
An Approach for Extended Swarm Formation
Flight with Drones: PROTEASE2.0 ⋆

Oliver Kosak1[0000−0003−0563−9797], Philipp Kastenmüller1[0009−0007−1342−5437],
Constantin Wanninger1[0000−0001−8982−4740], and Wolfgang Reif1

Institute for Software & Systems Engineering (ISSE) kosak@isse.de

Abstract. Drone formation flights, as performed in the Intel Drone
Shows, demonstrate the current state of technology fascinatingly. We
revisit this idea using the paradigm of self-organization in the form of
swarm behavior. Applying swarm behavior for formation flight promises
high scalability, robustness, and flexibility. Swarm behavior allows for
impressive patterns where centrally coordinated approaches might reach
their limits. In this paper, we propose PROTEASE2.0 as an approach for
parametrizable swarm behavior of the next level. Like its predecessor,
PROTEASE2.0 enables us to use a single generalized implementation for
producing emergent effects by only adjusting parameters for the swarm
members. Further, we now facilitate novel formations previously unattain-
able. New formations include parallel swarms interacting with each other,
single swarms using multiple reference points enabling surprising flight
patterns, and hierarchical swarm structures extending the possibilities
even further. Our focus in this paper lies in the experimental evaluation
of these concepts in simulated environments. In combination with suc-
cessful pre-evaluations concerning swarm behavior using real drones, we
confidently look towards future experiments also applying PROTEASE2.0

in the real world.

Keywords: Swarms · Drones · Formation Flight · Multi-Robot Sys-
tems.

1 Introduction

In recent years, formation flight as performed by the Intel Drone Shows [10], has
attracted an audience with its fascinating spectacle. These shows entail the coor-
dinated motion of numerous drones, executing sophisticated maneuvers as they
traverse the nighttime airspace. Through precise synchronization, these drones
create formations that combine artistic creativity with state-of-the-art techno-
logical advancements. Orchestrated motions surpass conventional displays, com-
bining innovation and aesthetics.

In this paper, we propose an approach aiming for the same goal but realizing
it using the paradigm of self-organization, i.e., through swarm behavior applied
⋆ Partially funded by DFG (German Research Foundation), grant number 402956354.

2 O. Kosak et al.

for drone formation flight. Leveraging swarm algorithms for formation flight rep-
resents a paradigm shift in the control of autonomous aerial systems, promising
scalability, robustness, and flexibility. Mimicking nature seen in flocks of birds
or schools of fish, swarm algorithms can empower autonomous vehicles to col-
laborate seamlessly in the skies [31]. The swarm approach achieves coordination
without reliance on a central controller, ensuring decentralized decision-making
for real-time adaptability in dynamic environments. The inherent fault tolerance
of swarm algorithms enhances reliability, crucial for applications demanding op-
erational resilience. Furthermore, the scalability of these algorithms allows for
the effortless integration of additional members into formations which might be
beneficial also for other industries where spatial distribution is of relevance, e.g.,
distributed surveillance [16,17] or agriculture [5].

Unfortunately, there is an ongoing trend where the development of each new
swarm application entails the creation of a unique software approach [7]. While
these specialized approaches demonstrate effectiveness in their designated tasks,
such as utilizing collective swarm behavior for search operations [34] or dis-
tributed surveillance [16, 18], users often face difficulties in adapting them to
slightly different scenarios and hinder themselves from prior developments.

To address this challenge, we suggest adopting a standardized pattern that
can encapsulate the swarm behavior of a specific class more broadly. Develop-
ers working with aerial multi-robot systems can integrate this pattern during
the design phase and subsequently customize its parameters at runtime to at-
tain distinct emergent effects. We previously identified such a common pattern
in [14] and call it PROTEASE (Algorithmic Pattern for Trajectory-Based Swarm
Behavior).1 In this paper, we introduce PROTEASE2.0 allowing for formation flight
of the next level, e.g., multiple hierarchical layers of swarm behavior within a
single swarm, interacting swarms, and improved single swarm behavior. That
way, complex formation patterns can be defined within the set of parameters.
While we focus on the visual impressions of the respective swarm behaviors
here, we are convinced that our approach might also enhance the goal-oriented
usage of swarm behavior in the next step, e.g., when applying varieties of par-
ticle swarm optimization (PSO) applied for search and rescue missions, as we
proposed in [12]. Here, we focus on the required concepts and the algorithm
design in an abstract simulation environment. We consider the integration of
our findings with real-world drone formation flight as the consequent next step.
Therefore, we already have an appropriate approach at hand [14] that inte-
grates the multi-agent framework Jadex [4] used for high-level decisions with
the robotics operating systems framework ROS [23] including a Gazebo physics
simulation [11].

To give some background, we first briefly introduce the concept of PROTEASE
in Section 2. We then give an insight into related work concerning parametrizable
swarm behavior in Section 3. In Section 4, we then introduce our new approach of
multi-layered, parametrizable swarm behavior we call PROTEASE2.0. We evaluate

1 "... proteases are key regulators of a striking variety of biological processes ... they
regulate different processes in response to developmental and environmental cues" [9].

Extended Swarm Formation Flight with PROTEASE2.0 3

our approach by example in a proof of concepts in Section 5 which we support
by referencing our source code and video materials provided on GitHub. In Sec-
tion 6, we then conclude on our results and give an outlook concerning possible
next steps.

