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The convergence of communication and computing has led to the emergence of multi-access edge computing (MEC), where
computing resources (supported by virtual machines (VMs)) are distributed at the edge of the mobile network (MN), i.e., in base
stations (BSs), with the aim of ensuring reliable and ultra-low latency services. Moreover, BSs equipped with energy harvesting
(EH) systems can decrease the amount of energy drained from the power grid resulting into energetically self-sufficient MNs.The
combination of these paradigms is considered here. Specifically, we propose an online optimization algorithm, called Energy Aware
and Adaptive Management (ENAAM), based on foresighted control policies exploiting (short-term) traffic load and harvested
energy forecasts, where BSs and VMs are dynamically switched on/off towards energy savings and Quality of Service (QoS)
provisioning. Our numerical results reveal that ENAAM achieves energy savings with respect to the case where no energy
management is applied, ranging from 57% to 69%. Moreover, the extension of ENAAM within a cluster of BSs provides a further
gain ranging from 9% to 16% in energy savings with respect to the optimization performed in isolation for each BS.

1. Introduction

The full potential of 5G radio access technology can be
realized through the use of distributed intelligence, whereby
content, control, and computation aremoved closer tomobile
users, hereby referred to as the network edge. This evolution
has led to the emergence of the multi-access edge computing
(MEC) paradigm, which allows network functions to be vir-
tualized and then deployed at the network edge to guarantee
the low latency required by some applications. In this paper,
we consider a hybrid edge computing architecture where
computing servers are co-located with each base station
(BS), and a centralized controller (a point within range to
a set of BSs) is utilized to manage them, deciding upon the
allocation of their computing and transmission resources.
This type of architecture is in line with recent trends
[1].

The convergence of communication and computing
(MEC [2]) within the mobile space poses new challenges
related to energy consumption, as BSs are densely deployed
to maximize capacity and also empowered with computing
capabilities to minimize latency. To cope with these chal-
lenges, previous studies have put forward BS sleep modes
[3, 4], as BSs are dimensioned for the expected maximum
capacity, yet traffic varies during the day. In addition, energy
savings within the virtualized computing platform are of
great importance, as virtualization can also lead to energy
overheads. Therefore, a clear understanding and a precise
modeling of the server energy usage can provide a fun-
damental basis for server operational optimizations. The
experimental results in [5, 6] show that the locus of energy
consumption for the Virtualized Network Function (VNF)
components is the virtual machine (VM) instance where the
VNF is instantiated and executed. Thus, for a given expected
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traffic load, the energy consumption can be minimized by
launching an optimal number of VMs, a technique referred to
as VM soft-scaling, together with BS power saving methods,
i.e., BS sleep modes.

Along these lines, we propose a controller-based net-
work architecture for managing energy harvesting (EH)
BSs empowered with computation capabilities where on/off
switching strategies allow BSs and VMs to be dynamically
switched on/off, depending on the traffic load and the
harvested energy forecast, over a given look-ahead prediction
horizon. To solve the energy consumption minimization
problem in a distributed manner, the controller partitions
the BSs into clusters based on their location; then, for each
cluster, it minimizes a cost function capturing the individual
communication site energy consumption and the users’
Quality of Service (QoS). To manage the communication
sites, the controller performs online supervisory control
by forecasting the traffic load and the harvested energy
using a Long Short-Term Memory (LSTM) neural network
[7], which is utilized within a Limited Look-ahead Control
(LLC) policy (a predictive control approach [8]) to obtain
the system control actions that yield the desired trade-off
between energy consumption and QoS. This work is an
extension of [9], where we consider energy savings within a
single off-grid BS scenario (i.e., BS powered by either wind
or solar energy sources) taking into account the need for
MEC in remote/rural areas. In this paper, however, a dense
environment is considered, similar to an urbanor semi-urban
scenario, where each BS is powered by hybrid energy supplies
(solar and power grid) and empowered with computation
capabilities. Moreover, the optimization problem is extended
for multiple BSs where energy management procedures are
executed within a BS cluster in contrast with the single BS
case of [9].

The rest of the paper is structured as follows. The related
work is discussed in Section 2, and the system model is pre-
sented in Section 3. In Section 4, we detail the optimization
problem and the proposed LLC-based online algorithm for a
single communication site. The multiple BS communication
site case is addressed in Section 5. Our contribution is
evaluated in Section 6, and, lastly, concluding remarks are
given in Section 7.

2. Related Work and Paper Contribution

Next, we first provide a literature review related to BS sleep
modes techniques. Then, we review the mathematical tools
that we use in this paper, followed by the literature review
related to energy savings in virtualized computing platforms
(i.e., works related to soft-scaling). Finally, we put forward our
contributions and novelty of our work.

Sleep-Mode Strategies in Mobile Networks. Cellular net-
works are dimensioned to support traffic peaks; i.e., the
number of BSs deployed in a given area should be able
to provide the required QoS to the mobile subscribers
during the highest load conditions. However, during off-
peak periods the network may be underutilized, which leads
to an inefficient use of network resources and to excessive

energy consumption. For these reasons, sleep modes have
been proposed to dynamically turn off some of the BSs when
the traffic load is low.This has been extensively studied in the
literature; here we highlight the main applied techniques that
are related to this work.

Clustering algorithms have been proposed as a way of
switching off BSs to reduce the energy consumption. In [12],
centralized and distributed algorithms group BSs exhibiting
similar traffic profiles over time. In [13], a dynamic switching
on/off mechanism locally groups BSs into clusters based
on location and traffic load. The optimization problem is
formulated as a non-cooperative game aimed at minimizing
the BS energy consumption and the time required to serve
their traffic load. Simulation results show energy costs and
load reductions, while also providing insights of when and
how the cluster-based coordination is beneficial.

Reducing the energy consumption involves some trade-
offs in the optimization problem. QoS has been widely used
as a trade-off metric [14, 15]. The Quality of Experience
(QoE) is included in [16], where a dynamic programming
switching algorithm is put forward. Other parameters that
have been considered are the coverage probability and the
BS state stability parameter, i.e., the number of on/sleep
state transitions. For instance, a set of BSs switching patterns
engineered to provide full network coverage at all times, while
avoiding channel outage, is presented in [17]. According to
the BS state stability concept, a two-objective optimization
problem is formulated in [18] and solvedwith two algorithms:
(i) near optimal but not scalable and (ii) low complexity,
based on particle swarm optimization. The QoE is also
affected by the UE position due to channel propagation
phenomena. To this respect, in [19] the selection of the BSs
to be switched off is taken so as to minimize the impact on
the UEs’ QoE, according to the distance from the handed off
BSs.

To support sleep modes, neighboring cells must be
capable of serving the traffic from the switched off cells. To
achieve this, proper user association strategies are required. A
framework to characterize the performance (outage proba-
bility and spectral efficiency) of cellular systems with sleep-
ing techniques and user association rules is proposed in
[20]. In that paper, the authors devise a user association
scheme where a user selects its serving BS considering the
maximum expected channel access probability. This strategy
is compared against the traditional maximum SINR-based
user association approach and is found superior in terms
of spectral efficiency when the traffic load is inhomoge-
neous. User association mechanisms that maximize energy
efficiency in the presence of sleep modes are addressed in
[21]. There, a downlink HetNet scenario is considered, where
the energy efficiency is defined as the ratio between the
network throughput and the total energy consumption. Since
this leads to a rather complex integer optimization problem,
the authors propose a quantum particle swarm optimization
algorithm to obtain a suboptimal solution.

A marketing approach to foster the opportunistic uti-
lization of the unexploited small cell (SC) BS capacity in
dense heterogeneous networks (HetNets) is presented in [22].
There, an offloading mechanism is introduced, where the
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Wireless Communications and Mobile Computing 3

operators lease the capacity of a SC network owned by a
third party in order to switch off their BSs (macro-BSs) and
maximize their energy efficiency, when the traffic demand
is low. The allocation of the SC resources among a set of
competing operators is mathematically formulated as an
auction problem.

A comprehensive powermanagement model employing a
BS switching on/off mechanism, within a BS system powered
by green energy, is presented in [23]. The model considers
weather conditions, user mobility, different green energy
harvesting rates, energy storage with self-discharge effect,
and switching on/off frequency. The authors propose two
algorithms: the first decides which BSs are to be active based
on the minimum energy cost, i.e., the energy price per time
period, while the second one determines the active BSs by
first prioritizing the minimum power consumption of the
system and then the energy cost. The relationship between
installing a solar harvesting system to power a BS and the
energy management under varying demand is investigated in
[24]. The authors present a solar installation planning model
by explicitly modeling solar panels, batteries, inverters, and
charge controllers, aswell as the cellular network demand and
energy management. They found that the solar installation
and the energy management of the base stations are so
coupled that even the order in which these technologies are
introduced can have a major impact on the network cost and
performance.

The survey paper [25] presents taxonomy of existing
energy sustainable paradigms andmethods to address energy
savings in network elements (i.e., BSs) equipped with EH
capabilities. Here, the authors discuss the shortcomings of
previous studies related to efficient energy management
procedures, the lack of relevant discussion related to the
integration of EH into future networks, and, lastly, energy
self-sustainability in future networks. The current work is a
technical contribution where we address some of the short-
comings that were identified in [25], also proposing the use
of machine learning (ML) tools for pattern forecasting and
adaptive control schemes for decision-making. In addition,
this work is in line with the research topics which can be
found in our review paper [26].

