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As mobile networks (MNs) are advancing towards meeting mobile user requirements, the rural-urban divide still remains a
major challenge. While areas within the urban space (metropolitan mobile space) are being developed, i.e., small Base
Stations (BSs) empowered with computing capabilities are deployed to improve the delivery of user requirements, rural
areas are left behind. Due to challenges of low population density, low income, difficult terrain, nonexistent infrastructure,
and lack of power grid, remote areas have low digital penetration. This situation makes remote areas less attractive
towards investments and to operate connectivity networks, thus failing to achieve universal access to the Internet. In
addressing this issue, this paper proposes a new BS deployment and resource management method for remote and rural
areas. Here, two MN operators share their resources towards the procurement and deployment of green energy-powered
BSs equipped with computing capabilities. Then, the network infrastructure is shared between the mobile operators, with
the main goal of enabling energy-efficient infrastructure sharing, i.e., BS and its colocated computing platform. Using this
resource management strategy in rural communication sites guarantees a quality of service (QoS) comparable to that of
urban communication sites. The performance evaluation conducted through simulations validates our analysis as the
prediction variations observed show greater accuracy between the harvested energy and the traffic load. Also, the energy
savings decrease as the number of mobile users (50 users in our case) connected to the remote site increases. Lastly, the
proposed algorithm achieves 51% energy savings when compared with the 43% obtained by our benchmark algorithm. The
proposed method demonstrates superior performance over the benchmark algorithm as it uses foresighted optimization
where the harvested energy and the expected load are predicted over a given short-term horizon.

1. Introduction

The evolution of the mobile and wireless communication
networks into the fifth generation (5G) will play a significant
role in improving the global economy. With the internet of
things (IoT) dictating the way in which people communicate
through information sharing and knowledge dissemination,
internet coverage needs to be improved. The capacity to pro-
vide radio coverage over a wide geographic area is a prereq-
uisite towards meeting the ultralow latency requirements
demanded by mobile subscribers [1, 2]. Through the instal-
lation of a BS and the development of the mobile and wire-
less communications, continuous communications can be

achieved. This constitutes a gigantic step towards solving
the rural/remote connectivity problem since electricity
might be unreliable and it is very costly to extend grid
connection to remote areas. Therefore, the provisioning of
communication services in remote areas entails the use of
renewable energy. Using renewable energy, coupled with
sustainable energy storage solutions, is a promising solution
towards resolving the remote area energy predicament.

Despite the use of green energy as a potential solution,
many rural and remote areas in developed or undeveloped
countries around the world are facing the challenge of unre-
liable high-quality Internet connectivity [3]. This is because
MN operators are still skeptical towards making information
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and communications technology (ICT) infrastructure invest-
ments in remote areas—hence the digital divide. One of the
essential reasons is low expected revenue, calculated as ARPU,
which reduces companies’ willingness to invest in these areas.
However, with the current trends in battery and solar module
costs showing a decrease, MN operators might bemotivated to
make investments in remote and rural areas and deploy
connectivity networks. Moreover, the advent of open, pro-
grammable, and virtualized 5G networks will enable MN
operators to overcome the limitations presented by the current
MN [2, 4] and make the ease of deploying open and program-
mable MN a possibility.

To extend network coverage to remote/rural areas, the
use of terrestrial or nonterrestrial networks is proposed in
[5]. In parallel, Sparse Terrestrial Networks (STN) using
high towers and large antenna arrays are being developed
to deliver very long transmission ranges. Here, the systems
are equipped with the latest emerging antenna technologies
and designs such as reconfigurable phased/inflatable/fractal
antennas realized with metasurface material. Towards this,
the works of [5] study the feasibility of providing connectiv-
ity to sparse areas utilizing massive-MIMO where the exist-
ing infrastructure of TV towers was used. In that work, it is
observed that higher frequencies provide larger area cover-
age, provided that the antenna array area is the same.
Another strategy for achieving good coverage as well as high
capacity in remote/rural areas is to utilize two frequency
bands, one low band and one high band, in an aggregated
configuration. Following this strategy, the authors of [6]
combine the New Radio (NR) 3.5GHz and LTE 800MHz
on a GSM grid. In addition, along the lines of long-range
systems, the NR is expected to support high data rates with
low average network energy consumption through its lean
design and massive MIMO utilization. Also, the authors of
[7] extend rural coverage with STNs. Here, the large cells
are created by using long-range links between BS and UE,
where the long range is achieved by high towers combined
with large antenna arrays and efficient antenna techniques
creating narrow beams with high gain with a line-of-sight
(LoS) or near-LoS connection to the UE.

In order to end this digital divide, MNs have to relook
the way in which they are operating and make the necessary
adjustments. One workable solution is making use of the
softwarization technologies such as SDN, NFV, and MEC,
to be enablers for resource sharing and edgefication [4, 8].
Furthermore, the emergence of network slicing further avails
new market opportunities [9] for MN to explore. In network
slicing, the BS site infrastructure (resource blocks, bandwidth,
and computing resources) can be shared fairly by two or
more mobile operators in real-time. This is to effectively
maximize the use of existing network resources while simul-
taneously minimizing the operational costs in remote sites.
Also, the open and accessible shared infrastructure can
enable more MN operators and Internet service providers
to expand their footprint into low-income areas, increasing
the availability of connectivity in these areas and contribut-
ing to bridging the digital divide. For continuous operation
in the rural/remote communication sites, the BS empowered
with computing capabilities can be colocated with EH

systems for harvesting energy from the environment, storing
it in EB (storage devices), and then powering the site.

