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A B S T R A C T

This work presents a matrix-free finite element solver for finite-strain elasticity adopting an ℎ𝑝-
multigrid preconditioner. Compared to classical algorithms relying on a global sparse matrix,
matrix-free solution strategies significantly reduce memory traffic by repeated evaluation of the
finite element integrals.

Following this approach in the context of finite-strain elasticity, the precise statement of the
final weak form is crucial for performance, and it is not clear a priori whether to choose problem
formulations in the material or spatial domain. With a focus on hyperelastic solids in biomechan-
ics, the arithmetic costs to evaluate the material law at each quadrature point might favor an
evaluation strategy where some quantities are precomputed in each Newton iteration and reused
in the Krylov solver for the linearized problem. Hence, we discuss storage strategies to balance
the compute load against memory access in compressible and incompressible neo-Hookean
models and an anisotropic tissue model. Additionally, numerical stability becomes increasingly
important using lower/mixed-precision ingredients and approximate preconditioners to better
utilize modern hardware architectures.

Application of the presented method to a patient-specific geometry of an iliac bifur-
cation shows significant speed-ups, especially for higher polynomial degrees, when com-
pared to alternative approaches with matrix-based geometric or black-box algebraic multigrid
preconditioners.

1. Introduction

Implicit numerical solvers for nonlinear PDE problems in structural mechanics typically spend most of the time in the solution
of linear systems of equations, arising from the linearization in Newton’s method for nonlinear problems. Classical matrix-based
finite element solvers assemble a (sparse) system matrix and then, in a separate step, solve the linear system. During the solution
phase, matrix–vector products (or related triangular matrix solves) are usually the most important computational kernels. On current
hardware, this is rooted in high memory traffic from loading matrix entries into compute units performing the arithmetic work. For
higher polynomial degrees 𝑝 ≥ 2, the increased number of entries per row leads to reduced throughput per unknown. Matrix-
free algorithms, on the contrary, avoid storing the system matrix explicitly to reduce memory traffic, typically yielding improved
performance for 𝑝 ≥ 2. Whenever the numerical method (or the iterative techniques involved) need to evaluate the nonlinear
or linearized operator, the matrix-free approach re-evaluates the spatial integrals of the finite element discretization by numerical
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quadrature rules, which we call on-the-fly evaluation in this text. State-of-the-art matrix-free methods might further incorporate sum-
actorization [1], SIMD vectorization (Single Instruction Multiple Data) over multiple elements [2,3], and parallelization via domain

decomposition [4]. This can possibly lead to higher performance, as memory traffic and operation counts are significantly reduced
or higher-order methods. Comparing matrix-based operator evaluation with its matrix-free counterpart adopting sum factorization

with polynomial degree 𝑝 and dimension 𝑑, operation counts and memory traffic reduce from an estimated (𝑝2𝑑 ) to (𝑝𝑑+1) and
(𝑝𝑑 ), respectively.

In structural mechanics, recent developments include the work by Davydov et al. [5], who considered a purely displacement-
ased approach for finite-strain hyperelasticity in a ℎ-multigrid (geometric multigrid) setup. Brown et al. [6] and Mehraban et al. [7]

in comparison adopt a 𝑝-multigrid (polynomial) approach with algebraic multigrid (AMG) coarse grid solvers, where the former
everages GPU acceleration. In [8], Fabien presents a hybridizable discontinuous Galerkin solver for linear elasticity (in first order

form), combining GPU acceleration, 𝑝-multigrid and an AMG coarse grid solver. Kiran et al. [9–11] tackle elastoplasticity with a
focus on GPU implementations, whereas the resulting linear systems from lower-order discretizations are solved via Ginkgo [12]
or Cusp.

The multigrid strategy used herein to precondition an outer Krylov method builds upon our previous developments [13–16],
using ℎ𝑝-multigrid with matrix-free operator evaluation in single precision, and an AMG-preconditioned Krylov solver as coarse-level
solver. The implementations of the methods presented in this work are carried out in the software project ExaDG [17] (see [15]
for a comprehensive overview and [18] for the exa-scale project as a whole), which implements numerical solvers for many PDE
model problems in computational fluid and structural dynamics and is based on the deal.II [19] finite-element library and in
particular its matrix-free infrastructure [2,13].