Themajority of the works on BS switching offmechanism
considered clusters of BSs from a single mobile operator
perspective, where some functions of the BS can be switched
off and then the remaining active BSs handle the upcoming
traffic. A new approach is presented in [27] which exploits the
coexistence of multiple BSs from different mobile operators
in the same area. An intracell roaming-based infrastructure-
sharing strategy is proposed, followed by a distributed game-
theoretic switching off scheme that takes into account the
conflicts and interaction among the different operators.
Moreover, in [28], the authors investigate the energy and cost
efficiency of multiple HetNets (i.e., each HetNet is composed
of eNodeBs (eNBs) and SC BSs from one operator) that share
their infrastructure and also are able to switch off part of
it. Here, a form of roaming-based sharing is also adopted,
whereby the operator can roam its traffic to a rival operator
during a predefined period of time and area. An energy
efficient optimization problem is formulated and solved using

a cooperative greedy heuristic algorithm. Regarding the cost
efficiency, the cooperation and cost sharing decisions among
the operators are modeled using a Shapley Value based
bankruptcy game.

Pattern Forecasting along with Foresighted Optimization.
Control-theoretic and machine learning (ML) methods for
resource management have been successfully applied to
various problems, e.g., task scheduling, bandwidth allocation,
and network management policies. In the paradigm of super-
visory control for managing mobile networks (MNs), online
forecasting using ML techniques and the LLC method can
yield the desired system behavior when taking into account
the environmental expectations, i.e., traffic load and energy to
be harvested. Next, we briefly review the mathematical tools
that we use in this paper, namely, the LLCmethod and LSTM
neural network [7].

Control-theoretic algorithms and the LLC method have
been used to obtain control actions that optimize the system
behavior, by employing a forecasting mathematical model,
over a limited look-ahead prediction horizon. LLC is con-
ceptually similar to model predictive control (MPC) [29].
In [30], an online supervisory control scheme based on
LLC policies is proposed. Here, after the occurrence of an
event, the next control action is determined by estimating
the system behavior a few steps into the future, using the
currently available information as inputs. The control action
exploration is performed using a search tree assuming that
the controller knows all future possible states of the process
over the prediction horizon. Moreover, in [8], an online con-
trol framework for resource management in switching hybrid
systems is proposed, where the system’s control inputs are
finite.The relevant parameters of the operating environment,
e.g., workload arrival, are estimated and then used by the
system to forecast future behavior over a look-ahead horizon.
From this, the controller optimizes the predicted system
behavior following the specified QoS through the selection
of the system controls.

To model time series datasets, the LSTM network is
used as it is able to handle the long-term dependencies due
to its inherent capability of storing past information and
then recalling it. In [31], a distributed LSTM online method
based on the particle filtering algorithm is presented with
an aim of investigating the performance of online training
of LSTM architectures in a distributed network of nodes.
An LSTM based model for variable length data regression
is proposed and then put into a nonlinear state-space form
to train the model in an online fashion. Then, financial and
real life datasets are used for performance evaluation, and
it is observed that the distributed online approach yields
the same results that are obtained in the centralized case,
when considering the mean square errors as the performance
measure. Moreover, an LSTM forecasting method is utilized
in [9] within an LLC-based algorithm to obtain the system
control actions yielding the desired trade-off between energy
consumption and QoS, for a remote site powered by only
green energy.

Energy Savings in Virtualized Platforms through Soft-
Scaling. With the advent of virtualization, it is expected that
the Network Function Virtualization (NFV) framework can
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4 Wireless Communications and Mobile Computing

exploit the benefits of virtualization technologies to signifi-
cantly reduce the energy consumption of large scale network
infrastructures. In virtualized computing environments, the
locus of energy consumption for components is due to the
VMs running in the server(s). Thus, energy saving studies
within the virtualized computing environment have involved
the scaling down of the number of computing nodes/servers
(autoscaling [32]), VM migration [33] (movement of a VM
from one host to another), and soft resource scaling [34]
(shortening of the access time to physical resources), all
hereby referred to as VM soft-scaling, i.e., the reduction of
computing resources per time instance.

Algorithms for the dynamic on/off switching of servers
have been proposed as a way of minimizing energy consump-
tion in computing platforms. In [32], at the beginning of each
time slot computing resources are provisioned depending on
the expected server workloads via a reinforcement learning-
based resource management algorithm, which learns on-the-
fly the optimal policy for dynamic workload offloading and
the autoscaling of servers. Then in [9], computing resources
(VMs) are provisioned based on aLLCpolicy after forecasting
the future workloads and harvested energy. In [33], the Cen-
tral Processing Unit (CPU) utilization thresholds are used
to identify overutilized servers. Hence, migration policies,
enabled by the live VM migration method [35], are applied
for moving the VMs between physical nodes (servers). The
VMs are only moved to hosts that will accept them without
incurring high energy cost, i.e., without any increase in the
CPU utilization. Subsequently, the idle servers are switched
off.

Power management is also of interest in virtualized
computing platforms, i.e., data centers using virtualization
technologies. In [34], a power management approach called
VirtualPower is presented. The algorithm exploits hardware
power scaling, i.e., the dynamic powermanagement strategies
using Dynamic Voltage and Frequency Scaling (DVFS) [36,
37], and software-based methods, i.e., scaling the allocation
of physical resources to VMs using the hypervisor scheduler,
for controlling the power consumption of underlying plat-
forms. Due to the low power management benefits obtained
from hardware scaling, a soft resource scaling mechanism
is proposed whereby the scheduler shortens the maximum
resource usage time for each VM, i.e., the time slice allocated
for using the underlying physical resources.

Novelty of this Work. Here, we consider the aforemen-
tioned scenario, where eachBS is equippedwith EHhardware
(a solar panel for EH and an Energy Buffer (EB) for energy
storage) and a MEC server co-located with the BS for
computation purposes, under the management enabled by
the controller.

Motivated by the potential capabilities of EH and MEC
and the presence of the controller,

(1) we introduce the use of virtualization with the aim
of investigating how VMs can be soft-scaled based
on the forecasted server workloads, as VMs are the
source of energy consumption in computing environ-
ments;

(2) we put forward the edge controller-based architecture
for small cell BSs management, as one of the future
trends for small cells [1] in 5G MNs;

(3) we reconsider the BS sleeping control mechanism
under the new MEC paradigm, which has not been
sufficiently covered in the literature. In addition, we
use a clustering method for enabling energy savings
within the MN;

(4) we estimate the short-term future traffic load and
harvested energy in BSs, by using LSTM neural
network [38];

(5) we develop an online supervisory control algorithm
for the radio access (edge) network management
based on a predictive method, specifically the LLC
method, along with clustering and energy manage-
ment procedures. The main goal is to enable energy
savings (ES) strategies within the access network,
BS sleep modes, and VM soft-scaling, following
the energy efficiency requirements of a virtualized
infrastructure from [39]. The proposed management
algorithm is called Energy Aware and Adaptive Man-
agement (ENAAM) and is hosted in the edge con-
troller. The ENAAM algorithm considers the future
BS traffic load, onsite green energy in the EB, and
then provisions access network resources, per com-
munication site, based on the learned information;
i.e., energy saving decisions are made in a forward-
looking fashion.

The proposed optimization strategy leads to a con-
siderable reduction in the energy consumed by the edge
computing and communication facilities, promoting self-
sustainability within the mobile network through the use of
green energy. This is achieved under the controller guidance,
which makes use of forecasting, clustering, control theory,
and heuristics.

3. System Model

As a major deployment of MEC and in line with current
trends for future mobile networks as suggested by promi-
nent network operators (e.g., Huawei Technologies [1]), the
considered scenario is illustrated in Figure 1. It consists of a
densely deployed MN featuring 𝑁 BSs and colocated cache-
enabled MEC servers. Each MEC server hosts 𝑀 VMs.
Each communication site, i.e., the BS and the colocated
MEC server, is empowered with EH capabilities through a
solar panel and an EB that enables energy storage. Energy
supply from the power grid is also available. Moreover, the
Energy Manager (EM) is an entity responsible for selecting
the appropriate energy source and for monitoring the energy
level of the EB. All BSs communicate with a centralized entity
called the edge controller, which is responsible for managing
the access network apparatuses. The energy level information
is reported periodically to the edge controller through the
pull file transfer mode procedure (e.g., File Transfer Protocol
[40]). Moreover, we consider a discrete-time model, whereby
time is discretized as 𝑡 = 1, 2, . . ., and each time slot 𝑡 has a
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Figure 1: Edge network topology. The electromechanical switch
(SW) selects the appropriate source of energy.

fixed duration 𝜏.The list of symbols that are used in the paper
is reported in Table 1.

3.1. Traffic Load and Energy Consumption. Mobile traffic
volume exhibits temporal and spatial diversity and also
follows a diurnal behavior [41]. Therefore, traffic volume at
individual BSs can be estimated using historical mobile traffic
datasets. In this paper, real MN traffic load traces obtained
from the Big Data Challenge organized by Telecom Italia
Mobile (TIM) [10] are used to emulate the computational
load (in fact, the dataset is not a true representative of future
applications that require processing at the edge but contains
data that is exchanged with the purpose of communication.
We nevertheless use it due to the difficulties in finding
open datasets containing computing requests). Specifically,
the used data was collected in the city of Milan during
the month of November 2013, and it is the result of users
interaction within the TIMMN, based on Call Detail Record
(CDR) files for a day considering four BS sites representing
the traffic load profiles. A CDR file consists of SMS, Calls,
and Internet records with timestamps. To understand the
behavior of the mobile data, we have applied the X-means
clustering algorithm [42] to classify the load profiles into
several categories. In our numerical results, each BS 𝑛 =1, 2, . . . , 𝑁 is assigned a load profile 𝐿𝑛(𝑡), which is picked at
random as one of the four clusters (each cluster represents
a typical BS load profile) in Figure 2. 𝐿𝑛(𝑡) consists of
computationworkloads Γ𝑛(𝑡) ([MB]) and standardworkloadsΓ󸀠𝑛(𝑡) ([MB]). According to [43], we assume that 80% of 𝐿𝑛(𝑡)
is delay sensitive and, as such, requires processing at the edge,
i.e., Γ𝑛(𝑡) = 0.8𝐿𝑛(𝑡), whereas the remaining 20% pertains to
standard flows, delay tolerant traffic, i.e., Γ󸀠𝑛(𝑡) = 𝐿𝑛(𝑡) − Γ𝑛(𝑡).