There are several forms of infrastructure sharing cases
already in existence [10], such as the roaming-based sharing
where the MN operators share the cell coverage for a prene-
gotiated time period. For example, using this roaming-based
sharing, a UE can employ the roaming procedure in order to
connect to a foreign network. In these classical forms of
sharing generally one MN operator still retains ownership
of the mobile network. Under shared infrastructure, new
entrants no longer need to incur the often-significant
upfront cost of building their own infrastructure and can
save time and resources that would otherwise be dedicated
to administrative authorization and licensing. However,
potential risks to competition, governance, and implementa-
tion need to be managed to achieve the greatest benefit from
infrastructure sharing. In this article, the BS infrastructure
sharing and its colocated computing platform (MEC server)
are done only for handling delay-sensitive workloads in
remote/rural areas. Here, MN operators still have control
of the delay-tolerant workloads to their remote clouds. This
entails bringing the notion of coownership of the communi-
cation sites in remote/rural areas, within the MEC paradigm,
in which two MN operators pull together their capital
expenditure in order to share the deployed infrastructure,
thus saving precious (already limited) economic resources
for other types of expenses. Then, in order to effectively
manage the BS sites deployed in remote/rural areas, proce-
dures for dynamic network control (managing network
resources when MN operators share fairly their network
infrastructure) and agile management are required. This will
assist in efficiently delivering a comparable QoS in remote/r-
ural areas to that of urban areas.

The work done in this article is an extension of [8], where
BS sleep modes and VM soft-scaling procedures were
employed towards energy saving in remote sites. In [8], energy
savings were obtained through short-term traffic load and har-
vested energy predictions, along with energy management
procedures. However, the considered energy cost model does
not take the caching process, tuning of transmission drivers,
and the use of container-based virtualization into account. In
addition, the considered communication site belongs to one
MN operator, i.e., the site infrastructure was not shared
between multiple operators. Therefore, the computing-plus-
communication energy cost model is the main motivation
for this article, where the BS site is shared among multiple
operators in order to handle delay-sensitive workloads only.
One application of our model (strategy) corresponds to the
current situation that has been caused by the new coronavirus
(COVID-19) pandemic. The pandemic has reshaped our
living preferences such that rural (remote) areas are now
becoming more and more attractive. This can motivate MN
operators to deploy networks in such areas and then share
their communication infrastructure and the computing
resources that are colocated. The contributions of this article
are summarized as follows:

(1) A BS empowered with computing capabilities colo-
cated with an EH system is considered, whereby
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the MN operators share the BS site infrastructure (i.e.,
bandwidth and computing resources) for handling
delay-sensitive workloads within a remote/rural area

(2) In order to enable foresighted optimization, a short-term
future communication site workload and harvested
energy is forecasted using a LSTM neural network [11]

(3) An online controller-based algorithm called DRC-RS
for handling infrastructure sharing and managing
the communication site located in remote/rural areas
is developed. The proposed algorithm is based on the
LLC approach and resource allocation procedures
with the objective of enabling for infrastructure shar-
ing (BS and its colocated computing platform) and
resource management within remote and rural com-
munication sites

(4) Real-world harvested energy and traffic load traces are
used to evaluate the performance of the proposed opti-
mization strategy. The numerical results obtained
through simulation show that the proposed optimiza-
tion strategy is able to efficiently manage the remote/r-
ural site and also allows the sharing of the network
infrastructure

In order to achieve these, the remainder of this article is
organized as follows: Section 2 discusses previous research
works related to the one undertaken in this article. Section 3
describes the proposed system model using detailed explana-
tion on the operation of each network element. The mathemat-
ical problem formulation is given in Section 4 together with the
details of the optimization problem and the proposed DRC-RS
online algorithm. In Section 5, a performance evaluation of the
proposed online algorithm is presented using simulation
results and statistical discussions. The conclusions of this article
are then given in Section 6.

2. Related Work

MN operators generally have complete ownership and con-
trol of their network, and their networks are characterized
by an inflexible and monolithic infrastructure. Such a rigid
status quo incapacitates networks of the required versatility;
hence, they cannot cope with the dynamically changing
requirements. As a result, in their current state, meeting
the heterogeneity and variability of future MNs is an impos-
sible task. As mobile and wireless networks evolve, MN
operators are faced with the daunting task of keeping up
and coping with the accelerated roll-out of new technologies.
Due to these fast-paced technological advancements, large
and frequent investments are made in order to cope with
the new services and network management phases. This pro-
active network operation and management consequently
increases the network operating costs, which reduces the
intended profits. Thus, in order to reduce the per-MN oper-
ator investment cost, the sharing of network infrastructure
between mobile operators is an attractive solution. To this
effect, the authors in [12] proposed a RAN sharing scheme
where MN operators share a single radio infrastructure

