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1 INTRODUCTION

1 Introduction

The discovery of the H- or high confinement mode by the ASDEX group [1] has
led to a variety of experimental and theoretical study of this phenomenon. The
H-mode is an improved confinement regime for tokamak reactors in which the
performance of individual devices improves typically by a factor of two or more.
It is characterized by steep gradients in density and temperature indicating the
existence of a transport barrier in the plasma edge. Therefore the fusion capabili-
ties of future tokamaks can be greatly enhanced if they can access this operational
regime. Since the basic processes that cause the plasma to perform the transition
to the H-mode are not clearly identified the qualitative and quantitative under-
standing of the physics of this transition is an important issue for the design of
future fusion reactors.

Although the overall performance improves during the H-mode this operating
regime is not without problems. The H-mode is often perturbed by a inter-
mittent series of relaxation oscillations known as ELMs. ELMs show bursts of
MHD activity and a fast (0.1 ms) loss of particles and energy from the plasma.
In many experiments stationary ELM-free H-modes could not be obtained. Al-
though ELMs seem at first to be a disadvantage of the H-mode they could im-
prove the fusion capability of tokamaks since they could release particles from
the plasma in a controlled way. This gives a strong motivation for the inves-
tigation and control of the ELMs. A summary of the properties and present
understanding of the H-mode and of the ELMs is given in section 2.

The analytical understanding of the H-mode and the ELMs can benefit from
the fact that the dynamics of plasmas can in many cases be reduced to low-
dimensional mathematical models. In this case the complex behaviour of the
plasma can be described by simple models. An important technique for obtaining
details of the dynamics of the plasma from measured data is given by the method
of delays, which is described in section 3. The key idea of this method is to create a
dynamical system that shows qualitatively the same behaviour as the investigated
plasma. Thus the study of this dynamical system allows us to investigate the
physical process in great detail and to obtain qualitative and quantitative results.

For the investigation of the plasma dynamics, data from COMPASS-D has been
used. COMPASS-D is a divertor tokamak with a magnetic field topology that
is very similar to that proposed for ITER (see section 4). Since a high time
resolution is necessary for quantitative results the time derivative of the magnetic
field was investigated, which was sampled with a frequency of 200 kHz. The data
indicates the presence of several modes during the L-H transition and the H-mode.
To estimate the time evolution and stability of these modes the time dependence
of the growth and decay rates was calculated. Section 5 deals with the linear and
nonlinear analysis of these modes.
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In order to compare the results found by the analysis of the experimental data
with existing models a closer look at L-H transition and ELM models is done in
section 6. Since the main interest of this section lies in the qualitative behaviour
of the models, the discussion focuses on their mathematical description. It turns
out that the majority of them are based on the same partial differential equations
for the pressure and the plasma velocity. Since these equations play a central role
for the further comparison, a discussion of their limitations will be given.

In sections 7 and 8 two different classes of low-dimensional models derived from
these equations are presented. For the first class, the pressure and the plasma
velocity are approximated by different sets of orthogonal functions. The second
class defines new quantities of the plasma, based on spatial integrals over the
region of the transport barrier, and derives equations for the evolution of them.
The comparison of the properties of these models with the results of section 5
identifies a model due to Sugama and Horton as the most promising candidate to
describe the L-H transition and the ELMs. Section 8 gives a detailed discussion
of the properties of this model.
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2 TRANSITIONS FROM L-MODE TO H-MODE AND EDGE LOCALIZED
MODES

2 Transitions from L-mode to H-mode and Edge

Localized Modes

2.1 A short introduction to magnetically confined fusion
plasmas

The following introduction to magnetically confined fusion plasmas concentrates
on the aspects needed for the understanding of the later work. As such, it is by
no means a complete introduction to the properties of plasmas. A more detailed
introduction - on which this summary is based - can be found in [2].

Generally speaking a plasma is an ionized gas. When a gas is heated up strongly
enough for its atoms and molecules to collide with sufficient energy to knock off
their electrons, a plasma is formed. A plasma is often called the ’fourth state
of matter’ and consists of three parts: the electron gas, the ion gas and the
gas consisting of neutral particles. The term gas is used since in many cases
the electrons, ions and neutral particles can be described as an ideal gas. In
nature plasmas can be found very often, indeed, most of the known matter in
the Universe is in the plasma state. As there are almost equally many negative
and positive particles inside the plasma, macroscopically the plasma appears
to be neutral although microscopically there are deviations from the neutrality.
Because of the free electrons and ions the plasma is conducting and magnetic and
electric fields exert forces upon the plasma. In contrast to gases, where the forces
act on a short range, in a plasma the electromagnetic forces can affect charged
particles over a long distance.

Plasmas have a wide range of practical applications. In nuclear fusion a plasma of
deuterium and tritium is heated up to the temperatures necessary for the fusion
reactions to start. During the fusion the following reaction happens

D + T → 4
2He + n + 17.6MeV (1)

The neutron carries the major part of the released energy and can leave the
plasma easily. Its energy is used for the generation of electric energy. The α-
particle’s energy is needed to heat up the plasma. On its way out of the plasma it
collides with deuterium and tritium and loses its energy. Since the temperature
of the plasma is very high (≥ 10 keV) the plasma must be confined in a toroidal
magnetic cage. To obtain a good confinement of the plasma, the magnetic field
lines are closed and move helically on magnetic flux surfaces around the axis of
the torus. For nuclear fusion two different types of fusion reactors are proposed,
the tokamak and the stellarator. The difference between these two types lies
in the creation of the magnetic cage. While in stellarators the magnetic field
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2.1 A short introduction to magnetically confined fusion plasmas

is created only by coils, the tokamak creates the poloidal magnetic field with a
current inside the plasma. Figure 1 shows a typical tokamak reactor.

Transformator coil

Vertical field coilsToroidal field coils 

Ip

Bt

BBp

Bv

Figure 1: Schematic view of a tokamak reactor. The magnetic field
lines move helically around the torus on magnetic flux surfaces.

Because of the toroidal form of the cage non-Cartesian coordinate systems are
used very often. Figure 2 shows two typically coordinate systems. The first
coordinate system (~eΦ, ~eΘ, ~er) is similar to the cylindrical coordinate system, the
only difference is that the z-axis is not a real axis and forms a circle. Φ is called
the toroidal and Θ the poloidal angle. ~er points normally out of the torus. The
second coordinate system (~e‖, ~e⊥, ~er) is closely related to the magnetic cage. ~e||
points in the direction of the magnetic field and ~er points normally out of the
torus. The last basis vector ~e⊥ is parallel to the magnetic surface and points in
the direction necessary to form a orthogonal right hand side system.

Since the confinement of the plasma is not perfect, particles can escape from
the plasma, leading to a decrease in the plasma energy and an enhanced Hα/Dα-
light of the recombining hydrogen/deuterium atoms. Because of their high kinetic
energy, the escaping particles can hit the walls of the reactor and cause damage
to them. Hereby particles of the wall, the so called impurity ions, are released
which can enter the plasma resulting in a decrease of the plasma temperature.
To control the escape of the particles from and the entry of impurity ions into
the plasma the outer field lines are open and start and end on special plates, the
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2 TRANSITIONS FROM L-MODE TO H-MODE AND EDGE LOCALIZED
MODES
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Figure 2: Two typical coordinate
systems used in magnetically con-
fined nuclear fusion.

divertor plates. The closed field lines are separated from the closed ones by a
separatrix.

In plasmas with magnetic confinement two different confinement modes can be
distinguished: A low confinement mode called L-mode and a high confinement
mode called H-mode. The properties of these two confinement modes are dis-
cussed in the next section.

2.2 L-mode and H-mode

The L-mode was the typical confinement mode for tokamak plasmas until the
discovery of the H-mode by the ASDEX team. The L-mode can be characterized
by poor confinement that becomes worse with increasing heating of the plasma
[1]. In L-mode plasmas turbulence occurs throughout the plasma with broad
frequency and wave number spectra [3]. The relative level of the turbulence
has a maximum near the plasma boundary and can approach 100%. In some
plasmas more than half of the particle losses are associated with high peaks of
the fluctuations.

In the H-mode, the confinement of the plasma is enhanced. The energy con-
finement improves by a factor of 2, resulting in a decrease of the intensity of
the Balmer lines of hydrogenic neutrals at the boundary, signifying a decrease
in the neutral recycling rate and thus a decrease in the particle outflux [4]. The
transition from L- to H-mode is accompanied by the formation of a pedestal due
to steep gradients in the electron temperature and in the electron density in the
plasma edge a few centimetres inside the separatrix. The region between the
pedestal and the scrape-off layer is referred to as a transport barrier where the
particle and energy transport is significantly reduced [3]. The H-mode can be
reached in a wide variety of toroidal confined systems, however there is a strong
link to divertor tokamaks with a separatrix [5]. Experiments indicate the exis-
tence of a critical heating power for the transition into H-mode. This critical
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2.3 Edge localized modes

heating power increases with electron density, magnetic field, and the size of the
tokamak. Recent experiments indicate a lower limit for the density below which
the H-mode cannot be reached [6]. In numerous experiments a hysteresis between
the forward L-H transition and the backward H-L transition has been observed
[7]. This hysteresis manifests itself in a much lower critical heating power for the
H-L transition than for the L-H transition. Additionally the pressure gradient
and the electron density show differences between the two transition.

For the transition from L- to H-mode a large number of different theories exist.
One common idea of many of these theories is the stabilization of at least one
plasma instability during the transition. However this instability is not identified
and many theories, based on different instabilities, exist. As a consequence the
stabilization mechanism is unknown, but most theories explain the suppression of
turbulence by a shear in the E×B-drift velocity [8]. This drift affects all particles
in the same way, independent of their charge or mass. Due to the velocity shear
turbulence become decorrelated and thus particle transport across magnetic field
lines reduces significantly. Although this velocity shear can explain the transition
it is still unknown what kind of mechanism creates the shear.

2.3 Edge localized modes

A characteristic of the H-mode is the occurrence of an intermittent instability in
the plasma edge, the so-called edge localized modes (ELMs). In toroidal mag-
netic fusion devices a number of ELM types occur during the L-H transition and
during H-mode [9]. Although the following classification is widely accepted, the
terminology for the description of ELMs varies. To prevent misunderstandings
the name ELM is used here for the short burst of MHD activity and particle loss.
The cycle between two successive ELMs is called the ELM-cycle. During ELMs
the loss of energy and particles increases suddenly, reducing the average global
confinement by 10-20% [10]. This particle loss leads to an increase in electron
temperature outside the separatrix and a spike in the Hα-signal due to recycling
of expelled plasma particles. The plasma core inside the separatrix is only weakly
affected by ELMs. Different types of ELMs can be distinguished [11]:

• At the L-H transition dithering cycles occur. Since the edge pressure and
current gradients are close to their L-mode values the dithering cycles are
not specific MHD instabilities, but back-and-forth transitions between L-
and H-modes.

• With increasing power type III or small ELMs are encountered. The rep-
etition frequency of the type III ELMs decreases with increasing heating
power until they disappear above a critical heating power. Before an ELM,
coherent structures known as precursors are encountered.
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2 TRANSITIONS FROM L-MODE TO H-MODE AND EDGE LOCALIZED
MODES

• At higher power levels larger amplitude ELMs, the type I or giant ELMs,
are observed. Their repetition frequency increases with increasing applied
power. For these ELMs precursors have been found, too.

• A further class of ELMs are the type II or grassy ELMs. Type II ELMs
occur in tokamaks with higher elongation and triangularity and high edge
pressure. Here the edge plasma is in the connection regime between the
first and second stable region of ideal MHD stability at the plasma edge.

Figure 3 shows the typical sequence of ELMs during a power rise in DIII-D. With
stepwise increasing heating power, first type III ELMs occur at the transition from
L- to H-mode. Their repetition frequency decreases with heating power until an
ELM-free period is reached. At higher heating powers Type I ELMs occur. Their
repetition frequency is now increasing with increasing heating power.

69105

Dalpha in the Divertor (a.u.)

Injected NBI Power
(MW)

5

0

10

15

Type III

Type I

15001000500 2000 2500 3000

TIME (msec)
3500

Figure 3: Time sequence of ELMs during a power ramp ex-
periment in DIII-D. From reference [11].

During the ELM-free H-mode the stored energy saturates while the density rises
steadily. This points towards a much higher particle than energy confinement
time [12]. In addition the impurity content of the plasma also rises in this period,
as observed in various tokamaks. Thus it is necessary to lower the transport
barrier periodically to release the impurity content and the helium ash. A possible
method for this could be obtained by the control of the ELMs.

Since the later work will concentrate on the L-H transition and the ELMy H-
mode it is necessary to develop a better understanding of the type III ELMs. A
more detailed characterization of this ELM type will be given in the next section.
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2.4 Type III ELMs

2.4 Type III ELMs

As shown in the last section type III ELMs are distinguished from other ELMs
by the dependence of their repetition frequency on the total heating power. The
repetition frequency is independent of the plasma current but experiments show
that there is a connection to the electron density and to the gradients of both the
temperature and the pressure [13]. The repetition frequency ranges from 2kHz
down to 200 Hz for ELMy H-modes. However it is difficult to give a lower limit
for the repetition frequency since it is arguable whether the frequency becomes
very small or the ELMs disappear. The ELM itself is located at the closed surface
of maximum electron pressure and it is bounded to a small region around this
surface. In the inner part of this region, inside the surface, the ELM causes a
decrease in both temperature and density while in the outer part the temperature
and density are increased. Thus the radial position where the ELM perturbation
changes from decrease to increase is called the radius of the ELM perturbation
centre ρELM or inversion radius.

Often type III ELMs are accompanied by coherent oscillating structures in the
magnetic field, known as precursors. In the Fourier spectrum of the precursors a
few dominant frequencies can be identified, ranging from 30 kHz to 150 kHz. For
COMPASS-D the frequencies lie in a range of 70 kHz to 120 kHz [14]. Figures 4
and 5 show precursors of a type III ELM and the corresponding Fourier spectrum
of one precursor. The precursor consists of a high frequency oscillation with a low
frequency envelope. The Fourier spectrum shows two beating modes at 93 kHz
and 116 kHz. Shortly before the ELM-event the precursors grow exponentially.

The frequencies of the precursors depend on the heating method (ohmic, radia-
tive) and in the case of neutral beam injection on the direction of the neutral
beams. Since the ELMs precursors show clear modes many theories consider
plasma modes, like tearing or ballooning modes, as causes for the ELM. These
modes become unstable during the ELM or couple with each other resulting in a
huge particle loss. In most cases the precursors are detected by Mirnov coils that
measure the magnetic field near their position. The oscillation of the magnetic
field with poloidal and toroidal mode numbers m and n, are caused by perturba-
tion currents flowing parallel to the field lines on rational magnetic surfaces with
a q value of m/n [15]. In a toroidal coordinate system which rotates with the
plasma the magnetic field can be written in the following way

B(t, r, Θ, Φ) =
∑
mnl

Bmnl(t, r, Θ, Φ) + B0(r, Θ, Φ) (2)

Bmnl(t, r, Θ, Φ) = fmnl(t) · ϕmnl(r) · cos(mΘ + nΦ) (3)

Where Θ and Φ are the poloidal and toroidal angle respectively and r is the radial
distance from the centre of the plasma. B0 is an additional time-independent
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2 TRANSITIONS FROM L-MODE TO H-MODE AND EDGE LOCALIZED
MODES

Figure 4: Precursors of a type III ELM for several toroidal
and poloidal positions. From reference [14].

magnetic field that could be created by the coils around the plasma. To take
the poloidal variation of the slope of the magnetic field into account a correction
factor λ is introduced and Θ has to be transformed to

Θ∗ = Θ− λsinΘ (4)

This variation of the slope causes a poloidal variation of the wavelength that is
larger at the outer (low field) side. The time dependence of the magnetic signal is
split up into two parts. In addition to the time-dependent coefficients fmnl(t) the
rotation of the plasma creates a second time dependence. The field perturbation
is expected to be frozen within the plasma, which means that the Θ- and Φ-
coordinates are time-dependent for a non-rotating frame. Since the position of
the Mirnov coils is fixed in space the rotation of the plasma leads to a poloidal ωm

and a toroidal ωn rotation frequency and modes with mode numbers m and n can
be observed in measurements. The toroidal rotation is caused by two different
mechanism: the electron drift and an external drive from the particle injections.

15



2.4 Type III ELMs

Figure 5: Fourier spectrum of the precursor. From reference [14].

Thus the toroidal rotation frequency can be written as

ωn = ω∗ ± ωdr (5)

where ω∗ is the frequency caused by the electron drift and ωdr is the frequency
created by the particle injections. Note that in equation (5) ωdr can increase or
decrease the toroidal rotation frequency. Since the neutral beam injection drives
a toroidal current the dependence of the precursor frequency on the direction
of particle injection can be explained with this formula. In the case of counter-
injection the toroidal rotation and the toroidal part of the electron drift velocity
are in the same direction increasing the precursor frequency (+ sign) while in the
case of co-injection the rotation is in the opposite direction which decreases the
frequency (- sign).

Although the radial dependence of a mode with mode numbers m and n is split
up into several radial functions ϕmnl(r) - sometimes called radial modes - the
different radial functions cannot be distinguished in the later analysis. To reflect
this, new spatio-temporal coefficients of the form

fmn(r, t) =
∑

l

fmnl(t) · ϕmnl(r) (6)

are introduced. The coefficient fmn(r, t) acts as an envelope for the corresponding
m-n mode and will be called ELM-envelope in the following. This representation

16



2 TRANSITIONS FROM L-MODE TO H-MODE AND EDGE LOCALIZED
MODES

of the magnetic field is used to separate the mode structure, which is caused by
the rotation of the plasma and is mostly independent of the ELMs, from the
dynamics caused by the ELMs, which is represented by fmn(t). In the following
the term “high-dimensional ELM-envelope” or “high-dimensional mode” will be
used to take into account that actually the ELM-envelope fmn(t) consists of
several radial functions ϕmnl(r).