Matrix-free finite element solvers for hyperelastic problems bear great potential to speed up simulations in the context of
biomechanics. In fact, soft biological tissue often serves as the prime example for anisotropic hyperelastic continua, and hence,
advances in solver design can significantly reduce the simulation times for patient-specific geometries of the aorta or other vessels.
This in turn immediately impacts medical device design, surgery planning or enables studies on virtual cohorts to derive statistically
sound biomarkers, rendering solver design and advancements highly relevant for such applications.

Constitutive modeling plays a central role in these biomedical applications. The model by Holzapfel et al. [20] is considered
herein. It incorporates non-symmetrically dispersed collagen fiber families reinforcing a nearly incompressible neo-Hookean ground
material, which is key to capture the load-bearing behavior of arterial tissue and additionally confronts us with new challenges
egarding fast integration due to its constituents. We adopt a purely displacement-based formulation similar to [5,6], where

we enforce the incompressibility constraint via a penalty term. This standard approach might suffer from locking for high bulk
moduli using linear finite elements. Higher-order finite element methods significantly reduce this problem [21–24] and are hence
particularly relevant for the target applications in biomechanics, as thin-walled, anisotropic and nearly incompressible structures are
especially prone to locking. More involved alternative approaches are available with mixed displacement-pressure formulations [25–
28], enhanced strain methods [29,30], local pressure-projection methods [31,32], or non-conforming finite elements such as

rouzeix–Raviart or DG formulations [33–36].
The contributions of this work are three-fold: First, we extend numerically stable formulations from Shakeri et al. [37] for the

compressible and nearly incompressible neo-Hookean model to the tissue model and present forward stability test results. This is
motivated by current hardware trends shifting towards mixed/low-precision arithmetic and the mixed-precision multigrid strategy
used herein. Reformulating the weak form of standard structural mechanics problems in spatial configuration results in different
formulations, which might simplify the terms to be integrated or allow for storing less linearization data at integration points.
This leads to the second contribution, which is on analyzing these alternative formulations of linear(-ized) operators in terms
of precomputing and storing linearization data at quadrature points for the compressible and nearly incompressible constitutive

odels and a fiber-reinforced tissue model [20]. Third, these ingredients are embedded into an ℎ𝑝-multigrid framework with matrix-
free smoothing and level transfer, whose performance is compared to a matrix-based AMG preconditioner in a practically relevant
problem. This last aspect thus bridges the gap between theoretical performance improvements and numerical stability considerations
to the practically relevant setting, where the applicability of the introduced concepts is demonstrated.

This paper is organized as follows: Section 2 introduces finite-strain elasticity in the classical Lagrangian setting and an alternative
formulation integrating over the spatial configuration. Thereafter, the relevant material models are introduced in Section 3. The
related weak forms are discussed in Section 4 in terms of their numerical stability, while precomputing strategies are detailed in
Section 5. The matrix-free ℎ𝑝-multigrid preconditioner adopting the proposed ingredients is discussed in Section 6. Numerical tests
hen demonstrate improved stability for the proposed weak forms in Section 7.1, evaluate the linear(-ized) operator in terms of its

throughput and memory traffic in Section 7.2, and showcase the framework’s applicability to a patient-specific iliac bifurcation with
physiological parameters in Section 7.3. A summary and conclusions are then given in Section 8.

2. Continuum mechanics and finite element solver

This section presents standard relations from continuum mechanics to derive the nonlinear boundary value problem related to
finite-strain elasticity and follows classical literature (see, e.g., [38,39]). We are interested in finding the map from the material to
the spatial configuration 𝝓 ∶ 𝛺0 → 𝛺𝑡. It connects points 𝑿 ∈ 𝛺0 to points 𝒙 ∈ 𝛺𝑡, that is, maps material coordinates in a body’s
material or undeformed configuration 𝛺0 to spatial coordinates in the body’s spatial or deformed configuration 𝛺𝑡. Introducing a
displacement field 𝒖, we can express the map as
𝝓(𝑿) = 𝑿 + 𝒖(𝑿), with 𝒖(𝑿) = 𝒙(𝑿) −𝑿.
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The boundaries of both material and spatial configurations with unit outward normals 𝑵 and 𝒏, respectively, are decomposed into
on-overlapping Dirichlet and Neumann parts, 𝜕 𝛺0 = 𝛤D

0 ∪ 𝛤N
0 and 𝜕 𝛺𝑡 = 𝛤D

𝑡 ∪ 𝛤N
𝑡 . We further introduce the deformation gradient

and its determinant, referred to as the Jacobian 𝐽 ,

𝐅 ∶= 𝐈 + Gr ad 𝒖, 𝐽 ∶= det 𝐅.
Within this contribution, we denote with Gr ad (⋅) the gradient with respect to the material coordinates 𝑿 ∈ 𝛺0, while its spatial
ounterpart, g r ad (⋅), denotes the gradient with respect to spatial coordinates 𝒙 ∈ 𝛺𝑡.