while maintaining separation and full control over the back-
hauling and their respective core networks. In that paper, a
mixed-integer linear programming (MILP) formulation is
proposed for determining the sharing configurations that
maximize the QoS, and a cooperative game theory concept
is used to determine stable configurations as envisioned by
the MN operator. The regulatory enforcement towards offer-
ing the best service level for the users and the greedy
approach considered in that paper reduce the effectiveness
of infrastructure sharing, as both approaches do not pro-
mote fairness among MN operators. In addition, the work
of [13] employs an infrastructure sharing algorithm towards
energy savings by exploiting the underutilization of the
network during low-traffic periods. In their work, a game-
theoretic framework was proposed in order to enable the
MN operators to individually estimate the switching-off
probabilities that reduce their expected financial cost. Apart
from the energy efficiency benefits, the proposed scheme
allows the participating MN operators to minimize their
spending costs independently of the strategies of the coexist-
ing MN operators. Despite of the presented benefits, it is
worth noting that infrastructure sharing should be consid-
ered for both low- and high-traffic periods, which is the
focus of this paper. However, due to the existence of compe-
tition between the different MNs, collaboration in this infra-
structure sharing is a primary requisite. In order to enforce
such a collaboration between competitors, the authors in
[14] proposed a strategic network infrastructure sharing
framework for contractual backup reservation between a
small/local network operator of limited resources and uncer-
tain demands, and one resourceful operator with potentially
redundant capacity. Here, one MN operator pays for net-
work resources reserved for use by its subscribers in another
MN operator, while in turn, the payee guarantees the avail-
ability of the resources. Then, in [15], the problem of infra-
structure sharing among MN operators is presented as a
multiple-seller single-buyer business. In their contribution,
each BS is utilized by subscribers from other operators and
the owner of the BS is considered as a seller of the BS infra-
structure while the owners of the subscribers utilizing the BS
are considered as buyers. In the presence of multiple seller
MN operators, it is assumed that they compete with each
other to sell their network infrastructure resources to poten-
tial buyers.

The aforementioned works consider BS infrastructure
sharing towards lowering operational cost, either by switch-
ing on/off the BSs, while maintaining the network control. In
addition, infrastructure sharing is treated as a business case
instead of a cooperative effort towards boosting connectivity
in remote/rural areas. If one MN operator is treated as a
seller while the other one as a buyer if it uses its network
resources, this becomes a business venture. For example,
one MN operator might be using the resource reservation
technique, whereby it reserves resources for other small
operators. Again, here, the other party has to pay in order
to use those facilities. However, it is worth mentioning that
the works done in [12–15] do not consider infrastructure
sharing with the MEC paradigm and the consideration of
green energy has been overlooked. Those that are within
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the MEC paradigm share their own network resources,
among themselves in order to handle spatially uneven com-
putation workloads in the network. Their objective being to
avoid large computation latency at overloaded small BSs as
well as to provide high quality of service (QoS) to end users.
The details of how internal infrastructure sharing is con-
ducted cannot be covered in this article; interested readers
are referred to [16]. Table 1 summarizes the differences of
the infrastructure sharing strategy from existing works.

3. System Model

In this paper, we consider a remote/rural site network scenario
as illustrated in Figure 1. Each network apparatus (BS, MEC
server) in the figure is mainly powered by renewable energy
harvested from wind and solar radiation, and it is equipped
with an EB for energy storage. The stored energy is shared
by the edge server and the BS system. The EM is an entity
responsible for selecting the appropriate energy source to
fulfill the EB and also for monitoring the energy level of the
EB. Then, the intelligent electromechanical switch (I-SW)
aggregates the energy sources to fulfill the EB level. The pro-
posed model in Figure 1 is cache-enabled, TCP/IP offload
capable (i.e., enables partial offloading in the server’s NIC such
as checksum computation [17]). The virtualized MEC server,
which is colocated with the BS, is assumed to be hosting C
containers (see C1 and C2 in Figure 1). Also, it has an input
and output buffer for holding the workloads. It is assumed that
some of the BS functions are virtualized as pointed in [18] as
the MEC node is composed of a virtualized access control
router which acts as an access gateway for admission control.
The virtualized access control router (ACR) is responsible
for local and remote routing, and it is locally hosted as an
application. Here, it is assumed that the remote/rural site
infrastructure is shared between two MN operators through
a preexisting agreement, where a common microwave back-
haul or amultihop wireless backhaul relaying is used for acces-
sing remote clouds or the Internet. Moreover, a discrete-time
model is considered, whereby the time is discretized as t = 1,
2,⋯ time slots of a fixed duration τ.

3.1. Input Traffic and Queue Model. In the communication
site, the BS is the connection point anchor and the comput-
ing platform processes the currently assigned delay-sensitive
tasks by self-managing its own local virtualized storage/com-
puting resources. Also shown in Figure 1 is an input buffer
of size Lin, a reconfigurable computing platform and the
related switched virtual LAN; an output queue of size Lout;
and a controller that reconfigures the computing-plus-
communication resources and also performs the control of
input/output traffic flows. Since the workload demand
exhibits a diurnal behavior in remote/rural areas, forecasting
the mobile operator’s workload can help towards network
infrastructure sharing. Thus, in order to emulate the remote
site traffic load LðtÞ (from jνðtÞj users), real MN traffic load
traces from [19] are used. It is assumed that only operators A
and B share the remote/rural BS site, and their traffic load
profiles are denoted by LAðtÞ and LBðtÞ (bits), respectively.
It is also assumed that LAðtÞ (or LBðtÞ) consists of 0:8

delay-sensitive workloads γAðtÞ (or γBðtÞ) and the remain-
der is delay-tolerant. The total admitted workload is denoted
by γ∗ðtÞ = γAðtÞ + γBðtÞ, i.e., γ∗ðtÞ ≤ Lin). The input/output
(I/O) queue of the system is assumed to be loss-free such
that the time evolution of the backlog queues follows Lind-
ley’s equations. The normalized BS traffic load behavior
representation of the two mobile operators is illustrated in
Figure 2.