Since the magnetic field is a superposition of several magnetic fields created by
different modes with different frequencies, the measured signal can show a mod-
ulated shape. Figure 6b shows the effect of multiplying a given ELM-envelope of
four identical ELMs with the sum of two cosines of different frequencies. In this
case the difference between the ELM repetition frequency and the frequencies of
the cosines causes identical ELMs to appear differently. The magnitude of the
second ELM for example is only half the magnitude of the other ELMs. Although
the different ELM precursors grow to their full magnitude their interaction pre-
vents an ELM from taking place. This modulation effect could explain why in
some measurements the precursors grow and vanish without causing an ELM.
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Figure 6: ELM signal and modulated ELM signal. Although the
ELM-envelope (a) is identical for all ELMs, they seem to be differ-
ent (b) when modulated with cosines.

Several models have been developed to explain the dynamics of the L-H transition.
If the dynamics of the transition is not too complicated, information about the
differential equations, which describe the system, can be obtained by a time series
analysis of the measured data, which allows to test the different models.
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3 Dynamical Systems and the Method of Delays

Experimental investigation of most dynamical systems is done by measuring the
time dependence of some characteristic properties of the system. Since only few
properties are measured it would seem that it is only possible to obtain a low-level
description of the dynamics of the system. However the method of delays, which
will be introduced in this section, provides an excellent method for extracting
qualitative and quantitative information about the dynamics of a physical system
from experimental data.

3.1 Dynamical systems, dimensions and manifolds

The basic description of dynamical systems consists of two parts. First it is nec-
essary to specify the state of a system at a certain time, to be able to distinguish
this state from other states of the system. This can be done by using a set of
parameters x1, x2,..., xn. The state of a ball moving in the x-y plane for example
could be described by coordinates giving its position and velocity, say, x, y, vx

and vy. Since the aim is a mathematical description of the dynamical system
these parameters are elements of a linear space Rn or - more generally - of a
manifold. This linear space (manifold) is called state space or phase space and
the parameters are its coordinates. Here, by manifold is meant an object that
can be approximated locally by a linear space (see figure 7). This linear space is
called the tangent space and the dimension of a manifold is the dimension of its
tangent space. Though the idea of a manifold as state space sounds strange at
first it is very common in physics. An example of a system that has a non-trivial
manifold as its state space is the pendulum. A state of the pendulum can be
completely specified by its angle from the vertical and its angular velocity. Since
the angle lies between 0 and 2π, where 0=̂2π the state space is the surface of a
cylinder which is a two dimensional manifold.

However the description of a state is not unique and a dynamical system can
be well described by different choices of coordinates. The reason for this is that
some of the coordinates are nonlinear functions of the others. In the case of the
pendulum a state can also be described by the position of the pendulum in the
x-z plane and the corresponding velocities. Since the distance of the pendulum
from the pivot point is constant the z coordinate is a function of the x coordinate
and vice versa (there is a fixed mathematical relationship between these two
coordinates since x2 + z2 = const). The same statement holds for the velocities.
To simplify the mathematical description of the system it is necessary to reduce
the number of coordinates. Thus one of the key tasks is to find a minimum set of
independent coordinates to describe a physical system. In Lagrange mechanics
for example these coordinates are called generalized coordinates.

18



3 DYNAMICAL SYSTEMS AND THE METHOD OF DELAYS

global

local

Figure 7: Example of a two di-
mensional manifold. At every
point the manifold can be ap-
proximated locally by a two di-
mensional linear space, its tan-
gent space. From reference
[16].

The second part of the description of dynamical systems is to give the evolution of
the systems. Thus it is necessary to find what causes the evolution and describe
it by a set of equations. Most dynamical systems can be described by a lim-
ited set of ordinary differential equations of different orders for the coordinates.
Each ODE of order n can simply be transformed into a system of n first order
ODEs. In classical mechanics this transformation corresponds to the change from
Lagrangian to Hamiltonian mechanics.

Even if the system is described by partial differential equations, as it is the case in
plasma physics, a system of first order differential equations can be obtained by an
expansion in a series of complete orthogonal functions. In this case the number
of ordinary differential equations for the coefficients of the functions would be
infinite. However by a proper choice of the orthogonal functions it may emerge
that only few of them are important or most of them decay rapidly. Thus the
system can be well described by neglecting most of the orthogonal functions and
restricting the equations to the dominant functions. Consider for example a bar
of copper of length L with an initial temperature distribution T (x, 0), where x
ε [0, L]. The time evolution of the temperature distribution is governed by the
heat equation

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
(7)
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3.2 Qualitative dynamics

where κ is the thermal diffusivity of the bar. If we expand T (x, t) in a Fourier
series we get

T (x, t) = a0(t) +
∞∑

k=1

ak(t)cos(
2π

L
kx) +

∞∑
k=1

bk(t)sin(
2π

L
kx) (8)

The substitution of this expansion into the equation (8) gives an infinite set of or-
dinary first order differential equations for the Fourier coefficients ak(t) (similarly
for bk(t))

dak(t)

dt
= −κk2ak(t) k ≥ 0 (9)

The state space is now the infinite-dimensional space spanned by the Fourier
modes. However, except for a0 all the ak(t) and bk(t) decay exponentially and
thus if we look at the long time dynamics we can restrict our expansion to a
limited number m of aks. Thus the state space can be reduced to Rm. In [17]
for example the Karhunen-Loève expansion for reduced MHD equations, used
for the description of the edge of a plasma, gives good agreement between the
partial differential equations and the system of ordinary differential equations for
m ≈ 20, which is a relatively small number.

3.2 Qualitative dynamics

In many cases the differential equations for the descriptions of the system let
alone the solution of them is not known. Nevertheless a great deal of qualitative
information about the dynamics can be obtained by a qualitative study of the
phase portrait of the system [18]. Consider a dynamical system of the form

dx

dt
= F (x) (10)

where x is a point in the phase space S ⊆ Rn. The vector field F (x) is in general
a non-linear operator acting on points in S. Under well-known conditions on
F (x) equation (10) defines an initial value problem in the sense that for each
initial value a unique solution exists. The solution for a given initial value x0 at
a time t may be written as x(t) = ϕt(x0).

However, for most problems the complete solution of (10) is not known. The
analysis can be simplified to some extent since many physical systems have similar
basic equations which means their behaviour is also very similar. Thus it is
enough to choose only one of the similar systems for the investigation and transfer
the results from the analysis to the other systems. In order to be able to compare
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3 DYNAMICAL SYSTEMS AND THE METHOD OF DELAYS

and classify phase portraits of different systems, it is necessary to introduce an
equivalence relation between differential equations.

Two Cr vector fields F and G are Ck equivalent (k ≤ r) if there exists a Ck

diffeomorphism, Φ, which maps orbits ϕt(x) of F to orbits φt(y) of G in such way
that their orientation is preserved. The orbits ϕt(x) and φt(y) are connected via
the relationship

φt(y) = Φ ◦ ϕt ◦ Φ−1(y) (11)

In some way Φ is an invertible change of coordinates, which distorts the flow
without changing the order in which the points of the trajectory are visited. One
consequence of this equivalence is that the stability properties of fixed points are
preserved. If k = 0 the systems are said to be topologically equivalent, because
the distortion of the orbits need only be continuous. Although the stability
of fixed points are the same for topologically equivalent systems the ratios of
eigenvalues associated with linearization of the flow near the fixed points can be
different for the individual system. This means that a distinction between say
foci, where the trajectories are circling around the fixed point, and nodes, where
the trajectories are not circling, cannot be obtained.

If k = 1 the equivalence between two systems is stronger and is called differen-
tiable equivalence. In addition to the properties of the topological equivalence
the linearized maps of F and G have the same ratios of eigenvalues at their fixed
points and thus a distinction between nodes and foci can be made. Since mem-
bers of the same equivalence class share common aspects of behaviour they are
said to have the same qualitative dynamics.

To get a better feeling for this concept consider the following two simple differ-
ential equations for which the solutions can be calculated very easily

dy

dt
= −3y (12)

and
dx

dt
= −x (13)

Both equations have a very similar structure, actually the only difference is the
coefficient on the right hand side. Thus one would expect that their solutions
show similar behaviour. In fact the solutions

y(t) = y0e
−3t (14)

x(t) = x0e
−t (15)
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3.3 Method of delays

are also very similar. Again the only difference is the exponent of the exponential
function. Without knowing the solution the similarity can be shown since both
systems are connected via the homeomorphism y = Φ(x) = x3

dy

dt
=

d

dt
Φ(x) = 3x2dx

dt
= −3x3 = −3y (16)

and thus are topologically equivalent. Since Φ−1(y) = y1/3 is not differentiable
at y = 0, Φ(x) is not a diffeomorphism. Thus the two systems are only topologi-
cally equivalent as indicated by the different coefficients of the right hand sides.
Because of this equivalence it is sufficient to study only one of the two systems
and deduce the properties of the other one using Φ(x).

3.3 Method of delays

The concept of topological and differentiable equivalence is a very elegant method
from the theoretical point of view but has a big disadvantage for practical pur-
poses since it gives no recipe of how to find the equivalence relation Φ(x) or an
equivalent system for a given one. Especially in the context of experimental re-
search, it is very difficult to find equivalent systems for measured data. Luckily
this search can be simplified by creating an equivalent system from the given data.
A way of creating a system with equivalent dynamics as the physical system of
interest is given by Takens’ theorem:

Let M be a compact manifold of dimension m. For pairs (F, v), F a smooth
(i.e. C2) vector field and v a smooth function on M , it is a generic property that
ΦF,v(x) : M → Rn defined by

ΦF,v(x) = (v(x), v(ϕτ (x)), ..., v(ϕ(n−1)τ (x)))T

is an embedding, provided that n ≥ 2m + 1. Here ϕt is the solution of equation
(10) and τ > 0.

An embedding is a smooth map, say Φ, from the manifold M to a space U such
that Φ(M) is a smooth submanifold of U and Φ is a diffeomorphism between
M and Φ(M). Since v(x) corresponds to the value of a measurement made on
the system it is called the measurement function. The space which contains
the image of Φ is called the embedding space and its dimension the embedding
dimension. As Φ is a diffeomorphism between two manifolds one prerequisite for
a differentiable equivalence relation is fulfilled. Thus the dynamics of the physical
system can be investigated by analyzing the dynamics in the embedding space
Rn.

The practical implementation of this theorem is the method of delays. Let {vi},
i = 1, 2, ..., Nm be a time series of measurements made on the system, where
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3 DYNAMICAL SYSTEMS AND THE METHOD OF DELAYS

vi = v(ϕiτ (x)) and τ is the sampling time. Since the sampling time τ for the
flow ϕτ (x) is unspecified in the theorem there is theoretically no condition on
the choice of τ of the measurement as long as τ does not change during the
measurement. A schematic representation of this method is given in figure 8.

M

S

ΦF,v(M)

Rn>2m

t

R

Φ

Φ−1

ΦF,v

v

Figure 8: Schematic representation of the method of delays.
From reference [18].

A useful concept is an (n, J)-window which makes visible n elements of the time
series with the sub-sampling time J · τ . As the window is advanced step-wise
through the time series a sequence of vectors is generated which form a discrete
trajectory in the embedding space. These vectors are called delay vectors and
are of the following form

xi = (vi, vi+J , ..., vi+(n−1)J)T

Though this method is an elegant way to reconstruct the dynamics of the system
there are several difficulties in applying this method to measurements made on
the system. Most of these problems arise from the fact that Takens’ theorem
considers the problem from the theoretical point of view and is not concerned
about the actual process of measurement. One of the most obvious problems
comes from the unspecified time scales. In the concept of the (n, J)-window
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3.4 Singular value decomposition

there exist three time scales, the sampling time τs, the lag time τL = J · τs, and
the window length τw = n·τL. On the one hand a small sampling time is desirable
to get a good and smooth approximation of the dynamics. On the other hand if
the sampling time is too small the samples are highly correlated and only a one
dimensional reconstruction of the system can be achieved in practice. To avoid
this problem the lag time introduces a degree of statistical independence between
the samples.

Another problem arises from the unknown dimension m of the phase space or
to be more precise from the unknown dimension n of the embedding space. If n
is to small then the dynamics will be projected onto a lower-dimensional space
and the trajectories intersect in the delay space. Takens’ theorem imposes the
condition that n has to be greater than 2 ·m but in practice sometimes a smaller
embedding dimension is enough or for noisy systems a much bigger number than
2 · m is needed. The simple approach to increase n until the trajectories no
longer intersect is a rather subjective criterion which becomes unworkable in
higher dimensions and the presence of noise. Several techniques for estimating
the dimensions of the manifold and the embedding space have been published
[19, 20], however most of them fail for noisy data and have limitations [21]. A
method for coping with most of the mentioned problems is given by the singular
value decomposition which will be described in the following section.

3.4 Singular value decomposition

Consider the case of a series of Nm-measurements made on the system. After
applying an (n, 1)-window, or an n-window as it is often called, we get a new
series of N = Nm − (n − 1) delay vectors {xi} in the embedding space. The
sequence can be used to create the trajectory matrix X, which is defined by:

X =
1√
N


yT

1

yT
2

.

.

.
yT

N

 =
1√
N


v1 v2 ... vn

v2 v3 ... vn+1

. . . .

. . . .

. . . .
vNm−n+1 vNm−n+2 ... vNm

 (17)

where
√

N is used as a normalization. Information about the dynamics of the
physical system can be obtained from the trajectory matrix by performing a
singular value decomposition (SVD). The global singular value decomposition of
a real N by n matrix X where N > n is the expansion of X in terms of matrices
S, Σ and C such that:

X = SΣCT
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3 DYNAMICAL SYSTEMS AND THE METHOD OF DELAYS

where S is an N by n matrix with orthonormal columns, C is an n by n orthogonal
matrix, and Σ = diag(σ1, ..., σn) is n by n. The columns ci of C are eigenvectors
of the covariance matrix Θ = XT X and the σ2

i are the corresponding eigenvalues.
Thus the ci are called singular vectors and the σi are called singular values and
can be chosen to be non-negative. The set of singular values is often referred to as
the singular value spectrum. In addition the σ2

i are eigenvalues of the structure
matrix Ξ = XXT where the corresponding eigenvectors are the columns of the
matrix S. Since both Ξ and Θ are real and symmetric their eigenvectors form a
complete orthonormal basis for Rn and RN respectively.

Without loss of generality let’s assume that the singular values are ordered so that
σ1 ≥ σ2 ≥ ...σn ≥ 0. In some cases the rank of Ξ and Θ will be less than n. Thus
by projecting the delay vectors onto the singular vectors the embedding space can
be separated into two subspaces Rd and Rn−d, where d = rank(Θ). The subspace
Rd contains the embedded manifold which means that d is an upper limit for the
dimension of the manifold and a dimensionality reduction is obtained. In fact the
global singular value decomposition gives an estimate for the minimum dimension
that is needed to embed the physical system. This dimension is not necessarily
the same as the dimension of the phase space. Take for example a simple torus
as phase space whose dimension is two. However to embed the torus at least a
three dimensional space is needed.

The projection onto the delay vectors corresponds to a basis transformation in
the embedding space. In the singular vector basis the coordinates of the delay
vectors are linearly independent. The projection of the trajectory matrix onto
this basis results in a new trajectory matrix P

P = X · C = SΣ =


P1,1 P1,2 ... P1,n

P2,1 P2,2 ... P2,n

. . . .

. . . .

. . . .
PN,1 PN,2 ... PN,n

 (18)

whose columns are the linearly independent. The columns of P are called princi-
pal components and represent the time evolution of the coordinates of the delay
vectors in the singular vector basis.

However there are two limitations on this method. One problem arises from the
non-linear parts of equation (10). It can be shown that singular values can be zero
if and only if the time series can be expressed as an nth order linear difference
equation [25]. Thus in non-linear systems no singular value will be zero. The
same problem occurs, if the measurement function v is non-linear. The second
problem is caused by noise. Since in most cases noise is included in the time
series the number of non-zero singular values is increased.
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3.4 Singular value decomposition

Consider a noisy time series with additive zero mean white noise. The observed
time series has the form:

vj = v̄j + nj

where v̄j is the noise-free deterministic component, and nj is a white noise with
zero mean and variance σ2

n. Since nj and v̄j are uncorrelated the covariance
matrix is of the form

Θij = Θ̄ij + σ2
nδij (19)

where Θ̄ is the noise-free covariance matrix. From equation (19) it can be seen,
that for 1 ≤ i ≤ n the σ2

i ’s are of the form

σ2
i = σ̄2

i + σ2
n (20)

According to equation (20) the squares of all singular values are shifted by the
variance of the noise. Nevertheless a reduction of dimensionality and a lineariza-
tion of the time series can be done by projecting the trajectory matrix on the
singular vectors, whose singular values lie above the noise floor σ2

n.

A better estimation of the dynamics near one point on the trajectory in the
embedding space say y = yk0 , can be achieved by doing a local singular value
decomposition which means that the trajectory matrix is restricted to delay vec-
tors that lie in a neighborhood of radius ε around y. The basic idea behind this
method is that the dynamics of the delay vectors should locally be confined to
the tangent space of the manifold. Thus a local singular value decomposition
should give the dimension of the manifold. Let’s consider a ball Bε(y) of radius
ε > 0 centred at y.

Bε(y) = {yk : |yk − y| < ε}

Let Nε be the number of points in Bε(y). Then we can write Bε(y) = {y′1, y′2, ..., y′Nε
}

and create a new trajectory matrix Xε.

Xε =
1√
Nε


(y′1 − y)T

(y′2 − y)T

.

.

.
(y′Nε

− y)T

 (21)

However the notion of locally is problem dependent and it is very difficult to give
limits for a local neighborhood. To address this problem the radius ε of Bε is
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3 DYNAMICAL SYSTEMS AND THE METHOD OF DELAYS

increased and for every radius a singular value decomposition of Bε is performed.
The scaling of the singular values σi(ε) with respect to ε gives information about
the dimensionality of Φ(M) [16]. The non-zero singular values that correspond
to the dynamics of the system scale linearly with ε. The other non-zero singular
values represent the curvature of Φ(M) in the delay space and thus will scale
as εα for α > 1. However this scaling behaviour is only true for small ε since
curvature effects become dominant and will cause all non-zero singular values to
scale non-linearly. Thus by performing the local singular value decomposition an
estimation m̂ of the number of degrees of freedom is obtainable which is smaller
than the actual number, i.e. m̂ ≤ m.