Following the classical Lagrangian approach, the static linear momentum balance in material configuration 𝛺0 reads

− Div𝐏 = 𝑩(𝑿) in 𝛺0, (1)

with Div (⋅) being the divergence with respect to 𝑿, a given body force [𝑩 ∈ 𝐿2(𝛺0)]𝑑 , the first Piola–Kirchhoff stress tensor 𝐏 ∶= 𝐅 𝐒,
and the second Piola–Kirchhoff stress tensor 𝐒. Eq. (1) is independent of the material model and the underlying constitutive relation.
We further introduce strain measures being the right Cauchy–Green tensor 𝐂 and the Green–Lagrange strain tensor 𝐄,

𝐂 ∶= 𝐅T𝐅, 𝐄 ∶= 1∕2 (𝐂 − 𝐈) ,

to define 𝐒(𝐄) or 𝐒(𝐂), capturing the material behavior, see Section 3. Finally, Eq. (1) is equipped with suitable Dirichlet and
Neumann boundary conditions, 𝒖|𝛤D

0
= 𝒈𝐷 ∈ [𝐻1∕2(𝛤D

0 )]𝑑 and 𝐏𝑵|𝛤N
0

= 𝒉𝑁 ∈ [𝐻−1∕2(𝛤N
0 )]𝑑 , to close the system. Employing a

tandard displacement-based finite element formulation, the residual in weak form then reads

𝑟𝛺0
(𝒗, 𝒖) ∶= (Gr ad 𝒗,𝐏)𝛺0

−
(

𝒗,𝒉𝑁
)

𝛤N
0
− (𝒗,𝑩)𝛺0

, (2)

where (⋅, ⋅)𝛺0
denotes the standard inner product of the two arguments integrated over the given domain. To state the weak forms

elated to the nonlinear finite strain elasticity problem, define the vector-valued Sobolev spaces

𝐻1
𝒈𝐷

(𝛺0) ∶=
{

𝒗 ∈ [𝐻1(𝛺0)]𝑑 ∶ 𝒗|𝛤D
0
= 𝒈𝐷

}

and 𝐻1
0 (𝛺) ∶=

{

𝒗 ∈ [𝐻1(𝛺0)]𝑑 ∶ 𝒗|𝛤D
0
= 𝟎

}

of square integrable functions with square integrable first derivatives on 𝛺0. Similar definitions for respective counterparts defined
on 𝛺𝑡 are omitted for brevity. In material configuration, this leads to

Problem 2.1. Find 𝒖 ∈ 𝐻1
𝒈𝐷

(𝛺0), such that

𝑟𝛺0
(𝒗, 𝒖) = 0 ∀𝒗 ∈ 𝐻1

0 (𝛺0). (3)

Regarding well-posedness of Problem 2.1 under suitable assumptions, we refer the reader to [40–42], noting that the existence
of minimizers of the related energy functional cannot be guaranteed for general hyperelastic materials and load configurations.
Herein, we employ standard 𝐶0-continuous finite-dimensional subspaces and Newton’s method to solve the nonlinear problem (3).
In Newton’s method, each iteration updates the initial guess 𝒖0 via 𝒖𝑘+1 = 𝒖𝑘 +𝛥𝒖, 𝑘 = 0,… , 𝑁max starting from 𝒖0 with 𝒖0|𝛤D

0
= 𝒈𝐷.

The increment 𝛥𝒖 is obtained by solving

Problem 2.2. Find 𝛥𝒖 ∈ 𝐻1
0 (𝛺0) given the previous iterate 𝒖𝑘 ∈ 𝐻1

𝒈𝐷
(𝛺0) by solving

D𝒖𝑟𝛺0
(𝒗, 𝛥𝒖)||

|𝒖𝑘
= −𝑟𝛺0

(𝒗, 𝒖𝑘) ∀𝒗 ∈ 𝐻1
0 (𝛺0). (4)

The directional derivative corresponding to Eq. (2) reads

D𝒖𝑟𝛺0
(𝒗, 𝛥𝒖)||

|𝒖𝑘
=
(

Gr ad 𝒗, (D𝒖𝐅)𝐒 + 𝐅D𝒖𝐒
)

𝛺0
, (5)

where all terms are evaluated using 𝒖𝑘. A basic Newton method is provided in Algorithm 1, which for the sake of brevity does
ot contain a line-search algorithm or load stepping procedure. It highlights the update of stored quadrature point data of central
nterest within this work, see Section 5.

