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Abstract—Speed of adaptation to changing demand is a critical
success factor in factory automation. The key to speed is to enable
agile development by independent engineer offices and equipment
producers with industrial-grade microservice architectures. The
expensive drawback is: While software components evolve over
time, manufacturers have to integrate and deploy more and more
updates during costly production stops. To avoid production stops
as much as possible, we propose reconfiguration extensions to a
real-time container architecture proposed earlier. The original
container approach addresses both the functional and non-
functional aspects of integrating embedded software compo-
nents in late engineering phases. The extended approach allows
modifications of the running distributed embedded application
even during operation, while continuously ensuring reactivity
of the system. The agents running on each node prepare the
reconfiguration in background and then synchronously perform
the required modifications according to a detailed reconfiguration
plan. We demonstrate our concept by describing a synchronous
API change between two distributed software components of a
running gesture recognition system. An evaluation shows the
feasibility of the concepts, but also calls for further research.

I. INTRODUCTION

The first thoughts towards safe dynamic updates of dis-

tributed embedded applications based on real-time containers

were published in [1]. The authors claimed: Speeding up
adaptivity also leads to an increased demand for automatic
assurance and enforcement of quality attributes such as real-
time constraints, including consistency properties to be main-
tained during reconfiguration. Consistency and quality of

distributed embedded applications have been addressed for

the static case (without dynamic updates) by the real-time

container architecture described in [2]. First, the architecture

isolates each embedded component in a container. Second,

a real-time container agent (agent) on each node configures

the containers and the distributed system appropriately and

actively triggers computation, network communication and I/O

at specific points in time. This enables the isolated components

to communicate with each other and with the equipment

exactly as declared in their interfaces. Proposed for late

integration by third parties, this approach also builds a good

basis for reconfiguration, as the agent completely controls the

distributed embedded application.

In this paper we extend the real-time container archi-

tecture to enable deterministic concurrent reconfiguration of

distributed embedded applications during operation. The major

challenge we address is that some reconfiguration steps such as

downloads or container initializations take a hardly predictable

amount of time and resources, while other steps interfere with

the application in a critical way and must be performed as

a synchronized action of the distributed system. Therefore,

the agents synchronously perform modifications using detailed

instructions from a reconfiguration plan consisting of synchro-

nization steps, background steps and real-time steps as needed

for the application. Using these primitives a reconfiguration

plan can change the set of component interfaces, how they

are connected with each other, how they are allocated to

nodes and which resource requirements they have with regard

to execution and communication. We describe the structural

and operational aspects of our approach and required execu-

tion facilities added to the real-time container architecture.

As motivation and running example we describe a concrete

synchronous update of a gesture recognition component and

a reporting gateway component during operation. We evaluate

the approach by applying an adapted version of this reconfigu-

ration to a similar application described in [2] without breaking

the embedded functionality.

The paper is structured as follows. Section II covers related

work. Section III describes the gesture recognition system

used as running example throughout this paper. After a brief

overview of the real-time container architecture in Section IV

we describe our reconfiguration approach in Section V includ-

ing the structural and operational details of reconfiguration

plans as well as the proposed extensions of the real-time con-

tainer architecture. Section VI presents the evaluation results

followed by a conclusion in Section VII.

II. RELATED WORK

We refer to work related to dynamic reconfiguration of

distributed real-time systems. Many approaches to dynamic

reconfiguration in the context of component-based software

engineering are summarized by Hammer [3]. The original

quiescence approach [4] blocks the complete dependency

graph during reconfiguration. The amount of blocking has

been reduced by numerous approaches, most prominently by

the tranquility approach [5]: It minimizes blocking by fading

over, i.e., sending new transactions to new components and

inhibiting new transactions by the old components. However,
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we want to achieve zero blocking in real-time systems to

maintain reactivity of the embedded application.

Sha et al. [6] proposed the first dynamic reconfiguration

approach for real-time systems based on in-field testing and

atomic switch-over. The factory automation standard IEC

61499 [7] for distributed control systems enables dynamic

updates as demonstrated by Zoitl et al. [8]. Kirsch et al. [9]

propose a similar approach for HTL [10], a real-time runtime

system, which has also been extended for distributed systems.

While these approaches aim at dynamically reconfiguring real-

time systems, distributed dependencies cannot be addressed

during operation. This also applies to more recent approaches,

e.g. using Design Space Exploration to identify configura-

tion optimization potential [11], automatic updates based

on Erlang features [12] and the exploitation of the dynamic

slack to save energy [13]. Finally, service-oriented approaches

(e.g. Kothmayr et al. [14]) and agent-based approaches (e.g.