In noisy systems the scaling changes slightly. Consider again a time series of the
form

vj = v̄j + nj

with zero mean white noise nj uncorrelated with v̄j. As mentioned above the
singular values for a given ball radius ε can be written as

σ2
i (ε) = σ̄2

i (ε) + σ2
n(ε) (22)

To see the influence of noise on the scaling of the singular values a closer look
at the scaling of the noise is necessary. Define the noisy part ηi of the ith delay
vector and the diameter of noise Dn as below

ηi = (ni, ni+1, ..., ni+n−1)
T (23)

Dn = max
1≤j≤N

(‖ηj‖) (24)

If ε is smaller than Dn the noise will extend in all directions an so σn(ε) will scale
linearly. As ε becomes bigger than Dn, σn(ε) saturates and reaches a constant
value. If σ̄i(ε) is large compared to σn(ε) the scaling of σi(ε) is dominated by the
scaling of σ̄i(ε) and thus will show the same results as if no noise were present.
However if σ̄i(ε) is small compared to σn(ε) the scaling is dominated by σn(ε)
and will be linear for small ε but constant for ε > Dn. Thus surprisingly high
values for m̂ can be caused by noise.

The local singular value decomposition provides a good method for estimating
the dimensionality of the system. By setting all singular values which correspond
to non-linearities and noise to zero a linearization and cleaning of the time series
data is possible. After applying the local singular value decomposition the local
linear structure of the dynamical system can be obtained, as shown in the next
section.
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3.5 The local linear model

3.5 The local linear model

Since the delay embedding creates a differentiable equivalence between the origi-
nal system and the reconstruction in the embedding space, the local dynamics at
fixed points are preserved. Thus if x̄ is a fixed point of the system and x = x̄+δx,
where δx is small, equation (10) can be approximated by

δẋ = DFx(x̄)δx (25)

where DFx(x̄) is the Jacobian of the vector field F evaluated at the fixed point
x̄. The flow at the associated fixed point ȳ = Φ(x̄) can be approximated in the
same way by

δẏ = DGy(ȳ)δy (26)

where y = ȳ + δy and δy is small. DGy(ȳ) is the Jacobian of the induced vector
field. As there is a differential equivalence between the two systems (caused by
the diffeomorphism Φ(x) = ΦF,v(x)) the linear approximations (25) and (26) are
connected by

DGy(ȳ) = DΦx(x̄) ·DFx(x̄) ·DΦ−1
y (ȳ) (27)

Since (27) is a similarity transform DGy(ȳ) and DFx(x̄) have the same eigenvalue
spectrum and thus the dynamics near a fixed point of the original system can be
obtained by analysis of the point in the embedding space.

Since DGy(ȳ) is time-independent the solution of equation (26) is

δy(t) = eDGy(ȳ)tδy(0) (28)

The eigenvalues µk of Ψt = eDGy(ȳ)t are related to the eigenvalues λk of DGy(ȳ)
through

λk =
1

τ
· ln(µk) , 1 ≤ k ≤ d (29)

where τ is the sampling time of the time series.

The flow Ψt = eDGy(ȳ)t can be obtained from the dynamics of the trajectory
matrix, since

Xε(t + τ)T = ΨτXε(t)
T = eDGy(ȳ)τXε(t)

T (30)

As equation (30) is an overdetermined system of linear equations it can be solved
by a least squares solution.
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3.6 The Rossler system

To illustrate the power of the methods of delays and the singular value decom-
position both methods will now be applied to the Rossler system. The Rossler
system is a 3-dimensional dynamical system described by the following equation:

ẋ = −y − z
ẏ = x + ay
ż = bx− cz + xz

(31)

where a, b and c are non-zero constants. The solution Ψt of (31) is unknown but
can be approximated numerically. For this example a = 0.36, b = 0.3 and c = 4.2
and the delay τ = 0.05 have been chosen and for several initial points N = 20000
points of the trajectory have been calculated. For the numerical solution of (31)
and for the following analysis several algorithms have been written in MATLAB
(a mathematical and graphical package) using its in-built mathematical routines.
The time series was created by measuring the x-component of each point of the
trajectory. As expected the results obtained from the following analysis of the
trajectories are independent of the initial point. Thus only the results for the
initial point x0 = (0.9501, 0.2311, 0.6068) are shown. The first 5000 elements of
the time series are shown in figure 9.
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Figure 9: First 5000 points of x-component of the trajectory of the
Rossler system.

The trajectory of the Rossler system is shown in figure 10. Although the Rossler
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system is a 3-dimensional system the phase-portrait is - except for the origin -
locally 2-dimensional. This local 2-dimensional behaviour poses a big problem
for the estimation of the dimension of the phase space with the local singular
value decomposition.
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Figure 10: Trajectory of the Rossler system. Shown are the x-, y-
and z-coordinate of the trajectory.

The singular value spectrum and the scaling of the singular values are given in
figures 11 and 12. The trajectory matrix was constructed by using an embedding
dimension of n = 7 and a delay of τ = 0.05. The singular value spectrum
shows three singular values that lie above the noise floor. In this case the noise is
generated by the numerical solution of the ODE and by the numerical calculation
of the singular value decomposition. Thus the global singular value decomposition
gives m = 3 as an estimation for the degrees of freedom of the Rossler system. As
mentioned above the local singular value decomposition has to be done carefully.
The point y a which the ball Bε(y) is centered, cannot be chosen arbitrarily
but has to lie close to the origin where the trajectory passes through all three
dimensions. In figure 12 the point y = (−0.0049,−0.0016, 0.0) was chosen for the
analysis. The first three singular values scale linearly while most other singular
values scale as ε2 in the beginning but reach a constant value very fast. Another
interesting property is the step-wise scaling of the singular values greater than
4. This step-wise behaviour of the scaling reflects the fact, that the trajectory
of the Rossler system has a band structure (see figure 10). Every time the ball
radius becomes big enough to include the next band the singular values suddenly
increase, since the number of points in the ball increases in the same way.

30



3 DYNAMICAL SYSTEMS AND THE METHOD OF DELAYS

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5
x 10−3

Singular vector

S
in

gu
la

r v
al

ue

Figure 11: Global singular value decomposition. Only three singu-
lar values are bigger than zero, giving an dimension of m = 3.
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Figure 12: Local singular value decomposition. For comparison a
line with slope 1 is drawn. Only the first three singular values scale
linearly giving m = 3.
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The local and global singular value decomposition give m = 3, which is the cor-
rect dimension of the Rossler system. Thus if we project the trajectory matrix
onto the first three singular vectors the dynamics of the system should be recov-
ered. Figures 10 and 13 show the trajectories of the Rossler system and of the
projection of the delay vectors onto the first three singular vectors respectively.
The comparison of both figures shows clearly that the dynamics of the Rossler
system is qualitatively recovered by the combination of delay embedding and
singular value decomposition.
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Figure 13: Projection of the singular vectors onto the
first three singular vectors.

So far the comparison between the original Rossler system and the system in the
delay space was except for the estimation of m purely qualitative. However, the
estimation of the local linear model allows us to compare these two systems in a
quantitative way. In order to compare the results of the following local analysis
of the system in the delay space with the Rossler system, the Jacobians of both
systems have to be calculated. The Jacobian of the Rossler system at the fixed
point x0 = (0, 0, 0)T is in this case:

DFx(x0) =

 0 −1 −1
1 0.36 0

0.3 0 −4.2

 (32)
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The eigenvalues of the Jacobian are given by

λ1 = 0.145547 + 0.984557i
λ2 = 0.145547− 0.984557i
λ3 = −4.131094

(33)

To estimate the local linear model we create a new trajectory matrix X̂ by pro-
jecting the trajectory matrix X onto the first three singular vectors:

X̂ = X · (C1, C2, C3) =


P1,1 P1,2 P1,3

P2,1 P2,2 P2,3

...
PN,1 PN,2 PN,3

 (34)

To get a linear equation for the linearized flow Ψτ we use two additional matrices
Y and Ŷ that consist of the first N − 1 or the last N − 1 rows of X̂ respectively.
Because of the structure of X̂ each row Ŷj of Ŷ is connected to the corresponding
row Yj of Y via

Ŷ T
j = (Pj+1,1, Pj+1,2, Pj+1,3)

T = Ψτ · (Pj,1, Pj,2, Pj,3)
T = ΨτY

T
j (35)

This means that by using only delay vectors, whose distance from the fixed point
is small, the local linear model of the Rossler system can be estimated solving
the linear equation

Ŷ T
ε = ΨτY

T
ε (36)

Here the index ε denotes that the matrices Ŷε and Y T
ε only contain the rows of

Ŷ and Y whose distance from the fixed point is less than ε. Since equation (36)
is an overdetermined linear equation it can be solved by a least squares method.
The solution Ψτ is of the form

Ψτ = eDFx(x0)τ (37)

Thus the eigenvalues of DFx(x0) are

λi =
1

τ
· ln(µi) (38)

where µi are the eigenvalues of Ψτ . Since the linear approximation for Ψ is only
valid for small ε but the notion of small is not unambiguous the linear model has
been calculated for several radii ε. The dependence of real and the imaginary
parts of the estimated linear model on the radius is shown in figures 14.
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Figure 14: Scaling of the real parts of the eigenvalues. For
radii smaller than 0.35 the values are quite constant.

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Ball radius

Figure 15: Scaling of the imaginary parts of the eigenvalues.
Again the values are quite constant for radii smaller than 0.35.
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The calculated eigenvalues are quite constant as long the radius is smaller than
0.35. Thus for the estimation of the eigenvalues of the local linear model the mean
values of the calculated eigenvalues up to the radius of 0.35 have been taken and
are listed in table 1 together with their relative error.

Eigenvalue Relative error real part Relative error imaginary parts
0.1452 ± 0.9819 i 0.002 0.003

-4.2727 0.034 -

Table 1: Estimated eigenvalues of the Rossler system and their relative error

Table 1 shows that the eigenvalues are accurate to within 3% of their analytic
value. Thus the local linear model can be recovered quite accurate by the com-
bination of the delay embedding and the singular value decomposition. This
example shows how powerful this method is since although only one coordinate
of the Rossler system has been used, the eigenvalues can be calculated in a very
accurate way.
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4 Description of COMPASS-D and the Discharge

Many theories have been developed to describe ELMs and the L- to H-mode
transition. In early experiments the L- to H-mode transition was achieved by
use of neutral beam power for additional heating. In these experiments the L-H
transition was sharp occurring in less than a few milliseconds after the heating
was increased very fast. For the study of ELMs and the transition dynamics
this method has two disadvantages. Since the additional heating is applied very
quickly, the plasma properties change in the same rapid manner. Thus changes in
the plasma properties can be seen that are not caused by ELMs or the transition
itself. A second problem arises due to the increase of the electron density caused
by refuelling of the plasma by the beams. In particular the continuous refuelling
makes a comparison between the forward L-H transition and the backward H-L
transition very difficult. These problems can be avoided by heating the plasma
gradually by applying ohmic or radio frequency heating. By using this method a
slow transition can be produced in COMPASS-D which will be described in the
following section.

4.1 COMPASS-D

COMPASS-D is a medium sized tokamak that has been designed to investigate
key physical issues associated with magnetic confined fusion. Since its cross-
section and magnetic configuration (fig. 16) are similar to Jet and to those
proposed for ITER, COMPASS-D plays an important role for size scaling studies.
A list of characteristic COMPASS-D parameters is shown in table 2

Major plasma radius 0.557 m
Minor plasma radius 0.232/0.385 m

Magnetic field 2.1 T
Plasma current < 400 kA

Table 2: Characteristic COMPASS-D parameters

COMPASS-D uses a single null divertor configuration with a relevant high trian-
gularity plasma shape and routinely operates in ELMy H-mode. COMPASS-D is
equipped with three poloidal arrays each of 24 Mirnov coils inside the D-shaped
vacuum vessel located at different toroidal positions. The coils are close to the
plasma and can sample up to 1 MHz for a limited period of time during the dis-
charge. Thus the spatio-temporal structure of magnetic field perturbations can
be detected and investigated. For additional heating COMPASS-D is equipped
with eleven ECRH antennas, five high field side (HFS) and six low field side
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Figure 16: Poloidal cross section
of Compass-D. The position of
the 24 Mirnov coils is indicated
with the numbers 1 - 24. From
reference [27].

(LFS). Up to nine gyrotrons can be connected in O or X mode polarization, with
achieved total power into the torus exceeding 1.4 MW.

4.2 The discharge

In order to study the dynamics of the L-H transition on COMPASS-D a slow tran-
sition between these modes was performed by gradually ramping up the ECRH-
heating for discharge # 24815. Figure 17 shows some of the measurements of
the discharge. The changes of the plasma parameter have been done on a long
time scale compared with the energy confinement time and thus the plasma is
in a quasi steady state close to transport equilibrium. During the discharge the
plasma moves from L-mode to ELMy H-mode and back to L-mode. Between the
second (0.12 seconds) and third heating step (0.145 sec.) the plasma moves from
L- to H-mode. Because the transition happens gradually the determination of the
transition point cannot be done exactly. After the fourth heating step the plasma
reaches a quasi steady state. At the end of the discharge the heating power is
reduced stepwise, causing a transition back into L-mode around 0.24 seconds.
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4.2 The discharge

Figure 17: Transition to ELMy H-mode in Compass-D.(a) shows the Hα signal,
(b) the line averaged electron density and (c) the ECRH power.

During the discharge ELMs occur as can be seen in the Hα signal in figure 17
(a). The ELMs start during the transition from L- to H-mode and thus no ELM-
free period right after the transition can be seen. The repetition frequency of
the ELMs decreases with increasing heating power so they can be identified as
type III ELMs. During the discharge the ELM-free phase is not reached and
thus density control is maintained and the plasma moves back to L-mode in
a reversible manner at the end of the discharge. The two transitions between
the two confinement modes are not symmetric in time. The electron density
decreases faster at the transition back to L-mode than it was increasing at the
forward transition. The same can be seen in the Hα signal which also decreases
much faster than it increased.
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5 ANALYSIS OF THE MEASURED DATA

5 Analysis of the measured Data

To obtain a good time and spatial resolution of the plasma dynamics during the
L-H transition Mirnov coils # 5, 4, 2, 1, 24, 23, 22 and 21 have been used to
measure the time derivative of the poloidal component of the magnetic field with
a sampling frequency of 200 kHz (in the following the coils are labelled with 1,
2, ..., 8 corresponding to the order given above). The Mirnov coils measure the
magnetic signal near their position outside the plasma. However this signal is the
superposition of several magnetic fields generated by different kinds of dynamics.
In addition the magnetic signals come from various locations of the plasma which
complicates the investigation of the dynamics. Fig. 18 shows different plots of
the data obtained from coil # 5 (compare fig. 16) on different time scales.
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Figure 18: Two plots of the data obtained by coil # 5. (a) In addition to
the pulse-like oscillation caused by the ELM precursors a second sawtooth
like wave can be identified . (b) The precursors consist of a high frequency
oscillation with a low frequency envelope.

At least two different kinds of dynamics can be identified in figure 18a. In addi-
tion to a pulse-like oscillation due to the ELM a second signal, a sawtooth wave
- characterized by an approximatively linear increase in the local mean of the
signal between ELMs and a rapid decrease in mean during an ELM - can be
observed. This sawtooth oscillation is caused by the response of the bulk plasma
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5.1 The global picture - mode identification

to an ELM. During an ELM the plasma loses particles and energy and thus the
plasma pressure decreases. On the other hand an external force, that points
horizontally towards the transformator coils keeps its equilibrium value and is
now greater than the plasma pressure. This causes the bulk plasma to change its
position and move towards the transformator coils. Between ELMs the plasma
temperature increases and with it the plasma pressure causing the bulk plasma to
move back to its original position. In addition to this intrinsic movement an ex-
ternally applied magnetic feedback system tries to keep the plasma in position by
adjusting the external magnetic field. These changes, intrinsic and external, are
picked up by the Mirnov coils and thus the signal obtained by the measurement
is a superposition of the changes of the magnetic field caused by the dynamics of
the bulk plasma, the feedback system, and the ELMs.

Prior to the ELM clear coherent precursor oscillations can be seen (fig 18b) which
start 1 ms before the ELM itself and grow rapidly. The precursor consist of a
high frequency oscillation with a low frequency envelope. This behaviour might
be caused by the modulation of the ELM-envelope with at least two plasma modes
that cause the ELM signal to oscillate with the frequency of the modes, as men-
tioned in section 2. A look at the corresponding Fourier spectrum (fig. 19a) gives
only hints for frequencies which correspond to the modes. The Fourier spectrum
was calculated with the Fast Fourier Transform built into MATLAB. Since only
150 measurement points have been made for one ELM-cycle the Fourier spec-
trum is not very accurate. Even if we take several ELM-cycles (900 measurement
points) the Fourier spectrum (fig. 19b) is broad-band and it is hard to identify
any frequencies associated with the modes.

As the precursor frequencies lie between 60 and 120 kHz the sampling frequency
of 200 kHz causes a big problem since the corresponding Nyquist frequency is 100
kHz. Thus all frequencies greater than 100 kHz will be aliased and appear below
100 kHz in the Fourier spectrum. In particular modes near the Nyquist limit
are sparsely sampled and their investigation is difficult since the estimation of
amplitude/power of a mode sampled at or near the Nyquist limit is not accurate.
In addition since there are only a few measurements per cycle that makes it dif-
ficult to distinguish signal from noise. Because of the problems mentioned above
a straight forward analysis of the data using delay embedding is not practicable.
Thus it is necessary to identify the different kinds of dynamics to obtain a global
picture and improve the understanding of the plasma for further investigations.