Algorithm 1 Generic Newton’s method to solve 𝒓(𝒖) = 𝟎 with quadrature point data update.
1: function NewtonSolver(𝒖0, 𝜖abs, 𝜖r el, 𝑁max)
2: 𝒖0 ← 𝒈𝐷 on 𝛤D

0 ⊳ initialize iterate and enforce Dirichlet conditions
3: 𝑘 = 0 ⊳ initialize counter
4: while ||𝒓(𝒖𝑘)|| > 𝜖abs and ||𝒓(𝒖𝑘)|| > 𝜖r el ||𝒓(𝒖0)|| and 𝑘 < 𝑁max do
5: update quadrature point data ⊳ see Sec. 5
6: solve for Newton update: K 𝛥𝒖 = −𝒓(𝒖𝑘)
7: 𝒖𝑘 ← 𝒖𝑘 + 𝛥𝒖 ⊳ update iterate
8: 𝑘 ← 𝑘 + 1 ⊳ update iteration counter
9: return 𝒖𝑘, 𝑘 − 1 ⊳ return last iterate and number of iterations
3 
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The integrals in the weak form of the Newton update step (4) can be equivalently written as integrals over the spatial
configuration 𝛺𝑡. Specifically, one may rewrite the domain integral involving the stress, (Gr ad 𝒗,𝐏)𝛺0

, keeping the Neumann data
and body force unchanged. Introducing the Kirchhoff stress 𝝉 ∶= 𝐅 𝐒 𝐅T yields

(Gr ad 𝒗,𝐏)𝛺0
=
(

Gr ad 𝒗, 𝝉 𝐅−T)
𝛺0

=
(

(Gr ad 𝒗)𝐅−1, 𝝉
)

𝛺0
= (g r ad 𝒗, 𝝉)𝛺0

= (1∕𝐽 g r ad 𝒗, 𝝉)𝛺𝑡
=
(

1∕𝐽 g r adS𝒗, 𝝉)𝛺𝑡
,

using 𝐏 = 𝐅 𝐒, g r ad 𝒗 = (Gr ad 𝒗)𝐅−1, the notation (⋅)S ∶= 1∕2
[

(⋅) + (⋅)T] for the symmetric part of a tensor, and symmetry of 𝝉 in the
last step. The residual then reads

𝑟𝛺𝑡
(𝒗, 𝒖) ∶= (

1∕𝐽 g r adS𝒗, 𝝉)𝛺𝑡
−
(

𝒗 (𝝓 (𝑿)) ,𝒉𝑁
)

𝛤N
0
− (𝒗 (𝝓 (𝑿)) ,𝑩)𝛺0

, (6)

where 𝒗 (𝝓 (𝑿)) is equivalent to the test functions in the reference domain 𝛺0 and independent of 𝒖. The spatial counterpart of the
eak form of the nonlinear finite strain elasticity problem, Problem 2.1, reads

Problem 2.3. Find 𝒖 ∈ 𝐻1
𝒈𝐷

(𝛺𝑡), such that

𝑟𝛺𝑡
(𝒗, 𝒖) = 0 ∀𝒗 ∈ 𝐻1

0 (𝛺𝑡).

Integrating over the spatial domain 𝛺𝑡, the increment 𝛥𝒖 is obtained in each iteration of Newton’s method by solving

Problem 2.4. Find 𝛥𝒖 ∈ 𝐻1
0 (𝛺𝑡) given the previous iterate 𝒖𝑘 ∈ 𝐻1

𝒈𝐷
(𝛺𝑡) by solving

D𝒖𝑟𝛺𝑡
(𝒗, 𝛥𝒖)||

|𝒖𝑘
= −𝑟𝛺𝑡

(𝒗, 𝒖𝑘) ∀𝒗 ∈ 𝐻1
0 (𝛺𝑡).