The total energy consumption ([J]) for the communica-
tion site 𝑛 at time slot 𝑡 is formulated as follows, inspired by
[9, 44–47]

𝜃tot,𝑛 (𝑡) = 𝜃BS,𝑛 (𝑡) + 𝜃MEC,𝑛 (𝑡) + 𝜃TX,𝑛 (𝑡) , (1)

where 𝜃BS,𝑛(𝑡) is the BS energy consumption term, 𝜃MEC,𝑛(𝑡)
is the MEC server consumption term due to computation

Table 1: Notation: list of symbols used in the analysis.

Symbol Description
Input Parameters

𝑁 number of BSs, indexed by 𝑛
𝑀 maximum number of VMs hosted by each MEC

server
𝜏 time slot duration

𝐿𝑛(𝑡) BS 𝑛 traffic load profile in time slot 𝑡, 𝑛 is the BS
index

Γ𝑛(𝑡) workload handled by the MEC server at BS 𝑛 in time
slot 𝑡

Γ󸀠𝑛(𝑡) standard (non MEC) traffic at time 𝑡
𝜃0 BS load independent energy consumption or

operation energy
𝑓max maximum processing rate for VM𝑚
F a finite set of available processing rates for VM𝑚
𝜃ov𝑚 (𝑡) energy overheads incurred when turning on/off VMs
𝜃idle,𝑚(𝑡) static energy consumed by VM𝑚 in the idle state

𝜃max,𝑚(𝑡) maximum energy consumed by VM𝑚 at maximum
processing rate

𝛾𝑚(𝑡) workload fraction to be computed by the𝑚-th VM
𝛾max maximum computation load per-VM

Δ maximum per-slot and per-VM allowed processing
time

𝜃idle(𝑡) energy consumption of network interfaces in idle
mode

𝜃data(𝑡) energy cost of exchanging one unit of data between
the server and the BS

𝛽max maximum energy buffer capacity
𝛽up , 𝛽low upper and lower energy buffer thresholds

Variables

𝜃tot,𝑛(𝑡) total energy consumption for the communication
site 𝑛

𝜃BS,𝑛(𝑡) BS 𝑛 energy cost at 𝑡
𝜃MEC,𝑛(𝑡) server consumption due to computation activities

𝜃T𝑋,𝑛(𝑡) data transmission energy consumption between the
BS and the MEC server

𝜁𝑛(𝑡) BS 𝑛 switching status indicator at 𝑡
𝑀(𝑡) number of VMs to be active in time slot 𝑡
𝜃load(𝑡) total wireless transmission power
𝑓𝑚(𝑡) instantaneous processing rate
𝜃op𝑚 (𝑡) energy consumption of VM𝑚 operation
𝛼𝑚(𝑡) load dependent factor
𝜇𝑚(𝑡) the expected processing time
𝐵𝑛(𝑡) the total amount of load that is served by the BS site
𝛽𝑛(𝑡) energy buffer level in slot 𝑡
𝐻𝑛(𝑡) harvested energy profile in slot 𝑡
𝑄𝑛(𝑡) purchased grid energy in slot 𝑡

activities, and 𝜃TX,𝑛(𝑡) represents the data transmission
energy consumption between the BS and the MEC server.
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Figure 2: Example traces for normalized BS traffic loads. The data
from [10] has been split into four representative clusters.

BS Energy Consumption. 𝜃BS,𝑛(𝑡) = 𝜁𝑛(𝑡)𝜃0 + 𝜃load(𝑡),
where 𝜁𝑛(𝑡) ∈ {𝜀, 1} is the BS switching status indicator
(1 for active mode and 𝜀 for power saving mode) and 𝜃0
is a constant value (load independent), representing the
operation energy which includes baseband processing, radio
frequency power expenditures, etc. The constant 𝜀 ∈ (0, 1)
accounts for the fact that the baseband energy consumption
can be scaled down as well whenever there is no or little
channel activity, into a power saving mode. 𝜃load(𝑡) represents
the total wireless transmission (load dependent) power to
meet the target transmission rate from the BS to the served
user(s) and to guarantee low latency at the edge. Since we
assume a noise-limited channel and the guarantee of low
latency requirements at the edge, 𝜃load(𝑡) is obtained by using
the transmission model in [44] (see (5) in this reference).
Here, we neglect the imbalance of traffic volumes in uplink
and downlink, and also we do not account for the switching
energy cost for the BS mode transition [46] due to the fact
that future BS functions will be virtualized [48].

MEC Server Energy Consumption. It depends on the
number of VMs running in time slot 𝑡, named, 𝑀(𝑡) ≤ 𝑀,
and on the CPU frequency that is allotted to each virtual
machine. Specifically, VMs are instantiated on top of the
physical CPU cores, and each VM is given a share of the host
server CPU, memory, and network input/output interfaces.
The CPU is the main consumer of energy in the server [33]
due to the VM-to-CPU share mapping. Hence, in this work
we focus on the CPU utilization only. With 𝑓𝑚(𝑡) ∈ [0, 𝑓max]
wemean the instantaneous processing rate [49], expressed in
bits per second that are computed, and 𝑓max is the maximum
processing rate for VM 𝑚. In this paper, 𝑓𝑚(𝑡) is set within a
finite setF = {𝑓0, 𝑓1, . . . , 𝑓max} where 𝑓0 = 0 represents zero
speed of the VM (e.g., deep sleep or shutdown). At any given
time 𝑡, the total energy consumption of a virtualized server,
with𝑀(𝑡) running VMs, is

𝜃MEC,𝑛 (𝑡) = 𝑀(𝑡)∑
𝑚=1

(𝜃op𝑚 (𝑡) + 𝜃ov𝑚 (𝑡)) , (2)

where 𝜃op𝑚 (𝑡) is the energy consumption of VM 𝑚 operation
and 𝜃ov𝑚 (𝑡) ≥ 0 is the energy cost incurred through the turning
on/off the VM; i.e., 𝜃ov𝑚 (𝑡) > 0 only when VM 𝑚 is switched
on/off and it is zero otherwise. 𝜃op𝑚 (𝑡) is obtained using the
linear relationship between the CPU utilization contributed
by VM𝑚 and the energy consumption, from [49, 50] (see (4)
in the second reference):

𝜃op𝑚 (𝑡) = 𝜃idle,𝑚 (𝑡) + 𝛼𝑚 (𝑡) (𝜃max,𝑚 (𝑡) − 𝜃idle,𝑚 (𝑡)) , (3)

where 𝜃idle,𝑚(𝑡) represents the static energy drained by VM𝑚 in the idle state, and 𝜃max,𝑚(𝑡) is the maximum energy
it drains. The quantity, 𝛼𝑚(𝑡)(𝜃max,𝑚(𝑡) − 𝜃idle,𝑚(𝑡)), rep-
resents the dynamic energy component, where 𝛼𝑚(𝑡) =(𝑓𝑚(𝑡)/𝑓max)2 [8] is a load dependent factor. Note that 𝛼𝑚(𝑡)
and 𝑓𝑚(𝑡) are deterministically related as 𝑓max is a constant.𝜃ov𝑚 (𝑡) is obtained from [50] (see (5) in this reference) as a
constant and is typically limited to a few hundreds of mJ per
MHz2.

Conventionally, for each BS site, the hypervisor, i.e., the
software that provides the environment in which the VMs
operate, is in charge of allocating 𝑓𝑚(𝑡) and the workload
fraction to be computed by the𝑚-thVM, named 𝛾𝑚(𝑡). In our
setup, we have∑𝑀(𝑡)𝑚=1 𝛾𝑚(𝑡) ≤ Γ𝑛(𝑡), where equality is achieved
when the workload is fully served by𝑀(𝑡)VMs.We also note
that, in practical application scenarios, the maximum per-
VM computation load to be computed is generally limited up
to an assigned value, named 𝛾max. Motivated by the energy
efficient requirements from [39], i.e., the hypervisor’s ability
to accept and implement policies from a management entity,
in this paper, the edge controller usage is pursued. Here, the
edge controller determines the 𝑓𝑚(𝑡) value that will yield the
desired or expected processing time, 𝜇𝑚(𝑡) = 𝛾𝑚(𝑡)/𝑓𝑚(𝑡),
considering the workload 𝛾𝑚(𝑡) allotted to VM𝑚. 𝜇𝑚(𝑡)must
be less than or equal to the maximum per-slot and per-VM
processing time (in seconds), named, Δ; i.e., 𝜇𝑚(𝑡) ≤ Δ. Note
that Δ is also the server’s response time, i.e., the maximum
time allowed for processing the total computation load.

We remark that, as a result of the allocation procedure
that is developed in this paper, for anyBS site 𝑛, the processing
rates 𝑓𝑚(𝑡) shall be found, similar to [50] (see Remark 1 from
this reference). Then, the total amount of load that is served
by the BS site may be set as follows: 𝐵𝑛(𝑡) = ∑𝑀(𝑡)𝑚=1 𝛾𝑚(𝑡) ≤Γ𝑛(𝑡). The objective of the considered optimization is to
find the operating mode for the BS (either “on” or “power
saving”), the number of VMs 𝑀(𝑡) that are to be allocated
and, for each of them, the processing rate 𝑓𝑚(𝑡). In doing
so, (1) the amount of delay sensitive load that is not served
at the edge, Γ𝑛(𝑡) − ∑𝑀(𝑡)𝑚=1 𝛾𝑚(𝑡), shall be minimized, while
exploiting as much as possible the energy harvested from the
solar panels, so that the mobile network will be energetically
self-sufficient and (2) the load is computed in a time shorter
than or equal to Δ. The details of the proposed optimization
algorithm are provided in Section 4.