2 A Brief Description of Protease

PROTEASE is our approach for generalizing swarm behavior. The idea behind
it is, on the one hand, to implement a general rule set for the behavior each
individual in a swarm follows, that, on the other hand, can be parameterized
externally to realize different swarm behavior. In doing so, our objective is to
standardize various functionalities commonly employed by researchers to imple-
ment diverse swarm behaviors in aerial robotic systems. Despite yielding distinct
emergent effects, it is apparent that swarm algorithms such as particle swarm
optimization [34], the well-known flocking behavior analyzed in [24], shaping and
formation algorithms [26], and distribution algorithms [16,18] rely on a common
set of local actions. These actions include measuring specific parameters, com-
municating with neighboring swarm members, and adjusting the flying robot’s
movement vector. For instance, to achieve flocking behavior as described in [24],
each "boid" must execute a specific combination of functions, including position
and velocity measurements, information exchange with other swarm members,
and subsequent adjustment of its movement vector, resulting in the collective
emergence of flock-like behavior among individual agents.

Based on this discovery, we established the parameters for PROTEASE (cf.
Fig. 1) essential for generating a broad spectrum of swarm behaviors [14]. Thereby,
we had in mind to enable the integration of PROTEASE into approaches for task
orchestration, e.g., such that we introduced in [13]. According to this, the pa-
rameters forming the behavior of PROTEASE are these four swarm functions:

– A (aggregation), enabling the swarm to determine the collective result.
– T (termination), letting the swarm determine that it has reached its goal.
– G (grouping), defining each agent’s neighborhood for information exchange.
– C (calculation), determining how the information should be processed and

mapped to a goal trajectory for further movement.
Each participating agent then cyclicly executes the same activity as depicted

in Fig. 1, i.e., by 1st) measuring all relevant data necessary for A and C, 2nd)
exchanging that measures with all neighbors encoded in G, 3rd) calculating a
new trajectory using C, 4th) adapting the trajectory, and 5th) terminating the
rules execution if the termination criteria encoded in T holds or starting over
with 1st) otherwise. We call each of this cylces an execution round.

Examples of swarm behavior that can be realized by executing PROTEASE
with varying parameters, denoted as ATGC2, are, e.g., Boiding according to [24],
2 In the case of DNA, "each nucleic acid contains four ... nitrogen-containing bases:

adenine (A), guanine (G), cytosine (C), [and] thymine (T)" [25]. "Nucleic acids are
the main information-carrying molecules ... they determine the inherited character-
istics of every living thing" [25].

4 O. Kosak et al.

PROTEASE

A

T

G

C

PSO

Boiding

Triangle

…

…

1) determine measures
encoded in A or C

2) exchange relevant measures
with agents in G

3) use C for calculating
a new trajectory

4) adapt the trajectory

5) determine whether T holds
according to measurements of G

[else] [T holds]

Fig. 1: PROTEASE is defined as a local behavior, each agent in a swarm executes.

Triangle-Formation according to [16], or PSO-like [34] search for the spot of high-
est concentration of a continuously distributed parameter P (with A evaluating
the centroid regarding the positions of all agents in the swarm, T evaluating if
the geometric diameter regarding the positions of agents is below a threshold,
G returning the relevant agents in the swarm, and C evaluating the typical local
rules of PSO involving the specific parameter P). We can further express other
swarm behavior with parameters ATGC and execute them with PROTEASE, which
we investigated in [14].

To align with our approach PROTEASE, swarm behavior must adhere to cer-
tain key principles. Therefore, we must consider the following assumptions. The
swarm behavior must function independently of environmental markings, differ-
entiating it from ant-colony-optimization-based swarm algorithms using stig-
mergy [3]. This requirement stems from our original intention for PROTEASE
to operate within aerial swarms comprising real drones [32], making the im-
plementation of stigmergy challenging. Achieving stigmergy would necessitate
a digital representation of the environment accessible to all agents executing
PROTEASE simultaneously. While we are exploring the feasibility of incorporat-
ing such functionality, we aim to abstract from stigmergic swarm behavior in
the current context. Our emphasis is particularly on emergent effects stemming
from swarm behavior that results from adjustments to the trajectories of par-
ticipating agents. To ensure the practical implementation of PROTEASE within
real-world flying swarms, it is imperative that each agent can potentially com-
municate with any other agent in the swarm. This capability is essential for
enabling self-termination mechanisms in certain types of swarm behavior (e.g.,

Extended Swarm Formation Flight with PROTEASE2.0 5

the termination of a PSO execution), while it does not affect the actual execu-
tion of local swarm rules which can still be based on the local neighborhood.
Further, in the real world, we cannot assume to have local sensors available for
all relevant spatial values, e.g., the precise measurement of other agents’ po-
sitions. Last, we require all agents executing PROTEASE to be able to move in
3-dimensional space.

3 Related Work

The literature exploring swarm behavior, swarm algorithms, and swarm intel-
ligence is extensive and diverse. When considering the application of swarm
behavior in real-world scenarios, researchers typically pursue two main groups
of approaches.