Chaplin et al. [15]) to evolvable cyber-physical systems do not

solve this issue, either.

When interfaces change, these approaches are not sufficient

for dynamic reconfiguration of distributed compositions with

continuous reactivity. The problem is: To satisfy end-to-end

real-time requirements, the deterministic timing of the data

flow between interacting components must be maintained.

We address this problem based on the real-time container

architecture [2], which combines three elements: A model-

based engineering approach similar to AUTOSAR [16] ex-

tended with non-functional interface descriptions; enforcement

of these interfaces by a container-based runtime architecture

using Linux Containers (lxc) [17]; and temporal decoupling

of the components using the logical execution time paradigm

(LET) [18] originating from Giotto [19], implemented with a

globally synchronized cycle. We give a more detailed descrip-

tion of the real-time container architecture in Section IV, as

it is the basis of our reconfiguration approach.

Summing it up, we propose a novel approach for dynamic

reconfiguration, which is the first to roll out even breaking

changes to distributed applications with real-time requirements

without any blocking of components.

III. RUNNING EXAMPLE

We describe the embedded system CamSys (see Fig. 1)

used both as motivation for synchronous reconfiguration and

as running example throughout this paper. The system consists

of two micro-controllers connected via Ethernet. The first

node has a USB camera installed, while the second node has

an additional network connection to external observers via

an engineering system. A distributed embedded application

implements the following functionality. A statistics-based soft-

ware component at the first node constantly checks the video

stream for gestures. No relevant gesture shall be missed, which

can be ensured with a sample rate of five frames per second

due to usual human behavior, i.e., 200ms period. Each time

a gesture appears, this event is reported to a remote service

beyond the system scope. The system shall not report the same

gesture multiple times, even though it is probably visible in

multiple frames. Therefore, the event stream shall be further

filtered from hardly possible sequences of gestures.

Figure 1. The running example CamSys: Two micro-controllers are connected
via Ethernet. A gesture recognition component processes the video stream
produced by a camera installed on the first node every 200ms. Detected
gestures are sent to a gateway component located at the second node, which
is responsible for further reporting to network nodes beyond the system
scope. Via the plant engineering system, updates of the distributed embedded
application shall be rolled out during operation.

During operation, an update of the distributed embedded

application is triggered from the engineering system. In this

scenario the gesture recognition component has been im-

proved by the third-party solution vendor to detect more types

of gestures. Unfortunately, the output interface had to be

evolved in an incompatible way to cover the new entry types.

Consequently, the reporting component has to be adapted to

understand the new data format. We want to roll out enhanced

functionality without stopping the application, but still without

loss of data caused by faults such as buffer overflows or

serialization exceptions. Due to resource constraints it is

not possible to run both versions of the reporting gateway

component in parallel for a blue-green deployment.

Hence, both components need to be adapted in the following

manner using appropriate reconfiguration extensions:

1) Prepare reconfiguration in background (i.e., download

and initialize added components).

2) Synchronize across nodes.

3) Switch synchronously so that all messages are processed

by the compatible component versions.

4) Finalize reconfiguration in background (i.e., shutdown

removed components).

IV. REAL-TIME CONTAINER ARCHITECTURE

We build our reconfiguration approach on the real-time

container architecture. We briefly discuss the benefits of using

this architecture for our concept. Then we describe the real-

time container architecture and operational details based on

the CamSys model. Both the structural and operational details

are important for the reconfiguration described later.

A. Architecture Concerns

The architecture supports engineering and execution of

distributed embedded applications made of containerized time-

triggered software components. The major feature is separation
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Figure 2. Overview of the CamSys model: Two software components
are assembled to a distributed embedded application. The elements of the
distributed embedded application are then mapped to the distributed system,
which consists of two connected micro-controllers (cf. Deployment in [2]).

of application logic from deployment concerns despite end-to-

end real-time requirements. From outside of the containers,

the execution and interaction of software components are

completely in the hands of the execution environment. This

finally leads to the possibility to reconfigure the distributed

embedded application by means of the runtime environment

in a generic and predictable way. An additional benefit for

reconfiguration from a software engineering perspective: It

simplifies late integration of software components with or

without real-time requirements implemented for different plat-

forms by independent third-party solution vendors. Therefore,

the real-time container architecture is a technical enabler for

software ecosystem scenarios in industrial domains. Table I

classifies the goals and benefits related to selected conceptual

features of the real-time container architecture.

B. CamSys Architecture Model

The real-time container architecture comes with a model-

based engineering methodology and uses the resulting model

to configure and execute an application. The reconfiguration

approach presented in this paper modifies the distributed

system based on instructions which refer to this model. We

briefly describe the CamSys architecture model (see Figure 2).

