuming a
single mobility anchor per mobile network, which becomes
a single point of failure. Distributed mobility anchors can
also be deployed within different geographical areas, so that
when a mobile device crosses the boundary, handover (HO)
requests are triggered to guarantee high data rate and low bit
error rate. However, these policies cannot be directly applied
to MEC systems with moving users, since they neglect the
effects of the computation resources at edge servers on the
HO policies. In current mobile networks, HO is handled
as follows: when the mobile node signal strength becomes
insufficient (weak), HO is initiated either by the mobile node
(mobile-initiated HO) or by the network (network-initiated
HO). The current serving BS communicates with neighbor
BS, target BS, via theX2 interface. In themeantime, IP packets
are buffered to minimize packet loss. Once the signaling is
over, the mobile node is handed over to the target BS, and
a new link is formed. Mainly, the goal of the mobility man-
agement protocol is to minimize packet loss and to select the
target BS for theUE; that is, only theHO target (BS to connect
to) is considered in this case. InMEC systems, computational
capacity, current workloads, computational costs, and energy
side information are crucial in determining the HO target
(offloading target in this case).Thus, it is important to extend
HO andmobilitymanagement procedures toMEC networks,
keeping these additional variables into account. The mobility
patterns observations in [52–55] have shown that it is possible
(and sensible) to make use of the observed information in
designing MEC mobility management procedures. However,
this introduces the use of distributed databases to keep and
process the observedmobility information, to extract relevant
patterns. This might pose a challenge, as it might add to the
delay constraints, as decision making will rely on drawing
conclusions from the observed states and to being able to
predict the device movement around the edge.

5. Conclusions

In this article, we have provided an analysis of existing soft-
warized mobile network architecture proposals, discussing
the benefit that softwarization will bring about, along with
some open research questions. We have also presented the
new mobile edge computing (MEC) architectural concept,
which entails bringing computation, caching, and applica-
tions closer to the network edge. Such paradigm will trans-
form the edge network into an intelligent service hub, capable
of delivering personalized services at the edge when the
MEC platform is colocated with the base stations or in their
close proximity. Furthermore, we have outlined the chal-
lenges and open issues related the MEC platform for future
mobile networks. From our perspective, the combination
of energy efficient techniques, energy harvesting capability

for MEC systems, and the virtualization of EPC network
functions can yield improved network management, while
availing dynamically reconfigurable networks with improved
performance, adaptability to new traffic conditions, and easy
network reconfiguration.
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[29] M. Patel, Y. Hu, P. Hédé et al., “Mobile edge computing
introductory technical white paper,” Tech. Rep., ETSI, Sophia-
Antipolis, France, 2014.

[30] K.M. S. Huq, S. Mumtaz, J. Bachmatiuk, J. Rodriguez, X.Wang,
and R. L. Aguiar, “Green HetNet CoMP: Energy Efficiency
Analysis and Optimization,” IEEE Transactions on Vehicular
Technology, vol. 64, no. 10, pp. 4670–4683, 2015.

[31] “Vision on Software Networks and 5G SN WG,” The 5G
Infrastructure Public Private Partnership (5G-PPP) consor-
tium, Portugal, 2017.

[32] B. Gabriel, “Mobile edge computing use cases and deployment
options,” Heavy Reading, 2016.

[33] ETSI GS MEC: Mobile Edge Computing (MEC); Framework
and Reference Architecture, ETSI, Sophia-Antipolis, France,
2016.

[34] ETSI GS MEC 002: Mobile Edge Computing (MEC); Technical
Requirements V1.1.1, ETSI, Sophia-Antipolis, France, 2016.

[35] “A Universal Access Gateway for Fixed and Mobile Network
Integration,” Convergence of Fixed and Mobile Broadband
Access/Aggregation Networks (COMBO) Consortium, France,
2016.

[36] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor
nodes: Survey and implications,” IEEECommunications Surveys
& Tutorials, vol. 13, no. 3, pp. 443–461, 2011.

[37] S. Ulukus, A. Yener, E. Erkip et al., “Energy harvesting wireless
communications: a review of recent advances,” IEEE Journal on
Selected Areas in Communications, vol. 33, no. 3, pp. 360–381,
2015.

[38] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew, “Online
algorithms for geographical load balancing,” in Proceedings of
the 2012 International Green Computing Conference, IGCC 2012,
USA, June 2012.

[39] A. Costanzo, M. Dionigi, D. Masotti et al., “Electromagnetic
energy harvesting and wireless power transmission: a unified
approach,” Proceedings of the IEEE, vol. 102, no. 11, pp. 1692–1711,
2014.