3.2. Communication and Computing Energy Cost Model. For
the BS system deployed in the remote/rural area, the total
energy consumption θSITEðtÞ (measured in J) at time slot t
consists of the BS communications, denoted by θCOMMðtÞ,
and computing platform processes, related to computing,
caching, and communication, which is denoted by θCOMPðtÞ.
Thus, the energy consumption model at time slot t is formu-
lated as follows, inspired by [20]:

θSITE tð Þ = θCOMM tð Þ + θCOMP tð Þ: ð1Þ

The BS energy consumption processes θCOMMðtÞ consti-
tutes of the sum of the following:

θCOMM tð Þ = σ tð Þθ0 + θload tð Þ + θbk + θdata tð Þγ∗ tð Þ, ð2Þ

where σðtÞ ∈ f0, 1g is the BS switching status indicator, with 1
representing the activemodewhile 0 indicates the power saving
mode. θ0 is the load-independent constant value representing
the operation energy, θloadðtÞ = LðtÞð2r0/ζðtÞW − 1ÞN0ðKÞαβ−1

the load-dependent transmission power to the served sub-
scribers that guarantees low latency services at a target rate r0.
The termW is the channel bandwidth, and ζðtÞ is the fraction
of the bandwidth used by the mobile users from operators A
and B, while α and β are the path loss exponent and the path
loss constant, respectively. The term K denotes the average dis-
tance between two BSs within the same region, and N0 is the
noise power. The parameter θbk represents the constant micro-
wave backhaul transmission energy cost, and θdataðtÞ (fixed
value in J/byte) is the intercommunication cost incurred by
exchanging data between the BS and MEC interfaces.

Next, we discuss the MEC server processes that make up
θCOMPðtÞ. With γ∗ðtÞ being the currently admitted workload
to be processed, let γcðtÞ ≤ γmax, c = 1,⋯, CðtÞ, denote the size
of the task that the scheduler allocates, per container, bounded
by the set maximum amount γmax. This is such that the follow-

ing constraint: ∑CðtÞ
c=1 γcðtÞ = γ∗ðtÞ, guarantees that the overall

workload is partitioned into jCðtÞj parallel tasks. This load dis-
tribution is motivated by the share feature [21] that is inherent
in virtualization technologies. This enables the resource sched-
uler to efficiently distribute resources among contending con-
tainers, thus guaranteeing the completion of the computation
process within the expected time. Thus, the set of attributes
which characterize each container are fψcðtÞ, θidle,cðtÞ, θmax,c
ðtÞ, Δ, f cðtÞg, where ψcðtÞ = ð f cðtÞ/f maxÞ2 is the container uti-
lization function, and fmax is the maximum available process-
ing rate for the container. Here, f cðtÞ ∈ ½ f0, fmax� denote the
processing rates of container c, whereby the term f0 is the zero
speed of the container, e.g., deep sleep or shutdown. The term

4 Wireless Communications and Mobile Computing
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θidle,cðtÞ represents the static energy drained by the container
c in its idle state, θmax,cðtÞ is the maximum energy that con-
tainer c can consume, and Δ is the maximum per-slot and
per-container processing time (s).

Within the computing platform, the energy drained
due to the active containers, denoted by θCPðtÞ, is induced

by the CPU share that is allocated for the workload, and it
is given by

θCP tð Þ = 〠
C tð Þ

c=1
θidle,c tð Þ + ψc tð Þ θmax,c tð Þ − θidle,c tð Þð Þ: ð3Þ

It should be noted that within the edge server, there is
the virtualization layer with switching capabilities (see
Figure 1). Thus, the processing rates are switched from
the processing rates of the previous time instance (t − 1),
denoted by f cðt − 1Þ, to the present instance (t), denoted
by f cðtÞ. This entails an energy cost, denoted by θSWðtÞ,
which is defined as

θSW tð Þ = 〠
C tð Þ

c=1
ke f c tð Þ − f c t − 1ð Þð Þ2, ð4Þ

where ke represents the per-container reconfiguration
cost caused by a unit-size frequency switching which is
limited to a few hundreds of per (MHz)2.

Table 1: Comparison with existing works.

Feature
Edge

computing
Method used Forecasting Objective

RAN sharing [12] No Linear programming No Max. QoS

Traffic load exploitation [13] No Game theory No Min. spending cost

Contractual backup [14] No
Contract design under symmetric

information
No

Max. resource utilization
and profits

Multiple-seller single-buyer [15] No Stochastic geometry No
Cost minimization
Guarantee of QoS

Communication and computation (proposed) Yes
LSTM
LLC

Yes
Min. energy consumption

Guarantee of QoS

Yes: considered; No: not considered.

MEC server

Input buffer Output buffer

To BS
Input
traffic

Admitted
traffic 

ACR

Workloads
Computation
result

Solar

I-SW

Wind turbine

EM

EB

NIC

NIC

Virtual switch

C1

NIC

C2

Virtualization
layer

BS
Operator BOperator A

Figure 1: The remote/rural BS site infrastructure consisting of the BS colocated with the MEC server both powered by green energy
obtained from solar radiation and wind turbine.
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The MEC server can perform TCP/IP computation
processing in the network adapter in order to minimize the
CPU utilization. Such process incurs an energy that is
drained, denoted by θOFðtÞ, which is obtained as

θOF tð Þ = δ tð Þθnicidle tð Þ + θnicmax tð Þ, ð5Þ

where θnicidleðtÞ (a nonzero value) is the energy drained by
the adapter when powered but with no data transfer pro-
cesses. This avails an opportunity to reduce the nonzero
value to zero energy. For this, δðtÞ = ð0, 1Þ is the switching
status indicator, with 1 indicating the active state and 0
representing the idle state. Then, θnicmaxðtÞ is the maximum
energy drained by the network adapter process and it is
obtained in a similar way as in [20].