Specific Swarm Behavior The one group of approaches focuses on a specific
swarm behavior each, which is then analyzed and adapted for use in technical
systems. Numerous examples of this approach exist, although only a selection
of relevant research can be discussed here. For solving different instances of the
search problem, there exists a multitude of applications of PSO applied to dif-
ferent use cases [34]. Some of them even include flying robots used in the real
world [19,28] and simulated environments [15,27]. Other examples show that we
can also adapt the self-coordination abilities of swarms of birds or fish to techni-
cal systems for reducing the coordination efforts which can be a useful property
when commanding huge groups of aerial robots [19, 28, 31]. There also exist ap-
proaches that aim at generating software controllers for individual swarm agents
with genetic algorithms and other learning techniques, e.g., for coordinated mo-
tion in general [29], foraging tasks [20], or searching and acting tasks [8]. To
achieve a nearly uniform distribution of swarm entities within a specified area,
such as in the context of Distributed Surveillance, Ma et al. [18] have tailored
a deployment algorithm based on potential fields. However, this algorithm is
limited in its applicability to that specific use case. Meanwhile, Li et al. [16] pro-
pose the adaptation of their swarm approach for Distributed Surveillance to also
encompass flocking and obstacle avoidance, yet they do not delve further into
exploring this direction. We view this as a promising step towards establishing a
generalized pattern for realizing swarm behavior, which aligns with our approach.
In a study by Garcia et al. [28], the authors modify the PSO algorithm for the
deployment of flying robots in disaster scenarios to conduct area exploration
and detect victims. Despite the ability to adjust parameters to suit different
objectives, this approach remains confined to the narrowly defined scope of its
application and is not easily extendable. Similarly, in a work by Vasarhelyi et
al. [31], an adapted flocking algorithm inspired by the principles outlined in [24]
is demonstrated to enable flying robots to exhibit swarm behavior closely re-
sembling that of natural swarms. However, the implementation of this algorithm
is highly specific and can only achieve the predetermined swarm behavior. In
their work, Dedousis et al. [7] introduce swarm primitives tailored for managing

6 O. Kosak et al.

multi-robot systems through their approach PaROS. Although their objective is
to implement swarm behavior for particular tasks using these primitives, their
focus does not extend to generalizing swarm behavior comprehensively.

Generalizing Swarm Behavior Another group of approaches focuses on develop-
ing generalized frameworks for collective behavior rather than targeting specific
applications. These frameworks can be adapted to various scenarios and require-
ments. Protelis [21] and its successor MacroSwarm [1] are examples of this ap-
proach. They conceptualize entities within a collective system as elements within
vector fields, enabling collective programming by manipulating operations within
these fields. Changes are disseminated through implicit communication among
entities, allowing complex collective behaviors to be implemented abstractly.
However, Protelis faces challenges in prototyping 3D swarm behavior due to
limited integration with simulation frameworks and drones, and it currently
lacks support for all features of PROTEASE2.0, such as hierarchical swarm behav-
ior. Buzz [22] is another framework designed for generalizing and programming
collective behavior. In Buzz, swarms are treated as primary abstractions, with
tasks allocated among individual robots based on local interactions. Buzz uses
virtual stigmergy with distributed tuple spaces to achieve swarm-wide consensus
and allows for extensibility through new primitives. However, it does not support
hierarchical swarm behavior as proposed with PROTEASE2.0. Meld, developed by
Rollman et al. [2], also aims to manage swarms through high-level abstractions.
Yet, Meld’s execution model is not well-suited for real-world flying swarms, with
computations for ensemble behaviors taking significant time and the robots’
limited capabilities making practical implementation challenging. Thus, Meld’s
execution model is more restricted compared to our approach. Lastly, Varughese
et al. [30] propose a design paradigm focused on generalizing swarm behavior
by minimizing communication requirements. Their approach, which emphasizes
minimalistic and decentralized functionality, suggests that combinations of prim-
itives can enable complex behaviors like collective transport in 2D environments.
However, their paradigm relies on cyclic synchronization messages, leading to
lengthy stabilization times (e.g., 1400 seconds for distributed localization), which
may impact its effectiveness for flying swarms.

4 Approach

The PROTEASE2.0 approach extends PROTEASE by utilizing the concepts of multi-
ple reference points and swarm agents that can act as such reference points. We
use the latter to create a multi-layered, parametrizable swarm behavior. Thereby,
we also distinguish between the use of a single set of agents and the use of multi-
ple sets of agents. As we focus on the visual impression of swarm behavior in this
paper, we choose the parameters for PROTEASE2.0 respectively: For the extensions
we describe within this paper, we currently neglect the auto-termination possi-
bility of PROTEASE2.0 we typically use for mission integration [13, 14]. Thus, the
aggregation function A and the termination function T are not considered. For

Extended Swarm Formation Flight with PROTEASE2.0 7

y

x

uc
v

us

(a) center and separation urges uc and us

x

z

uf

(b) flat urge uf

Fig. 2: Schematic for calculating urges in Cring. Dashed arrows represent mea-
sured values for one agent in the red swarm. Solid arrows show calculated urges
uc, us, and uf . The blue arrow indicates the resulting trajectory v.

the grouping function G we select all neighbors within a predefined radius around
the given agent. The calculator function C stays freely configurable in general,
but for the sake of clarity, we restrict our descriptions to one single calculation
function producing a ring swarm behavior we call Ring-of-Fliers.

4.1 Running example: The Ring-of-Fliers

To establish a ring formation we use as a running example throughout the rest
of our descriptions, we define a calculation function Cring producing the desired
swarm behavior. We provide each agent participating in the swarm with the
required information as an input for Cring. This includes knowledge 1) about its
position, 2) the 6-dimensional transformation of a user-controlled reference point
that denotes the center of the desired ring formation, and 3) a ring-specific pa-
rameter r that is utilized to define the intended radius of the ring. The reference
point can be realized by a virtual element in simulation or as an actual physical
device manipulated in the real world (e.g., an additional user-controlled drone).
Other relevant information for executing Cring concerning the agent’s neighbors
arrive automatically as a result of the multi-cast-like communication happen-
ing among all neighbors in G (cf. Fig. 1). The ring formation then establishes
through the local combination of three different urges uc, us, and uf for each
agent (cf. Eqs. (1a) to (1c)), following the swarm model of [24] that combines dif-
ferent urges addressing specific local rules (e.g., cohesion urge, separation urge,
and alignment urge) to a new local decision for the agent’s next trajectory in
3-D. In the calculation for the Ring-of-Fliers pattern described here, each urge
is represented by a vector indicating the desired trajectory for an agent: The
center urge uc points towards the measured position describing the center of the
ring, i.e., the position of the reference point. The separation urge us points away
from the closest known neighbor covered by the grouping function G. The flat
urge uf points towards the closest position on the plane given by the reference
point and its orientation as a normal vector. Expressions cown and cref describe
the agents’ capabilities for measuring the 6-dimensional transformation of itself