[40] J. Garnica, R. A. Chinga, and J. Lin, “Wireless power transmis-
sion: From far field to near field,” Proceedings of the IEEE, vol.
101, no. 6, pp. 1321–1331, 2013.

[41] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 5, pp. 1757–
1771, 2016.

[42] Z.Chang, J. Gong, Y. Li et al., “EnergyEfficient ResourceAlloca-
tion for Wireless Power Transfer Enabled Collaborative Mobile
Clouds,” IEEE Journal on Selected Areas in Communications, vol.
34, no. 12, pp. 3438–3450, 2016.

[43] K. Zhang, Y. Mao, S. Leng et al., “Energy-efficient offloading for
mobile edge computing in 5G heterogeneous networks,” IEEE
Access, vol. PP, no. 99, 2016.

[44] L. Bonati, A. F. Gambin, andM. Rossi, “Wireless power transfer
under the spotlight: Charging terminals amid dense cellular
networks,” in Proceedings of the 2017 IEEE 18th International
Symposium on ” World of Wireless, Mobile and Multimedia
Networks (WoWMoM), pp. 1–9, Macau, China, June 2017.

[45] Y. Shi, J. Zhang, B. O’Donoghue, and K. B. Letaief, “Large-scale
convex optimization for dense wireless cooperative networks,”
IEEE Transactions on Signal Processing, vol. 63, no. 18, pp. 4729–
4743, 2015.

[46] J. Xu and S. Ren, “Online learning for offloading and autoscaling
in renewable-powered mobile edge computing,” in Proceedings
of the 59th IEEE Global Communications Conference, GLOBE-
COM 2016, USA, December 2016.

[47] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic Computation
Offloading for Mobile-Edge Computing with Energy Harvest-
ingDevices,” IEEE Journal on SelectedAreas inCommunications,
vol. 34, no. 12, pp. 3590–3605, 2016.

[48] X. Cao, F.Wang, J. Xu, R. Zhang, and S. Cui, “Joint Computation
and Communication Cooperation for Mobile Edge Comput-
ing,” https://arxiv.org/abs/1704.06777, 2017.

 6302, 2017, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2017/8618364 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://www.docker.com/what-container
https://www.docker.com/what-container
http://www.5gsummit.org/berlin/docs/slides/Aki-Nakao.pdf
http://www.5gsummit.org/berlin/docs/slides/Aki-Nakao.pdf
http://openvswitch.org/
https://www.xenproject.org/
http://opencord.org/tag/m-cord/
https://arxiv.org/abs/1704.06777


20 Wireless Communications and Mobile Computing

[49] S. Boyd andL.Vandenberghe,ConvexOptimization, Cambridge
University Press, Cambridge, UK, 1st edition, 2004.

[50] S. Boyd, “Ellipsoidmethod, StanfordUniv., Stanford, CA,USA,”
2014, https://stanford.edu/class/ee364b/lectures/ellipsoid meth-
od notes.pdf.

[51] J. W. Chinneck, B. Kristjansson, and M. J. Saltzman, Operations
Research and Cyber-Infrastructure, Operations Research/Com-
puter Science Interfaces Series, Springer, New York, NY, USA,
1st edition, 2009.

[52] K. Lee and I. Shin, “User mobility model based computation
offloading decision for mobile cloud,” Journal of Computing
Science and Engineering, vol. 9, no. 3, pp. 155–162, 2015.

[53] W. Su, S. Lee, and M. Gerla, “Mobility prediction in wireless
networks,” in Proceedings of the IEEE Military Communications
Conference (MILCOM’00), pp. 491–495, Los Angeles, Calif,
USA.

[54] Y. Zhang, D. Niyato, and P. Wang, “Offloading in Mobile
Cloudlet Systems with Intermittent Connectivity,” IEEE Trans-
actions onMobile Computing, vol. 14, no. 12, pp. 2516–2529, 2015.

[55] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic
computation offloading,” IEEE Communications Letters, vol. 18,
no. 10, pp. 1779–1782, 2014.

[56] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 7, pp. 1–199, 2010.

[57] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of
the multiarmed bandit problem,”Machine Learning, vol. 47, no.
2-3, pp. 235–256, 2002.

[58] J. Xu, Y. Sun, L. Chen, and S. Zhou, “ E 2 M 2 : Energy
efficient mobility management in dense small cells with mobile
edge computing ,” in Proceedings of the ICC 2017 - 2017 IEEE
International Conference on Communications, pp. 1–6, Paris,
France, May 2017.