In order to keep the intracommunication delays at a min-
imum, it is assumed that each container c communicates with
the resource scheduler through a dedicated reliable link that
operates at the transmission rate of rcðtÞ (bits/s). Thus, the
power drained by the cth end-to-end connection is given by

Pnet
c tð Þ =Ψc

�rttcrc tð Þð Þ2, ð6Þ

where c = 1,⋯, CðtÞ, �rttc is the average round-trip-time of
the cth intraconnection, and Ψc (measured in W) is the power
consumption of the connection when the product, i.e., the
round-trip-time, is by communication-rate-unit-valued.
Therefore, after γcðtÞ has been allocated to container c, the
corresponding communication energy consumed by the cth

links, denoted by θLKðtÞ, is obtained as

θLK tð Þ = Pnet
c tð Þ γc tð Þ

rc tð Þ
� �

≡
2Ψc

τ − Δð Þ
� �

�rttcγc tð Þð Þ2: ð7Þ

In practical application scenarios, the maximum per-slot
communication rate within the intracommunications is gen-
erally limited by a preassigned value rmax; thus, the following

hard constraint must hold: ∑CðtÞ
c=1 rcðtÞ =∑CðtÞ

c=1 ð2γcðtÞ/ðτ − ΔÞÞ
≤ rmax. We also note that there exists a two-way per task
execution delay where each link delay is denoted by ϱcðtÞ =
γcðtÞ/rcðtÞ. In this work, we assume that the overall delay
equates to 2ϱcðtÞ + Δ.

To dequeue the computational results from the output
buffer, denoted by Lout, the optical tunable drivers are used
for the data transfer processes. A trade-off between the
transmission speed and the number of active drivers per
time instance is required to reduce the energy consumption.
For data transfers, jDðtÞj ≤D drivers are required for trans-
ferring ldðtÞ ∈ Lout. The energy drained by the data transfer
process, denoted by θLSðtÞ, consists of the energy for
utilizing each fast tunable driver, denoted by mdðtÞ½ðJ/sÞ�
(a constant value), the target transmission rate r0, and Lout.

Thus, the energy is obtained as follows:

θLS tð Þ = 〠
D tð Þ

d=1

md tð Þld tð Þð Þ
r0

, ð8Þ

where the parameters are obtained similar to [20].
To minimize the network traffic from the remote/rural

site to the remote clouds, some of the frequently requested
internet contents are cached locally, more especially viral
contents. The caching process contribute to the energy
consumption within the site, denoted by θCHðtÞ, and it is
obtained as [20]:

θCH tð Þ = �λ tð Þ θTR tð Þ + θCACHE tð Þð Þ, ð9Þ

where θTRðtÞ represents the power consumption due to
transmission processes, θCACHEðtÞ is the power consumption
contributed by the caching process with its intracommuni-
cation, and �λðtÞ is the response time function for viral con-
tent [22].

Overall, the resulting communication-plus-computing
processes incurs an energy cost θCOMPðtÞ, per slot t, which
is given by Equations (3), (4), (5), (7), (8), and (9), as follows:

θCOMP tð Þ = θCP tð Þ + θSW tð Þ + θOF tð Þ + θLK tð Þ + θLS tð Þ + θCH tð Þ:
ð10Þ

3.3. Energy Harvesting and Demand Profiles. The recharge-
able energy storage device is characterized by its finite
energy storage capacity Emax, and the energy level reports
are periodically pushed to the DRC-RS application in the
MEC server. In this case, the EB level BðtÞ is known, which
enables for the provisioning of the required communication
and computing resources in the form of the required con-
tainers, the transmission drivers, and the transmission
power in the BS. To emulate the profiles, the amount of
harvested energy HðtÞ in time slot t is obtained from
open-source solar and wind traces from a farm located in
Belgium [23], and they are as shown in Figure 3. The data
in the dataset matches the time slot duration of 30min used
in this work, and it is the result of daily environmental
records. In this work, the wind energy is selected as a power
source during the solar energy off-peak periods. The avail-
able EB level Bðt + 1Þ located at the offgrid site evolves
according to the following dynamics:

E t + 1ð Þ =min E tð Þ +H tð Þ − θSITE tð Þ − a tð Þ, Emaxf g, ð11Þ

where EðtÞ is the energy level in the battery at the beginning
of time slot t, θSITEðtÞ represents the site energy consump-
tion, see Equation (1), and aðtÞ is the leakage energy. How-
ever, it is worth noting that the energy level EðtÞ is
updated at the beginning of time slot t, whereas HðtÞ and
θSITEðtÞ are only known at the end of t. Thus, the energy
constraint at the off-grid site must be satisfied for every time
slot: θSITEðtÞ ≤ EðtÞ. Therefore, for decision making, the
online controller simply compares the received EB level

6 Wireless Communications and Mobile Computing
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reports with two set points ð0 < Elow < Eup < EmaxÞ, the lower
Elow and upper Eup energy thresholds. Here, Elow is the lowest
EB level that the off-grid site should reach and Eup corre-
sponds to the desired energy buffer level at the site. If EðtÞ <
Elow, then the site is said to be energy deficient, and a suitable
energy source at each time slot t is selected on the forecast
expectations, i.e., the expected harvested energy ĤðtÞ.

4. Problem Formulation

In this section, the optimization problem is formulated to
obtain an energy-efficient infrastructure sharing and
resource management procedures through short-term traffic
load and harvested energy forecasting. The overall goal is to
enable energy-efficient infrastructure sharing and resource
management, within remote and rural communication sites,
and in turn guaranteeing a comparable QoS to that of urban
areas, with reduced energy consumption in remote/rural
sites.