8 O. Kosak et al.

and the reference point, respectively and both return a 6-D vector. In Eqs. (1a)
to (1c) and (2c), the methods POS() and ROT() provide the position and rotation
as a unit vector from a 6-dimensional transformation, respectively. Furthermore,
CLOSE() provides the transformation to the closest Agent in G concerning the
Euclidean distance. The symbol ◦ represents the scalar product of vectors. The
function Cring then calculates the resulting trajectory v using the weighted sum
of the urges with the respective weights ωc, ωs, and ωf for a new agent movement
vector v := ωc · uc + ωs · us + ωf · uf :

uc := (POS(cref)− POS(cown)) (1a)

us := POS(cown)−POS(CLOSE(G)) (1b)

uf := ROT(cref) (1c)

ωc :=
|uc| − r

|uc|
(2a)

ωs :=
1

|us|2
(2b)

ωf := −((POS(cown)−
POS(cref)) ◦ ROT(cref))

(2c)

4.2 Extension with Multiple Reference Points

While we describe the cyclic ’default’ calculation model for PROTEASE2.0 (accord-
ing to our previous findings in [12] and [14]) in Section 4.1, within this section
we extend the concepts of PROTEASE for using multiple reference points at the
same time. By doing so, we can achieve novel ring-based formation flight pat-
terns in two different ways which we schematically describe in Fig. 3. All agents
still perform their calculations in execution rounds that only terminate, if an
independent termination signal is received.

1) Single Set Approach: By extending the results of cref (that measures the 6-D
transformation of the reference point) from one measured value ref to a set of
measurements REF, each agent now has to decide for one of these values when
calculating uc, and uf . While also other selections are possible, we choose to
use the closest one concerning the respective agent’s current position, extend-
ing Cring to Cring∗ (cf. Algorithm 1). Because the selection in Algorithm 1 is
renewed within each execution round of PROTEASE2.0 (cf. the execution model
in Section 2), each agent consequently possibly updates its reference point in
each round. For achieving that, we now use CLOSE(REF) in Cring∗ to return the
transformation of the (euclidean distance) closest reference point for each entry
cref in Eqs. (1a), (1c) and (2c). Thus, the respective reference point each agent
considers as relevant may change throughout the execution time of PROTEASE2.0,
e.g., when reference points adapt their position over time based on user or en-
vironmental interactions. To achieve the desired effect and to reduce the danger
of collisions within the swarm, we leave the separation urge us unchanged to
points away from the closest neighbor within G. In Fig. 3b we depict the new
calculation for Cring∗ in case of two different reference points.

Extended Swarm Formation Flight with PROTEASE2.0 9

x

y
v
uc

us

v
us

uc

(a) multi agent set Cring+

x

y
uc
v us

us
v uc

(b) single agent set Cring∗

Fig. 3: Extensions to the Ring-of-Fliers behavior that involve multiple reference
points, showing the center urge uc and the separation urge us in black for two
agents each to illustrate the difference between with Cring+ and Cring∗. In Fig. 3a,
green agents are assigned to the green reference point, while red agents are
assigned to the red one. In Fig. 3b, all agents belong to the same agent set.

Algorithm 1 reference point selection in Cring∗, executed each round.
1: for all agents a in G do
2: a.cref = CLOSE(REF)
3: end for

2) Multi Set Approach: In a second adaptation of Cring involving multiple pos-
sible reference points, i.e., Cring+, we explicitly assign each agent to one of the
available reference points, i.e., restrict its local view to only that reference point
AGENT-REF. This also defines the number of possible agents in each ring through-
out the overall execution of PROTEASE2.0. Instead of letting each agent choose one
of the reference points in REF, we use that specific reference point when calculat-
ing uc, and uf in all execution rounds of PROTEASE2.0 (cf. Algorithm 2). Thus,
also when reference points change their position over time each agent considers
only its assigned reference point even when other reference points are positioned
closer. Similar to Cring∗ in, we leave the separation urge us unchanged. In Fig. 3a,
we depict the new calculation for Cring+ in case there are two different reference
points but agents are explicitly assigned to reference points.

Algorithm 2 reference point selection for Cring+, executed once at start
1: AGENT-REF := oneof REF
2: for all agents a in G do
3: a.cref = CLOSE(AGENT-REF)
4: end for

10 O. Kosak et al.

x

y

v

v

Fig. 4: Hierarchic concept of PROTEASE2.0 using the CringH parameter, structured
as a 2-layered Ring-of-Rings. Agents with crosses can serve as reference points
in Cring∗. Only the resulting trajectory v is shown. Colors depict the different
layers of the swarm.

4.3 Extension with Hierarchies

In addition to the extension with multiple reference points, we further introduce
the concept of hierarchies within swarms with an adapted calculation function
CringH . Compared to Cring and Cring∗, where reference points are user-controlled,
we extend the set of reference points to also include all swarm agents themselves
in CringH . Thus, when assigning agents to reference points, it is also possible
to assign them to other agents within the swarm. That way, we can create
hierarchies of sub-swarms by appropriately allocating agents to reference points.
In this allocation, we need to avoid reflexive allocations and only wisely decide on
cyclic allocations, as the effects might end up in chaotic swarm behavior. On each
layer of the resulting hierarchy, we now have a set of agents collectively producing
the desired swarm behavior. For the top-level layer 0, we use a user-controlled
reference point, allowing us to control the whole system. For all higher-level
layers i ∈ {1..n} we then allocate an adequate number of agents to use one of
the agents on layer i − 1 as their reference point. Thus, each agent αx on layer
i with i > 0 uses an agent αy ∈ Ai−1 as it’s reference point, where Ai is the set
of agents on layer i.