5.1 The global picture - mode identification

The oscillations of the magnetic field measured by Mirnov coils are created by
rotating perturbations of current channels on rational magnetic surfaces. The
use of poloidal and toroidal arrays of Mirnov coils makes it possible to identify
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0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

Frequency [kHz]

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Frequency [kHz]

(a) 

(b) 

Figure 19: Fourier spectrum of the data shown in figure 18. (a) The
Fourier spectrum of figure 18(a) gives only hints for the frequencies of
the ELM precursors. (b) The Fourier spectrum of the six successive
ELM-cycles of figure 18(b) is broad-band and it is difficult to identify
any clear precursor frequencies.

the coherent structures of these rotating modes. Two different kinds of numerical
techniques are used to determine the mode structure [26]:

The first method determines the mode number and structure by calculating the
phase difference across a set of Mirnov coils at the frequencies of interest. Af-
terwards the mode numbers m and n are found by fitting the data using the
function

ξ = m(Θ− λsinΘ) + nΦ + δ0 (39)

where ξ is the calculated phase difference, Θ the poloidal and Φ the toroidal angle
of the Mirnov coil, δ0 is an additional phase difference between the coils and λ
is a correction factor (see section 2.4). This method assumes that the modes
have distinct frequencies and the phase angles are clearly identifiable. Thus the
method fails in the presence of mode coupling or if the data is undersampled with
respect to these frequencies.
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5.1 The global picture - mode identification

A better analysis can be obtained by the singular value decomposition of a multi-
channel matrix whose columns are the measured time series [28]. Mathematically
the singular value decomposition is equivalent to calculating the eigenvalues and
eigenvectors of the matrix of covariances (or in short the covariance matrix)
between the signals of different coils. The SVD therefore analyzes the spatial
correlation in the multichannel data. As rotating coherent structures lead to re-
peating signals in the time series the SVD can identify the most important modes
of the plasma. The singular vectors of the SVD represent the spatial structure of
the modes. In most cases the singular values associated with one mode appear
as a pair of values in the singular value spectrum. The corresponding singular
vectors have a wave-like form and form sine-cosine pairs, which means that they
are almost identical except for a phase difference of π

2
like sine and cosine func-

tions of same frequency. This behaviour is a consequence of the oscillating parts
of the modes, which has the form cos(ωt+δ), where ω is the mode frequency and
δ a phase angle. Since cos(ωt + δ) = cos(ωt) · cos(δ)− sin(ωt) · sin(δ) the wave
can be written as a sum of a time-dependent sine and a time-dependent cosine
function.

If the magnetic field can be measured around the torus, the mode number of
a single mode can be obtained by a polar plot of the corresponding singular
vector. Fig. 20 shows the polar plot of the first two singular vectors, obtained
from the SVD of the data from the Jet shot # 23324. In this plot the vessel
cross-section has been used as a zero level and the components of the singular
vectors have been plotted along the radii joining the centre of the vessel and the
actual position of the coil. The points are joined by periodic splines and from the
number of zero crossings m = 4 can be identified [28]. In addition the wavelength
decreases from the outer to the inner side, as predicted by theory. The principal
components that are the projection of the rows of the multichannel matrix onto
the singular vectors, show the time evolution of the corresponding modes. Thus
basic properties like growth rates of the modes and coupling between the modes
can be investigated.

However, there are some limitations to this method. Modes with the same mode
number but different frequencies are identified as one single mode; the same
holds for modes with different mode numbers but the same frequency. A second
problem is caused by the number of time series. If the number of modes is
bigger than the number of time series some modes will be projected onto a single
singular vector and thus they will be identified as a single mode. In addition if the
dynamics of one mode is high dimensional (see section 2.4) it will be projected
onto several singular vectors and thus more modes are identified than actually
exist. These problems cause this simple multichannel SVD to fail in our case since
only eight time series can be used for the creation of the multichannel matrix and
the corresponding Mirnov coils are located only at the outer side of the torus.
However, with a slight modification the method can still be made to work.
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5 ANALYSIS OF THE MEASURED DATA

Figure 20: Polar plot of the first two singular vectors of the Jet
pulse # 23324. The vessel cross-section is used as a zero line and
the components of the singular vectors are joined with periodic
splines. From reference [28].

Instead of using the eight time series, each time series is embedded in Rn using
the method of delays. Afterwards eight trajectory matrices Xi are created and a
new extended multichannel matrix is build in the following way:

X = (X1|X2|...|X8) (40)

This method has been used in the context of delay embedding by [29, 30]. Ac-
tually both methods - the simple and the extended multichannel method - are
special cases of embeddings of the measurements. They try to create a differen-
tiable equivalence between the dynamics of the plasma and the dynamics of the
rows of the multichannel matrix. In contrast to the delay embedding of one time
series this approach takes more details of the plasma dynamics into account since
it uses more simultaneous measurements for the analysis. In addition the ratio
between signal and noise is improved by the crosscorrelations between the single
measurements, since the noise is in most cases uncorrelated between coils.
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5.1 The global picture - mode identification

For the investigation an embedding dimension of n = 26 has been used for the
creation of the single trajectory matrices. This embedding dimension has been
chosen since the corresponding window length corresponds to the time scale of
a sawtooth crash. The singular value spectrum of the multichannel trajectory
matrix can be seen in figure 21.
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Figure 21: Singular value spectrum for the multichannel trajectory
matrix. The first singular value is unpaired and significantly bigger
than the others. Most singular values appear as pairs.

The first singular value is unpaired and significantly bigger than the others. The
projection onto this singular value (figure 22(a)) shows the sawtooth like move-
ment of the bulk plasma. The next two singular values are paired and their
projections show a pulse-like oscillatory behaviour (fig. 22(b) and (c)). The next
singular values are not paired but the corresponding singular vectors are in most
cases sine-cosine pairs.

The occurrence of sine-cosine pairs supports the idea of a rotating coherent struc-
ture. However the analysis is incomplete and could be misleading. The SVD is
a linear technique and is looking for linearly independent modes. However, since
the modes are quasiperiodic and not perfect sinusoids, some of the principal com-
ponents are or contain nonlinear copies of other principal components. This is
comparable to the case of harmonics in Fourier analysis. To improve the picture
of the plasma dynamics a nonlinear analysis is needed to identify which of the
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Figure 22: Projection of the trajectory matrix X onto the first four
singular values. The first principal component shows a saw-tooth
wave.

modes are harmonics of other modes and which contain dynamic independent of
the other modes.

5.2 Nonlinear analysis

The key problem of the nonlinear analysis is to find out if there are nonlinear
correlations between the principal components. This means we have to check if
a function f(x) exists such that

Pi,k+1 ≈ f(xi,k) = f(Pi,1, Pi,2, ..., Pi,k) (41)

where xi,k = (Pi,1, Pi,2, ..., Pi,k) and Pi,j is the ith component of the jth principal
component. Since the measurements contain noise and some of the principal
components consist of different kinds of dynamics each principal component can
be expressed as a sum of three different components

Pi,k+1 = f(xi,k) + pi,k+1 + ei,k+1 (42)
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5.2 Nonlinear analysis

where f(xi,k) is the harmonic of lower order principal components, pi,k+1 is dy-
namic that is independent of the lower order principal components and ei,k+1 is
the noise.

Thus it is very difficult to find the function f(x) explicitly and in the case of a
simple mode identification not necessary. It is sufficient to find a good approxi-
mation S(x) for f(x) which enables us to identify the harmonics of the principal
components. A good approximation of f(x) can be obtained by using a sum of
radial basis functions for S(x)

S(x) =
N∑

l=1

alφ(‖x− xl,k‖) (43)

and calculating the als by fitting the data with S(x) [32], where φ is a suitably
chosen function and ‖ · ‖ denotes the Euclidean norm. Basically equation (43)
gives an interpolation problem where the xi,ks are the interpolation points and the
Pi,k+1s are the function values. The radial basis functions have been chosen for
the approximation since they span a wide range in function space. This means
that most nonlinear functions can be approximated by this class of functions.
The radial basis functions can be considered as splines generalized to arbitrary
dimensions. In this context the vectors xl,k are called centers. Popular examples
of radial basis functions are [33]

• The thin-plate spline φ(r) = r2log(r)

• The Gaussian φ(r) = exp(−cr2)

• The triharmonic spline φ(r) = r3

The approximation using the radial basis functions has the nice property that for
almost every set of function values and interpolation points a smooth function
S(x) can be found that satisfies

Pi,k+1 = S(xi,k) (44)

for every i, actually it is sufficient that xi,k 6= xj,k for i 6= j [34]. However this
property has a disadvantage in our case, since we want to find out if f(x) exists
or not. To solve the problem of overfitting the data only a limited number p of
centers are used which gives

S(x) =

p∑
l=1

alφ(‖x− ul‖) (45)
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5 ANALYSIS OF THE MEASURED DATA

where ul = (Pil,1, Pil,2, ..., Pil,k). To find the optimum number of centers p0 the
given data has been divided into two equally big sets S1 = {x1,k, x2,k, ..., xm,k}
and S2 = {xm+1,k, xm+2,k, ..., xN,k} and only S1 has been used to calculate the
coefficients al minimizing

E1 =
m∑

i=1

∥∥∥∥∥Pi,k+1 −
p∑

l=1

alφ(‖xi,k − ul‖)

∥∥∥∥∥
2

(46)

afterwards the calculated coefficients have been used to calculate

E2 =
N∑

i=m+1

∥∥∥∥∥Pi,k+1 −
p∑

l=1

alφ(‖xi,k − ul‖)

∥∥∥∥∥
2

(47)

For small values of p the fitting errors E1 and E2 are roughly the same and
decrease for increasing p. If we increase p, only E1 decreases further while E2

stays constant or increases slightly, since increasing p only improves the fitting
for the first set. Thus overfitting can be identified when E2 is significantly larger
than E1. Thus po is the largest number of centers p for which the difference
between E1 and E2 is not significantly large. After the optimum numbers of
centers po has been found the residual σ′k+1 is calculated by minimizing

σ′k+1 =
N∑

i=1

∥∥∥∥∥Pi,k+1 −
p0∑
l=1

alφ(‖xi,k − ul‖)

∥∥∥∥∥
2

(48)

In this minimization problem ei,k+1 and pi,k+1 appear as noise since they are
uncorrelated with the lower order principal components. The σ′ks are a measure
for the fitting error and are connected to the singular values σk of the multichannel
matrix. The comparison between the σ′ks and the σks shows how well the (k +
1)th principal component can be expressed as a nonlinear function of the first
k principal components. If σ′k ≈ σk then the fitting error is big and no simple
nonlinear dependence has been found, the principal components are uncorrelated.
However if σ′k � σk most of the (k + 1)th principal component can be expressed
as a nonlinear version of the other principal components. Since noise is in most
cases uncorrelated and cannot be predicted with nonlinear functions, the singular
values and the corresponding residuals are the same for noise dominated principal
components.

For the investigation of the nonlinear dependencies an embedding dimension of
n = 26, the function φ(r) = r3 and to prevent overfitting 90 centers have been
chosen for the fitting. The chosen data was taken from the time window from
0.17 to 0.195 seconds. During this period the plasma was stationary and the
ELMs are well separated. The comparison between the singular values σk and
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the residuals σ′k (see fig. 23) shows that most of the principal components contain
nonlinear contribution from lower order principal components.
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Figure 23: Singular value and residual spectrum of the ex-
tended multichannel matrix.

While the first three principal components are mostly independent of each other
the spectrum of the residuals shows a significant drop for most of the higher order
singular values. This indicates that these principal components can be predicted
by the lower order ones using nonlinear functions. Almost all residuals drop to a
constant value which can be identified as the noise level of the data. For principal
components of order higher than 35, no significant difference between the singular
values and residuals can be found. This suggests that these principal components
are independent of the others and dominated by noise. However this conclusion
can be misleading since the number of centers was fixed for the calculations which
makes the fitting for higher order principal components less accurate.

Besides the large number of harmonic principal components some cannot be pre-
dicted by the other principal components; the residuals 1, 2, 3, 4, 8, 11 and 12
are comparable with the corresponding singular values. These principal compo-
nents are independent of the others and represent the plasma modes. However
since all lower order principal components have been used this analysis can give a
too small number of independent modes. Assume for example that the principal
component k is a real (independent) mode and the principal components i, j < k
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5 ANALYSIS OF THE MEASURED DATA

have nonlinear contributions from the principal component k. Because of this
it is possible, that the principal component k can be predicted with a nonlinear
function using the principal components i and j and thus appears as a harmonic
of other modes although it is a real mode.

In order to verify the mode identification a new nonlinear fit was calculated. In
contrast to the one described above where all lower order principal components
were used for the fit now only the principal components 1, 2, 3, 4, 5, 8, 11 and
12 are used. However, the calculation showed that these principal components
are not sufficient to give the same result as figure 23. To get similar results as
for the first fit the number of used principal components has to be expanded to
1, 2, 3, 4, 5, 8, 9, 11, 12, 17 and 18. Figure 24 shows the result of this fit. The
comparison between the singular values and the residuals shows that in fact these
11 principal components are enough to predict the others, which means that the
other principal components can be considered as harmonics.
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Figure 24: Singular value and residual spectrum of the ex-
tended multichannel matrix.

A clearer picture of the mode structure and of the rotation of the turbulence
can be obtained by looking at the singular vectors. As mentioned in section 5.1
the singular vectors represent the spatial structure of the modes. The singular
vectors of the extended multichannel matrix also have a block form. They consist
of 8 blocks of length 26 and take the form
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5.2 Nonlinear analysis

Ci = (ci,1, ci,2, ..., ci,208)
T = (Ci,1, Ci,2, ..., Ci,8)

T (49)

Ci,j = (ci,(j−1)·26+1, ci,(j−1)·26+2, ..., ci,j·26) (50)

Each individual block Cji is related to the trajectory matrix Xj, which is associ-
ated with the Mirnov coil j, and has a waveform. The phase difference between
the waves of the different blocks corresponds to the phase difference of the mode
at the position of the different coils. In addition the amplitude of the wave for
each block shows the contribution of the mode to the magnetic field at each coil.
Thus the Cji blocks show the spatio-temporal behaviour of the edge plasma.
From these plots the phase difference between the different plasma positions can
easily be identified which gives evidence of the rotation of the ELM turbulence.
Figures 25, 26, 27 and 28 show the 3D plot of the Cij blocks for the singular
vectors 2, 8, 12 and 17 respectively. Looking at these figures a wave travelling
through the plasma can clearly be identified.
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Figure 25: 3D plot of the 8 blocks of the second singular vector/outer
mode.
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Figure 26: 3D plot of the 8 blocks of singular vector 8/common mode.
The phase difference between the coils is indicated by the black line.

1

2

3

4

5

6

7

8

5

10

15

20

25

−0.2

−0.1

0

0.1

0.2

Coil
Time

Figure 27: 3D plot of the 8 blocks of singular vector 12/Nyquist mode.
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Figure 28: 3D plot of the 8 blocks of singular vector 17/inner mode.

In addition to the spatial mode structure the frequency of the precursor modes
can be identified in the Fourier spectrum of the principal components. The
contribution of these modes to the ELM at the different Mirnov coils can be
estimated by the amplitude of the corresponding block of the singular vector. The
Fourier spectrum of the corresponding principal components and the comparison
of the singular vectors shows that except for the first singular vector all other
singular vectors are paired and form a sine-cosine pair. The Fourier spectrum of
the second and third principal component (figure 29) has only one peak centred at
a frequency of about 14 kHz. Because of aliasing this frequency is not necessary
the right frequency and could also be 186 kHz or 214 kHz. Figures 25 and 31
show that only the signal of coils # 5, 4 and 21 have a contribution from these
modes. Coils # 5 and 4 have almost the same phase while coil # 21 is in anti
phase to the first two coils. In the following this mode will be called the “outer
mode”, because coils # 5, 4 and 21 have a greater distance from the plasma than
the other coils.

The Fourier spectra of the fourth and fifth principal components (figure 30) are
identical and show two peaks which are symmetric with respect to the frequency
14 kHz, the same frequency that was found for the second and third principal
component. The contribution of this mode to the individual coils is similar to
the contribution of the previous mode. These two properties - Fourier spectrum
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and contribution to the coils - indicates that the principal components 2, 3, 4 and
5 should be interpreted as being the same mode. The projection of this mode
onto four singular vectors could be caused by a high-dimensional ELM-envelope
of this mode. Thus these four singular vectors can be considered as one single
mode, whose dynamic is projected onto four singular vectors.
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Figure 29: Fourier spectrum of the second and third principal component.
The spectrum shows one peak centred at 14 kHz.

For the principal components 8 and 9 again only one peak centred at a frequency
of 32 kHz can be found. In contrast to the mode above all coils have contributions
from this mode (fig. 26, 31). The phase difference between the individual coils
can clearly be identified and has a S-like shape as indicated by the line in figure 26.
This S shaped phase difference is well known [15] and can also be found in figure
25 (here the amplitude of the inner coils is so small that a clear identification
of the phase difference is difficult). In the following this mode will be called the
“common mode”.

For the principal components 11 and 12 the inner coils show a bigger contribution
from this mode, which will be called the “Nyquist mode”. The Fourier spectra of
the two principal components are similar and show one peak centered at 93 kHz.
The frequency of this mode lies close to the Nyquist limit which makes it difficult
to identify the phase difference but it appears to be the same as for the modes
before (fig. 27). The last two principal components 17 and 18 show a similar
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Figure 30: Fourier spectrum for the fourth and fifth principal component.
The spectrum shows two peaks which are symmetric with respect to the
frequency 14 kHz.

behaviour (fig. 28). Their Fourier spectra show a big peak at a frequency of 60
kHz. Again the inner coils show a bigger contribution from this mode. In the
following it will be called the “inner mode”. As mentioned before the contribution
of the modes to the single measurements can be obtained by the amplitude of
the corresponding block of the singular vector. Figure 31 shows the amplitude
distribution for the identified modes. The sawtooth mode (singular vector 1) and
the outer mode (singular vectors 2, 3, 4 and 5) are dominant for the outer coils
5, 4, 22 and 21. The common mode (singular vectors 8 and 9) is equally strong
for all coils. The other two modes have big amplitudes for the inner coils 2, 1,
24 and 23. Since the magnetic field of a mode with mode number m decays with
radius like r−(m+1) [31], a possible explanation for this distribution could be the
different distance of the coils from the plasma which means that the identified
modes could be located on different surfaces in the plasma and/or have different
mode numbers.