A distributed embedded application is an assembly of soft-

ware components, which is defined independently from any

deployment aspects. The CamSys application consists of two

software components connected by one port connector: The

Gesture Recognition component and the Reporting Gateway
component. They communicate with their environment via

asynchronous cyclic messages (sender-receiver interaction) –

including inter-component communication. The transport and

delivery of messages is handled from outside of the containers

based on the component interface, which describes the data

and the non-functional requirements of required and provided

messages. The Gesture Recognition component has the port

videoIn via which it cyclically expects a camera frame. Its

cyclic output provided via its gestureOut port is a message

containing the information about recognized gestures. The

gesture port connector effectively makes this message an input

of the Reporting Gateway component via the reportEvent port.

The Reporting Gateway filters duplicate reports and sends

new gestures via the reportingOut port. Finally each software

component is assigned a cyclic execution time during which

it processes received messages and produces the provided

messages. All such tasks of the software components are

executed synchronously in logical execution time (LET), i.e.,

during each system-wide cycle all inputs are injected to the

respective container, then all containers are provided with

execution time as requested, finally all outputs are extracted

and propagated to the receiver as configured.

Also important for reconfiguration is the logical deployment

of the CamSys to the distributed system as follows. The two

nodes are SIMATIC IOT 2040 micro-controllers modeled with

a USB port and two Ethernet ports. For the USB port a

camera driver has to be offered by the board support package,

represented by an IO port information. A generic gateway

protocol API for Ethernet ports is needed, too. The two nodes

are connected via their eth1 network interfaces. The Gesture
Recognition component is mapped to node1 and its videoIn
software port is mapped to usb0, which is also associated

with the camera driver in this step. The Reporting Gateway
component is mapped to node2 and its reportingOut software

port is mapped to eth0, for which an association with the

gateway protocol driver is added. Finally, the gesture connector

is mapped to a network message from node1 to node2.

In this way the structure and the non-functional require-

ments and properties of software components, the distributed

embedded application and the deployment-dependent final

system are modeled as input to the runtime configuration and

execution.

C. Application Execution Environment

Figure 3 shows an overview of the concrete system ar-

chitecture resulting from the CamSys model. Each software

component is wrapped in an lxc container on the correspond-

ing node. Drivers are employed and triggered by the agent as

implied by the I/O mapping. Inter-component communication

is controlled via means of the network stack (firewall and

traffic control). The barrier queuing discipline (qdisc) is used

at each virtual ethernet adapter: outputs are caught at egress of

the interface eth0 inside the container’s network namespace,

while inputs are caught at egress of the veth pair device

enslaved by the network bridge lxcbr0 in the host. Each cycle

the agent “moves” the barrier qdisc to release all messages

enqueued in the previous cycle. After processing outputs and

then inputs of each local component, the agents start the

execution phase by triggering all processes in each container’s

cgroup sending interrupts. In this way the agents coordinate

the containers across nodes by ensuring synchronous execution

and managing interaction and access to installed equipment as

suggested by the LET paradigm.

Listing 1 shows the agent routine in pseudo code. Figure 4

shows a schematic overview of the resulting timing behavior

of the CamSys. Both agents are scheduled with EDF and run
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conceptual feature original goal additional benefit for reconfiguration

functional isolation inhibit undeclared side effects independent component life-cycles

resource control ensure non-functional properties deterministic timing of reconfiguration steps

synchronous execution decouple functional from temporal aspects cycle turnover as moment of tranquility

managed interaction ensure isolation and control network capacity enables interception of messages

managed I/O ensure isolation and revoke capabilities intercept access to equipment

Table I
THE ORIGINAL GOALS OF THE REAL-TIME CONTAINER ARCHITECTURE AS DESCRIBED IN [2] AND BENEFITS FOR RECONFIGURATION RESULTING FROM

THE CONCEPTUAL FEATURES.

Figure 3. Overview of the lxc-based system architecture resulting from the CamSys model.

phase-aligned. The clocks are synchronized in background

using PTP and the cycle counters are synchronized by the

agents. The container execution is mostly managed by Linux’s

scheduler as configured via lxc (CPU time, network quota,

etc.). However, the real-time tasks have to yield at the end of

each cycle to align with the period and to indicate successful

cycle completion. The agent triggers these suspended real-time

tasks at the start of each execution phase. In the administration

phase between each execution phase the agent checks the

system state (e.g. successful termination of all real-time tasks).

Then it extracts the components’ outputs of the previous

cycle by either moving the barrier or by triggering a driver.