We then can assign reference points to agents in a fixed way similar to Cring+,
creating stable hierarchical structures. As an alternative and similar to Cring∗ in
Section 4.2, we can also leave the decision for a specific reference point to the
agent. Then, we only need to assign agents to layers in the hierarchy, leaving
more control to the system while reducing the possibilities for controlling the
visual effects on the collective level.

As an additional feature of hierarchic swarms, reference points also can pro-
vide an individual calculation function, further extending the possible collective
effect. Thus, we can mix different formations where participating agents might
also change their behavior according to their current reference point (that might
change over time depending on the respective calculation function provided by

Extended Swarm Formation Flight with PROTEASE2.0 11

the reference point). For the sake of simplicity, our description in Fig. 4 depicting
a two-layered hierarchic execution of PROTEASE2.0 involves our running example
Cring only. Nevertheless, we cover this feature within our reference implementa-
tion we use for experiments provided in Section 5.

5 Proof of Concepts

We already validated the generality of PROTEASE in its original version in [14].
There, we analyzed PROTEASE by employing comparable parameters A, T , G,
and C to achieve diverse emergent effects, inducing corresponding modifications
in swarm behavior. In the evaluation in this paper, we now analyze the extended
concepts of PROTEASE2.0 concerning multiple reference points and its possibility
to hierarchically layer the swarm behavior. To conduct these assessments, we
utilize the NetLogo multi-agent programmable modeling environment3.

5.1 Evaluation Environment

NetLogo [6] is a programming environment tailored for facilitating the setup
of Multi-Agent system simulations. It abstracts away many intricate details,
simplifies complexity through appropriate discretization, and reduces the barrier
to prototyping collective and swarm behavior. NetLogo allows for simulating
agents, 3-dimensional environments, and logical time for state progression.

Within this environment, agents are situated and oriented. They possess an
awareness of environmental data and can utilize it for internal processing. Fur-
thermore, agents can communicate with each other and exchange any informa-
tion they possess in an unlimited fashion. NetLogo uses a cyclic execution engine
that allows agents to execute calculations in a round-based fashion. In our illus-
trations, agents are depicted by arrows, denoting their position and orientation
in the 3-dimensional environment. The color of the arrows provides additional
information, such as the agent set or the layer the agents belong to.

For evaluating our concepts from Section 4, we use two different NetLogo
models which we also provide on GitHub4. We designed one model MultiIn-
put for the assessment of an extension with multiple reference points, while we
intend the other (Hierarchic) for the evaluation of layered swarm execution.
The user interface for MultiInput enables the user to define the initial number
of agents and reference points. While our concepts are not limited to a num-
ber, the implementation supports a limited number (five) of reference points
only. These reference points can be moved individually or by using the presets.
Additionally, the implementation allows for the modification of agent-specific
properties, such as defining their maximum velocity (velocitymax) and commu-
nication radius (com-radius). The user can modify the specific swarm behavior
by adjusting the provided parameters, such as the radius of the Ring-of-Flyers.
3 NetLogo download at https://ccl.northwestern.edu/netlogo/download.shtml
4 PROTEASE2.0 on GitHub at https://github.com/OliverISSE/Protease2.0

https://ccl.northwestern.edu/netlogo/download.shtml
https://github.com/OliverISSE/Protease2.0

12 O. Kosak et al.

Finally, the user can choose between using a single agent set or if the agents
are evenly distributed among the reference points initially. Hierarchic provides
similar features. In addition, it allows for specifying different swarm behavior
for each hierarchic layer, including the swarm type, the number of agents on the
hierarchy layer, and the communication radius. Again and for the sake of clarity,
while our concepts are not limited to a specific number, the implemented model
supports a limited number of hierarchic layers only.

5.2 Experiments

We provide multiple example configurations for our provided NetLogo implemen-
tation of PROTEASE2.0. While these already visualize interesting complex swarm
behavior, we advise the readers to execute their experiments using our code
provided on GitHub to identify further emergent effects arising from the com-
bination of different swarm behavior. Our experiments within this paper do not
explicitly investigate the typical swarm properties robustness and scalability.
Nevertheless, these properties also hold for PROTEASE2.0 unless their excessive
usage reduces the visual effects we put on emphasis in this paper. To convince
the readers of the general functionality, we extended our implementation pro-
vided on GitHub with the respective functionality. While the figures depicted
here only provide a 2-dimensional view of the respective swarm behavior, all ex-
periments were performed in the provided 3-dimensional environment. Because
we detected significant qualitative differences in the produced swarm effects, we
investigate these differences within our experiments by comparing the emergent
effects of the different calculation functions Cring+ (Single Set Approach) and
Cring∗ (Multi Set Approach), as we describe them in Section 4.2.

5.3 Multiple Reference Points: The Flower Pattern

In the first experiment, we first utilize the single agent set approach Cring∗.
We align five reference points in a cross formation. For each reference point,
we decide on the Ring-of-Fliers swarm behavior. Due to the agents’ behavior of
always choosing the closest reference point, the rings don’t close. The result is
a flower-like shape, where agents evenly distribute on the edge line of the shape
(cf. Fig. 5a). Switching to the multiple set approach with Cring+ while leaving
all other parameters untouched, forces the agents to create one ring for each
reference point. While all rings then close also the inner part of the shape, we can
observe their interference obfuscating the clear shape (cf. Fig. 5b). We provide
the comprehensive set of parameters in Table 1 allowing for the reproduction of
the experiment using our implementation provided on GitHub.