So far the mode analysis was only performed for the period ranging from 0.17
to 0.195 seconds. During this period the plasma was in a quasi stationary state.
For a more complete analysis of the modes the analysis was extended to the
period from 0.15 to 0.195 seconds. For this the whole time interval was divided
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Figure 31: Contribution of the modes to the measured signal. The saw-
tooth (a) and the outer mode (b) are dominant at the outer coils. The
common mode (c) is equally strong for almost all coils. The last two
modes, Nyquist and inner mode, (d and e) are very dominant for the
inner coils.

into succeeding intervals of 10 ms and for each of these the mode analysis was
performed. During each period the same number of independent modes could
be found but the frequencies of these modes were found to change during the
discharge. The outer mode is dominant for the outer coils # 5, 4 and 21. Its
frequency varies between 12 and 16 kHz during the discharge. The singular values
of this mode always appear at position 2 to 5 in the singular value spectrum. The
frequency of the common mode also changes during the discharge and ranges from
33 to 36 kHz. The position of its singular values varies - in some periods they
appear before, in others after the singular values of the Nyquist mode. This
means that in some periods the common mode is the second most important
mode while in others it is the Nyquist mode which dominates. The frequency of
the Nyquist mode also varies and lies between 89 and 99 kHz. The singular values
of the inner mode always appear behind the singular values of the other three
modes. Its frequency ranges from 58 to 69 kHz. Since the mode number cannot
be obtained from the singular vectors in this case it is not clear if the modes are
unchanged during the investigated time and the change in the frequencies is due to
noise and small changes of the plasma parameters or if the modes themselves are
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5.3 Separation of the modes

changing, which means that in some periods some modes disappear while other
modes evolve. However since the changes of the frequencies are small compared
with the absolute value of the frequency and the behavior of the modes are quite
similar during the periods it is more likely that the same modes are present during
the discharge.

The identified modes are in good agreement with a recently published investi-
gation of edge magnetic turbulence in COMPASS-D [22]. In this article several
modes have been identified during ELMs and in ELM-free periods. Three of
these modes - with frequencies 60, 120 and 280 kHz respectively - can be found
in ELM-free periods as well as during ELMs. These modes seem to be invariant
and permanent features of the discharge which are strongly excited during ELMs.
If we take aliasing into account then these three modes are in good agreement
with the Nyquist and inner mode. An additional characteristic of the modes is
the fact that their activity can be seen on some of coils but not on all of them.
The study of the ELMs showed ELM precursors around 220 kHz which appear
prior to type I ELMs. However it is not clearly resolved whether on COMPASS-D
the type I ELMs are really type I ELMs or actually large type III ELMs. If we
compare these precursors with the earlier identified modes then we can see that
the outer and common mode agree very well with these precursors. Bearing this
in mind we get the following picture:

The Nyquist and inner mode are plasma modes that are present during the whole
discharge. In ELMy H-mode they are strongly excited during ELMs and show
an intermittent behavior. The outer and common mode appear only in ELMy
H-mode and are the precursors of the ELMs. It is possible that the last two
modes are the driving modes during the ELMs and drive the other two modes
unstable.

For the further analysis it is necessary to investigate the single modes individ-
ually. Thus a filtering technique that separates the modes has to be applied to
the measured data. Since the Fourier spectrum does not allow to identify the
modes simple Fourier filter techniques fail. A better filter based on the mode
identification presented above shows better results and will be described in the
next section.

5.3 Separation of the modes

As shown in the previous section there exists a correspondence between the modes
and the singular values of the singular value decomposition. Since the principal
components of these singular vectors represent the time evolution of the corre-
sponding coordinates of the delay vectors, the time evolution of the mode itself
can be deduced from the coordinates. The key idea of the following mode sepa-
ration is to use the principal components of one mode to create a new time series
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5 ANALYSIS OF THE MEASURED DATA

that mostly contains contributions from the magnetic field created by this mode.
A similar filtering technique for the separation of data from noise has been used
by [23].

Suppose the signal xj(tl) measured by the coil j, 1 ≤ j ≤ M and 1 ≤ l ≤ Nm

can be written in the following form

xj(tl) = mj(tl) + nj(tl) (51)

where mj(tl) is the magnetic field created by the mode we want to separate and
nj(tl) is a second magnetic field created by all the other modes and noise. After
embedding each time series xj(tl) in Rn and creating M trajectory matrices Xj

we get an N by n ·M extended multichannel matrix as described earlier. Suppose
that the singular value decomposition of the matrix

X = SΣCT (52)

identifies the mode and the singular vectors C1, C2, ..., Ck, k ≤ n · M are the
identified singular vectors of this mode. A way to get a good approximation for
mj(tl) is to set all the singular values of order higher than k to zero. Thus we
get a new singular value spectrum

σ̂i =

{
σi , 1 ≤ i ≤ k
0 , k < i ≤ n ·M (53)

Using the singular values σ̂i we can create an new diagonal n ·M by n ·M matrix
Σ̂ where the diagonal elements are the σ̂is. The multiplication of the matrices S,
Σ̂ and CT gives an new extended multichannel matrix X̂

X̂ = SΣ̂CT =
(
X̂1|X̂2|...|X̂M

)
(54)

that itself consist of M trajectory matrices X̂j. Each matrix X̂j is an approxi-
mation of the trajectory matrix that would be created if xj(tl) = mj(tl). Finally
to get an approximation m̂j(tl) of mj(tl) we have to average over the diagonals

of X̂j or in a mathematical notation
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5.4 Local linear model - growth rates

m̂j(tl) =
1

l

l∑
i=1

X̂l−i+1,i , 1 ≤ l < n (55)

m̂j(tl) =
1

n

n∑
i=1

X̂l−i+1,i , n ≤ l ≤ N (56)

m̂j(tl) =
1

N + n− l

n∑
i=l−N+1

X̂l−i+1,i , N < l ≤ N + n− 1 = Nm (57)

The resulting M new time series m̂j(tl) can be interpreted as a new measurement
function on the plasma. This new measurement function emphasizes the magnetic
field created by the mode and in the context of delay embedding allows to recreate
the dynamics of the mode. By applying this method to the measured data from
the Mirnov coils the modes can be separated and analyzed.

5.4 Local linear model - growth rates

The application of the filter described in the previous section gives eight new
time series for each mode. All time series show oscillatory behaviour around
their mean value. This mean value can be interpreted as the magnetic signal
of the stable plasma and represents a fixed point of the physical system. Thus
the mean value was subtracted from each time series to simplify the embedding.
From each time series the data from 0.15 to 0.195 s was embedded using several
different embedding dimensions. During this time window, the ELMs appear and
are clearly distinguishable. For each embedding dimension the dimension of the
mode and a local linear model were calculated. For small and big embedding di-
mensions the calculated dimensions and eigenvalues changed with the embedding
dimension. However, for embedding dimensions between n = 20 and n = 30 the
calculated values were stable. The reason for this behaviour lies in the fact that
a minimum embedding dimension is necessary to create an embedding and that
for big embedding dimensions the measured points become uncorrelated. For the
following analysis an embedding dimension of n = 26 was chosen.

For the estimation m̂ of the dimensionality m of the dynamics of the modes a
local and global singular value decomposition was performed. As mentioned in
section 3.4 these two methods give two estimates for m. The results from the
global singular value decomposition are shown in figures 32 and 33. For the
outer, the common and the inner mode the global singular value decomposition
shows the same picture. 8 singular values are separated from the noise floor
which gives m̂ = 8 as an estimation for the dimensionality. The Nyquist mode
shows a different behaviour. Here 10 singular values lie above the noise floor
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Figure 32: Singular value spectrum of the outer mode. The com-
mon and the inner mode show a similar picture

which gives an dimensionality of m̂ = 10. The two different numbers for m̂ are
no contradiction since there is no reason why the modes should have the same
dimensionality.

A second estimate for the dimensionality can be obtained by the local singular
value decomposition. The scaling of singular values is shown in figure 34 and 35.
For comparison of the scaling a solid line with slope one is drawn in the figures.
Now in contrast to the global singular value decomposition all scalings show a
similar behaviour. The first 6 singular values scale linearly for small ball radii ε.
All other singular values scale quadratically or have an even higher slope. This
gives m̂ = 6 as an estimation for the dimensionality.

Using the results of the global and local singular value decomposition we get
6 ≤ m ≤ 10 for the dimensionality of the modes. For the calculation of the local
linear model all five dimensions (6, 7, 8, 9 and 10) have been used. However the
increase of m from 6 to 10 resulted in an increase of eigenvalues with negative real
parts while the eigenvalues with positive real parts kept constant. To identify
which eigenvalues are part of the linear model and which are spurious eigenvalues,
which result from using a too big dimension m, the time series were reversed in
time and the eigenvalues were calculated for the reversed time series. In this
calculation all the eigenvalues of the linear model should appear with reversed
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5.4 Local linear model - growth rates

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Singular vector

S
in

gu
la

r v
al

ue

Figure 33: Singular value spectrum of the Nyquist mode.
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Figure 34: Scaling of the singular values for the outer, common and
inner mode
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Figure 35: Scaling of the singular values for the Nyquist mode

signs and for all spurious eigenvalues new independent eigenvalues should appear.
Using this method the dimensionality could be reduced to m = 6. However this
method of a reversed time series has to be treated very carefully. As mentioned
in [24] noise can cause true eigenvalues to appear spurious giving wrong results.

A typical scaling of the real and imaginary eigenvalues is shown in figure 36 and
37. For small ball radii the singular values change very fast since the noise is of
the order of the signal. When we increase the ball radius the real parts become
more positive or negative (depending on the sign of the real part) until they reach
a maximum/minimum value. Near their maximum/minimum value the real parts
are quite constant and give the best estimations for the eigenvalues of the linear
model. If we further increase the ball radius the real parts tend to zero and take
negative values with a small absolute value. The scaling of the imaginary values
shows less variation when increasing the ball radius. For small radii the values
change fast which is due to the noise. Increasing the radius gives relatively small
changes in the values.

This behaviour can be explained in the following way. For small and medium radii
the system is passing by the fixed point giving an inward flow and an outward
flow. If we calculate the eigenvalues in this case we get complex eigenvalues
with big real parts. The imaginary part of the eigenvalues can in some way be
attributed to the frequency of the plasma rotation. If the radius increases further
the system looks in phase space more like a circulating flow leaving and returning
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Figure 36: Scaling of the real part of the eigenvalues.
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Figure 37: Scaling of the imaginary part of the eigenvalues.
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to the fixed point. In this case the eigenvalues have almost vanishing real parts.
The rotation frequency of the circulating flow causes a change in the imaginary
part of eigenvalues, which can be seen in figure 37 for radii greater than 20.
Another reason for the scaling behaviour is the fact that the linear model is only
locally valid and for bigger radii the nonlinearities give wrong values, additionally
since the global dimension of the embedding is bigger than the local dimension
of the modes the projection of the higher space onto a smaller one causes wrong
values for bigger radii.

A second criteria for the choice of the maximum radius for the estimation is given
by the time evolution of the magnitude of the delay vectors. This magnitude is
proportional to the amplitude of the ELM and thus the magnitude of the delay
vectors shows an exponential growth similar to the growth of the amplitude of
the ELM precursors. In figure 38 the magnitude of the delay vectors used for
figures 36 and 37 is shown.
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Figure 38: Time dependence of the natural logarithm of the magnitude
of the delay vectors.

Here the number of the delay vector can be considered as the time. For radii
smaller than 3 (log(3)≈1.1) the effect of noise is very dominant and no clear
time dependence can be identified. However for radii between 5 (log(5)≈1.6) and
20 (log(20)≈3) the magnitude increases exponentially with time. Since we are
interested in this exponential growth this gives an lower and an upper bound for
the radius that should be used in the estimation of the eigenvalues.
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5.4 Local linear model - growth rates

In order to calculate the time dependence of the linear model the chosen time
window was divided into eight overlapping time windows of length 10 ms. For
each time window the local linear model was calculated. The results for the outer
mode are shown in table 3. The eigenvalues have been averaged over the stable
regions of the scaling. For the first (0.15-0.16s) and second (0.16-0.17s) time
window the forward calculation of the eigenvalues showed two regions where the
eigenvalues were constant. Thus the eigenvalues have been calculated for both
regions and are given in table 3. During the first two time windows the plasma
changes from L- to H-mode. This change causes a great amount of perturbation
in the plasma which causes difficulties for the calculation of the linear model.
Thus the eigenvalues calculated in forward and reversed time do not agree very
well, especially one of the three real parts has an opposite sign for the two time
directions. From 0.17 seconds onwards the plasma is in ELMy H-mode. Here
all three pairs of complex conjugate eigenvalues agree very well for both time
directions. As table 3 shows the growth and decay rates increase during the
transition from L- to H-mode and reach a constant level during the ELMy H-
mode.

The common mode shows a similar behaviour. Two stable regions could be
identified for the backward calculation in the first (0.15-0.16s) and for the forward
calculation in the second (0.16-0.17s) time window. The agreement between the
eigenvalues calculated in the forward and backward direction is slightly better
than for the outer mode. Again the growth and decay rates increase during the
transition from L- to H- mode but they reach a constant level during ELMy H-
mode. However the absolute value of both the growth and decay rates of this
mode is smaller compared with the corresponding rates of the first mode.

Since the Nyquist mode’s frequency of 93 kHz (107 kHz) lies close to the Nyquist
limit the separation of this mode from the other modes and noise is very difficult.
In addition since only three samples per mode cycle are available the calculation
of a linear model is very inaccurate. Therefore for the third mode no reasonable
results could be obtained.

The Nyquist limit also causes small problems for the calculation of the eigenvalues
of the inner mode. Since the Nyquist frequency should be bigger than twice the
frequency of the mode it is a little bit too small for the fourth mode whose
frequency is about 57 kHz. This might explain why the agreement between the
backward and forward eigenvalues is less good as for the previous modes. For
the eigenvalues two time windows with two stable regions could be identified
and the eigenvalues for both regions were calculated. The time dependence of
the growth/decay rates show a deviation from the rates of the other modes.
The rates are increasing during the L- to H-mode transition and they reach a
maximum value between 0.17 and 0.18s. In contrast to the previous modes this
time the growth/decay rates do not saturate but become smaller after 0.18s.
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Outer mode
Time Growth rate Frequency Growth rate Frequency

[s−1] [Hz] backward [s−1] backward [Hz]
0.15 - 7727.2 15096 4843.7 14952
0.16 s -1632.7 15959 -3197.3 15812

-5841.9 11486 1546.3 10791
0.15 - 2599.6 15805 - -
0.16 s -1485.1 15013 - -

-2993.2 10723 - -
0.155 - 14140 14492 16179 14281
0.165 s -6207 15325 -5225 15410

-8274 11749 -5982 11967
0.16 - 11153 14083 13685 13543
0.17 s -4142 14566 1069 14898

-10239 12648 -10283 12781
0.16 - 1663 15721 - -
0.17 s -1917.6 14176 - -

-3198.3 11474 - -
0.165 - 16782 14605 18537 14521
0.175 s -18013 13492 -16439 13624

-1669 13473 1213 13410
0.17 - 20123 13398 22024 14351
0.18 s -13927 15728 -12427 15711

-9261 11735 -7119 11943
0.175 - 19290 14066 21204 13844
0.185 s -12068 15529 -9117 15483

-11390 12608 -9518 12810
0.18 - 18589 13733 20187 13523
0.19 s -15147 13976 -13711 13748

-7914 15208 -4164 15588
0.185 - 20530 14281 20823 14049
0.195 s -16938 12810 -11735 13049

-9847 15603 -8059 15582

Table 3: Calculated growth rates and frequencies for the outer mode.
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Common mode
Time Growth rate Frequency Growth rate Frequency

[s−1] [Hz] backward [s−1] backward [Hz]
0.15 - 3185.3 34056 5966.9 33367
0.16 s -3163.1 33578 -5344.1 31502

-3853.3 33512 -5960 36196
0.15 - - - 6130.3 33743
0.16 s - - -1600.3 31106

- - -2050.3 36286
0.155 - 8558.6 34014 11369 33954
0.165 s -4233.6 32033 -2734 31807

-9463.6 36142 -7520 36356
0.16 - 6996.5 33702 9634.8 33780
0.17 s -6753 32188 -5340.0 31977

-5499.1 35976 -3663.4 36048
0.16 - 11052 34071 - -
0.17 s -3114.3 36543 - -

-1676 31259 - -
0.165 - 8858.1 33522 10460 33742
0.175 s -9816.5 31641 - 7911 31695

-879.7 36137 470 35957
0.17 - 9107 33377 11339 33209
0.18 s -8595 32204 -7545 32105

-2002.7 36227 -2103 36205
0.175 - 6912.1 33045 8775.0 33035
0.185 s -7075.7 32476 -5398.5 32541

-2589.1 36681 -1185.1 36671
0.18 - -10466 31696 -7746.5 31582
0.19 s 6745 33161 7891.4 33164

325 36589 1369.9 36409
0.185 - -11453 31912 -9212.5 31924
0.195 s 8211 32877 9711.3 32923

474 36063 1412.7 36007

Table 4: Calculated growth rates and frequencies for the common mode.
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Inner mode
Time Growth rate Frequency Growth rate Frequency

[s−1] [Hz] backward [s−1] backward [Hz]
0.15 - 5510 56592 10118 57107
0.16 s -10751 56046 -4130 55040

-842 60066 2007 60068
0.155 - 2267.2 56950 3184.4 568778
0.165 s -4352.8 59145 -2519.7 59220

404.6 44020 8278.3 44136
0.16 - 8931 57999 11183 57952
0.17 s -11029 58479 -8622 58352

-11961 44917 1706 43545
0.165 - 14010 57890 15170 57740
0.175 s -15640 58220 -12940 58220
0.17 - 12509 58449 15581 58900
0.18 s -13077 58551 -10797 58430

-6394 54977 1639 54893
0.17 - - - 18783 56755
0.18 s - - -2190 58697

- - -5554 55747
0.175 - 8473.4 57390 15172 57534
0.185 s -9753.3 57087 -6396 56967

-9686.6 60163 4893 59579
0.18 - 3686.5 57185 6174.2 57280
0.19 s -5671.5 58615 -3546.3 58503

-6623.3 52725 3670.8 52713
0.18 - 9586 56459 - -
0.19 s -3175 58238 - -

-12891 54819 - -
0.185 - 2268.0 55191 9833 56070
0.195 s - 9278.8 56118 -2655.3 52369

-252.7 43363 -910.0 58363

Table 5: Calculated growth rates and frequencies for the inner mode.
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The analysis of the linear model shows that the fixed point, which corresponds
to a stationary plasma, is a saddle with one unstable direction and two stable
directions. To compare the growth rates and their time dependence for each time
window the average between the forward and backward growth rates has been
calculated and the results are given in table 6 and figure 39. The growth rates
of the three modes increase during the L-H transition and reach a maximum
value between 0.17 and 0.18s. The growth rates of the outer and common mode
slightly decrease afterwards but this effect could be due to measurement and
rounding errors of the calculation. However the growth rate of the inner mode
shows a significant drop in the ELMy H-mode phase that cannot be explained
by measurement or rounding errors.