Finally the agent injects the inputs in the same manner before

triggering the next execution phase. The three rcHook calls in

the pseudo code belong to our reconfiguration extensions.

V. RECONFIGURATION APPROACH

We describe a concept to perform a deterministic reconfigu-

ration of a distributed embedded application during operation

based on the real-time container architecture. A reconfigura-

tion can be (cf. [1]):

• Add software component to running system

• Move running software component to another node

• Update running software component

• Remove running software component

• Sequential and parallel combinations of these modifica-

tions

every period:
if not (health):

trigger fault reaction;

rcHook(before output processing);

for each output o:
if I/O then trigger o.driver;

move output barrier;

rcHook(between I/O); // logical cycle turnover

move input barrier;
for each input i:

if I/O then trigger i.driver;

rcHook(after input processing);

for each component c:
interrupt processes of c;

Listing 1. The agent routine performed on each node as pseudo code.
Three calls of the reconfiguration hook function rcHook are added by our
reconfiguration approach. In these hooks the applicable reconfiguration steps
of the present reconfiguration plan are executed.

To prevent damage caused by a failing system, these mod-

ifications must not cause unintended effects on (the rest of)

the application, i.e., processing, communication and control

must be performed within the defined deadlines to keep up

quality and consistency. Regarding consistency we cannot use

the common blocking approach to dynamic reconfiguration of
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Figure 4. A schematic timing diagram of four cycles of the CamSys: The image data flows through the system parts so that each entity processes it at a point
in time with a deterministic cycle offset across nodes. One end-to-end chain is highlighted in yellow: In the first administration phase, the agent on node1
injects the camera input to the gesture recognition component and triggers it. In the subsequent execution phase this image is processed and the result is
sent out, but blocked at the barrier qdisc. The agent moves the barrier in next output processing phase, so the message is sent to the outside of the container
in the second cycle. On node2, the message is enqueued in the barrier qdisc of the reporting gateway component. In the next input processing phase, this
message is released to the inside of the container. After triggering the reporting gateway it processes the gesture information during the third execution phase
and creates the output. In the next output processing phase, agent2 triggers the gateway protocol driver providing the extracted output.

distributed systems, because we want to keep up reactivity

of the embedded system. Instead, our approach exploits the

cyclic behavior of the real-time container architecture: The

cycle turn-over is an opportunity for reconfiguration, as it is

in fact a moment of tranquility (no task is performed and no

message arrives/leaves without active triggering by the agent).

To temporally coordinate the reconfiguration steps across

nodes we basically use the cycle number, which is already

synchronized by the agents. However, the cycle number cannot

be defined when starting the reconfiguration, because some

tasks take unpredictable execution time, such as the start of

an additional component in a new container.

Therefore, the reconfiguration operations mentioned above

can only be offered by rolling out appropriate reconfiguration

instructions to the agents running on each corresponding node

and employing a synchronization protocol. Each agent has its

own node-local instruction list, the reconfiguration plan, which

it executes step-by-step. The reconfiguration plan consists of

three types of reconfiguration steps: Real-time steps, synchro-

nization steps and background steps (see Figure 5). The agent

checks the reconfiguration plan in the reconfiguration hooks

shown in Listing 1 performing only applicable steps. In the

rest of this section we describe these steps in detail and then

show how they can be applied to reconfigure the CamSys.

A. Synchronization Steps

Synchronization steps are used to determine a reference

cycle – the synchronization point – to then perform blocks of

real-time steps in a timely coordinated manner across nodes.

There are three different kinds of synchronization steps:

notifyAndWait: Create and send notification messages to

observer agents containing the synchronization point id

and a feasible continuation cycle number at which the

next block of reconfiguration steps starts. The absolute

cycle number is calculated based on the worst-case-

communication time to the observers known from the

Figure 5. The structure of a reconfiguration plan: Each agent gets its
node-local instructions as reconfiguration steps (rcStep) to be performed
sequentially. A step is either for temporal synchronization with other nodes
(syncStep), for instantaneous local system modification (rtStep) or for a
background operation (bgStep).

Figure 6. The synchronization protocol: In cycle 200 the next rcStep at
node1 is notifyAndWait, so agent1 creates a notification message containing
a feasible continuation cycle number calculated based on the worst-case
communication known from the network topology model. agent2 is located
at node2 with one hop distance. The next rcStep is waitForSync, which does
not apply until the arrival of the notification associated with synchronization
point 1. After the notification arrived the rcStep applies in cycle 201. The
result: Both agents wait for the calculated cycle number 202 and only then
continue synchronously with subsequent reconfiguration steps.
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network topology model such that all agents receive the

message at latest one cycle before the continuation, i.e.,

(maxWCCT/period)+1 (cf. [2]). After sending the noti-

fication(s), the agent replaces this step with waitForCycle.

waitForSync: Wait for a notification associated with a certain

synchronization point id. On receipt, this step is replaced

with waitForCycle as prescribed by the notification mes-

sage.

waitForCycle: Simply wait for a certain absolute cycle. This

step is only applicable in the given cycle and then

instantly terminates, leading to the next step.