5.4 Multiple Reference Points: The Olympic Ring Pattern

In a second experiment, we again first utilize the single agent set approach Cring∗.
By aligning five reference points in a W-like formation where all use the Ring-of-
Fliers swarm behavior, we can observe the swarm creating a pattern similar to

Extended Swarm Formation Flight with PROTEASE2.0 13

Table 1: Comprehensive set of parameters for the first (Flower Pattern) and the
second (Olympic Pattern) experiment.

experiment # agent com-radius velocitymax function rCring

flower-multi 45 16 0.2 Cring∗ 6
flower-single 45 16 0.2 Cring+ 6

olympic-multi 50 16 0.2 Cring∗ 5
olympic-single 50 16 0.2 Cring+ 5

(a) single agent set approach (Cring+) (b) multi agent set approach (Cring∗)

Fig. 5: Flower Pattern experiment producing a flower-like visual effect.

the famous Olympic Rings (cf. Fig. 6a). When switching to the multiple agent
set approach with Cring+, we can again identify a qualitative difference. When
we do not force agents to permanently assign one reference point, agents do not
distribute evenly on the different rings, reducing the visual effect (cf. Fig. 6b).
We provide the comprehensive set of parameters in Table 1 allowing for the
reproduction of the experiment using our implementation provided on GitHub.

5.5 Hierarchies: Ring-of-Rings

In a third experiment, we demonstrate the visual effects of the hierarchic swarm
concept (cf. Section 4.3). For the sake of clarity, we restrict the amount of dif-
ferent hierarchic layers to three in this experiment. Nevertheless, our example
implementation supports up to five hierarchic layers, coming closer to the in-
general unrestricted amount of hierarchic layers. To illustrate the effects, we
again use the Ring-of-Fliers swarm behavior on all hierarchic layers and for all
reference points. Switching from our one single agent set approach to our multiple
set approach again produces different effects. As within the second experiment
(cf. Section 5.4) the use of the single set approach can result in unbalanced rings
(cf. Fig. 7a) while the multiple set approach creates balanced rings (cf. Fig. 7b).
We provide the comprehensive set of parameters in Table 2 allowing for the
reproduction of the experiment using our implementation provided on GitHub.

14 O. Kosak et al.

(a) single agent set approach (Cring+) (b) multi agent set approach (Cring∗)

Fig. 6: Olympic Pattern experiment producing the effect of the Olympic Rings.

Table 2: Parameters of the third experiment. # agent indicates the total amount
of agents and the count of agents per reference point in parentheses.

hierarchic layer # agents com-radius velocitymax calc-function rCring

layer 0 4 (4) 25 0.2 Cring+\Cring∗ 20
layer 1 16 (4) 20 0.2 Cring+\Cring∗ 15
layer 2 128 (8) 10 0.2 Cring+\Cring∗ 10

(a) single agent set (Cring∗) (b) multi agent set (Cring∗)

Fig. 7: Third experiment producing a solar system-like visual effect using the
hierarchic swarm concept.

Extended Swarm Formation Flight with PROTEASE2.0 15

5.6 Discussion and Real-World Limitations

While we have already successfully implemented less sophisticated swarm behav-
ior for real drones, i.e., single reference point, and flat layered swarms, we aim at
also realizing the concepts presented in this paper with real drones. Bridging the
reality gap will force us to restrict the swarm behavior and the resulting indi-
vidual and collective movements in some way avoiding physical issues typically
hindering unrestricted execution in the real world. While trajectories in simu-
lated swarms do not cause downwash with their rotors, we need to take this into
account when deploying respective behavior for real drones. While we can take
care of possible issues using adequate collision hulls in our collision avoidance
behavior we additionally use when executing real-world experiments, this might
limit the visual effects we can see in our simulated experiments (cf. Section 5.2).
To exactly reproduce the behavior, we would require excessive space enabling
’one-over-the-other’ flight constellations. For smaller settings, e.g., in our flight
arena [33], we might be forced to restrict the degree of freedom we allow a user
when controlling the position of reference points or adjusting the parameters of
PROTEASE2.0.

6 Conclusion and Future Work

In this paper, we introduced new swarm concepts with PROTEASE2.0 for extending
the possible range of decentralized formation flight patterns of drones. First, we
refined our notion of parametrizable swarm behavior, where different emergent
effects can result from one generalized implementation by only changing the
parameters each swarm member uses. Then, starting with the formalization of a
modified swarm algorithm realizing a ring formation around a reference point in a
3-dimensional environment, we demonstrated how we can achieve new formations
to be produced by swarms in three different ways with PROTEASE2.0: (1) by
increasing the number of parallel swarms with Cring+, (2) by changing the single
reference point into a set of those, and (3) by introducing hierarchic swarms.
While we currently focus on the experimental evaluation of these new swarm
concepts achieving novel flight patterns for drones in simulation, we already
achieved proofs-of-concept using real drones forming simpler swarm patterns,
e.g., the Ring-of-Fliers described in Section 4.1. In future work, we will tackle the
physical challenges occurring when using real drones, e.g., battery constraints,
downwash of rotors, and collision avoidance. While we already addressed these
issues separately in previous research [14], we now will integrate them with
PROTEASE2.0. Other future work can focus on improving the discovery abilities of
our swarm behavior, e.g., concerning hierarchical Particle Swarm Optimization
executions searching for certain parameters with each particle forming its own
swarm aggregating and communicating local results to possibly better survey
greater regions.

16 O. Kosak et al.

Acknowledgment

The authors would like to thank all reviewers for their valuable suggestions.