The directional derivatives of the stress term are given by

D𝒖
(

1∕𝐽 g r adS𝒗, 𝝉)𝛺𝑡
= D𝒖

(

g r adS𝒗, 𝝉)𝛺0
=
(

g r adS𝒗,D𝒖𝝉
)

𝛺0
+
(

(Gr ad 𝒗) D𝒖𝐅−1, 𝝉
)

𝛺0
.

Introducing the contravariant push-forward of the fourth-order material part of the stiffness tensor denoted as 𝐽c [38,43] and
ransformed onto 𝛺𝑡, this can be rewritten as

(

g r ad 𝒗, 𝐽c ∶ g r adS𝛥𝒖)𝛺0
+ (g r ad 𝒗, (g r ad𝛥𝒖) 𝝉)𝛺0

=
(

1∕𝐽 g r ad 𝒗, 𝐽c ∶ g r adS𝛥𝒖 + (g r ad𝛥𝒖) 𝝉)𝛺𝑡
. (7)

Note that the actual fourth-order tensor c need not be computed, but rather its action on a symmetric second-order tensor to evaluate
𝐽c ∶ (⋅)S in Eq. (7). Again, (6) and (7) are independent of the material model, which enters via 𝝉 and c to be discussed in Section 3.

Following the strategy of spatial integration comes at the cost of updating the vertex positions of the finite element mesh and
related data. When updating the quadrature point data in Algorithm 1, the spatial grid, which approximates the body in its deformed
configuration 𝛺𝑡, is updated simultaneously.

3. Constitutive modeling

The second Piola–Kirchhoff stress tensor in the residuals (2) or (6) is defined in terms of a strain measure, i.e., 𝐒 = 𝐒(𝐂) or
= 𝐒(𝐄). For hyperelastic continua, the constitutive relation is expressed in terms of the strain–energy density 𝛹 (per unit reference

olume),

𝐅−1𝐏 = 𝐒 ∶=
𝜕 𝛹 (𝐄)
𝜕𝐄

= 2 𝜕 𝛹 (𝐂)
𝜕𝐂

.

A compressible neo-Hookean model (cNH) is given by [44],

𝛹cNH(𝐂) = 𝜇∕2
(

𝐼1 − t r 𝐈 − 2 ln 𝐽) + 𝜆 ln2 𝐽 , 𝐒cNH = 𝜇𝐈 − (𝜇 − 2𝜆 ln 𝐽 )𝐂−1, (8)

with the first invariant 𝐼1 ∶= t r 𝐂, and the material parameters being the shear modulus 𝜇 and Lamé coefficient 𝜆. For the nearly
incompressible neo-Hookean model (iNH) yielding 𝐽 ≈ 1, the deformation gradient is split into isochoric and volumetric parts
according to Flory [45], yielding

𝛹iNH(𝐂) = 𝜇∕2
(

𝐽−2∕3𝐼1 − t r 𝐈) + 𝜅𝑏∕4
(

𝐽 2 − 1 − 2 ln 𝐽) , 𝐒iNH = 𝜇 𝐽−2∕3𝐈 +
[

𝜅𝑏∕2(𝐽 2 − 1) − 𝜇∕3𝐽−2∕3𝐼1
]

𝐂−1, (9)

with bulk modulus 𝜅𝑏 enforcing 𝐽 = 1 as 𝜅𝑏 → ∞, acting as a penalty term.
Now, for the target applications in biomedical engineering and medicine, more involved constitutive relations are required to

capture the material behavior. Aortic tissue of prime interest within this work shows an anisotropic stiffening effect under large
trains due to collagen fibers reinforcing the ground material. The model by Holzapfel et al. [20], herein simply referred to as the

fiber model (fiber), adds exponential terms to the strain–energy density. The main motivation for this choice lies in the fact that we
aim to showcase and analyze the potential performance impact in realistic scenarios. Our performance improvements hence directly
translate to problems of high practical relevance, which has not been addressed in literature so far. The model includes two fiber
families and allows accounting for the non-symmetric fiber dispersion, which is more significant in the tangential plane compared
4 
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Table 1
Parameters for the nearly incompressible fiber model [20] fit to material tests of aortic medial tissue, taken from [52,53]. The bulk
modulus 𝜅𝑏, i.e., the penalty term in purely displacement-based formulations corresponds to a Poisson’s ratio of 0.49.
𝜇 [kPa] 𝜅𝑏 [kPa] 𝑎 [−] 𝑏 [−] 𝑘1 [kPa] 𝑘2 [−] 𝛷 [◦] 𝐻11 [−] 𝐻22 [−] 𝐻33[−]