Data Transmission Energy Consumption. We assume that
the intercommunication between the BS and the MEC server
is bidirectional and symmetric. Hence, under steady-state
operating conditions, for the communication site 𝑛, 𝜃TX,𝑛(𝑡)
is obtained as 𝜃TX,𝑛(𝑡) = 𝜃idle(𝑡) + 𝜃data(𝑡)𝐵𝑛(𝑡) by using the
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Figure 3: Example traces for harvested solar energy from [11].

VMmigration hint from [51], where 𝜃idle(𝑡) (fixed value in J)
is the energy drained by the network interfaces in idle mode
over a time slot 𝑡, 𝜃data (fixed value in J/byte) is the cost of
exchanging one byte of data between the MEC server and the
BS per time slot 𝑡, and 𝐵𝑛(𝑡) is the amount of data exchanged.
These parameters, 𝜃idle(𝑡) and 𝜃data(𝑡), are obtained from [51].
Note that 𝐵𝑛(𝑡) also corresponds to the amount of data to be
processed at the MEC server in bytes.

3.2. Energy Patterns and Storage. The energy buffer is charac-
terized by its maximum energy storage capacity 𝛽max. At the
beginning of each time slot 𝑡, the EMprovides the energy level
report to the edge controller through the local MEC server;
thus the EB level 𝛽𝑛(𝑡) is known, enabling the provision of
the required computation resources, i.e., theVMs.The energy
level report/file from the EM to theMEC server is transferred
using the pull mode procedure (e.g., File Transfer Protocol)
[40].

In this work, the amount of harvested energy 𝐻𝑛(𝑡) in
time slot 𝑡 in the communication site 𝑛 is obtained from
open source solar traces [11] (see Figure 3). The dataset is
the result of daily environmental records. In our numerical
results, 𝐻𝑛(𝑡) represents a daily solar radiation record for
three different areas. From the three solar profiles, each
communication site energy profile is picked at random to
represent the daily energy harvested and then scaled to fit
the EB capacity 𝛽max of 490 kJ. Thus, the available EB level𝛽𝑛(𝑡 + 1) at the beginning of time slot 𝑡 + 1 is calculated as
follows:

𝛽𝑛 (𝑡 + 1) = 𝛽𝑛 (𝑡) + 𝐻𝑛 (𝑡) − 𝜃tot,𝑛 (𝑡) + 𝑄𝑛 (𝑡) , (4)

where 𝛽𝑛(𝑡) is the energy level in the battery at the beginning
of time slot 𝑡, 𝜃tot,𝑛(𝑡) is the energy consumption of the
communication site over time slot 𝑡 (see (1)), and 𝑄𝑛(𝑡) ≥ 0
is the amount of energy purchased from the power grid. We
remark that 𝛽𝑛(𝑡) is updated at the beginning of time slot 𝑡
whereas𝐻𝑛(𝑡) and 𝜃tot,𝑛(𝑡) are only known at the end of it.

For decision-making in the edge controller, the received
EB level reports are compared with the following thresholds:𝛽low and 𝛽up, respectively termed the lower and the upper
energy threshold with 0 < 𝛽low < 𝛽up < 𝛽max. 𝛽up cor-
responds to the desired energy buffer level at the BS and𝛽low is the lowest EB level that any BS should ever reach. If𝛽𝑛(𝑡) < 𝛽low, then BS 𝑛 is said to be energy deficient and our
optimization in the following section makes sure that 𝛽𝑛(𝑡)
never falls below 𝛽low due to its transmission and computing
activities within a time slot. Instead, if for any time slot we
have 𝛽𝑛(𝑡) < 𝛽up, then the following amount of energy𝑄𝑛(𝑡) = 𝛽up − 𝛽𝑛(𝑡) is purchased from the energy grid to
compensate for the deviation from the desired EB level (due
to previous BS activity).

4. Optimization for a Single
Communication Site

In this section, we formulate an optimization problem to
obtain energy savings through short-term traffic load and
harvested energy predictions, alongwith energymanagement
procedures for a single communication site.The optimization
problem is defined in Section 4.1, and the communication site
management procedures are presented in Section 4.2.

4.1. Problem Formulation. At the beginning of each time
slot 𝑡, the edge controller receives the energy level report𝛽𝑛(𝑡) from each EM (via the MEC application responsible
for energy profiles in the MEC server), using the pull mode
file transfer. Here, we aim to minimize the overall energy
consumption in the communication site over time, i.e., the
consumption related to the BS transmission activity and
the MEC server, by applying BS power saving modes and
VM soft-scaling, i.e., tuning the number of active virtual
machines. To achieve this, we first consider the optimization
for a single communication site.We define two cost functions
as follows:

(F1) 𝜃tot,𝑛(𝑡), which weighs the energy consumption due to
transmission (BS) and computation (MEC server);

(F2) a quadratic term (Γ𝑛(𝑡) − 𝐵𝑛(𝑡))2, which accounts for
the QoS cost.

In fact, (F1) tends to push the system towards self-sustaina-
bility solutions; i.e., 𝜁𝑛(𝑡) 󳨀→ 𝜀. Instead, (F2) favors solutions
where the delay sensitive load is entirely processed by the
local MEC server; i.e., 𝐵𝑛(𝑡) 󳨀→ Γ𝑛(𝑡). A weight 𝜂 ∈ [0, 1]
is utilized to balance the two objectives (F1) and (F2). The
corresponding (weighted) cost function is defined as

𝐽 (𝜁, 𝛼, 𝑡) Δ= 𝜂𝜃tot,𝑛 (𝜁𝑛 (𝑡) , {𝛼𝑚 (𝑡)} , 𝑡)
+ 𝜂 (Γ𝑛 (𝑡) − 𝐵𝑛 (𝑡))2 ,

(5)

where 𝜂 Δ= 1−𝜂; with {𝛼𝑚(𝑡)}wemean the sequence of factors𝛼1(1), 𝛼2(1), . . . , 𝛼𝑀(𝑡)(1). Hence, letting 1 be the current time

 6302, 2019, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2019/8593808 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



8 Wireless Communications and Mobile Computing

slot and 𝑇 be the time horizon, the following optimization
problem is formulated over time slots 1, . . . , 𝑇:

P1: min
𝜁,𝛼

𝑇∑
𝑡=1

𝐽 (𝜁, 𝛼, 𝑡)
subject to: C1: 𝜁𝑛 (𝑡) ∈ {𝜀, 1} ,

C2: 𝑏 ≤ 𝑀 (𝑡) ≤ 𝑀,
C3: 𝛽𝑛 (𝑡) ≥ 𝛽low,
C4: 0 ≤ 𝑓𝑚 (𝑡) ≤ 𝑓max,
C5: 0 ≤ 𝛾𝑚 (𝑡) ≤ 𝛾max,
C6: 𝜇𝑚 (𝑡) ≤ Δ, 𝑡 = 1, . . . , 𝑇,

(6)

where𝑚 = 1, . . . ,𝑀(𝑡) (VM index) and vectors 𝜁 (BS switch-
ing status in time slots 1, . . . , 𝑇) and𝛼 (load dependent factor)
contain the control actions for the considered time horizon,
per communication site; i.e., 𝜁 = [𝜁(1), 𝜁(2), . . . , 𝜁(𝑇)] and
𝛼 = [{𝛼𝑚(1)}, {𝛼𝑚(2)}, . . . , {𝛼𝑚(𝑇)}]. Constraint C1 specifies
the BS operation status (either power saving or active), C2
forces the required number of VMs, 𝑀(𝑡), to be always
greater than or equal to a minimum number 𝑏 ≥ 1: the
purpose of this is to be always able to handle mission critical
communications. C3 makes sure that the EB level is always
above or equal to a preset threshold 𝛽low, to guarantee energy
self-sustainability over time. Note that this constraint may
imply that in certain time slots the BS is to be switched
off, although the workload may be nonnegligible. When
managing a single BS site (the formulation in this section),
this implies that the load will not be served, but this fact
may be compensated for when multiple communication
sites are jointly managed, e.g., handing off the workload to
another, energy richer, and BS.This is dealt with in Section 5.
Furthermore, C4 and C5 bound the maximum processing
rate and workloads of each running VM 𝑚, with 𝑚 =1, . . . ,𝑀(𝑡), respectively. Constraint C6 represents a hard-
limit on the corresponding per-slot and per-VM processing
time.

To solve P1 in (6), we leverage the use of LLC [8, 30] and
heuristics, obtaining the controls 𝜍(𝑡) Δ= (𝜁(𝑡), {𝛼(𝑡)}) for 𝑡 =1, . . . , 𝑇. Note that (6) can iteratively be solved at any time slot𝑡 ≥ 1, by just redefining the time horizon as 𝑡󸀠 = 𝑡, 𝑡+1, . . . , 𝑡+𝑇 − 1.
4.2. Communication Site Management. In this subsection,
a traffic load and energy harvesting prediction method
and an online management algorithm are proposed to
solve the previously stated problem P1. In Section 4.2.1,
we discuss the prediction of the future (short-term) traffic
load and harvested energy processes, and then in Sec-
tion 4.2.2, we solve P1 by first constructing the state-
space behavior of the control system, where online con-
trol key concepts are introduced. Finally, the algorithm for
managing the single communication site is presented in
Section 4.2.3.