4.1. Optimization Problem. Within the BS, the allocated band-
widthW is shared between mobile subscribers from operators
A and B, and within the computing platform, the containers
(i.e., as the computing resources) and the underlying physical
resources (e.g., CPU) are shared among the users who
offloaded their delay-sensitive workloads. To address the afore-
mentioned problem, two cost functions are defined, namely, F1
and F2, where (F1) is defined as θSITEðtÞ (F1), weighs the
energy drained in the BS site due to transmission and comput-
ing processes; and (F2) which accounts for the comparable QoS
is defined as ðγ∗ðtÞ − LinÞ2. Regarding this formulation, it is
worth noting that F1 tends to push the system towards self-
sustainability solutions and F2 favors solutions where the
delay-sensitive load is entirely admitted in the computing
platform by the router application, taking into account the
expected energy to be harvested. The corresponding (weighted)
cost function is defined as

J ζ, σ, C,D, tð Þ=Δ YθSITE ζ tð Þ, σ tð Þ, C tð Þ,D tð Þ, tð Þ + �Y γ∗ tð Þ − Lin tð Þð Þ2,
ð12Þ

whereY = ½0, 1� is the weight used to balance the two functions,
and �Y = Δ 1 − Y . Hence, starting from the current time slot t
= 1 to the finite horizon T, the time is discretized as follows:
t = 1, 2,⋯, T); thus, the optimization problem is formulated
as follows:

P1 : min
N

〠
T

t=1
J ζ, σ, C,D, tð Þ

subject to :

ð13Þ

A1 : σ tð Þ ∈ 0, 1f g,
A2 : β ≤ C tð Þ ≤ C,

A3 : E tð Þ ≥ Elow,

A4 : 0 ≤ γc tð Þ ≤ γmax,

A5 : 0 ≤ f c tð Þ ≤ fmax,

A6 : rmin ≤ rc tð Þ ≤ rmax,

A7 : θSITE tð Þ ≤ E tð Þ,
A8 : max 2 ρc tð Þf g + Δ = τmax, t = 1,⋯, T ,

ð14Þ

where the set of objective variables to be configured at slot t
in the BS system and MEC server is defined as N = ΔfζðtÞ, σ
ðtÞ, CðtÞ, fψcðtÞg, fPnet

c ðtÞg, fγcðtÞg, δðtÞ,DðtÞg. These set-
tings handle the transmission and computing activities using
the following constraints. Here, constraint A1 specifies the BS
operation status (either power saving or active), and A2 forces
the required number of containers, CðtÞ, to be always greater
than or equal to a minimumnumber β ≥ 1. The purpose of this
is to be always able to handle mission-critical communications.
The constraint A3 ensures that the EB level is always above or
equal to a preset threshold Elow, to guarantee energy self-sus-
tainability over time. Furthermore, A4 bound the maximum
workloads of each running container c, with c = 1,⋯, CðtÞ,
and A5 represents a hard limit on the corresponding per-slot
and per-VM processing time. A6 forces rcðtÞ to fall in a desired
range: [rmin, rmax] of transmission rates, and A7 ensures that
the energy consumption at the site is bounded by the available
energy in the EB. A8 offers the hard QoS guarantees within the
computing platform. From P1, it is noted that there exists a
nonconvex component Pnet

c ðtÞ, from θLKðtÞ. In this case, the
geometric programming (GP) concept can be used to convert
θLKðtÞ into a convex function similar to [20]. Thus, in order
to solve P1 in (13), the LLC approach [24], GP technique,
and heuristics are used towards obtaining the feasible system
control inputs ηðtÞ = ðζðtÞ, σðtÞ, CðtÞ, fψcðtÞg, fPnet

c ðtÞg, fγc
ðtÞg, δðtÞ,DðtÞÞ for t = 1,⋯, T. Well, it should be noted that
(13) can iteratively be solved at any time slot t ≥ 1, by just rede-
fining the time horizon as t ′ = t, t + 1,⋯, t + T − 1.

4.1.1. Feasibility and QoS Guarantees. Regarding the feasibil-
ity of the problem, the following formal results hold.
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Figure 3: Example traces for harvested solar traces and wind traces
from [23].
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Proposition 1. Feasibility conditions.
The following two inequalities:

rmax
2

� �
τ − Δð Þ ≥ Lin,

〠
C tð Þ

c=1
f c tð ÞΔ ≥ rmin,

ð15Þ

guarantee that the infrastructure sharing and resource recon-
figuration problem is feasible.

Since the reported conditions assure that P1 admits the
solution, we then consider the corresponding QoS properties.
In this regard, it is safe to point out that A6 and A8 lead to the
following hard bounds on the resulting communication-plus-
computing delay.

Proposition 2. Hard QoS guarantees.
Firstly, the feasibility conditions of Proposition 1 must be

met. Next, we let random variables measure the following: the
random queue delay of the input queue τIQ, the service time
of the input queue τSI , the queue delay of the output queue
τOQ, and the service time of the output queue τSO. Thus, the
following QoS guarantees hold: the random total delay ðτtot
= Δ τIQ + τSI + τOQ + τSOÞ induced by the computing platform
is limited (in a hard way) up to

τtot ≤
Lin + Loutð Þ

rmin

� �
+ 2: ð16Þ

Thus, the reported QoS guarantee leads to the conclu-

sion that the remote/rural site can handle delay-sensitive
workloads while meeting the bound in A8.

4.2. Infrastructure Sharing and Resource Allocation. In this
subsection, the predictions for the BS traffic load and energy
consumption, the description of the remote/rural site system
dynamics, and the proposed online controller-based algo-
rithm are presented.

4.2.1. Prediction of Exogenous Processes. Two exogenous pro-
cesses are considered in this work: the harvested energy HðtÞ
and the BS traffic loads LðtÞ. In order to generate the predic-
tions ðĤðtÞ, L̂ðtÞÞ, the LSTM neural networks [11] were
adopted. Thus, the LSTM-based predictor has been trained
to give an output of the forecasts for the required number
of future time slots T . The trained LSTM network consists
of an input layer, a single hidden layer consisting of 40 neu-
rons, for 80 epochs, for a batch size of 4; and an output layer.
For training and testing purposes, the dataset was split as
70% for training and 30% for testing. As for the performance
measure of the model, the RMSE is used.