62.1 3084.3 3.62 34.3 1.4 22.1 27.47 0.9168 0.0759 0.0073

to the out-of-plane direction [46]. The strain–energy density combines the neo-Hookean ground material 𝛹iNH given in Eq. (9) and
collagen fiber contributions via 𝛹c as

𝛹f iber (𝐂,𝐇𝑖) = 𝛹iNH(𝐂) +
∑

𝑖=4,6
𝛹c(𝐂,𝐇𝑖) = 𝛹iNH(𝐂) +

∑

𝑖=4,6

{ 𝑘1
2𝑘2

[

exp
(

𝑘2𝐸2
𝑖
)

− 1] if 𝐼⋆𝑖 > 1,

0 else,
(10)

where 𝑘1 is a stiffness-like parameter and 𝑘2 a dimensionless shape parameter. The strain energy related to collagen fibers 𝛹c only
contributes to the total energy 𝛹 , when the squared fiber stretches defined as

𝐼⋆𝑖 = (𝑴1 ⊗𝑴1) ∶ 𝐂, 𝑖 = 4, 6,
signal tension, i.e., when 𝐼⋆4 > 1 or 𝐼⋆6 > 1, while fiber bundles with compressed mean fiber buckle immediately (cf. [47]). The
symmetric structure tensor 𝐇𝑖 and strain-like quantity 𝐸𝑖 are defined as

𝐇𝑖 = 𝐻11𝑴1 ⊗𝑴1 +𝐻22𝑴2 ⊗𝑴2 +𝐻33𝑴3 ⊗𝑴3, 𝐸𝑖 = 𝐇𝑖 ∶ (𝐂 − 𝐈) = t r (𝐇𝑖𝐂) − 1. (11)

For the targeted applications in biomechanics and medicine, the orthonormal basis spanned by 𝑴1, 𝑴2 and 𝑴3 is related to tailored
material coordinate systems in the reference configuration [48–50]. Given a suitable material coordinate system, the mean in-plane
and out-of-plane angles 𝛷 and 𝛩 = 0 then yield

𝑴1 = 𝑬1 cos𝛷 − 𝑬1 sin𝛷 , 𝑴2 = 𝑬2 sin𝛷 + 𝑬2 cos𝛷 , 𝑴3 = 𝑬3,

describing the classical helical patterns of collagen fibers in vascular tissue. Here, 𝑬1 aligns with the circumferential direction, 𝑬2
with the longitudinal direction, and 𝑬3 with the radial direction. This specific representation of 𝐇𝑖 in (11) assumes a bivariate
von Mises distribution of the fiber density [20]. Multiplicative decomposition then leads to only three nonzero components of the
generalized structure tensor in the reference configuration,

𝐻11 =
1 −𝐻33

2

(

1 + 1(𝑎)
0(𝑎)

)

, 𝐻22 =
1 −𝐻33

2

(

1 − 1(𝑎)
0(𝑎)

)

, 𝐻33 =
1
4𝑏

−
exp(−2𝑏)

√

2𝜋 𝑏 er f (
√

2𝑏)
,

where 0 and 1 denote the Bessel functions of the first kind of orders 0 and 1, respectively, and er f (⋅) is the error function, see [51]
for details. Thus, the parameters 𝑎 and 𝑏 together with the mean in-plane angle 𝛷 describe the dispersion of the collagen fibers
based on the material coordinate system spanned by 𝑬1, 𝑬2 and 𝑬3.

This leads to the second Piola–Kirchhoff stress tensor 𝐒f iber as a sum of the collagen fiber 𝐒c and nearly incompressible
eo-Hookean 𝐒iNH (9) contributions, that is

𝐒f iber = 𝐒iNH(𝐂) + 𝐒c(𝐂,𝐇𝑖) = 𝐒iNH(𝐂) +
∑

𝑖=4,6
2𝑘1 exp

(

𝑘2𝐸
2
𝑖
)

𝐸𝑖 𝐇𝑖,

where physiological tissue parameters used in this work [52,53] are summarized in Table 1. The second Piola–Kirchhoff stress tensor
nd the related directional derivative are the only ingredients in the Newton solver specific to the constitutive model and can be
ound in Appendix.