References

1. Aguzzi, G., Casadei, R., Viroli, M.: Macroswarm: A field-based compositional
framework for swarm programming. In: Coordination Models and Languages:
25th IFIP WG 6.1 International Conference, COORDINATION 2023, Held as
Part of the 18th International Federated Conference on Distributed Comput-
ing Techniques, DisCoTec 2023, Lisbon, Portugal, June 1923, 2023, Proceedings.
p. 3151. Springer-Verlag, Berlin, Heidelberg (2023). https://doi.org/10.1007/
978-3-031-35361-1_2, https://doi.org/10.1007/978-3-031-35361-1_2

2. Ashley-Rollman, M.P., Goldstein, S.C., Lee, P., Mowry, T.C., Pillai, P.: Meld: A
declarative approach to programming ensembles. In: 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems. pp. 2794–2800 (2007). https://
doi.org/10.1109/IROS.2007.4399480

3. Bianchi, L., Gambardella, L.M., Dorigo, M.: An ant colony optimization approach
to the probabilistic traveling salesman problem. In: International Conference on
Parallel Problem Solving from Nature. pp. 883–892. Springer (2002)

4. Braubach, L., Pokahr, A.: Developing distributed systems with active components
and jadex. Scalable Computing: Practice and Experience pp. 100–120 (2012)

5. Carbone, C., Garibaldi, O., Kurt, Z.: Swarm robotics as a solution to crops inspec-
tion for precision agriculture. KnE Engineering 3(2), 552–562 (Feb 2018). https:
//doi.org/10.18502/keg.v3i1.1459, https://knepublishing.com/index.php/
KnE-Engineering/article/view/1459

6. CCL: Netlogo - northwestern’s center for connected learning and computer-
based modeling (ccl). Available at https: // ccl. northwestern. edu/ netlogo/ ,
accessed on 2020-08-28 (aug 2020)

7. Dedousis, D., Kalogeraki, V.: A framework for programming a swarm of uavs. In:
Proceedings of the 11th PErvasive Technologies Related to Assistive Environments
Conference. pp. 5–12 (2018)

8. Dorigo, M., Floreano, D., Gambardella, L.M., Mondada, F., Nolfi, S., Baaboura,
T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., Burnier, D., Campo, A.,
Christensen, A.L., Decugniere, A., Caro, G.D., Ducatelle, F., Ferrante, E., Forster,
A., Gonzales, J.M., Guzzi, J., Longchamp, V., Magnenat, S., Mathews, N., de Oca,
M.M., O’Grady, R., Pinciroli, C., Pini, G., Retornaz, P., Roberts, J., Sperati, V.,
Stirling, T., Stranieri, A., Stutzle, T., Trianni, V., Tuci, E., Turgut, A.E., Vaussard,
F.: Swarmanoid: A novel concept for the study of heterogeneous robotic swarms.
IEEE RAM 20(4), 60–71 (2013). https://doi.org/10.1109/MRA.2013.2252996

9. Van der Hoorn, R.A.: Plant proteases: from phenotypes to molecular mechanisms.
Annu. Rev. Plant Biol. 59, 191–223 (2008)

10. Intel: Aerial Technology Light Show. Available at https:
// www. intel. de/ content/ www/ de/ de/ technology-innovation/
aerial-technology-light-show. html , accessed on 2021-02-01 (Feb
2021), https://www.intel.de/content/www/de/de/technology-innovation/
aerial-technology-light-show.html

11. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent

https://doi.org/10.1007/978-3-031-35361-1_2
https://doi.org/10.1007/978-3-031-35361-1_2
https://doi.org/10.1007/978-3-031-35361-1_2
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.1109/IROS.2007.4399480
https://doi.org/10.18502/keg.v3i1.1459
https://doi.org/10.18502/keg.v3i1.1459
https://knepublishing.com/index.php/KnE-Engineering/article/view/1459
https://knepublishing.com/index.php/KnE-Engineering/article/view/1459
https://ccl.northwestern.edu/netlogo/
https://doi.org/10.1109/MRA.2013.2252996
https://www.intel.de/content/www/de/de/technology-innovation/aerial-technology-light-show.html
https://www.intel.de/content/www/de/de/technology-innovation/aerial-technology-light-show.html
https://www.intel.de/content/www/de/de/technology-innovation/aerial-technology-light-show.html
https://www.intel.de/content/www/de/de/technology-innovation/aerial-technology-light-show.html
https://www.intel.de/content/www/de/de/technology-innovation/aerial-technology-light-show.html

Extended Swarm Formation Flight with PROTEASE2.0 17

Robots and Systems (IROS) (IEEE Cat. No.04CH37566). vol. 3, pp. 2149–2154
vol.3 (2004). https://doi.org/10.1109/IROS.2004.1389727

12. Kosak, O., Bohn, F., Eing, L., Rall, D., Wanninger, C., Hoffmann, A., Reif, W.:
Swarm and Collective Capabilities for Multipotent Robot Ensembles, currently un-
der review. In: 9th Int. Symp. On Leveraging Appl. of Formal Methods, Verification
and Validation (Oct 2020)

13. Kosak, O., Huhn, L., Bohn, F., Wanninger, C., Hoffmann, A., Reif, W.: Maple-
Swarm: Programming Collective Behavior for Ensembles by Extending HTN-
Planning. In: 9th Int. Symp. On Leveraging Appl. of Formal Methods, Verification
and Validation (Oct 2020)

14. Kosak, O.: Mission programming for flying ensembles: combining planning with
self-organization. doctoralthesis, Universität Augsburg (2021)

15. Lee, K.B., Kim, Y.J., Hong, Y.D.: Real-time swarm search method for real-world
quadcopter drones. Applied Sciences 8(7), 1169 (2018)