4.2.2. Remote/Rural Site System Dynamics. In order to effec-
tively manage the remote/rural site, an adaptive implemen-
tation of the controller is developed. Its purpose is to
compute the solutions of both the infrastructure sharing
and resource configurations on-the-fly. For this purpose,
an online controller-based algorithm is proposed and is out-
lined in Algorithm 1.

At this point, it should be noted that at time slot t, the sys-
tem state vector is sðtÞ = ðζðtÞ, σðtÞ, CðtÞ,DðtÞ, EðtÞÞ and the
applied input vector that drives the system towards the desired
behavior. These drivers perform bandwidth sharing, adaptive
BS power transmission, autoscaling and reconfiguration of

Input: sðtÞ (current state)
Output: η∗ðtÞ (control input vector)
01: Parameter initialization

GðtÞ = fsðtÞg
02: for (k within the prediction horizon of depth T) do

- L̂ðt + kÞ:= forecast the workload
- Ĥðt + kÞ:= forecast the energy
- Gðt + kÞ =∅

03: for (each sðtÞ in Gðt + kÞ) do
- generate all reachable states ŝðt + kÞ
- Gðt + kÞ =Gðt + kÞ ∪ fŝðt + kÞg

04: for (each ŝðt + kÞ in Gðt + kÞ) do
- calculate the corresponding θSITE ð̂sðt + kÞÞ
taking into account of ζðtÞ, and ldðtÞ from LoutðtÞ
end for

end for
end for

05: - obtain a sequence of reachable states yielding
the best system input

06: η∗ðtÞ≔ control leading from sðtÞ to ŝmin
07: Returnη∗ðtÞ

Algorithm 1: DRC-RS algorithm pseudocode.

8 Wireless Communications and Mobile Computing

 6302, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6065119 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



containers, and tuning of the optical drivers and are denoted
by η∗ðtÞ = fζðtÞ, σðtÞ, CðtÞ, fψcðtÞg, fPnet

c ðtÞg, fγcðtÞg, δðtÞ,
DðtÞg. The system behavior is described by the discrete-time
state-space equation, adopting the LLC principles [24]:

s t + 1ð Þ =Φ s tð Þ, η tð Þð Þ, ð17Þ

whereΦð·Þ is a behavioral model that captures the relationship
between ðsðtÞ, ηðtÞÞ and the next state sðt + 1Þ. This relation-
ship accounts for the amount of energy drained θSITEðtÞ, that
harvested HðtÞ, which together lead to the next buffer level E
ðt + 1Þ through Equation (11). The DRC-RS algorithm finds
the best control action vector η∗ðtÞ that yields the desired sys-
tem behavior within the remote/rural site. Note that Pnet

c ðtÞ is
obtained using the CVXOPT toolbox and γcðtÞ, CðtÞ is
obtained following the procedure outlined in remark 1 in
[20]. The entire process is repeated every time slot t when
the controller can adjust the behavior given the new state
information. The state values of sðtÞ and ηðtÞ are measured
and applied at the beginning of the time slot t, whereas the
offered load LðtÞ and the harvested energy HðtÞ are accumu-
lated during the time slot and their value becomes known only
at the end of it. This means that, being at the beginning of time
slot t, the system state at the next time slot t + 1 can only be
estimated, which is formally written as

ŝ t + 1ð Þ =Φ s tð Þ, η tð Þð Þ: ð18Þ

At this regard, it is worth noting that the control
actions are taken after exploring only a limited prediction
horizon, yielding a limited number of possible operating
states. In order to ensure system stability, we rely on the
notion that a system is said to be stable under control, if
for any state, it is always possible to find a control input
that forces it closer to the desired state or within a specified
neighborhood of it [25].

4.2.3. Dynamic Resource Controller for Remote/Rural Sites.
The edge network management algorithm pseudocode is
outlined in Algorithm 1, and it is based on the LLC princi-
ples, where the controller obtains the best control action η∗

ðtÞ. Starting from the initial state, the controller constructs,
in a breadth-first fashion, a tree comprising all possible
future states up to the prediction depth T . The algorithm
proceeds as follows:

A search set G consisting of the current system state is
initialized (line 01), and it is accumulated as the algorithm
traverse through the tree (line 03), accounting for predic-
tions, accumulated workloads at the output buffer, past out-
puts, and controls, operating intervals. The set of states
reached at every prediction depth t + k is referred to as Gðt
+ kÞ (line 02). Given sðtÞ, the traffic load L̂ðt + kÞ and har-
vested energy Ĥðt + kÞ are estimated first (line 02), and gen-
erate the next set of reachable control actions by applying
the accepted workload γ∗ðt + kÞ, energy harvested and
shared bandwidth fraction ζðt + kÞ. The cost function corre-
sponding to each generated state ŝðt + kÞ is then computed
(line 04), where ŝðt + kÞ take into account of ld as observed
from LoutðtÞ. Once the prediction horizon is explored, a

sequence of reachable states yielding minimum energy con-
sumption is obtained (line 05). The control action η∗ðtÞ corre-
sponding to ŝðt + kÞ (the first state in this sequence) is
provided as input to the system while the rest are discarded
(line 06). The process is repeated at the beginning of each time
slot t.

5. Performance Evaluation

In this section, some selected numerical results for the sce-
nario of Section 3 are shown. The parameters that were used
in the simulations are listed in Table 2.