4. Stable and fast numerics for hyperelasticity

The momentum balance residuals (2) and (6) and their respective directional derivatives feature terms that may suffer from
significant numerical instability. Especially when considering ongoing and expected future hardware-driven developments towards
mixed- and low-precision strategies [54], the classical formulations have to be reviewed. In the following, we extend numerically
table forms of the strain energy density and the stresses from Shakeri et al. [37] towards the fiber model and furthermore present
table forms of the directional derivatives, which have not been reported in literature yet. Furthermore, we present a fast evaluation
cheme for 𝐽−2∕3 based on Newton’s method.

Starting with the strain measures and their evaluation, the Green–Lagrange strain tensor defined as

𝐄 ∶= 1∕2 (𝐂 − 𝐈) = 1∕2
(

𝐅T𝐅 − 𝐈
)

,

shows cancellation in the small strain regime since components of 𝐅, which is close to the unit tensor 𝐈, are used in floating-point
perations, followed by a subtraction of the unit tensor. To reduce loss of accuracy, we evaluate 𝐄 as

𝐄 = 1∕2
(

Gr ad 𝒖 + Gr adT𝒖 + Gr adT𝒖 Gr ad 𝒖) . (12)

Similar reasoning lies behind computing the Green–Euler strain tensor according to
( T ) ( T T )
𝐛̃ ∶= 1∕2 (𝐛 − 𝐈) = 1∕2 𝐅 𝐅 − 𝐈 = 1∕2 Gr ad 𝒖 + Gr ad 𝒖 + Gr ad 𝒖 Gr ad 𝒖 ,

5 
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where the left Cauchy–Green tensor 𝐛 ∶= 𝐅 𝐅T, suffering from similar cancellation for 𝐅 ≈ 𝐈, is avoided. Reformulations of the strain
measures also affect the fiber invariants, which are evaluated as

𝐸𝑖 ∶= 𝐇𝑖 ∶ (𝐂 − 𝐈) = 2𝐇𝑖 ∶ 𝐄, 𝐼⋆𝑖 ∶=
(

𝑴1 ⊗𝑴1
)

∶ 𝐂 = 2 (𝑴1 ⊗𝑴1
)

∶ 𝐄 + t r (𝑴1 ⊗𝑴1
)

.

Further recurring terms in finite-strain (hyper-)elasticity are, e.g., the inverse right Cauchy–Green tensor 𝐂−1. Cancellation can
e reduced by inverting 𝐅, where cond(𝐅) = √

cond (𝐂), and computing 𝐂−1 = 𝐅−1 𝐅−T. rather than inverting 𝐂. Note that 𝐅−1 is
ften needed anyways, such that this approach also requires fewer arithmetic operations.

The stress tensor of nearly incompressible continua and its derivative also contain (𝐽− 1) or similar terms. Since we aim to enforce
𝐽 = 1 through a penalty term scaled by the bulk modulus 𝜅𝑏 as in Eq. (9), we inevitably have 𝐽 ≈ 1 as the bulk modulus increases.
As pointed out by Shakeri et al. [37], numerical stability can be improved significantly by introducing 𝐽−1 ∶= 𝐽 − 1 = det (𝐅) − 1
and avoiding forming det (𝐅) first and subtracting 1 from the result, but instead using the components of Gr ad 𝒖 directly. This can
further be exploited to rewrite (𝐽 2 − 1) in a more stable manner as 𝐽−1(𝐽−1 + 2).

Compressible and (nearly) incompressible hyperelastic continua also contain more complex functions taking the Jacobian as an
argument. Within the current work, ln(𝐽 ) and 𝐽−2∕3 are of interest both in terms of numerical stability and computational efficiency.

erein, SIMD vectorization is enabled straight-forwardly via polynomial or rational approximations to process data on all lanes of
 SIMD vector. In addition to that, restricting input argument ranges allows for further optimizations. For ln(𝐽 ), we define [37,55]

ln(𝐽 ) = ln(𝐽−1 + 1) = ln+1(𝐽−1), ln+1(𝑥) ∶= 2
∞
∑

𝑛=0

1
2𝑛 + 1

( 𝑥
2 + 𝑥

)2𝑛+1
.

Note that the sum only contains odd powers of 𝑥 ∈ (−1,∞), such that only terms with the same sign are added, guaranteeing
umerical stability when summing a fixed number of terms small to large.