Time Outer mode Common mode Inner mode
0.15 - 0.16 s 6285.5 ± 1441.8 4576.1 ± 1390.8 3758.5 ±1751.5

0.155 - 0.165 s 15159.5 ± 1019.5 9963.8 ± 1405.2 2725.8 ± 458.6
0.16 - 0.17 s 12419 ± 1266 8315.7 ± 1319.2 10057 ± 1126

0.165 - 0.175 s 17659.5 ± 877.5 9659.1 ± 801.0 14590 ± 580
0.17 - 0.18 s 21074 ± 951 10223 ± 1116 14045 ± 1359

0.175 - 0.185 s 20247 ± 957 7843.5 ± 931.5 11823 ± 3349
0.18 - 0.19 s 19388 ± 799 7318 ± 573 4930.4 ± 1243.9
0.185 - 0.195 20676 ± 147 8961 ± 750.2 6050.5 ± 3782

Table 6: Time dependence of the growth rates for the outer, the common and
the inner mode.

These results seem to contradict the observations. Although the plasma becomes
more stable in the H-mode, indicated by the increasing time between successive
ELMs, the growth rates of the ELM precursors increase, which means that the
instabilities become stronger. In general one would expect that the growth of the
instabilities becomes smaller until they disappear and thus the plasma becomes
stable by suppressing the instabilities. The contradiction becomes even more
obvious when theories of the L-H transition are considered. Here the H-mode
is considered as a stable fixed point which becomes unstable in ELMy H-mode.
However the analysis of the data shows, that the H-mode is a saddle fixed point
and apparently never stable throughout the discharge.

However, in the context of a saddle fixed point there exists a second mechanism
that can stabilize the plasma, a homoclinic bifurcation. In a homoclinic bifur-
cation a periodic orbit moves towards a saddle fixed point and finally forms a
homoclinic orbit, including the saddle. A homoclinic orbit is an orbit that starts
and ends in the same fixed point. The plasma trajectory is then attracted by the
homoclinic orbit and circles along the homoclinic orbit. The time between succes-
sive passings of the fixed points increases until it finally reaches infinity. Since the

68



5 ANALYSIS OF THE MEASURED DATA

0.15 0.155 0.16 0.165 0.17 0.175 0.18 0.185 0.19 0.195
0

0.5

1

1.5

2

2.5
x 104

Time [s]

G
ro

w
in

g 
ra

te
 [1

/s
]

Outer mode 
Common mode
Inner mode 

Figure 39: Time dependence of the growth rates

trajectory spends most of the time of each cycle near the fixed point the plasma
becomes more and more stable. A similar explanation has been proposed for the
stabilization of turbulence in the boundary layer of fluids [35], where the fluid
velocity perpendicular to the boundary of the fluid shows a behavior similar to
the radial plasma transport in ELMy H-mode. Figure 40 shows this mechanism.

Since near the fixed point the homoclinic orbit is asymptotic to the two planes
spanned by the pair of eigenvectors whose eigenvalues have the smallest positive
real part and the pair of eigenvalues with the least negative real part of all
eigenvalues respectively, it is important to determine which of eigenvalues of the
saddle has the dominant effect. If λu < λs the trajectory near the saddle is
drawn close to the planes before it escapes. Conversely, if λu > λs the trajectory
seems to escape “early” from the neighborhood of the saddle. In this sense one
can speak of attracting or repelling planes since the trajectory seems to be bent
towards or away from the planes near the saddle. However, one has to bear
in mind that the planes are not real attractors and this picture is only valid
locally. Whether the planes locally attract or repel trajectories depends on the
saddle index which is the ratio λs

λu
, where −λs is the real part of the eigenvalue

with the least negative real part and λu is the real part of the eigenvalue with
the smallest positive real part. Since the dynamics of each of the four modes is
more dominated by the eigenvalue with the smaller negative real part for λs the
real part of this eigenvalue has been used. In addition we have to consider the
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Homoclinic  bifurcation
infinite period

µc

Figure 40: Limit cycle moving towards a saddle resulting in
a homoclinic orbit. From reference [36].

interaction of the modes. Thus we have to take all eigenvalues into account and
get only one saddle index and not an individual saddle index for each mode. The
time dependence of the saddle index is shown in figure 41. During the transition
from L- to H-mode the ratio λs

λu
< 1 which indicates that the planes are repelling

the trajectory. However the ratio increases during the transition and reaches
values greater than or close to one in the H-mode. This behavior suggests the
following model:

At the beginning of the transition the planes are repelling the trajectory and no
homoclinic orbit exists. This is accompanied by instabilities and a high level of
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Figure 41: Time dependence of the saddle index λs

λu
.

fluctuations. During the L-H transition the planes start to attract trajectories,
reducing turbulence and stabilizing the plasma. This change of the saddle index
strongly points towards an attracting periodic orbit, also called limit cycle, and
a homoclinic bifurcation. However it cannot prove the existence of the orbit. A
different approach to prove the existence of a limit cycle will be shown in the
next section.

5.5 The existence of the limit cycle

Because of the sampling and noise problems mentioned earlier, the existence of
the limit cycle cannot be proved for the whole 18 dimensional system (three
modes with six eigenvalues each). However, if a limit cycle exists then one should
be able to find a limit cycle for each individual mode. Thus the data is split up
into the modes and each mode is investigated individually. Since the eigenvalues
of the linear maps are complex we have to change our coordinate system into
an extended polar coordinate system with three radii x, y, z and three angular
frequencies θx, θy, θz for each mode. To simplify the later calculation the angular
frequency of the modes is neglected and the analysis is restricted to the radii.
Since in this case the limit cycle must be attracting the proof of its existence can
be done in a very easy way. Consider a small rectangular neighborhood of length
δ around the fixed point as shown in figure 42:
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Figure 42: Trajectory passing by a saddle.

The trajectory enters the neighborhood at the point (δ, yn, zn) and leaves it at
(xn, δ, z

o
n). If a limit cycle exists the sequence {(yn, zn)} converges to a limit

point {(y0, z0)}. In order to prove the existence of the limit point the map
(yn+1, zn+1)} = F (yn, zn) has to be found. Actually this map is known since
(δ, yn+1, zn+1) = ϕtn(δ, yn, zn), where ϕt is the flow of the plasma and tn the time
it takes to move from (δ, yn+1, zn+1) to (δ, yn, zn). This map can be split up into
two maps, one valid in the neighborhood of the fixed point and the other for flow
outside the neighborhood. In the neighborhood of the fixed point the flow of the
trajectory can be approximated with the linearized flow:

δ = yne
λutn (58)

xn = δe−λstn (59)

zo
n = zne

λztn (60)

where −λs < 0 is the real part of the eigenvalue with the least negative real part,
λu > 0 the real part of the eigenvalue with the smallest positive real part and λz

the real part of the third eigenvalue. However since the following maps will be
fitted to measured data, which means that it is noisy and the points of entrance
and exit of the neighborhood are not always measured (but points very close to
them), the equation has to be replaced by
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yo
n = yne

λutn (61)

xn = xo
ne

−λstn (62)

zo
n = zne

λztn (63)

where xo
n and yo

n are roughly δ. Eliminating tn from equations (61)-(63) gives

xn = xo
n

(
yn

yo
n

)γ1

(64)

zo
n = zn

(
yo

n

yn

)γ2

(65)

where γ1 = λs

λu
and γ2 = λz

λu
. The return map (flow leaving the δ-neighborhood

and returning to it) can be expanded in a Taylor series, where all terms except
for the linear term can be neglected. This gives

 xo
n+1

yn+1

zn+1

 =

 ϕx0

ϕy0

ϕz0

+


dϕx

dx
dϕx

dy
dϕx

dz
dϕx

dt
dϕy

dx

dϕy

dy

dϕy

dz

dϕy

dt
dϕz

dx
dϕz

dy
dϕz

dz
dϕz

dt

 ·


xn − x0

yo
n − y0

zo
n − z0

tn − t0

 (66)

or to write it with a set of coefficients

 xo
n+1

yn+1

zn+1

 =

 a1

a2

a3

+

 b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

 ·


xn

yo
n

zo
n

tn

 (67)

The coefficients can be found by fitting equation (67) to the measured data. To
perform this fit the measured data is separated into the modes and each mode
is embedded using the method of delays. Afterwards the eigenvalues of the local
linear model are calculated and the embedded data is projected onto the basis
of the eigenvectors. As before the data is divided into succeeding periods of
0.1 seconds an for each period the calculations are performed. To check the
validity of this linear approximation the original data for xo

n+1, yn+1 and zn+1

has been compared with the values obtained by using the fitted linear map for
the measured values of xn, yo

n, zo
n and tn. Figure 43 shows the comparison of the

measured data and the corresponding values of the linear approximation of the
flow. As can be seen, the measured data and the calculated values match very
well, which justifies the use of the linear map.
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Figure 43: Comparison of the measured data with the calculated
values using the estimated linear map for eleven passings of the
fixed point. The comparison of the points show that the values
agree quite well, which justifies the use of the linear approximation
for the return map.

After finding the coefficients we can set xo
n+1 = δ and yo

n = δ and eliminate tn
from equation (67) to obtain

(
yn+1

zn+1

)
=

(
a2

a3

)
+

(
b21 b22 b23

b31 b32 b33

)
·

 xn

δ
zo

n

+

+
δ − a1 − b11xn − b12δ − b13z

o
n

b14

·
(

b24

b34

)
(68)

or in a more compact form(
yn+1

zn+1

)
=

(
c2

c3

)
+

(
d21 d22

d31 d32

)
·
(

xn

zo
n

)
(69)

Using equations (64) and (65) we get(
yn+1

zn+1

)
=

(
c2

c3

)
+

(
e21 e22

e31 e32

)
·
(

yγ1
n

zn · y−γ2
n

)
(70)
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Equation (70) is nonlinear map which allows to calculate (yn+1, zn+1) if (yn, zn)
is given. Thus if a limit cycle exists, equation (70) must have a fixed point and
if this fixed point is attractive then the limit cycle is attractive. However it is
difficult to analytically calculate the fixed point of the map and to determine if
the fixed point is attractive or not. Since we are only interested in an attracting
fixed point, we can find the fixed point - if it exists - easily by using equation (70)
as a fixed point iteration. Several initial values of have been used for each period
and equation (70) was applied several times to get the sequence (yn, zn). Table
7 shows an example of a converging fix point iteration for (y0, z0) = (0.001, 0.03)
and δ = 0.03.

yn 0.001 0.0045 0.0025 0.0030 0.0029 0.0029 0.0029 0.0029 ...
zn 0.030 0.0368 0.0317 0.0335 0.0330 0.0332 0.0331 0.0331 ...

Table 7: The sequence (yn, zn) of the fixed point iteration for (y0, z0) =
(0.001, 0.03) and δ = 0.03.

All calculations showed that the sequence was converging in every period for
all initial values (y0, z0) to the same limit point. This shows that an attracting
limit cycle exists throughout the transition, as indicated in the previous section.
Since the behaviour of the axis corresponding to the eigenvectors of the local
linear model changes from repelling to attracting, it indicates that the limit cycle
moves and expands towards the axis forming a homoclinic bifurcation or a near
homoclinic orbit. However it cannot be proved that this bifurcation takes place
since the ELM-free period was not reached in the discharge.

Before proceeding further it is time to give a summary of the results of the last
two sections. During and after the L-H transition a limit cycle exists and is
attractive during the whole time and the trajectory of the plasma moves along
the limit cycle. In this context the ELM precursors correspond to the period
when the trajectory is close to the saddle. During the ELM the trajectory moves
away from the saddle but returns along the limit cycle to the saddle. The period
between successive ELMs is determined by the time it takes for the trajectory
to move around the limit cycle. This period increases with time since the limit
cycle expands and moves towards the axes. During one cycle the trajectory
spends most of the time near the saddle. Finally when the homoclinic orbit is
formed the period goes to infinity resulting in an ELM-free H-mode. Since it
is not clear if the type III ELMs disappear or if only their repetition frequency
becomes very small it is not possible to tell if a homoclinic orbit is formed or
if the limit cycle comes very close to the saddle. Another possibility is that the
limit cycle increases and comes close to the saddle to form an ELM-free period
but decreased for higher heating powers leading to type I ELMs.
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6 A short Story of Transition and ELM Models

As mentioned in section 2.2 a wide variety of different models exist, that try to
explain the transition from the L- to the H-mode. The idea, that the electric field
is the driving force for the transition was brought up very early in [37] however the
mechanism for the creation of the fields was unknown. Early theories explained
the transition with the ion loss mechanism [38, 39], but later experiments showed
that the assumptions of these theories were not justified [40].

At the same time different models were developed. One group of these models
[41, 42, 43, 44, 45, 46, 47, 48] uses turbulent processes and Reynolds stress as
driving force for the transition. At the moment these models can better describe
the phenomena involved in the L-H transition, in particular the generation of the
shear flow and its turbulence suppression is treated self-consistently within the
framework of such models. In the following we shall take a closer look at these
models.

6.1 The physical model

The interesting thing about the turbulence-Reynolds-stress-models is the fact
that basically all of them start from the same type of dissipative MHD equations.
Although the instability involved in the L-H transition differs from model to
model, they all show similar qualitative behaviour. Thus instead of treating the
different models separately, their common behaviour will be discussed. To give a
very general treatment of the physical model, the model given in [41] is discussed.
In this paper the equations are given in a very explicit and in the most general
form.

Since the main physics of the L-H transition is considered to happen in the plasma
edge, the model focuses on the physics of the scrape off layer (SOL) outside the
separatrix. For the notation of the equations, SOL-specific coordinates are taken
(fig. 44). Here x measures the radial distance outwards from the separatrix, y
the poloidal and z the toroidal distance. In most cases the divertor is neglected
and the coordinate system is simplified to an annulus. The equations are

Continuity equation:

∂tρ +∇ · (ρ~u) (71)

Momentum balance equation:

ρ∂t~u + ρ(~u · ∇)~u = −∇p−∇·
↔
Π +

1

c
~j × ~B (72)
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Energy balance equation:

∂tp + ~u · ∇p +
5

3
p∇ · ~u =

2

3

(
1

ene

~j · ~Rei −∇~q−
↔
Π: ∇ · ~u

)
(73)

Generalized Ohm’s law:

~j =
1

η

(
~E +

1

c
~u× ~B

)
(74)

where ρ is the plasma density, ~u is the velocity of the electrons, p the pressure, ~B

the magnetic and ~E the electric field. The pressure tensor
↔
Π is of the form

↔
Π=

−
(↔
µe +

↔
µi

)
· ↔ν , where

↔
µ is the viscosity tensor and νij = ∇iuj +∇jui− 2

3
δij∇·~u.

The heat flux is given by ~q = − ↔
κe ·∇Te−

↔
κi ·∇Ti+Te

↔
α
[
~E + (1/c)~u× ~B

]
where

↔
κe,i is the tensor for the heat conductivity, Te,i the electron and ion temperatures

and
↔
α the tensor of the thermoelectric coefficients. Finally η is the parallel (to

the magnetic field) resistivity and ~Rei = ηene

[
~j + 3

5
(e/Te)~q

e
]

is the friction force.

To simplify the later analysis the pressure and the density are split up into an
equilibrium part and an fluctuating part, i.e. p = p0+p̃ and ρ = ρ0+ρ̃. After some
algebra and rescaling of the variables these four equations can be transformed into
two final equations:

Vorticity equation

∂t∇2
⊥ϕ +

{
ϕ,∇2

⊥ϕ
}

= −∇2
‖ϕ− ∂yp̃ + ν∇4

⊥ϕ (75)

Pressure equation

∂tp̃ + {ϕ, p̃} = −∂yϕ + χ∇2
⊥p̃ (76)

where ϕ is the electrostatic potential, ∇2
⊥ = ∂2

x + ∂2
y , ∇‖ = ∂z − x∂y, {ϕ, A} =

∂xϕ∂yA − ∂yϕ∂xA (the Poisson bracket), ν = (ν̃⊥T/X2), χ = (κ̃⊥T/X2), T =√
ρ0/2|p′0|g0, X2 = c2η

√
2|p′0|g0L

2
s/B

2
0 , Ls the shear length and g0 is the scalar

curvature of the magnetic field.

Using these two equations gives rise to several problems. First of all it is not
known, if these two equations are able to describe the plasma behaviour during
the L-H transition and in ELMy H-mode. A point of criticism is the fact, that
the pressure is split up into an equilibrium pressure and a fluctuating part. Since
equation (76) describes the time evolution of the pressure fluctuations a descrip-
tion of the change of the equilibrium pressure p0 during the transition is missing.
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Figure 44: Typical tokamak geometry with separatrix, SOL and
divertor. The SOL specific coordinate system used for the equations
is magnified. From reference [42].

Furthermore the two coefficients χ and ν depend on the gradient of the equi-
librium pressure p′0, however a relationship between the heating power and the
pressure gradient is not included. A further problem is the fact, that the solutions
of equations (75) and (76) are not known, which is a huge difficulty for the first
mentioned problem, since the validity of the equations can only be proved by the
comparison of their solutions with experimental data. Thus solving these partial
differential equations is a key problem and has to be addressed numerically.

6.2 Numerical solutions

As mentioned before, the main interest of this section lies in the results of the
numerical calculations rather than in the actual method of the numerical solu-
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6 A SHORT STORY OF TRANSITION AND ELM MODELS

tion. Again, the solutions of the different models show qualitatively very similar
properties. Thus only the results are summarized.