Modeling steps
Step 1: load and normalize the dataset
Step 2: split dataset into training and testing
Step 3: reshape input to be [samples, time steps, features]
Step 4: create and fit the LSTM network
Step 5: make predictions
Step 6: calculate performance measure

Box 1: LSTM prediction model steps.

4.2.1. Traffic Load and Energy Forecasting. ML techniques
constitute a promising solution for networkmanagement and
energy savings in cellular networks [52, 53]. In this work,
given a time slot duration of 𝜏 = 30 min, we perform
time series prediction; i.e., we obtain the 𝑇 = 3 estimates
of 𝐿̂𝑛(𝑡) and 𝐻̂𝑛(𝑡), by using an LSTM network developed
in Python using Keras deep learning libraries (Sequential,
Dense, LSTM) where the network has a visible layer with
one input, one hidden layer of four LSTM blocks or neurons,
and an output layer that makes a single value prediction.
This type of recurrent neural network uses backpropagation
through time for learning and memory blocks for regression
[7]. The dataset is split as 67% for training and 33% for
testing. The network is trained using 100 epochs (2,600
individual training trials) with batch size of one. As for the
performance measure of the model, we use the Root Mean
Square Error (RMSE). The prediction steps are outlined in
Box 1. Figures 4(a) and 4(b) show the prediction results that
will be discussed in Section 6.

4.2.2. Edge System Dynamics. We denote the system state
vector at time 𝑡 by x(𝑡) = (𝑀(𝑡), 𝛽𝑛(𝑡)), which contains the
number of active VMs, 𝑀(𝑡), and the EB level, 𝛽𝑛(𝑡), for the
BS site 𝑛. 𝜍(𝑡) = (𝜁(𝑡), {𝛼𝑚(𝑡)}) is the input vector, i.e., the
control action that drives the system behavior at time 𝑡. The
system evolution is described through a discrete-time state-
space equation, adopting the LLC principles [8, 30]:

x (𝑡 + 1) = Φ (x (𝑡) , 𝜍 (𝑡)) , (7)

whereΦ(⋅) is a behavior model that captures the relationship
between (x(𝑡), 𝜍(𝑡)), and the next state x(𝑡 + 1). Note that this
relationship accounts for (1) the amount of energy drained𝜃tot,𝑛(𝑡) that harvested 𝐻𝑛(𝑡) and that purchased from the
power grid 𝑄𝑛(𝑡), which together lead to the next buffer level𝛽𝑛(𝑡 + 1) through (4) and (2) to the traffic load 𝐿𝑛(𝑡), from
which we compute the server workloads Γ𝑛(𝑡) that leads to𝑀(𝑡) and to the control 𝜍(𝑡). The network management algo-
rithm in the edge controller, the ENAAM algorithm, finds
the best control action vector for the communication site,
following amodel predictive control approach. Specifically, for
each time slot 𝑡, problem (6) is solved, obtaining control
actions for the whole time horizon 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑇 − 1. The
control action that is applied at time 𝑡 is 𝜍∗(𝑡), which is the first
one in the retrieved control sequence. This control amounts
to setting the BS radio mode according to 𝜁∗(𝑡), i.e., either
active or power saving, and the number of instantiated VMs,
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(a) One-step ahead predictive mean value for 𝐿(𝑡)
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(b) One-step ahead predictive mean value for𝐻(𝑡)

Figure 4: One-step online forecasting for both 𝐿(𝑡) and𝐻(𝑡) patterns.

𝑀∗(𝑡), along with their obtained {𝛼∗𝑚(𝑡)} values (see Remarks
1 and 2 below). This is repeated for the following time slots𝑡 + 1, 𝑡 + 2, . . ..
Remark 1 (role of prediction). State x(𝑡) and control 𝜍(𝑡) are,
respectively, measured and applied at the beginning of time
slot 𝑡, whereas the offered load 𝐿𝑛(𝑡) and the harvested energy𝐻𝑛(𝑡) are accumulated during the time slot and their value
becomes known only by the end of it. This means that, being
at the beginning of time slot 𝑡, the system state at the next
time slot 𝑡 + 1 can only be estimated, which we formally write
as

x̂ (𝑡 + 1) = Φ (x (𝑡) , 𝜍 (𝑡)) , (8)

and the same applies to the subsequent time slots in the
optimization horizon 𝑡 + 2, 𝑡 + 3, . . . , 𝑡 + 𝑇 − 1. For these
estimations we use the forecast values of load 𝐿̂𝑛(𝑡) and
harvested energy 𝐻̂𝑛(𝑡), from the LSTM forecasting module.

Remark 2 (VM number and workload allocation). A remark
on the provisioned VMs per time slot per-MEC server,𝑀(𝑡),
is in order. Specifically, the number of active VMs (i.e., the
VMcomputing cluster) depends on the predicted load, 𝐿̂𝑛(𝑡+1), where the expected server workload is Γ̂𝑛(𝑡+1) = 0.8𝐿̂𝑛(𝑡+1). Each VM can compute an amount of up to 𝛾max. Then,
an estimate of the number of virtual machines that shall be
active in time slot 𝑡 to serve the predicted server workloads is
here obtained as follows:𝑀(𝑡) = [(Γ̂𝑛(𝑡 + 1)/𝛾max)], where ⌈⋅⌉
returns the nearest upper integer. We heuristically split the
workload among virtual machines by allocating a workload𝛾𝑚(𝑡) = 𝛾max to the first𝑀(𝑡) − 1 VMs, 𝑚 = 1, . . . ,𝑀(𝑡) − 1,
and the remainingworkload 𝛾𝑚(𝑡) = 𝐿̂𝑛(𝑡+1)−(𝑀(𝑡)−1)𝛾max

to the last one 𝑚 = 𝑀(𝑡).

Controller Decision-Making.The controller is obtained by
estimating the relevant parameters of the operating environ-
ment, i.e., the BS load 𝐿̂𝑛(𝑡) and the harvested energy 𝐻̂𝑛(𝑡),
and subsequently using them to forecast the future system
behavior through (8) over a look-ahead time horizon of 𝑇
time slots. The control actions are picked by minimizing𝐽(𝜁, 𝛼, 𝑡) (see (5)). At the beginning of each time slot 𝑡 the
following process is iterated:

(1) Future system states, x̂(𝑡+𝑘), for a prediction horizon
of 𝑘 = 1, . . . , 𝑇 steps are estimated using (8). These
predictions depend on past inputs and outputs up
to time 𝑡, on the estimated load 𝐿̂𝑛(⋅) and energy
harvesting 𝐻̂𝑛(⋅) processes, and on the control 𝜍(𝑡+𝑘),
with 𝑘 = 0, . . . , 𝑇 − 1.

(2) The sequence of controls {𝜍(𝑡 + 𝑘)}𝑇−1𝑘=0 is obtained for
each step of the prediction horizon by optimizing the
weighted cost function 𝐽(⋅) (see (5)).

(3) The control 𝜍∗(𝑡) corresponding to the first control
action in the sequence with the minimum total cost
is the applied control for time 𝑡 and the other controls
𝜍∗(𝑡 + 𝑘) with 𝑘 = 1, . . . , 𝑇 − 1 are discarded.

(4) At the beginning of the next time slot 𝑡+1, the system
state x(𝑡 + 1) becomes known and the previous steps
are repeated.

4.2.3. The ENAAM Algorithm. Let 𝑡 be the current time.𝐿̂𝑛(𝑡+𝑘−1) is the forecast load in slot 𝑡+𝑘−1, with 𝑘 = 1, . . . , 𝑇,
i.e., over the prediction horizon. For the control to be feasible,
we need Γ𝑛(𝑡) ≤ 𝐵𝑛(𝑡) ≤ Γ̂𝑛(𝑡 + 𝑘 − 1), where Γ𝑛(𝑡) is the
smallest Γ such that round (Γ̂𝑛(𝑡 + 1)/𝛾max) = 𝑏. For the
buffer state, we heuristically set 𝜁(𝑡 + 𝑘 − 1) = 𝜀 if either𝛽𝑛(𝑡+𝑘−1) < 𝛽low or 𝐿𝑛(𝑡+𝑘−1) < 𝐿 low, and 𝜁(𝑡+𝑘−1) = 1;
otherwise 𝛽low and 𝐿 low are preset low thresholds for the EB
and the BS load, respectively. For slot 𝑡 + 𝑘 − 1, the feasibility
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10 Wireless Communications and Mobile Computing

Input: x(𝑡) (current state)
Output: 𝜍∗(𝑡) = (𝜁∗(𝑡), {𝛼∗𝑚(𝑡)})
01: Initialization of variables

S(𝑡) = {x(𝑡)}, Cost(x(𝑡)) = 0
02: for 𝑘 = 1, . . . , 𝑇 do

(i) forecast the load 𝐿̂𝑛(𝑡 + 𝑘 − 1)
(ii) forecast the harvested energy Ĥ𝑛(𝑡 + 𝑘 − 1)
(iii) S(𝑡 + 𝑘) = 0

03: for all x ∈ S(𝑡 + 𝑘 − 1) do
04: for all 𝜍 = (𝜁, {𝛼𝑚(𝑡)}) ∈ A(𝑡 + 𝑘 − 1) do
05: x̂(𝑡 + 𝑘) = Φ(x(𝑡 + 𝑘 − 1), 𝜍)
06: Cost(x̂(𝑡 + 𝑘)) = 𝐽(𝜁, 𝛼, 𝑡 + 𝑘 − 1)+Cost(x(𝑡 + 𝑘 − 1), 𝜍)
07: S(𝑡 + 𝑘) = S(𝑡 + 𝑘) ∪ {x̂(𝑡 + 𝑘)}

end for
end for
end for

08: Find x̂min=argminx̂∈S(𝑡+𝑇)Cost(x̂)
09: 𝜍∗(𝑡) := control leading from x(𝑡) to x̂min
10: Return 𝜍∗(𝑡)

Algorithm 1: ENAAM.

setA(𝑡 + 𝑘 − 1) contains the control pairs (𝜁(𝑡), {𝛼𝑚(𝑡)}) that
obey these relations.