Figure 6 shows the synchronization protocol resulting from

a notifyAndWait on one node and a waitForSync on the other

node. When two nodes have to continue synchronously after

background tasks, a two-way handshake is needed. For this use

case, one of the two nodes has to notifyAndWait and then to

waitForSync afterwards. The other node performs waitForSync

and then notifyAndWait. Then the first node completing its

background task will still wait for the continuation cycle

reported by the other node. The continuation cycle calculated

in the first synchronization point might have passed already

when the second node finishes its background task. However,

the first node then still waits for the continuation cycle

delivered in the synchronization notification message of the

second node. Consequently, the agents must accept and store

notification messages even when not waiting for it or when

the reported continuation cycle has already passed. Another

aspect is network consumption: The system model used by the

real-time container architecture contains a constant Madm for

over-estimating the agent communication per cycle, which has

to be modified accordingly. This way we avoid traffic control

for inter-agent communication outside of the containers.

B. Real-Time Steps

Real-time steps modify the node-local parts of an appli-

cation during its operation. Table II shows an overview of

the real-time steps currently supported in our approach. As

visible from the table, real-time steps are simple changes such

as for example the rmComMapping (remove communication

mapping), which deletes two iptables firewall rules. Obviously,

these modifications can completely break an application, if not

applied carefully and with accurate timing across nodes.

For temporal coordination of the reconfiguration across

nodes, each real-time step is associated with a synchronization

point, a cycle offset and one of the three reconfiguration hooks.

The agent executes the real-time step in the dynamically

determined continuation cycle related to the synchronization

point plus the cycle offset. Depending on the specified hook a

real-time step can be placed in the administration phase either

before output processing, between I/O or after input processing

as indicated in Listing 1. The choice of the hook impacts data

flow, i.e., when specific inputs or outputs shall be started to

be treated differently. Figure 7 shows the effect of removing

a communication mapping from the CamSys between I/O.

One remark on the feasibility of a reconfiguration plan

w.r.t. the execution time of real-time steps: Real-time steps are

rtStep realization

addSwc start triggering the component’s processes in the

next execution phase

addMsg add tc class for rate control

addComMapping add firewall rules to mark and re-direct packets

from/to a specific port

addIOMapping start conveying information between an I/O and

a software component using a specified driver

(driver-specific)

rmIOMapping do no longer handover the hardware signal be-

tween the driver and the software component

rmComMapping do no longer forward specific UDP packets

rmMsg remove associated tc class

rmSwc do no longer trigger the component’s processes

Table II
OVERVIEW OF THE SUPPORTED RTSTEPS AND THE CORRESPONDING

ACTIONS TAKEN BY THE AGENT. RECONFIGURATIONS REGARDING I/O
AND COMPONENTS MODIFY THE AGENT ROUTINE BY ADDING OR

REMOVING TRIGGERS. RECONFIGURATIONS REGARDING NETWORK

MESSAGING ARE PERFORMED VIA MEANS OF IPROUTE2 AND IPTABLES.

Figure 7. The execution of the rtStep rmComMapping in the agent hook
between I/O: the output has already been granted by marking, forwarding and
moving the barrier qdisc in the output processing phase, so the gesture output
is sent once more. Starting in the third visible cycle, the gesture information
is not sent to the gateway component anymore.

assumed to take zero execution time (ZET) like the treatment

of drivers in the logical execution time paradigm [18] (and

thus in the real-time container architecture). For the scope of

this paper we compensate this assumption by over-estimating

the required agent reservation, which is possible due to the

limited number of reconfiguration steps per cycle. In practice,

it must be checked whether the agent reservation suffices for

an rcPlan by summing the worst-case execution times of steps

possibly performed in one cycle.

C. Background Steps

The third and last kind of reconfiguration steps are back-

ground steps. They address the problem that some operations

necessary for dynamic reconfiguration are long running and

also unpredictable in duration. Such operations cannot be

assumed to take ZET and put into the agent routine, but instead

they have to be run in background, while the application

continues. This applies to the following operations:
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Figure 8. The execution of bgSteps: An additional construction container is
running on each node during the complete system life-time to perform bgSteps
within resource control as triggered by the agent during cycle turn-over.

downloadSwc: A software component (i.e., a container image

and a description) is downloaded to the target node.

startSwc: An additional software component is initialized by

ramping up the corresponding container.

stopSwc: A running container is stopped.