For the solution of the equations the z-direction is neglected and a two di-
mensional grid is used for the x- and y-direction, where 0 ≤ x ≤ Lx and
0 ≤ y ≤ Ly. Earlier calculations showed that p̃(0, y, t) = p̃(Lx, y, t) = 0,
ϕ(0, y, t) = ϕ(Lx, y, t) = 0 and ∇2

⊥ϕ(0, y, t) = ∇2
⊥ϕ(Lx, y, t) = 0 in the x-

direction and p̃(x, 0, t) = p̃(x, Ly, t), ϕ(x, 0, t) = ϕ(x, Ly, t) and ∇2
⊥ϕ(x, 0, t) =

∇2
⊥ϕ(x, Ly, t) in the y-direction have to be used as boundary conditions. The

coefficients ν and χ have been used as control parameters in the calculations. In
the following the results of reference [41] are shown. Here two quantities are used
to monitor the physical behaviour of the plasma:

the convective transport in the radial direction

< p̃vx >:= − 1

LxLy

∫ Ly

0

dy

∫ Lx

0

dxp̃∂yϕ (77)

and the strength of fluctuations

< v2 >:=
1

LxLy

∫ Ly

0

dy

∫ Lx

0

dx
[
(∂xϕ)2 + (∂yϕ)2] (78)

For all calculations initial values for p̃ and ϕ have been used such that the plasma
is in a state with almost zero monitor parameters, which corresponds to the start
of a real discharge in an experiment. During each calculation χ and ν were
constants and the calculations were stopped when the plasma reached a quasi
steady state. For big values of χ both monitor quantities depart from their
initial values exponentially but saturate after a certain time. This saturation
corresponds to a plasma in stable L-mode. Figure 45 shows a typical example of
this process.

Decreasing the control parameter χ changes the situation. The L-mode becomes
unstable and the plasma moves to a new stationary state, the H-mode. Figure
46 shows this transition. The monitor parameters first saturate at a level which
can be considered as an L-mode but finally move to a new state, the H-mode,
with smaller values for the radial transport and the strength of the fluctuations.
Although figure 46 shows a transition one has to bear in mind that the control
parameter χ was constant during the whole calculation and the initial values
correspond to a plasma at the beginning of a real discharge in experiments. Thus
this calculation can be compared with a discharge, where an initially relative
cold plasma is suddenly heated up to H-mode temperatures on a very short time
scale, unlike in a real experiment, where the temperature changes on a longer
time scale.
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6.2 Numerical solutions

Figure 45: Strength of fluctuations < v2 > versus time t. After
an exponential growth the fluctuations saturate. The solid line
represents simulation results and the dotted line analytical results.
The broken line shows the contribution from the m = 1 mode.
From reference [41].

Figure 46: Convective radial transport < pvx > versus time t. First
the plasma moves to the L-mode but finally bifurcates into the H-
mode. From reference [41].
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Further decrease in χ causes the H-mode to become unstable and a new oscillatory
state develops. In most theories these oscillatory states are called ELMs, however
[41] points out that these oscillations are different from ELMs. A significant
difference between these oscillatory states and ELMs is that ELMs appear during
the L-H transition and are not the result of an originally stable H-mode becoming
unstable. In this point lies the biggest difference between the models. Except for
[41] all models consider the L-H transition to happen in the following way:

For low heating powers only an stable L-mode exist. When a critical heating
power is reached the L-mode becomes unstable and the plasma bifurcates to a
new stable state, the H-mode. The ELMs appear when the heating power is
further increased and the H-mode becomes unstable.

As mentioned in the last section this behaviour cannot be found in the data. In
contrast to the theories the measurements indicate that the transition happens
through the ELMy state. To solve this problem, in [41] an additional heating
term

Pad = (1− α)
1

Ly

∫ Ly

0

dy{ϕ, p̃} , 0 ≤ α ≤ 1 (79)

is added to the right hand side of equation (76). This new term changes the
situation dramatically. For large χ the plasma fluctuations saturate to the L-
mode solution. Lowering χ causes the plasma to bifurcate to a stable H-mode,
however this time the transition is accompanied by oscillations similar to dithering
cycles. An even further decrease of χ results in a transition to an ELMy H-mode
(see figure 47). Since the dependence of χ on the heating power, and thus the
dependence of the ELM frequency on the heating power, is not known, the nature
of the ELMs (type I or III) cannot be identified.

Again it should be noted that the transitions in these calculations are not real
transitions as can be found in experiments where the control parameters are
changing stepwise or gradually during the transition. In contrast to this a gradual
increase of the control parameters can lead to very interesting results [42]. Figure
48 shows the dependence of the averaged particle flux Q at the boundary on the
control parameter, here gb. As gb is increased the particles flux increases. Even
when the critical value for the L-H transition is reached the particle flux increases
further. The sudden decrease in the particle flux happens with the onset of an
unstable H-Mode (gb ≈ 5). This behaviour gives rise to the question, what is
the H-mode? While the theories consider the H-mode to be a stable solution of
the plasma equations here the significant decrease of the particle flux happens
when the so called H-mode solutions becomes unstable. Bearing this in mind it
would make more sense to call the unstable H-mode solution the experimentally
observed H-mode.
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Figure 47: Strength of fluctuation < v2 > versus time t. The transition
from the L-mode to an ELMy H-mode is accompanied by oscillations
(dithering cycles). These oscillations develop into ELM-cycles. From
reference [41].

Figure 48: Dependence of time averaged particle flux at the boundary
on the control parameter gb and the conductivity σ. From reference [42].
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6 A SHORT STORY OF TRANSITION AND ELM MODELS

Comparing the numerical results with experiments shows that equations (75) and
(76) do not have the right transition characteristics, in particular dithering cy-
cles and ELMs are missing. Adding a heating term gives results that are more
consistent with the experimentally obtained picture. A big lack of all the theo-
ries is the missing relationship between the heating power and the used control
parameters. Furthermore an equation for the time evolution of the equilibrium
pressure gradient is missing.

Although the numerical calculations give some insight into the transition be-
tween the two confinement states, a qualitative and analytic understanding can-
not be given. To tackle these problems low-dimensional models are derived from
equations (75) and (76). These low-dimensional models can be divided into two
classes, the first class, which will be discussed in the following section, uses ex-
pansions of orthogonal functions for the electrostatic potential ϕ and the pressure
fluctuations p̃. The second class introduces new quantities and derives ordinary
differential equations for these quantities from equations (75) and (76). The latter
class will be discussed in the section 8.
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7 Low-dimensional Models derived by Approx-

imation of ϕ and p̃

For the approximation of the electrostatic potential ϕ and the pressure fluctua-
tions p̃ several sets of orthogonal functions have been used. In the following an
outline of the different approximations and, where possible, a discussion of the
results will be given.

In [42, 43, 44] Galerkin approximations are used for ϕ and p̃. A Galerkin ap-
proximation is an expansion of ϕ and p̃ in a truncated series of basis functions
like a Fourier series or a series of polynomials. This truncation corresponds to a
projection of the dynamics onto a low-dimensional space and is called Galerkin
projection. Since all approximations are special cases of [43] the results of this
paper are represented. In [43] the z-direction is neglected and the following low-
order mode approximation is chosen for Φ (which corresponds to ϕ in the last
section) and p (here the˜is omitted):

Φ(x, y, t) = Φ0(t)sin(kxx) + Φs
1(t)sin(kxx)sin(kyy)

+Φc
1(t)sin(kxx)cos(kyy) + Φs

2(t)sin(2kxx)sin(kyy)

+Φc
2(t)sin(2kxx)cos(kyy) (80)

p(x, y, t) = p0(t)sin(kxx) + p′0(t)sin(2kxx) + ps
1(t)sin(kxx)sin(kyy)

+pc
1(t)sin(kxx)cos(kyy) + ps

2(t)sin(2kxx)sin(kyy)

+pc
2(t)sin(2kxx)cos(kyy) (81)

where kx = 2π
Lx

and ky = 2π
Ly

. Substituting (80) and (81) into (75) and (76)

gives a set of eleven ordinary first order differential equations. In this model the
effective Rayleigh number Raeff ∝ 1

χν
is used as control parameter. In addition

the parameters are chosen in such a way that the primary harmonic mode (Φsc
1 ,

psc
1 ) is linearly destabilized and the secondary harmonic mode (Φsc

2 , psc
2 ) is linearly

stable. Increasing the effective Rayleigh number gives the following picture:

For small values of Raeff the subset of the modes (Φ0, p0, Φsc
2 , psc

2 ) decays for any
set of initial values to zero and thus the dynamics is restricted to a 5 dimensional
subspace, spanned by (p′0, Φsc

1 , psc
1 ). The modes are attracted by a limit cycle

instead of a fixed point. This corresponds with the L-mode, as shown in figure 49
(a). On this limit cycle the amplitudes Φ2

1 = (|Φs
1|2+|Φc

1|2) and p2
1 = (|ps

1|2+|pc
1|2)

are constant and their projection onto the Φs
1-Φ

c
1-plane shows a nearly circular

motion. This circular motion can be interpreted as a wave travelling through

84



7 LOW-DIMENSIONAL MODELS DERIVED BY APPROXIMATION OF ϕ AND
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the plasma in the y-direction (poloidal direction). If Raeff is increased beyond a
critical value, a bifurcation takes place. Now the secondary modes are destabilized
and the whole system settles down on a new limit cycle, the H-mode. On this
new limit cycle all modes are excited but the fluctuation amplitude is smaller
than in the L-mode. Figure 49 (b) shows the evolution of the plasma from the
L-mode to the H-mode. For higher values of Raeff a second bifurcation takes
place. Now the H-mode limit cycle is no longer stable and a new limit cycle
appears on which Φ0 and Φ1 show an oscillatory behaviour (see figure 49 (c)). In
[43] these oscillations are considered as ELMs.

Figure 49: Projection of the phase space trajectory on the Φs
1-Φ

c
1-plane

for the (a) L-mode limit cycle, (b) the L-H transition and (c) the ELMy
H-mode. From reference [43].

According to [43] the repetition frequency of the ELMs first decreases with in-
creasing Rayleigh number but increases with increasing Rayleigh number for
higher values of Raeff . Since the Rayleigh number is proportional to the heating
power we have first type III ELMs and for higher heating powers type I ELMs.
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However although the observed oscillations are called ELMs they do not show
the characteristics of experimental ELMs. Their phase space trajectory shows al-
most regular oscillations and not the pulse-like behaviour of the ELMs observed
in experiments and numerical calculations. A reason for this difference could be
the choice of the Galerkin approximation which is actually a truncated Fourier
expansion for the y- and x-direction. Because of this the system of ordinary
differential equations is very symmetric giving rise to the almost circular limit
cycles.

Several other methods have been used for the approximation of ϕ and p. [41]
for example uses Fourier expansion for the y- and z-direction and numerically
calculated eigenfunctions for the x-direction. Although these approximations
are more sophisticated, a better description of the plasma dynamics cannot be
obtained. All these models show the same behaviour: with increasing control
parameter a first stable L-mode becomes unstable and a stable H-mode develops.
This H-mode becomes unstable for higher values of the control parameter. This
coincides with the onset of oscillations, which are considered as ELMs in the
models. However as mentioned above these ELMs are nearly regular oscillations
and do not show the pulse-like behaviour of experimental ELMs. Thus these
methods are only able to show the basic properties of the transition from a
stable L-mode to a stable H-mode and the onset of the ELMs, but they are not
able to reproduce the experimental observations in detail. In particular the slow
transitions suggest that the L-H transition takes place via the ELMy state rather
than the direct transition between two stable solution, as suggested by these
models. A further striking point is, that in [42, 43] special heating terms are added
to the ordinary differential equations. Again, this highlights the fundamental
question as to whether equations (75) and (76) are sufficient to describe the
physics of the L-H transition and the ELMy H-mode.
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8 THE SUGAMA AND HORTON MODEL

8 The Sugama and Horton Model

In contrast to the class of low-dimensional models discussed above, there is a
second class of low-dimensional models which uses a different approach to tackle
in part these problems. Three different 3-dimensional models of this type have
appeared in the literature [42, 46, 47]. An interesting property of these models is
the fact, that they are almost identical if the pressure gradient is constant. In the
following the model of Sugama and Horton [46] will be discussed since it is the
most promising candidate of the three. In earlier work [45] Sugama and Horton
showed that resistive g-modes can generate Reynolds stress, which on the other
hand enhances the generation of shear flow. Instead of using equations (75) and
(76) and using approximations for ϕ and p, in their model new quantities are
introduced:

Turbulent kinetic energy

K :=
1

δ

∫ 0

−δ

dx
1

2

〈
ṽ2
〉

(82)

Background shear flow kinetic energy

F :=
1

δ

∫ 0

−δ

dx
1

2
v2

0 (83)

and the potential energy related to the pressure profile

U :=
1

δ

∫ 0

−δ

dx
(−x)

Lc

p0

n0mi

(84)

where x = 0 corresponds to the plasma surface (last closed flux surface) and δ
represents the radial length of the shear flow layer. The angle bracket < · > de-
notes the average over a magnetic flux surface (y-z-plane). As before the velocity
and the pressure are split up into an x-dependent average part and a fluctuating
part v = v0(x) + ṽ and p = p0(x) + p̃; in the following the index 0 denotes the
average values. n0mi is the average mass density, where n0 is the average density
and mi is the mass of the ions. The unfavorable average magnetic curvature
is represented by 1/Lc. Using equations (75) and (76) in a simplified form the
following energy balance equations can be obtained:
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dU

dt
= PU − PK (85)

dK

dt
= PK − PF − εK (86)

dF

dt
= PF − εF (87)

where the terms on the right hand side are given by

PU =
〈p̃ṽx〉 |x=−δ

Lcn0mi

(88)

PK =
1

δ

∫ 0

−δ

dx
〈p̃ṽx〉

Lcn0mi

(89)

PF =
1

δ

∫ 0

−δ

dx 〈ṽxṽy〉
dv0

dx
(90)

εK =
1

δ

∫ 0

−δ

dx

{
µ

〈(
∂ṽi

∂xj

)2
〉

+
η

n0mi

〈
J̃2
‖

〉}
(91)

εF =
1

δ

∫ 0

−δ

dxµ

(
dv0

dx

)2

(92)

here µ is the (kinematic) viscosity, η the resistivity and J̃‖ = −η−1∇‖Φ the
parallel current. Φ is the electrostatic potential and the velocity is given by
v = − c

B0
∇Φ × ẑ. The terms on the right hand side of equations (85)-(87) can

be separated into two classes. The first class, consisting of PK and PF describes
the exchange of energy between the quantities U , K and F . The second class,
consisting of PU , εK and εF , deal with the interaction with the core plasma and
dissipative effects. PU is the production of potential energy caused by the energy
input from the plasma core. εK stands for the viscous and Joule dissipations of
the fluctuations and εF for the viscous dissipation of the average flow. Adding
equations (85)-(87) gives a differential equations for the total energy of the system

d

dt
(U + K + F ) = PU − εK − εF (93)

Equation (93) shows that the heating term is needed to maintain or increase the
total energy of the system and without it, the total energy would decay to zero.
To solve equations (85)-(87) we have to express the terms on the right hand side
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in terms of U , K and F . Assuming a linear profile for the averaged pressure of
the form

p0(x) ∼= p0(x = 0) +
dp0

dx
x (94)

we get for U

U ∼=
1

3

δ2

Lcn0mi

∣∣∣∣dp0

dx

∣∣∣∣+ 1

2

δp0(x = 0)

Lcn0mi

(95)

here dp0/dx ≤ 0 and n0
∼= const are assumed. Assuming further that p0(x =

0) = const we can redefine the pressure gradient as

U ≡ 1

3

δ2

Lcn0mi

∣∣∣∣dp0

dx

∣∣∣∣ (96)

It turns out that most of the terms (88)-(92) depend on the time scale τc in the
g mode turbulence which is given by

τc ∼

√
Lcn0mi

|dp0/dx|
(97)

Using (96) we get

τc ∼ δ
√

U (98)

Thus for the terms the following estimates can be derived

PK ∼ τ−1
c K ∼ δ−1U1/2K (99)

PF ∼ τcK

(
dv0

dx

)
∼ δ−1U−1/2FK (100)

εK ∼ D−1
L K2 (101)

εF ∼ µδ−2F (102)

where DL = DL(U), the L-mode anomalous diffusivity, and µ = µ(U) are both
functions of U . By estimating the terms above new physics comes into the equa-
tions that is not contained in the original PDEs (75) and (76). Finally a closed
set of equations for U , K and F can be obtained
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dU

dt
= PU − CKδ−1U1/2K (103)

dK

dt
= CKδ−1U1/2K − CF δ−1U−1/2FK − C ′

KD−1
L K2 (104)

dF

dt
= CF δ−1U−1/2FK − C ′

F δ−2µF (105)

where the C’s are constants and PU(> 0) is regarded as an external parameter.
The stationary solutions of (103)-(105) can easily be found and they give some
interesting results:

For the L-mode solution we get

U = UL (106)

K = δ−1CKC ′−1
K DL(UL)U

1/2
L (107)

F = 0 (108)

where UL is given by the solution of

DL(UL)UL = C ′
KC−2

K δ2PU (109)

Equation (109) shows that the L-mode solution is strongly dependent on DL(U)
which causes some problems since the exact functional form of DL(U) is not
known. However simulations [49] and scaling theory [50] showed that DL(U)
is proportional to the pressure gradient and thus to UL. In the following it is
assumed for simplicity that DL(U) = CDU . Thus we get

UL =
√

C−1
D C ′

KC−2
K δ2PU (110)

The L-mode solution is characterized by the lack of a shear flow. In addition, both
the average pressure gradient and the turbulent energy increase with increasing
heating power. A second stationary solution, the H-mode solution, is given by

U = UH (111)

K = δ−1C−1
F C ′

F µ(UH)U
1/2
H (112)

F = C ′
KC−1

F UHD−1
L (UH)[CKC ′−1

K DL(UH)− C−1
F C ′

F µ(UH)] (113)
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Since F is an kinetic energy and thus has to be positive the H-mode solution
only exists, when the anomalous diffusivity exceeds the viscosity, or to be more
precise when

CKC ′−1
K DL(UH) ≥ C−1

F C ′
F µ(UH) (114)

Essentially this requires that the edge ion temperature is sufficiently high. Again
UH is a function PU and given by the solution of

µ(UH)UH = C ′−1
F CF C−1

K δ2PU (115)

As before the functional form of µ(U) is not known. For the high pressure gra-
dient limit we get µ(U) ∼ U . For small pressure gradients two cases have to be
distinguished: in the banana regime (case A) µ(U) ∼ U−3/2 and in the transi-
tional regime (case B) µ(U) ∼ U−1 is valid. Putting these two limits together in
a simple way we get

for case A

µ(U) = U−3/2(cA1 + cA2U
5/2) (116)

and for case B

µ(U) = U−1(cB1 + cB2U
2) (117)

Before splitting up the analysis into the two cases let’s have a look at the common
properties. For the H-mode solution the shear flow kinetic energy is not zero,
which means that a shear flow develops as observed in experiments. The pressure
gradient of the H-mode solution UH is bigger than the one of the L-mode solution
UL and the turbulence level K is smaller for the H-mode solution. Thus the H-
mode solution shows the properties of the experimentally observed H-mode.