The algorithm is specified in Algorithm 1 as it uses
the technique in [8]: the search starts (line 01) from the
system state at time 𝑡, x(𝑡), and continues in a breadth-first
fashion, building a tree of all possible future states up to the
prediction depth 𝑇. A cost is initialized to zero (line 01) and
is accumulated as the algorithm travels through the tree (line
06), accounting for predictions, past outputs, and controls.
The set of states reached at every prediction depth 𝑡 + 𝑘 is
referred to as S(𝑡 + 𝑘). For every prediction depth 𝑡 + 𝑘, the
search continues from the set of states S(𝑡 + 𝑘 − 1) reached
at the previous step 𝑡 + 𝑘 − 1 (line 03), exploring all feasible
controls (line 04), obtaining the next system state from (8)
(line 05), updating the accumulated cost as the result of the
previous accumulated cost, plus the cost associated with the
current step (line 06), and updating the set of states reached
at step 𝑡+𝑘 (line 07).When the exploration finishes, the initial
action (at time 𝑡) that leads to the best final accumulated cost,
at time 𝑡 +𝑇− 1, is selected as the optimal control 𝜍∗(𝑡) (lines
08, 09, 10). Finally, for line 04, we note that Γ𝑛 belongs to the
continuous set [Γ𝑛, 𝐿̂𝑛(𝑡 + 𝑘 − 1)]. To implement this search,
we quantized this interval into a number of equally spaced
points, obtaining a search over a finite set of controls.

ENAAM Complexity. The computation complexity of the
algorithm is 𝑂(𝑁𝑥𝑁𝜍𝑇), where 𝑁𝑥 Δ= |x(𝑡)| and 𝑁𝜍 Δ= |𝜍(𝑡)|,
respectively, represent the number of system states and the
number of feasible actions at time 𝑡. Note that state and action
space are, respectively, quantized into 𝑁𝑥 = 𝑀 × 𝑁𝛽 and𝑁𝜍 = 2 × 𝑀 × 𝑁𝛼 levels, where 𝑀 is the number of virtual
machines, 𝑁𝛽 is the number of quantization levels for the
energy buffer, and 𝑁𝛼 is the number of quantization levels
for the load variable 𝛼𝑚(𝑡). Such quantization facilitates the

search in Algorithm 1. Note that exhaustive search would
entail a complexity of 𝑂((𝑁𝑥𝑁𝜍)𝑇).
5. Multiple Communication Sites

In this section, we extend the work from Section 4 by
considering the energy savings for multiple communication
sites. We formulate an optimization problem to obtain energy
savings through short-term traffic load and harvested energy
predictions and clustering, along with energy management
procedures for the clustered BS sites. The problem for-
mulation for multiple communication sites is described in
Section 5.1; then cluster formation is discussed in Section 5.2,
and the edgemanagement procedure for each cluster, enabled
by the edge controller, is presented in Section 5.3.

5.1. Problem Formulation. Our objective is to improve the
overall energy savings of the network by clustering BSs based
on their location (or distance measures) similarity and then
optimizing the energy savings within each cluster by employ-
ing the single optimization case described in Section 4. From
an energy efficiency perspective, in a cluster of BS nodes,
one BS (or more) might have a preference of switching
off, by first offloading its (their) traffic load to its (their)
neighboring BS that have enough spare capacity for handling
extra traffic load and then switching off. The whole offloaded
traffic load from the BS, denoted by BS 𝑛, is allocated to the
neighboring cluster member (active BS) in which orthogonal
resource allocation helps mitigate intracluster interference,
such that the selected neighboring BS, denoted by BS 𝑛󸀠, is
allocated the incremental load, denoted by 𝐿𝑛𝑛󸀠(𝑡) Δ= 𝐿𝑛(𝑡).
Whenever a BS is switched off, it should maintain service
to its users via a reassociation process in order to offload
the users to the neighboring active BS having extra resources
for handling upcoming extra traffic load. The reassociation
process involves notifying the connected users to try and
connect to neighboring BSs with extra resources.

In the view of the above, we consider that all BSs are
grouped into sets of clustersO = {𝑂1, . . . , 𝑂|O|}. Here, a given
cluster𝑂𝑖 ∈ O, with 𝑖 = 1, . . . , |O|, consists of a set of BSs that
coordinate with the controller. The clustering mechanism is
discussed in Section 5.2. For each cluster 𝑂𝑖 ∈ O, we aim to
minimize the energy consumption, i.e., the consumption due
to BS transmission and the running VMs in the servers, using
BSpower savingmodes andVMsoft-scaling per active cluster
member. To do so, we define a cost function which captures
the individual communication site energy consumption and
its QoS. The (weighted) cost for each cluster member, BS𝑛 ∈ 𝑂𝑖, is redefined as follows:

𝐽𝑛 (𝜁, 𝛼, 𝑡) Δ= 𝜂𝜃tot,𝑛 (𝜁𝑛 (𝑡) , {𝛼𝑚 (𝑡)}𝑛 , 𝑡)
+ 𝜂 (Λ 𝑛 (𝑡) − 𝐵𝑛 (𝑡))2 ,

(9)

where 𝜁𝑛(𝑡) is the activity status of BS 𝑛 (either power saving
or active) and {𝛼𝑚(𝑡)}𝑛 is the set of factors for the allocated
VMs at BS 𝑛. Moreover, Λ 𝑛(𝑡) ←󳨀 𝐿𝑛(𝑡) if BS 𝑛 only handles
its own traffic, whereas Λ 𝑛(𝑡) ←󳨀 𝐿𝑛(𝑡) + Δ𝐿𝑛(𝑡), in case one
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Wireless Communications and Mobile Computing 11

(or multiple) BSs are switched off in time slot 𝑡 and its (their)
traffic is redirected (handed off) to BS 𝑛. The computation
of Δ𝐿𝑛(𝑡) is addressed in Section 5.3. The per cluster costΥ𝑂𝑖(𝜁𝑖,𝛼𝑖, 𝑡) is the aggregated cost of all cluster members,Υ𝑂𝑖(𝜁𝑖,𝛼𝑖, 𝑡) = ∑∀𝑛∈𝑂𝑖 𝐽𝑛(𝜁, 𝛼, 𝑡). Hence, over time horizon,𝑡 = 1, . . . , 𝑇, the following optimization problem is defined:

P2: min
E

∑
∀𝑂𝑖∈O

Υ𝑂𝑖 (𝜁𝑖,𝛼𝑖, 𝑡)
subject to: C1 − 𝐶6: from Eq. (6) ,

C7: 󵄨󵄨󵄨󵄨𝑂𝑖󵄨󵄨󵄨󵄨 ≥ 1, ∀𝑂𝑖 ∈ O,
C8: 𝑂𝑖 ∩ 𝑂𝑗 = 0,

∀𝑂𝑖, 𝑂𝑗 ∈ O, 𝑂𝑖 ̸= 𝑂𝑗,

(10)

where E
Δ= {𝜁𝑖,𝛼𝑖} is the collection of variables to be

reconfigured for all the BS clusters (the whole MN), for all
time slots 𝑡 = 1, . . . , 𝑇. As for the constraints, C7 and C8
ensure that each BS is part of only one cluster. Solving P2
in (10) involves BS clustering, the forecasting method from
Section 4.2.1, a heuristic rule for the selection of which BSs
have to be switched off, and the ENAAM algorithm from
Section 4.2.3. Once P2 is solved, the control action to be
applied at time 𝑡, per cluster 𝑂𝑖, corresponds to the elements
in {𝜁𝑖,𝛼𝑖} that are associated with the first time slot 1 in the
optimization horizon. As above, (10) can iteratively be solved
at any time slot 𝑡 ≥ 1, by just redefining the time horizon as𝑡󸀠 = 𝑡, 𝑡 + 1, . . . , 𝑡 + 𝑇 − 1.
5.2. Cluster Formation. Clustering algorithms have been
proposed as a way of enabling energy saving mechanisms
in BSs, where groups of inactive BSs or BSs with low loads
are switched off. With the advent of EH BSs, the BSs with𝛽𝑛(𝑡) < 𝛽low can be switched off, while still guaranteeing the
QoS through the other active BSs.That is, within each formed
cluster, the controller tries to minimize the cost function,
which captures the tradeoff between the energy efficiency and
the QoS of each cluster member. The key step in clustering
is to identify similarities or distance measures between BSs
in order to group BSs with similar characteristics. In this
paper, we use the location of the BSs as it defines the relative
neighborhood (the distance measures) with the other BSs.
Using the location of the BSs and the distance between
the BSs, we obtain a distance-based similarity matrix W𝑑.
In addition, we assume that the network topology is static
during the clustering algorithm execution.

In Section 5.2.1 we detail the clustering measure that
we use to obtain the similarities between BSs based on
location, followed by the distance-based clustering algorithm
in Section 5.2.2.