[59] Cisco visual networking index: Forecast and Methodology,
2016–2021, Cisco, San Jose, Calif, USA, 2017.

[60] J. Erman and K. Ramakrishnan, “Understanding the super-
sized traffic of the super bowl,” in Proceedings of the the 2013
conference, pp. 353–360, Barcelona, Spain, October 2013.

[61] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle, “Managing energy and server resources in
hosting centers,” in Proceedings of the 18th ACM Symposium on
Operating Systems Principles, Alberta, Canada, October 2001.

[62] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya,
“Virtual machine power metering and provisioning,” in Pro-
ceedings of the 1st ACM Symposium on Cloud Computing (SoCC
’10), pp. 39–50, June 2010.

[63] S. Ren and Y. He, “COCA: Online distributed resource man-
agement for cost minimization and carbon neutrality in data
centers,” in Proceedings of the 2013 International Conference for
High PerformanceComputing, Networking, Storage andAnalysis,
SC 2013, Denver, Colo, USA, November 2013.

[64] L. Chen, S. Zhou, and J. Xu, “Energy efficient mobile edge
computing in dense cellular networks,” in Proceedings of the
ICC 2017 - 2017 IEEE International Conference on Communica-
tions, pp. 1–6, Paris, France, May 2017, https://arxiv.org/abs/1701
.07405#.

[65] C. Gu, H. Huang, and X. Jia, “Power metering for virtual
machine in cloud computing-challenges and opportunities,”
IEEE Access, vol. 2, pp. 1106–1116, 2014.

[66] C. Jiang, H. Zhang, Y. Ren, Z. Han, K.-C. Chen, and L. Hanzo,
“Machine Learning Paradigms for Next-Generation Wireless

Networks,” IEEE Wireless Communications Magazine, vol. 24,
no. 2, pp. 98–105, 2017.

[67] P. V. Klaine, M. A. Imran, O. Onireti, and R. D. Souza, “A survey
of machine learning techniques applied to self organizing
cellular networks,” IEEE Communications Surveys & Tutorials,
vol. PP, no. 99, pp. 1–40, 2017.

[68] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learn-
ing, MIT Press, Cambridge, Mass, USA, 2006.

[69] F. Chen and X. Zheng, “Machine-Learning Based Routing
Pre-plan for SDN,” in Multi-disciplinary Trends in Artificial
Intelligence, vol. 9426 of Lecture Notes in Computer Science, pp.
149–159, Springer International Publishing, Cham, Switzerland,
2015.

[70] D. Wood, “Scaffolding, contingent tutoring, and computer-
supported learning,” International Journal of Artificial Intelli-
gence in Education, vol. 12, pp. 280–293, 2001.

[71] M. Pratama, E. Dimla, C. Y. Lai, and E. Lughofer, “Metacogni-
tive learning approach for online tool condition monitoring,”
Journal of Intelligent Manufacturing, 2017, https://arxiv.org/pdf/
1705.02477.

[72] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[73] Z. Yi, Y. Peng, T. Wang, X. Zhang, and W. Wang, “Traffic sce-
nario recognition and analysis forwireless cellular system: From
social network perspective,” in Proceedings of the 2016 IEEE
Canadian Conference on Electrical and Computer Engineering,
CCECE 2016, Canada, May 2016.

[74] V. D. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre,
“Fast unfolding of communities in large networks,” Journal of
Statistical Mechanics: Theory and Experiment, vol. 2008, no. 10,
Article ID P10008, 2008.

[75] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context and
context-awareness,” in Handheld and Ubiquitous Computing:
First International Symposium, HUC ’99 Karlsruhe, Germany,
September 27–29, 1999 Proceedings, vol. 1707 of Lecture Notes
in Computer Science, pp. 304–307, Springer, Berlin, Germany,
1999.

[76] A. Redondi, I. Filippini, and A. Capone, “Context manage-
ment in energy-efficient radio access networks,” in Tyrrhenian
International Workshop on Digital Communications-Green ICT
(TIWDC), Genoa, Italy, September 2013.

[77] M. Bshara, U. Orguner, F. Gustafsson, and L. van Biesen, “Fin-
gerprinting localization in wireless networks based on received-
signal-strength measurements: a case study on WiMAX net-
works,” IEEE Transactions on Vehicular Technology, vol. 59, no.
1, pp. 283–294, 2010.
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