16. Li, X., Ercan, M.F., Fung, Y.F.: A triangular formation strategy for collective
behaviors of robot swarm. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A.,
Mun, Y., Gavrilova, M.L. (eds.) Computational Science and Its Applications –
ICCSA 2009. pp. 897–911. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

17. Liu, Y., Liu, H., Tian, Y., Sun, C.: Reinforcement learning based two-level control
framework of uav swarm for cooperative persistent surveillance in an unknown
urban area. Aerospace Science and Technology 98, 105671 (2020)

18. Ma, M., Yang, Y.: Adaptive triangular deployment algorithm for unattended mo-
bile sensor networks. IEEE Transactions on Computers 56(7), 946–847 (2007)

19. Na, H.J., Yoo, S.: Pso-based dynamic uav positioning algorithm for sensing in-
formation acquisition in wireless sensor networks. IEEE Access 7, 77499–77513
(2019). https://doi.org/10.1109/ACCESS.2019.2922203

20. Pérez, I.F., Boumaza, A., Charpillet, F.: Learning collaborative foraging in a swarm
of robots using embodied evolution. In: Artificial Life Conference Proceedings 14.
pp. 162–161. MIT Press (2017)

21. Pianini, D., Viroli, M., Beal, J.: Protelis: Practical aggregate programming. In:
Proc. of the 30th Annual ACM Symposium on Applied Computing. pp. 1846–
1853. SAC ’15, ACM (2015). https://doi.org/10.1145/2695664.2695913, http:
//doi.acm.org/10.1145/2695664.2695913

22. Pinciroli, C., Beltrame, G.: Buzz: An extensible programming language for hetero-
geneous swarm robotics. In: 2016 IEEE/RSJ Int. Conf. on Intel. Robots and Sys-
tems (IROS). pp. 3794–3800 (Oct 2016). https://doi.org/10.1109/IROS.2016.
7759558

23. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5. Kobe (2009)

24. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH computer graphics 21(4), 25–34 (1987)

25. Roberts, R.J.: Nucleic acid. Encyclopedia Britannica. Available at https: // www.
britannica. com/ science/ nucleic-acid , accessed on 2020-06-14 (Feb 2020),
https://www.britannica.com/science/nucleic-acid

26. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

27. Skrzypecki, S., Tarapata, Z., Pierzchała, D.: Combined pso methods for uavs swarm
modelling and simulation. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) Modelling
and Simulation for Autonomous Systems. pp. 11–25. Springer International Pub-
lishing, Cham (2020)

https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/ACCESS.2019.2922203
https://doi.org/10.1145/2695664.2695913
http://doi.acm.org/10.1145/2695664.2695913
http://doi.acm.org/10.1145/2695664.2695913
https://doi.org/10.1109/IROS.2016.7759558
https://doi.org/10.1109/IROS.2016.7759558
https://www.britannica.com/science/nucleic-acid
https://www.britannica.com/science/nucleic-acid
https://www.britannica.com/science/nucleic-acid

18 O. Kosak et al.

28. Sánchez-García, J., Reina, D., Toral, S.: A distributed pso-based exploration
algorithm for a uav network assisting a disaster scenario. Future Gener-
ation Computer Systems 90, 129 – 148 (2019). https://doi.org/https:
//doi.org/10.1016/j.future.2018.07.048, http://www.sciencedirect.com/
science/article/pii/S0167739X18303649

29. Trianni, V.: Coordinated Motion, pp. 73–95. Springer Berlin Heidelberg, Berlin,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-77612-3_6, https://
doi.org/10.1007/978-3-540-77612-3_6

30. Varughese, J.C., Hornischer, H., Zahadat, P., Thenius, R., Wotawa, F., Schmickl,
T.: A swarm design paradigm unifying swarm behaviors using minimalistic com-
munication. Bioinspiration & biomimetics 15(3), 036005 (2020)

31. Vásárhelyi, G., Virágh, C., Somorjai, G., Tarcai, N., Szörényi, T., Nepusz, T.,
Vicsek, T.: Outdoor flocking and formation flight with autonomous aerial robots.
In: 2014 IEEE/RSJ Int. Conf. on Intell. Robots and Systems. pp. 3866–3873 (2014).
https://doi.org/10.1109/IROS.2014.6943105

32. Wanninger, C., Eymüller, C., Hoffmann, A., Kosak, O., Reif, W.: Synthesising Ca-
pabilities for Collective Adaptive Systems from Self-Descriptive Hardware Devices
- Bridging the Reality Gap. In: 8th Int. Symp. On Leveraging Appl. of Formal
Methods, Verification and Validation (Sept 2018)

33. Wanninger, C., Badem, T., Schörner, M., Eymueller, C., Poeppel, A., Reif, W.:
Golive a modular mixed reality simulation for semantic plug and play. In: 2023
23rd International Conference on Control, Automation and Systems (ICCAS). pp.
1521–1525 (2023). https://doi.org/10.23919/ICCAS59377.2023.10316758

34. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Mathematical Problems in Engineering 2015
(2015)

https://doi.org/https://doi.org/10.1016/j.future.2018.07.048
https://doi.org/https://doi.org/10.1016/j.future.2018.07.048
http://www.sciencedirect.com/science/article/pii/S0167739X18303649
http://www.sciencedirect.com/science/article/pii/S0167739X18303649
https://doi.org/10.1007/978-3-540-77612-3_6
https://doi.org/10.1007/978-3-540-77612-3_6
https://doi.org/10.1007/978-3-540-77612-3_6
https://doi.org/10.1109/IROS.2014.6943105
https://doi.org/10.23919/ICCAS59377.2023.10316758

	An Approach for Extended Swarm Formation Flight with Drones: PROTEASE2.0