5.2.1. Relative Neighborhood Based on BS Adjacency and
Gaussian Similarity. Similar to [13], we model the MN as a
graph 𝐺 = (N, 𝐸), where N represents the set of BSs, while
the set 𝐸 contains the edges between any two BSs.There is an
edge (𝑛, 𝑛󸀠) ∈ 𝐸 if and only if 𝑛 and 𝑛󸀠 can mutually receive

each other’s transmission. In this case, we say that 𝑛 and 𝑛󸀠
are neighbors. We use a parameter 𝑟𝑛𝑛󸀠 to characterize the
presence of a link between nodes, where 𝑟𝑛𝑛󸀠 ∈ {0, 1}. Let 𝑦𝑛
be the coordinates of BS 𝑛 ∈ N in the Euclidean space. The
relative neighborhood of BS 𝑛 is defined by the nearness of
the BSs in its 𝑒𝑑-radio propagation space (or neighborhood):

Z𝑛 = {𝑛󸀠s.t. 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛󸀠󵄩󵄩󵄩󵄩 ≤ 𝑒𝑑} . (11)

If 𝑛󸀠 ∈ Z𝑛 we say that BSs 𝑛 and 𝑛󸀠 are neighbors, and we set𝑟𝑛𝑛󸀠 = 1; otherwise 𝑟𝑛𝑛󸀠 = 0. The links between the vertices
in N are weighted based on their similarities. Based on the
distance between BS 𝑛 and 𝑛󸀠, we can classify the BSs based
on their location using the Gaussian similarity measure [13]
(a classification kernel function used in machine learning),
which is defined as

𝑤𝑑𝑛𝑛󸀠 = {{{{{
exp(−󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛󸀠󵄩󵄩󵄩󵄩22𝜎2

𝑑

) if 󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑦𝑛󸀠󵄩󵄩󵄩󵄩 ≤ 𝑒𝑑,
0 otherwise,

(12)

where 2𝜎2𝑑 adjusts the impact of the neighborhood size. In
(12), we assume that the BSs located far from each other have
low similarities, compared to those that are close to each
other, as those that are close are more likely to cooperate
with each other. The distance-based similarity matrix W𝑑 is
formed using 𝑤𝑑𝑛𝑛󸀠 as the (𝑛, 𝑛󸀠)-th entry.

5.2.2. Distance-Based Clustering. The BS clustering is per-
formed after obtaining the similarity matrix W𝑑 of the MN
graph 𝐺 = (N, 𝐸). Given the matrix W𝑑, we employ
a centralized clustering method, specifically the K-means
[54], as the matrix provides the full location knowledge.
K-means partitions the set of nodes into clusters in which
each node belongs to the cluster with the nearest mean
distance. In addition, the value of 𝐾, i.e., the number of
clusters (|𝑂𝑖|), is known prior and is a design parameter. This
algorithm requires knowledge of all the BS locations; thus, it is
categorized as a centralized method. In our case, this process
does not incur any computation delay as the edge controller
is assumed to have high computation capabilities.

5.3. Edge Network Management. Our aim is to implement
and validate an LLC framework for dynamic resource pro-
visioning in multiple communication sites with the goal of
achieving energy savings within the access network through
BS sleep modes and VM soft-scaling. Given the formation
of clusters, load, and energy forecasting, our next goal is to
develop a mechanism for solving P2 (see (10)) where each
cluster of BSs adjusts its transmission parameters and its
computing cluster entities based on the forecast information.
In order to minimize the per cluster cost function, we
introduce the notion of network impact in Section 5.3.1,
whereas we describe the edge management procedure in
Section 5.3.2.

5.3.1. Network Impact. The dynamic BS switching off strate-
gies may have an impact on the network due to the traffic
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12 Wireless Communications and Mobile Computing

load that is offloaded to the neighboring BSs. To avoid this,
the BS to be switched off must be carefully identified within
a BS cluster. To determine whether a particular BS can be
switched off or not, we follow the work done in [55]. As an
example, we consider one cluster 𝑂𝑖, together with its cluster
members 𝑛 ∈ 𝑂𝑖, then from it we choose one BS, BS 𝑛,
where BS 𝑛 neighbors set is denoted byN𝑛. Note that the BS𝑛󸀠 ∈ N𝑛 is the BS to which the traffic load will be offloaded
to after turning off BS 𝑛. Also, BS 𝑛 can only be switched off
if there exists a neighboring BS 𝑛󸀠 that satisfies the following
feasibility constraint [55]:

𝐿𝑛󸀠 (𝑡) + 𝐿𝑛𝑛󸀠 (𝑡) ≤ 1, 𝑛󸀠 ∈ N𝑛, (13)

where 𝐿𝑛󸀠(𝑡) is the original BS 𝑛󸀠 traffic load and 𝐿𝑛𝑛󸀠(𝑡) is
the incremental traffic load from BS 𝑛 (the switched off BS)
to BS 𝑛󸀠 (the neighboring BS). We recall that the load 𝐿𝑛󸀠(𝑡)
is normalized with respect to the maximum load that a BS
can sustain, so the inequality in (13) means that it is feasible
for BS 𝑛󸀠 to take the extra load from BS 𝑛. To quantify how
the incremental system load affects the overall network load
due to the switching off process, we introduce the notion of
network impact. For every BS 𝑛within cluster𝑂𝑖, 𝑖 = 1, . . . , 𝐾,
its network impact due to the offloaded system load onto one
of the neighboring BSs is defined as follows:

𝐼𝑛 (𝑡) = max
𝑛󸀠∈N𝑛

[𝐿𝑛󸀠 (𝑡) + 𝐿𝑛𝑛󸀠 (𝑡)] , ∀𝑛 ∈ 𝑂𝑖. (14)

Here, the maximum network impact value 𝐼𝑛(𝑡) over the
neighboring BSs is considered as a measure for each BS
towards switching off and generating extra traffic loads for
its neighboring BSs. In this work, considering cluster 𝑂𝑖, we
switch off the BS 𝑛∗ that has the least network impact; i.e.,

𝑛∗ = argmin
𝑛∈𝑂𝑖

𝐼𝑛 (𝑡) . (15)

The BS that takes the load from 𝑛∗ is selected as the BS 𝑛󸀠
that minimizes 𝐿𝑛󸀠(𝑡) + 𝐿𝑛∗𝑛󸀠(𝑡) over the set of active BSs that
are on within the cluster 𝑂𝑖. For BS 𝑛󸀠, we then set 𝐿𝑛󸀠(𝑡) ←󳨀𝐿𝑛󸀠(𝑡) + 𝐿𝑛∗𝑛󸀠(𝑡). This procedure is sequentially repeated for
all the cluster members until there is no active BS whose
neighbors satisfy the feasibility condition of (13). Note that
here, we focus only on which BS to switch off, as for the BS
turning on state, we assume that the commitment time (time
configured so that the BS automatically wakes up without
external triggers) is a system parameter that is preconfigured
when the BS is switched off.

5.3.2. Edge Management Procedure. Here, we propose a
distributed edge network management procedure that makes
use of the ENAAM algorithm (see Section 4.2.3). The
decision-making criterion only depends on the BS informa-
tion and on its neighboring BSs; thus, the BS switching off
decision can be localized within each cluster. To decide which
BSs shall be switched off, we follow a sequential decision
process. While this is heuristic, it allows coping with the
high complexity associated with an optimal (all BSs are
jointly assessed) allocation approach. The edge management
procedure is as follows.

For each BS cluster 𝑂𝑖, with 𝑖 = 1, . . . , 𝐾, we have the
following:

(1) Initialize an allocation variable Δ𝐿𝑛(𝑡) = 0 for all
BSs 𝑛 ∈ 𝑂𝑖. Compute 𝐼𝑛(𝑡), using (14), for all BSs𝑛 and obtain the BS with the least network impact𝑛∗(𝑡), using (15). Switch off BS 𝑛∗(𝑡) and assign its
load to the neighboring BS 𝑛󸀠 ∈ 𝑂𝑖 that minimizes𝐿𝑛󸀠(𝑡)+Δ𝐿𝑛󸀠(𝑡)+𝐿𝑛∗𝑛󸀠(𝑡). Update the extra allocation
for BS 𝑛󸀠 asΔ𝐿𝑛󸀠(𝑡) ←󳨀 Δ𝐿𝑛󸀠(𝑡)+𝐿𝑛∗𝑛󸀠(𝑡). Recompute𝐼𝑛(𝑡) for all the BSs that are still on and identify the
next BS that can be switched off, i.e., the one with the
least network impact. This procedure is repeated until
none of the BSs in the cluster verifies Eq. (13). At this
point, we have identified all the BSs 𝑛∗ that shall be
switched off in 𝑂𝑖.

(2) For each active BS 𝑛󸀠 ∈ 𝑂𝑖, the ENAAM algorithm is
executed using 𝐿𝑛󸀠(𝑡) + Δ𝐿𝑛󸀠(𝑡), where Δ𝐿𝑛󸀠(𝑡) = 0
if BS 𝑛󸀠 does not take extra load, whereas it is greater
than zero otherwise. Note that, Δ𝐿𝑛󸀠(𝑡) corresponds
to the total traffic that is handed over to BS 𝑛󸀠 , possibly
from multiple nearby BSs.

Edge Network Management Complexity. The algorithm is
independently executed for each cluster and the correspond-
ing time complexity is obtained as follows. Considering the
action Step (1), from above, the time complexity associated
with the computation of the BS having the least network
impact is linear with the size of the cluster |𝑂𝑖|. Once that
is computed, the complexity associated with updating the
load allocation for the active BSs is |𝑂𝑖| − 1, which leads to
a total complexity of |𝑂𝑖|(|𝑂𝑖| − 1) = 𝑂(|𝑂𝑖|2). Moreover,
such process is iterated for each BS that is switched off. In
the worst case, where all the BSs but one are switched off,
the final complexity of step 1 is𝑂(|𝑂𝑖|3). As for Step (2), from
above, the computation complexity depends on the ENAAM
algorithm,which is independently executed by each activeBS.
Thus, in the worst case (no BSs are switched off), the total
aggregated complexity is as follows: 𝑂(|𝑂𝑖|𝑁𝑥𝑁𝜍𝑇), which is
linear in all variables, namely, number of cluster members,
number of BS states, number of actions, and time horizon 𝑇.
6. Performance Evaluation

In this section, we show some selected numerical results for
the scenario of Section 3. The parameters that were used for
the simulations are listed in Table 2.