For these operations an additional construction container

is running on each node during the complete system life-

time. The construction container is not an lxc container, but a

background worker running in a dedicated cgroup called bgc.

The construction container is assigned a static percentage of

the system resources on the node (network and cpu) to run

side by side with the embedded application without interfering

with it (see Figure 8). The background worker is a non-

real-time component of the agent and waits for background

steps – most often idling. If the next reconfiguration step is

a new background step, the agent routine triggers it inside

the construction container between I/O processing by sending

a message containing the job information and marks the

step as started. Between I/O processing in each subsequent

administration phase the agent checks if a completion message

from the construction container has been received. Only then

the agent consumes the background step and continues with

the next step.

Triggering and execution inside the construction container

depend on the kind of background step. For example, if a

new container is started, the container image must have been

installed. A component-specific start command is transmitted

to the background worker, which starts the container using lxc-

start providing the given start command. As the background

worker runs in the resource-controlled bgc cgroup and this

cgroup membership is inherited by lxc-start, the container

starts in background. During start, the component is moved

to the component’s own cgroup which is initially configured

such that bgc and the new container together do not exceed

the background reservation. We suggest that after initialization

the component indicates readiness and waits for the first

agent trigger to start a cycle by sleeping. Only when the

background worker notices that the component is ready it

reports completion to the agent routine. The component is now

ready to be wired and activated using real-time steps and the

construction container is ready for the next background step.

D. Reconfiguration of the CamSys

Figure 9 shows an architectural overview of the required

reconfiguration of the CamSys system, which is motivated in

Section III. The two software components shall be updated

during operation using our reconfiguration approach so that

Figure 9. Reconfiguration from CamSys to CamSys++: Logically the two
software components are replaced with their newer versions which have an
updated interface gesture’. An appropriate rcPlan has to specify in detail how
and when to change the Component Mapping, the Communication Mapping
and the I/O Mapping to reconfigure this application during operation without
stuttering.

no gesture is missed by the distributed application. For the

required update the agents first have to download and start the

new components in background. Then they have to synchro-

nize using a two-way handshake to rewire the new components

in a timely coordinated manner. Finally, the old components

need to be stopped in background.

To let the agents do so we propose the reconfiguration plan

given in Table III, which is composed of one reconfiguration

plan for each node. The most important application-specific

reconfiguration aspect is the timing of the real-time steps:

As the gesture information reaches the reporting gateway

component with two cycles delay and thus still has the old

API version used in the old gesture recognition component,

the two components are replaced timely shifted along the data

flow by appropriate cycle offsets as shown in Figure 10.

Given synchronization point two is reached in cycle c0. Up

to this cycle, the new components have been downloaded and

started in background followed by the two-way handshake.

Then both agents perform the real-time steps in the associated

cycle offset relative to c0. On node1 the first step is performed

directly in c0 as the step’s cycle offset is zero. The agent

applies the step rmIOMapping between IO processing. There-

fore, in the subsequent input processing phase, the video input

is not injected to the old gesture component anymore as it was

in the red data flow of the old application version. Instead,

the usb0 is injected to videoIn of the new gesture component

version due to the subsequent real-time step addIOMapping

– which is still performed in the same reconfiguration hook.

Performing the eight rtSteps for node1 the agent completely

takes out the old component and puts the new version in place.

On node2, the first real-time step is performed with one

cycle offset after input processing, because the old-formatted

message still needs to be routed to the old gateway version.

The agent prepares the system so that the expected mes-

sages from the new version will not be enqueued in the old

container’s barrier qdisc, but in the new one. In the cycle

127



with offset two, the agent performs the final switches to the

new gateway component. The resulting new data flow of the

updated application is highlighted in green. Both agents trigger

the stopping of the old versions in background in the cycle

turnover after their last real-time steps, which completes the

reconfiguration.

VI. EVALUATION

We evaluate our approach for synchronous reconfiguration

during operation. The evaluation is based on our prototype

of the real-time container architecture, which is extended

to perform modifications during operation as described in

Section V. The results shown here are gathered using the

onBtnSwitch system described in [2], which is almost equal

to the gesture recognition system from a runtime environment

perspective: The mapping and the resulting runtime behavior

are equal, so the agent has to do exactly the same steps to run

and reconfigure the application.

The two components are installed in two (identical) versions

on the respective nodes in pre-configured lxc containers.

Both nodes are SIMATIC IOT 2040 microcontrollers with a

custom Yocto image installed on industrial-grade SD cards.