5.1. Simulation Setup. A BS empowered with computation
capabilities deployed in a rural/remote area is considered
in this setup. Our time slot duration τ is set to 30min, and
the time horizon is set to T = 3 time slots. For simulation,
Python is used as the programming language.

5.2. Numerical Results. Data preparation: the information
from the used mobile and energy traces is aggregated to
the set time slot duration. The mobile traces are aggregated
from 10 observation time to τ. As for the wind and solar
traces, they were aggregated from 15min observation time

Table 2: System parameters.

Parameter Value

Microwave backhaul power, θbk 50W

BS operating power, θ0 10.6W

Max. number of containers, C 20

Min. number of containers, β 1

Time slot duration, τ 30min

Container c (idle state), θidlec tð Þ 4 J

Container c (max), θmax,c tð Þ 10 J

Reconfiguration cost, ke 0.005 J/(MHz)2

NIC in idle state, θnicidle tð Þ 13.1 J

Max. allowed processing time, Δ 0.8 s

Processing rate set, f c tð Þf g {0,50,70,90,105}

Bandwidth, W 1MHz

Max. allocated c workload γmax 10MB

Max. number of drivers, D 6

Noise spectral density, N0 -174 dBm/Hz

Max. container c load, γmax 10MB

Driver energy, md tð Þ 1 J/s

Target transmission rate, r0 1Mbps

Leakage energy, a tð Þ 2 μJ

Energy storage capacity, Emax 490 kJ

Lower energy threshold, Elow 30% of Emax

Upper energy threshold, Eup 70% of Emax

9Wireless Communications and Mobile Computing

 6302, 2021, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2021/6065119 by U

niversitaetsbibl A
ugsburg, W

iley O
nline Library on [10/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



to τ. The used datasets are readily available in a public repos-
itory (see [26]).

In Figure 4, the real and predicted values for traffic load
from operators A and B, harvested energy is shown. Here,
the forecasting routing tracks each value and predicts it over
one step. The shown selected prediction results are for oper-
ators A and B, solar, and wind. Then, Table 3 shows the
average RMSE of the normalized harvested energy and traf-
fic load processes (LA, LB), for different time horizon values,
T ∈ f1, 2, 3g. In the table, the term HwindðtÞ represents the
forecasted values for energy harvested from wind turbines
and HsolarðtÞ is for the harvested energy from solar panels.
From the obtained results, the prediction variations are
observed between HðtÞ and LðtÞ when comparing the aver-
age RMSE. The measured accuracy is deemed good enough
for the proposed optimization.

The DRC-RS algorithm is benchmarked with another
one, named Resource Reservation Manager (RRM), which
is inspired by the backup reservation agreement from [14].
In the RRM, the network resources are reserved per time slot
based on a set-point threshold percentage. Both algorithms
make use of the learned information.

Figure 5 shows the average energy savings obtained
within the off-grid system. Here, the number of users con-
nected to the remote site is increased from ∣νðtÞ ∣ = 5 to 50
, using an incremental step size of 5. The obtained energy
savings are with respect to the case where the BS site is
dimensioned for maximum expected capacity (maximum
value of θCOMMðtÞ, θCOMPðtÞ). From the results, as expected,
it is observed that the energy savings decrease as the number
of mobile users connected to the remote site increases. The
DRC-RS outperforms the RRM algorithm. At this regard,
we note that the communication site will accept users as long
as energy harvesting projections are positive.

Then, Figure 6 shows the average energy savings for the
edge system. Here, the BS group size is set to jνðtÞj = 20 and
the obtained energy saving results are with respect to the
case where no energy management procedures are applied,
i.e., the BS is dimensioned for maximum expected capacity
(maximum value of θSITEðtÞ, ∀t) and the MEC server provi-

sions the computing resources for maximum expected
computation workload (maximum value of θMECðtÞ, with
C = 20 containers, ∀t). The average results of DRC-RS
(ke = 0:05, γmax = 10 MB) show energy savings of 51%, while
RRM achieves 43% on average. The effectiveness of the BS
management procedure, autoscaling and reconfiguration of
the computing resources, and on/off switching of the fast
tunable laser drivers, coupled with foresighted optimization,
is observed in the obtained numerical results.
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Table 3: Average prediction error (RMSE) for harvested energy
and traffic load processes, both normalized in [0,1].

T = 1 T = 2 T = 3
LA tð Þ 0.070 0.090 0.011

LB tð Þ 0.050 0.070 0.010

Hwind tð Þ 0.011 0.013 0.016

Hsolar tð Þ 0.050 0.070 0.090
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Figure 5: Energy savings versus number of users connected to the
BS.
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6. Conclusions

The challenge of providing connectivity to remote/rural areas
will be one of the pillars for future mobile networks. To
address this issue, in this paper, we present an infrastructure
sharing and resource management mechanism for handling
delay-sensitive workloads within a remote/rural site. Numeri-
cal results, obtained with real-world energy and traffic load
traces, demonstrate that the proposed algorithm achieves
mean energy savings of 51% when compared with the 43%
obtained by our benchmark algorithm. Also, the energy that
can be saved decreases as the number of users connected to
the BS increases, with a guarantee of serving more users as
long the green energy is available. The energy-saving results
are obtained with respect to the case where no energymanage-
ment techniques are applied in the remote site.

Data Availability

In this paper, open-source datasets for the mobile network
(MN) traffic load, solar, and wind energy have been used.
The details are as follows: (1) the real MN traffic load traces
used to support the findings of this study were obtained
from the Big Data Challenge organized by Telecom Italia
Mobile (TIM) and the data repository has been cited in this
article. (2) The real solar and wind traces used to support the
findings of this study have also been cited in this article.
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