6.1. Simulation Setup. We consider multiple BSs, each one
colocatedwith aMEC server and a coverage radius of 40m. In
addition, we use a virtualized server with specifications from
[56] for a VMware ESXi 5.1-ProLiant DL380 Gen8. Our time
slot duration 𝜏 is set to 30 min and the time horizon is set to𝑇 = 3 time slots.The simulations are carried out by exploiting
the Python programming language.

6.2. Numerical Results. Pattern Forecasting. We show real and
predicted values for the traffic load and harvested energy
over time in Figures 4(a) and 4(b), where we track the
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(b) Mean energy savings for 𝜂 = 0 and 𝛾max = 10MB

Figure 5: Mean energy savings for the single BS case.

Table 2: System parameters.

Parameter Value
Total BSs, 𝑁 24
Max. number of VMs,𝑀 27
Min. number of VMs, 𝑏 1
Time slot duration, 𝜏 30min
Operating power, 𝜃0 10.6W
Energy overheads for switching VM, 𝜃ov𝑚 (𝑡) 0.05 J/MHz2

Max. computation workload per VM, 𝛾max {5, 10}MB
Max. allowed processing time, Δ 0.8 s
Energy cons. of network interfaces, 𝜃idle(𝑡) 3 J
Cost of exchanging one unit of data, 𝜃data(𝑡) 6 J/byte
Processing rate set,F {0, 4, 8, 12, 16, 20}
Static energy consumed by VM, 𝜃idle,𝑚(𝑡) 4 J
Max. energy cons. by VM at 𝑓max, 𝜃max,𝑚(𝑡) 10 J
Energy storage capacity, 𝛽max 490 kJ
Lower energy threshold, 𝛽low 30% of 𝛽max

Upper energy threshold, 𝛽up 70% of 𝛽max

Low traffic threshold, 𝐿 low 4MB

one-step predictive mean value at each step of the online
forecasting routine.Then, Table 3 shows the average RMSE of
the normalized harvested energy and traffic load processes,
for different time horizon values, 𝑇 ∈ {1, 2, 3}. Note that
the predictions for 𝐻(𝑡) are more accurate than those of𝐿(𝑡) (confirmed by comparing the average RMSE), due to
differences in the used dataset granularity. However, the
measured accuracy is deemed good enough for the proposed
optimization.

Single Communication Site. Figures 5(a) and 5(b) are
computed with 𝜂 = 0 using Cluster 1 and Solar 1 as traffic
load and harvested energy profiles for each BS (see Figures
2 and 3). Moreover, 𝛾max = 5 MB and 10 MB, respectively.

Table 3: Average prediction error (RMSE) for harvested energy and
traffic load processes, both normalized in [0, 1].

𝑇 = 1 𝑇 = 2 𝑇 = 3
𝐿(𝑡) 0.037 0.042 0.048
𝐻(𝑡) 0.011 0.016 0.021

They show the mean energy savings achieved over time when
on-demand and energy aware edge resource provisioning
are enabled (i.e., BS sleep modes and VM soft-scaling),
in comparison with the case where they are not applied.
Our edge network management algorithm (ENAAM) is
benchmarked with another one that heuristically selects the
amount of traffic that is to be processed locally, 𝐵𝑛(𝑡) ≤Γ𝑛(𝑡), depending on the expected load behavior. It is named
Dynamic and Energy-Traffic-Aware algorithm with Random
behavior (DETA-R). Both ENAAM and DETA-R are aware
of the predictions in future time slots (see Section 4.2.1);
however, DETA-R provisions edge resources using a heuristic
scheme. DETA-R heuristic works as follows: if the expected
load difference is 𝐿̂(𝑡 + 1) − 𝐿̂(𝑡) > 0, then the normalize
workload to be processed by BS 𝑛 in the current time slot 𝑡,𝐵𝑛(𝑡), is randomly selected in the range [0.6, 1]; otherwise, it
is picked evenly at random in the range (0, 0.6).

Average results for the ENAAM scheme show energy
savings of 69% (𝛾max = 10MB) and 57%(𝛾max = 5MB),while
DETA-R achieves 49% (𝛾max = 10 MB) and 43% (𝛾max =5 MB) on average, where these savings are with respect to
the case where no energy management is performed; i.e.,
the network is dimensioned for maximum expected capacity
(maximum value of 𝜃tot,𝑛(𝑡), with 𝑀 = 27 VMs, ∀𝑡). The
results show that the maximum load allocated to each VM,𝛾max, has an impact towards energy savings. An increase in
energy savings is observedwhen 𝛾max = 10MBdue to the fact
that the number of VMs demanded per time slot is reduced,
when compared to the allocation of 𝛾max = 5MB.
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Figure 6: Energy savings versus weight 𝜂 (single BS case).

The ESs evolution with respect to 𝜂 is presented in
Figure 6, taking into account the load allocated to each VM,𝛾max. The results were obtained using Cluster 1 and Solar 1 as
traffic load and harvested energy profiles (see Figures 2 and
3). As expected, a drop in energy savings is observed when
QoS is prioritized, i.e., 𝜂 󳨀→ 1, as in this case the BS energy
consumption is no longer considered. It can be observed that
ENAAM achieves a 50% (or above) from 𝜂 = [0, 0.4] when𝛾max = 5MB and from 𝜂 = [0, 0.7] when 𝛾max = 10MB.This
shows that the higher the load allocated to eachVM, the lesser
the energy that is drained, as few VMs are running. DETA-R
operates at below 50% for all 𝜂 and 𝛾max values.

Multiple Communication Sites. Figures 7(a) and 7(b)
present the mean energy savings achieved with respect to
the cluster size and the weight 𝜂, using all the traffic load
and harvested energy profiles from Figures 2 and 3. Each
BS randomly picks its own traffic load and harvested energy
profile at the beginning of the optimization process. Here,
to select the BS to be switched off, we use the management
procedure of Section 5.3. As for DETA-R, a BS is randomly
selected to evolve its operating mode to power saving mode
and offload its load to a nearby BS (in this case, the least
loaded neighboring BS is selected), without taking into
account its network impact measure.

Figure 7(a) shows the average energy savings obtained
when clustering is adopted, i.e., here, the cluster size is
increased from |𝑂𝑖| = 1 to 10 and 𝜂 = 0. The obtained
energy savings are with respect to the case where all BSs
are dimensioned formaximum expected capacity (maximum
value of 𝜃tot,𝑛(𝑡), with 𝑀 = 27 VMs, ∀𝑡, ∀𝑛 ∈ 𝑂𝑖). It should
be noted that the energy savings increase as the size of the
cluster grows, thanks to the load balancing among active BSs,
which cannot be implemented in the single communication
site scenario (i.e., when BSs are independently managed).

Then, Figure 7(b) shows the average energy savings with
respect to 𝜂, when the cluster size is set to an intermediate

case (|𝑂𝑖| = 6). Again, here the energy savings are obtained
with respect to the case where all the BSs are dimensioned
for maximum capacity. As expected, there is a drop in the
energy savings achieved as the value of 𝜂 increases, as QoS is
prioritized. It can be observed that ENAAM achieves a value
of 50% or above when 𝜂 = [0, 0.8] (at 𝛾max = 10 MB) and
when 𝜂 = [0, 0.6] (at 𝛾max = 5 MB). DETA-R achieves value
above 50% or above when 𝜂 = [0, 0.4] (at 𝛾max = 10) and𝜂 = [0, 0.1] (at 𝛾max = 5MB).

Comparing Figures 6 and 7(b), an average gain of 9% on
the energy savings is observed when clustering is applied, by
considering the mean energy savings with respect 𝜂 achieved
withENAAMfor both cases. FromFigure 7(a) we see that this
gain can be as high as 16% for ENAAMwith 𝛾max = 5MB (red
curve) and bigger for the DETA-R approach. These results
support the notion that performing a clustering-based opti-
mization is beneficial thanks to the additional cooperation
within each neighborhood of BSs. This cooperation allows
switching off more BSs through load balancing, increasing
the energy savings while still controlling the users’ QoS.

7. Conclusions

In this paper, we have envisioned an edge network where
a group of BSs are managed by a controller, for ease of BS
organization and management, and also a mobile network
where the edge apparatuses are powered by hybrid supplies,
i.e., using green energy in order to promote energy self-
sustainability and the power grid as a backup. Within the
edge, each BS is endowed with computation capabilities to
guarantee low latency to mobile users, offloading their work-
loads locally. The combination of energy saving methods,
namely, BS sleep modes and VM soft-scaling, for single
and multiple BS sites helps to reduce the mobile network’s
energy consumption. An edge energy management algo-
rithm based on forecasting, clustering, control theory and
heuristics, is proposed with the objective of saving energy
within the access network, possibly making the BS system
self-sustainable. Numerical results, obtained with real-world
energy and traffic load traces, demonstrate that the proposed
algorithm achieves energy savings between 57% and 69%,
on average, for the single communication site case, and a
gain ranging from 9% to 16% on energy savings is observed
when clustering is applied, with respect to the allocated
maximum per-VM loads of 5 MB and 10 MB. The energy
saving results are obtained with respect to the case where no
energy management techniques are applied, either in one BS
or single cluster.

Data Availability

In this paper, we have used open source datasets for the
mobile network (MN) traffic load and the harvested solar
energy. The details are as follows: (1) the real MN traffic load
traces used to support the findings of this studywere obtained
from the Big Data Challenge organized by Telecom Italia
Mobile (TIM) and the data repository has been cited in this
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(b) Energy savings versus 𝜂 for |𝑂𝑖| = 6

Figure 7: Energy savings for the multiple BSs case.

article. (2) The real solar energy traces used to support the
findings of this study have also been cited in this article.
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