The real-time container agent is implemented in C/C++ and

installed on each node. The agents are configured for running

onBtnSwitch 1.0 via corresponding yaml files. Besides exe-

cuting the distributed embedded application, the agents evolve

the application to onBtnSwitch 2.0 using the reconfiguration

plan described in Table III, with a few extensions as follows.

To gather runtime statistics of reconfiguration executions, the

agent additionally applies the same steps to roll back to the

old version and restarts the reconfiguration plan. We do not

include the download step in this evaluation, but use pre-

installed images for all components. We present the results

of this experiment in this section.

A. Reconfiguration Success

First of all we address the concern: Can the proposed

approach successfully reconfigure the distributed system dur-

ing operation? Indeed, reconfiguration can be performed as

described without breaking the running application: The syn-

chronization protocol works, so the two nodes always manage

to agree on a continuation cycle using the two-way handshake

when the cycles are aligned. Additionally, the proposed real-

time steps are sufficient in so far as in this evaluation system

the components can be exchanged and rewired during opera-

tion so that each message is processed by the corresponding

version. And finally, the background approach leads to stronger

isolation of the components as shown in Figure 11: Even

when starting the CPU-affine workload cat /dev/zero >
/dev/null the regular components are not interfered during

startup nor during execution nor during shutdown.

While the reconfiguration works, we point out a few non-

functional aspects, which may lead to problems in other

use cases. Using the synchronization protocol a two-way

handshake between two nodes costs four cycles of time

in our setup. In other setups with more nodes and hops,

the delay increases and also requires more synchronization

messages. Thus without multi-cast synchronization it seems

unlikely that this approach scales with regard to the net-

work topology. Depending on the configured quota for the

background operations it takes indirectly proportional more

time to start a container than usual. With no limit lxc-start

takes approximately 200ms; with 10% background quota it

takes approximately two seconds; with 5% approximately four

seconds and so forth. Consequently, for use cases that require

fast adaptations, a high percentage of over-provisioning must

be carried out to enable a sufficiently high background quota.

B. Reconfiguration Runtime Overhead

We measured the runtime of the agent and the real-time

steps performed (see Table IV and Table V). The concept

assumes zero execution time and compensates this assumption

with an increased agent reservation. This is reasonable for

the real-time steps which do not need to change the network

configuration, i.e., for addSwc, rmSwc, addIOMapping and

rmIOMapping. These steps take a fraction of a millisecond

and thus should be fast enough for many cases. However,

as the measurements of our prototype show, the networking-

related real-time steps have too high execution times: add-

ComMapping, rmComMapping, addMsg and rmMsg take at

least around 40ms and can take up to over 50ms. Our proto-

type even has problems running agent phases not involved in

reconfiguration. While the health check and the triggering are

limited to below 2ms, output processing and input processing

phases can take up to 80ms. Thus the originally demanded

period of 50ms for onBtnSwitch cannot be met by our

prototype – to make the reconfiguration work reliably, we had

to increase the period to 500ms and the agent reservation to

300ms.
These high execution times can be explained with four

reasons: First, the sophisticated Netfilter firewall feature of the

Linux kernel consumes much time for modifying a qdisc and

the firewall rule set. Second, there does not exist an official

library or Netlink documentation for programmatic firewall

configuration from user space, so our prototype has to use the

indirection of the command line interface (including argument

parsing etc.). Third, there were still background processes

outside of the application, which were not moved to the

background cgroup and thus demanding time. Forth, we have

observed that the peaks in input and output processing phases

are caused by interleaved qdisc modifications, which interfere

with each other even though they target different devices.

Thus, we consider the runtime overhead of the real-time

steps and of the other peaks to be an issue with the underlying

operating system and the employed frameworks. Although the

background processes have to be further isolated and the real-

time steps purified by moving them closer to the kernel, these

first results still look promising.

VII. CONCLUSION

We proposed a concept to reconfigure distributed embedded

applications during operation based on a real-time container
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Figure 10. A schematic timing diagram of a partial execution of the proposed reconfiguration plan for the CamSys: After synchronizing, the gesture recognition
component is updated one cycle earlier than the gateway component to cope with an API change.