The transition from L- to H-mode happens when

C−1
K δ2Pc1 = CKC ′−1

K Uc1DL(Uc1) = C−1
F C ′

F Uc1µ(Uc1) (118)

For both cases only one solution of (118) exists. Before proceeding further it is
convenient to introduce the following normalized variables:

u = U/Uc1 k = K/Uc1 f = F/Uc1 τ = CKδ−1U
1/2
c1 t

d(u) = CKC ′−1
K δ−1U

−1/2
c1 DL(U) m(u) = C−1

F C ′
F δ−1U

−1/2
c1 µ(U) (119)

q = C−1
K δU

−3/2
c1 PU c = CF /CU
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Thus equations (103)-(105) can be rewritten as

du

dτ
= q − u1/2k (120)

dk

dτ
= u1/2k − cu−1/2fk − d−1(u)k2 (121)

df

dτ
= cu−1/2fk − cm(u)f (122)

with

d(u) = u

m(u) = u−3/2(0.95 + 0.05u5/2)

or m(u) = u−1(0.97 + 0.03u2)

The stationary solutions are now given by (uL, kL, fL) and (uH , kH , fH) where

kL = u
1/2
L d(uL) fL = 0 (123)

kH = u
1/2
H m(uH) fH = c−1uHd−1(uH)(d(uH)−m(uH)) (124)

where uL and uH depend on the external heating q via

uLd(uL) = uHm(uH) = q (125)

the critical condition for the existence of the H-mode now reads as

d(uH) ≥ m(uH) (126)

and the critical heating for the transition is given by

uc1d(uc1) = uc1m(uc1) = qc1 (127)

Now let’s have a closer look at the two cases. For case A three critical heating
powers exist: qc1, qc2 and qc3. For q < qc2 only one stationary solution exists, the
L-mode solution. To determine the stability of the L-mode solution we linearize
equations (120)-(122) around (uL, kL, fL). The eigenvalues of the linearized map
are given by

λL1 = c(dL −mL) λL+ λL− (128)
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where λL± are the solutions of

λ2 +

(
1

2
dL + u

1/2
L

)
λ + u

1/2
L (uLdL)′ = 0 (129)

here dL = d(uL) and mL = m(uL). ′ denotes the derivative with respect to
u. Since both uL and dL are positive we get Re(λ±) < 0. Thus the L-mode
solution is unstable if and only if dL > mL. From equation (127) we see that the
instability criterion for the L-mode solution coincides with the transition from L-
to H-mode.

Thus for qc2 < q < qc1 the L-mode solution remains stable. However two sta-
tionary H-mode solutions H− and H+ appear. Both have non-vanishing shear
flow energy and a higher pressure gradient and smaller turbulent energy than
the L-mode solution. The eigenvalues of the linearized flow around the H-mode
solutions are given by the solution of

λ3 + Aλ2 + Bλ + C = 0 (130)

where

A = mH

(
1

2
+

u
1/2
H

dH

)

B = u
1/2
H mH

[
(1 + c)

(
1− mH

dH

)
+

mH (uHdH)′

d2
H

]
(131)

C = cu
1/2
H mH (uHmH)′

(
1− mH

dH

)
where mH = m(uH) and dH = d(uH). Since only the case in which the H-mode
solution exists is considered we have dH > mH and thus A and B are positive. For
the H-mode solution H− we have C < 0 and thus H− is unstable since equation
(130) has one real and positive solution in this case. For the other H-mode
solution H+ one eigenvalue is real and negative since now C > 0. The other two
eigenvalues are either both real and negative or form a pair of complex conjugate
values. H+ becomes unstable when C > AB or more explicit

(uHmH)′

mH

>

(
1 + c−1 + c−1 mH/dH

1−mH/dH

(uHdH)′

dH

)(
1

2
+

uH1/2

dH

)
(132)

this criterion is fulfilled, when q > qc3. Thus for q < qc3 the H-mode solution H+

is stable. Figure 50 shows position of the L- and H-mode solutions in the u-q-
plane, where the stable solutions are indicated by a solid line and the unstable
ones by a dotted line respectively.
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Figure 50: Stationary solutions in the u-q-plane. The forward transition
happens between the points (a) and (c) and is indicated by an arrow. At
point (d) the H-mode solution becomes unstable and limit cycles appear.
The stability of the L- and H-mode solutions are indicated by dotted
(unstable) and solid (stable) lines. The backward transition happens at
point (b) and is indicated by an arrow.

The existence of two stable solutions for qc2 < q < qc1 could offer an explanation
for the dithering cycles. If we take into account that this three dimensional model
is most probably a simplification of a higher dimensional model and that in a
real plasma there are always small fluctuations then the dithering cycles could be
movements of the plasma between these two stationary solutions. As the heating
power increases, the L-mode solution becomes unstable and the plasma finally
moves to the H-mode solution. Additionally the existence of the two stable fixed
points offers an explanation for the hysteresis observed in many experiments.
When the plasma is heated up it stays in L-mode until q = qc1 is reached, when
the forward transition to the H-mode happens (indicated by the right arrow in
figure 50). However when the H-mode plasma is cooled down (as it is the case
at the end of the discharge) the plasma stays in H-mode until q < qc2, before it
moves to the L-mode (indicated by the left arrow in figure 50). Since qc2 6= qc1

the forward and backward transitions happen at different heating powers. For
qc1 < q < qc3 only the H-mode solution H+ is stable and the plasma is in H-mode.
For q > qc3 H+ becomes an unstable focus and a limit cycle is formed.

In case B the situation changes slightly, the main difference arises from the fact
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that only one H-mode solution exists instead of two. For q < qc1 only one
stationary solution exists, the L-mode solution. Since the eigenvalues of the L-
mode solution are identical with the one in case A this solution is stable. At
the critical heating power qc1 the L-mode solution becomes unstable and a new
stable stationary solutions appears, the H-mode solution. Note that in this case
no hysteresis can be found since only one H-mode solution occurs. Finally the
H-mode solution becomes unstable for q > qc3 and a stable limit cycle forms.
Figure 51 shows this behaviour in the u-q-plane.
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Figure 51: The stationary solutions for case B. At point (a) the
transition from L- to H-mode happens. The H-mode solution be-
comes unstable at point (b) and limit cycles appear.

So far we get the following picture for both cases: a stable L-mode solution
becomes unstable and at the same time a stable H-mode solution appears. This
H-mode solution becomes unstable for higher heating powers and a stable limit
cycle is formed. Except for the explanation of the hysteresis this picture is more
or less the same as for all other methods presented in the last section and it seems
that the Sugama and Horton model does not improve the picture. However the
transition and the stable limit cycle show very interesting properties. In order to
model the transition a stepwise increasing and continuous heating power q was
used for the solutions of equations (120)-(122). Figure 52 shows the time evolution
of the heating power q, the pressure gradient u, turbulent kinetic energy k and
the shear flow energy f for case A. The time evolution for case B is qualitatively
the same, only the hysteresis is missing.
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Figure 52: Time evolution of the of the heating power q, the pres-
sure gradient u, turbulent kinetic energy k and the shear flow energy
f .

After the second increase of heating power at t = 180s the L-H transition happens
between t = 210s and t = 230s. It is noteworthy that the transition does
not coincide with the increase of the heating powers. The discrepancy can be
explained by the fact that the L-mode solution is still stable in two directions
and thus the plasma trajectory is attracted by this solution for a certain time.
Although H+ is a stable focus the plasma trajectory does not settle down to this
solution. In contrast it circulates around the solution and clear oscillations can
be found for u, k and f . The reason for this is that the contraction onto H+ is
very weak and the time to settle down on H+ is longer than the time between the
heating steps. Figure 53 shows the time evolution of u, k and f for t = 230−275s.

After the third increase of the heating power at t = 300s a limit cycle appears.
Its size increases with increasing heating power until the limit cycle approaches
the planes defined by k = 0 and f = 0. At the same time the period of the
limit cycle increases. Figure 54 shows numerical simulations of equations (120)-
(122) for q > qc3 (which is fulfilled for t > 300s). The turbulent energy and the
shear flow energy show pulse-like relaxation oscillations like ELMs in experiments.
Most of the time of one cycle k and f spend near their zero values, which has the
appearance of a quasi-stable plasma. The pressure gradient shows a sawtooth-like
behaviour that looks very similar to the measured data, used for the investigation.
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Figure 53: Time evolution of the of the pressure gradient u, turbulent
kinetic energy k and the shear flow energy f for t = 230− 275s.
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Figure 54: Time evolution of the of the pressure gradient u, turbulent
kinetic energy k and the shear flow energy f for t = 500− 520s.
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In section 5.1 it was found that the first principal component had a similar
sawtooth-like behaviour that was caused by the change of the pressure in the
plasma edge. Considering the fact, that we removed this sawtooth-movement
with the applied filter, this suggest that in section 5.4 the dynamics of the pro-
jection onto the k-f -plane was investigated rather than the whole dynamics of the
full system. This might explain why two of the complex conjugate pairs showed
good agreement in forward and backward time directions while the third pair did
not give a consistent picture. It suggests that this third direction corresponds to
the dynamics of the pressure gradient, which was almost removed by the filtering.
In this context it is reasonable to have a closer look at the dynamics projected
onto the k-f -plane.

Figure 55 shows the projection of the plasma trajectory onto the k-f -plane for
case A. The position of the stable H-mode solution H+ before and after the
third heating pulse t = 300s is indicated with arrows. The plasma trajectory
spirals away from H+ towards the attracting limit cycle. By spiraling the plasma
trajectory follows an expanding limit cycle. Since the limit cycle expands towards
the axes of this plane until it approaches them we have the picture of a homoclinic
bifurcation in this plane, a mechanism suggested before by the analysis of the
experimental data.
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Figure 55: Projection of the plasma trajectory onto the k-f -plane. The
position of H+ before and after the third heating pulse is indicated with
arrows.
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If we linearize the projection of equations (120)-(122) onto the k-f -plane around
(k0, f0) = (0, 0), which actually is a fixed point in this plane, we get

d

dτ

(
k̃

f̃

)
=

(
u1/2 0
0 −cm(u)

)(
k̃

f̃

)
(133)

where k = k0 + k̃ and f = f0 + f̃ . The eigenvalues of (133) are given by

λ− = −cm(u) (134)

λ+ = u1/2 (135)

As expected the k-direction (the turbulent energy) is the unstable direction. The
driving force of the instability is the pressure gradient u1/2. The stable direction
near the quasi fixed point (k0, f0) is the f -axis, the shear flow energy. This
is consistent with experiments since the shear flow is the stabilizing force. The
strength of the contraction onto the quasi fixed point is proportional to m(u), the
viscosity. Both the stable and unstable eigenvector are increasing with increasing
u and thus are increasing with increasing heating power. This behaviour agrees
very well with the results found in section 5.4, where the real parts of the stable
and unstable eigenvalues were also increasing with increasing heating power. To
make the comparison between the results of the Sugama and Horton model and
the analyzed data complete we have to look at the saddle index of the quasi fixed
point. The saddle index is given by

δ = −λ−
λ+

=
cm(u)

u1/2
(136)

Figure 56 shows the saddle index versus u for the cases A and B. For small pressure
gradients δ > 1. However for intermediate pressure gradients the saddle index
drops below 1. Finally for high pressure gradients the saddle index becomes
greater than 1. However we have to bear in mind, that the actual functional
form of δ depends strongly on the functional form of m(u), but the decrease
for small pressure gradients and the increase for high pressure gradients, which
coincides with small and high heating powers respectively, is common for all
forms of m(u), because of the experimentally found scaling formulas for m(u).
The same decrease-increase behaviour can be seen in the calculated saddle index
of the measured data. For t = 0.155s the saddle index is close to one. Between
t = 0.155s and t = 0.165s it reaches a minimum much smaller than 1, before δ
becomes greater than 1 for t > 0.18s.

Again this behaviour points towards a near homoclinic bifurcation as the mech-
anism for the stabilization of the H-mode, which leads to an ELM-free H-mode.
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Figure 56: Dependence of the saddle index on the pressure gradient.

However, this explanation raises a fundamental question: what exactly is the H-
mode? As mentioned above in all models the H-mode is treated as a fixed point
which becomes unstable leading to ELMs. In contrast to this, the analysis above
showed three different objects should be called H-mode. Shortly after the tran-
sition the plasma moves towards the stable H-mode solution, which justifies the
naming of this solution. However for higher heating powers the plasma trajectory
moves along an expanding limit cycle. On this limit cycle the turbulent energy
decreases further (before ELMs) which would justify calling this limit cycle the
H-mode. Finally this limit cycle undergoes a nearly homoclinic bifurcation, lead-
ing to the biggest decrease in the turbulence and a nearly unlimited increase
in the pressure gradient. According to this the invariant line (u, k = 0, f = 0)
should be called H-mode.

Summarizing the comparison above we can say that - given this broader inter-
pretation - the Sugama and Horton model contains all the results obtained from
the COMPASS-D data. It gives a self-consistent description of the creation of
the shear flow which cases the transition to the H-mode and expresses all coeffi-
cients in terms of dynamical variables of the model. However for m(u) and d(u)
approximations have been used, since their correct functional form is not known.
These functional forms on the other hand are very important since the properties
of the model depend strongly on them. A further issue for future studies lies in
the fact, that all low-dimensional models of the second class are almost identical
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if the pressure gradient is fixed. Thus a good description of the pressure gradient
and the incorporation of the pressure gradient into the remaining two equations
for k and f seems to be the most important physical problem of the models and
might lead to a better understanding of the L-H transition and the H-mode.
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9 Conclusions

For the analysis of the transition from L- to H-mode and of the H-mode itself
the poloidal field component of the magnetic field was analyzed. The singular
value decomposition and nonlinear analysis of the data showed that during and
after the transition at least four different plasma modes exist. For the separation
of the modes a new filtering technique was developed and applied to the data.
For each mode the local linear model was estimated using the method of delays.
The calculation showed that the important parts of the dynamics of the modes
is contained in a six-dimensional space.

To estimate the growth rates of the modes the data was divided into eight time
windows and for each time window the local linear model was calculated. To
identify real eigenvalues from spurious ones, caused by noise, the linear models
have been calculated in forward and backward time. It turned out that four of the
six eigenvalues agree quite well for both time directions while the other two give
different results for the two time directions. This can be explained by the fact,
that these two eigenvalues are connected with the pressure. However, since the
saw-tooth like behaviour of the main plasma, which is directly connected to the
plasma pressure, was removed by the filtering technique, most of the properties
of the pressure may have also been removed from the data. The comparison of
the estimated with theoretically calculated growth rates allows the identification
of the plasma modes that are causing the ELMs. The analysis showed that the
growth rates of the modes increase with time. However a further investigation of
the dependence of the growth rates on plasma parameters like electron tempera-
ture or density could not be done, since the corresponding measurements are not
available for the analyzed discharge.

The stationary plasma solution, which is a fixed point in the six-dimensional
space, is a saddle with one unstable and two stable directions. The saddle index,
which determines whether the saddle is attracting or repelling trajectories, shows
that the saddle repels at the beginning of the transition but becomes attracting
during the transition. In addition to the saddle fixed point an attracting limit
cycle exists. This limit cycle expands in size and moves towards the saddle fixed
point to form a near homoclinic bifurcation. The experimentally observed ELMs
can be explained as the trajectory of the plasma around this limit cycle. The
period between successive ELMs increases with increasing size of the limit cycle
until they nearly vanish in the case of the near homoclinic bifurcation.

In order to check the validity of these results a comparison with existing models
was done. Most of these models depend on two partial differential equations for
the plasma pressure and the plasma velocity, which are split up into an equilib-
rium part and a fluctuating part. These equations have two important limita-
tions. Since the equilibrium parts are treated as parameters in these models, no
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equation for the time evolution of these quantities is given. However this equa-
tion is very important since the equilibrium parts change during the transition
and during the ELMs. The second problem arises from the lack of a heating
term in the equations. This lack becomes more significant since for most of the
low-dimensional models derived from these equations it has been necessary to
arbitrarily add a heating term to their equations.

The low-dimensional models can be divided into two classes. The first class
reproduces the basic qualitative behaviour in the sense that it shows the transition
from the initially stable L-mode to the stable H-mode, when a critical condition
is fulfilled. When a second critical condition is fulfilled the H-mode becomes
unstable and oscillations appear, which are called ELMs in these models. However
these ELMs are almost regular oscillations and do not show the experimentally
observed pulse-like oscillations of ELMs. The second class of the low-dimensional
models introduces new physics, not contained in the partial differential equations,
into their equations. Common features of this class are the use of a heating term,
and that the models are almost identical when the pressure gradient is fixed. From
this class the most promising candidate for the description of the L-H transition
was identified, the Sugama and Horton model.

The ELMs of the Sugama and Horton model show the right pulse-like behaviour.
In addition the model shows the same behaviour for the growth/decay rates
and the saddle index as found for the COMPASS-D data. A further feature of
this model is the existence of a limit cycle which undergoes an almost homoclinic
bifurcation. Because of this the period between successive ELMs increases and the
plasma appears quasi stable. However this stable behaviour can only be found for
the turbulent energy and the shear flow energy. The pressure gradient increases
during these quasi stable periods, which is also consistent with measurements.

The results obtained in the earlier sections gives rise to a very important con-
ceptual question: what is the H-mode? In this report it was shown that three
different objects have the properties of the H-mode and it can be justified to call
each of them the H-mode. The answer to this question is an interesting problem
for future studies.
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