rcPlan node1 rcPlan node2

download(gestureCtrl, v2.0) download(gatewayCtrl, v2.0)

start(gestureCtrl, v2.0) start(gatewayCtrl, v2.0)

notifyAndWait(node2, syncPoint(1)) waitForSync(syncPoint(1))

waitForSync(syncPoint(2)) notifyAndWait(node1, syncPoint(2))

rmIOMapping(videoIn, usb0) – offset 0, betweenIO rmComMapping(reportingEvents, msg1) – offset 1, afterInputs

rmComMapping(gestureOut, msg1) – offset 0, betweenIO rmMsg(msg1) – offset 1, afterInputs

rmMsg(msg1) – offset 0, betweenIO addMsg(msg1’, src(node1:2000), rate(10kbps)) – offset 1, afterInputs

rmSwc(gesture 1.0) – offset 0, betweenIO addComMapping(reportingEvents, msg1’, src(node1:2000),

addSwc(gesture 2.0) – offset 0, betweenIO to-dst(reporting-v2-0:2000)) – offset 1, afterInputs

addMsg(msg1’, clsid(1:1), rate(10kbps)) – offset 0, betweenIO rmIOMapping(reportingOut, eth0) – offset 2, betweenIO

addComMapping(gestureOut, msg1’, src(gesture-v2-0:2000), rmSwc(gateway 2.0) – offset 2, betweenIO

to-dst(node2:2000)) – offset 0, betweenIO addSwc(gateway 2.0) – offset 2, betweenIO

addIOMapping(videoIn, usb0, camDriver) – offset 0, betweenIO addIOMapping(reportingOut, eth0, gwpDriver) – offset 2, betweenIO

bgStep(stop(gestureCtrl, v1.0)) bgStep(stop(gatewayCtrl, v1.0))

Table III
THE RECONFIGURATION OF CamSys AS RCSTEPS FOR BOTH NODES. HORIZONTAL LINES INDICATE THE IMAGINARY SEPARATION INTO THE STEPS

PREPARE, SYNCHRONIZE, RECONFIGURE, CLEAN. THE IMPORTANT TRICK DUE TO INCOMPATIBILITY OF THE NEW GESTURE MESSAGE: THE GATEWAY

COMPONENT IS REPLACED LATER, SO THAT THE LAST GESTURE MESSAGE FROM THE OLD GESTURE COMPONENT IS PROCESSED BY THE OLD VERSION.

architecture. The concept employs a reconfiguration plan con-

sisting of three kinds of steps: background steps to down-

load and start new containers in background, synchronization

steps to agree on a continuation cycle, and real-time steps

to perform critical modifications of the running system in

a timely coordinated manner. We elaborated on conceptual

extensions of the real-time container architecture needed to

execute reconfigurations accordingly, e.g. the construction

container, the synchronization protocol and real-time step

timing. The reconfiguration steps are implemented by the agent

using features of Linux and lxc, but also custom inter-process

communication means between agent components on one node

and inter-agent communication across nodes. The evaluation

shows that the reconfiguration concept works in principle,

but some agent steps take more time than desired. Therefore,

development efforts towards more direct interaction with the

kernel is needed to achieve periods below 100ms, which is

not only required by the onBtnSwitch system.

Besides that, further research is required towards scalability

of the synchronization protocol with the network topology.

The recent improvements in the field of software-defined net-

working should be considered in the future. Another aspect is

state transfer between the old and the new component version

for time-consuming cases, i.e., when the state is large, has
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Figure 11. A trace of starting the cat component in background: while the agent and the ButtonController component keep their period a new container is
ramped up.

agent phase min max avg

health check 0.097 0.709 0.372

before outputs 0.452 14.487 0.544

output processing 0.083 78.081 8.438

between I/O 0.411 191.282 4.594

input processing 0.484 23.209 10.369

after inputs 0.219 13.839 1.025

trigger 0.031 1.242 0.661

agent overall 3.552 213.512 30.459

Table IV
THE NON-FUNCTIONAL BEHAVIOR OF THE REAL-TIME CONTAINER AGENT

W.R.T. ITS EXECUTION TIME PER CYCLE IN MILLISECONDS.

rtStep min max avg

addSwc 0.050 0.069 0.052

rmSwc 0.049 0.075 0.062

addComMapping 45.936 47.388 46.332

rmComMapping 49.927 56.512 51.215

addMsg 40.809 42.215 41.461

rmMsg 41.491 42.888 41.993

addIOMapping 0.050 0.077 0.063

rmIOMapping 0.050 0.266 0.088

Table V
THE EXECUTION TIMES OF THE REAL-TIME STEPS IN MILLISECONDS.

to be transformed, or when network transmission is required.

In general, if the complexity of a reconfiguration increases,

the question arises, how to come up with a reconfiguration

plan – can it be derived automatically from simpler primitives?

Additionally, the current real-time container architecture does

not cover fault handling beyond stopping the application: To
make reconfiguration feasible in practice it must be possible
to permit temporary quality degradation [1]. All in all, we are

confident that the concepts presented in this paper are useful

and build a good basis for future work in various directions.
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