For (nearly) incompressible continua, the term 𝐽−2∕3 plays a central role, as its evaluation can be costly. Possible options are:
(i) looping over SIMD vectors and resorting to standard techniques for scalar types, (ii) exploiting the floating point representation
and approximation via summation (see [56]), or (iii) a Newton solver given a good initial guess 𝐽 ≈ 1 ⇔ 𝐽−2∕3 ≈ 1. Depending on
the storage strategy used to evaluate the integrals, we consider (iii) for on-the-fly evaluation, but (i) or (ii) in case 𝐽−2∕3 is stored
anyways, see Section 5.

A Newton solver for 𝑥 = 𝐽−2∕3 ⇔ 𝑓 (𝑥) ∶= 𝑥−3 − 𝐽 2 = 0 uses 𝑓 ′(𝑥) = −3𝑥−4, leading to
𝑥𝑘+1 = 𝑥𝑘 −

𝑓 (𝑥𝑘)
𝑓 ′(𝑥𝑘)

= 1∕3
(

4𝑥𝑘 − 𝐽 2𝑥4𝑘
)

(13)

for 𝑘 = 0,… , 𝑁 starting from 𝑥0 = 1 or some previously computed 𝐽−2∕3. Since for the undeformed initial state of the elastic structure
we have 𝒖 = 𝟎 ⇒ 𝐅 = 𝐈 ⇒ 𝐽 = 1 and due to incompressibility, 𝐽 ≈ 1 holds throughout the entire motion, we employ a fixed number of
3 Newton iterations according to Algorithm 2. This is justified by local quadratic convergence of Newton’s method and an excellent
nitial guess exploiting 𝐽−2∕3 ≈ 1.

Algorithm 2 Approximation of 𝐽−2∕3 using 𝑁 Newton steps (13)
1: function FastApproxJpow(𝐽−1, 𝑁)
2: 𝛼 = 1∕3

[(

𝐽−1 + 2) 𝐽−1 + 1] ⊳ store 1∕3 𝐽 2

3: 𝛽 = 4∕3 − 𝛼 ⊳ assignment is first iteration w. 𝑥0 = 1
4: for 𝑛 = 1,… , 𝑁 − 1 do
5: 𝛾 = 𝛽2 𝛽2 ⊳ 𝛾 = 𝑥4𝑘 by repeated squaring
6: 𝛽 ← 4∕3 𝛽 − 𝛼 𝛾
7: return 𝛽

Similar to ln(𝐽 ) and 𝐽−2∕3, the last ingredient required with regards to the material models considered within this work is a SIMD-
compatible exp(𝑥) appearing in the fiber model (10). Here, we adopt the approach by Proell et al. [57], which is based on [56,58,59],
and exploits the floating point representation for fast evaluation.

5. Storage strategies for hyperelasticity

Contrary to matrix-based algorithms, the integrals involved in the residual and its linearization are evaluated repeatedly. For
achieving optimal performance, the memory access and arithmetic workload of these operations need to be compared to the
apabilities of the underlying hardware. Depending on the material models’ complexity, precomputing and storing data on the
ntegration point level might be beneficial if the in-core resources such as arithmetic units or available registers are highly busy.

More precisely, we aim to identify certain data that we compute once per nonlinear Newton iteration, store it at the integration
points, and load it during operator evaluation, see Algorithm 1, whereas other quantities are computed repeatedly in each matrix–
ector product. Based on the observations from Davydov et al. [5], we introduce three stages in this regard: (i) on-the-fly integral

evaluation of all terms, (ii) precompute and store scalar quantities where useful, and (iii) precompute and store scalars and second-
order tensors where useful. Additionally, the symmetry of stresses and strains and certain intermediate quantities is exploited both in
6 
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terms of memory consumption and when performing operations such as addition, multiplication, double contraction, push-forward
nd others.

In the following, the final weak forms as derived in Appendix are presented in stable form besides the classical form, while
uantities to be stored are highlighted as (⋅) if they are scalar, and as (⋅) if they are second-order (possibly symmetric) tensors. Here,

the stable form of the fiber model, the linearizations using integration over the spatial configuration, and the storage strategies
n particular are novel contributions. Common to all constitutive models is the Newton update step in Algorithm 1. In material

configuration, we seek 𝛥𝒖 ∈ 𝐻1
0 (𝛺0), such that there holds

(

Gr ad 𝒗, (Gr ad𝛥𝒖)𝐒 + 𝐅D𝒖𝐒
)

𝛺0
=
(

𝒗,𝒉𝑁
)

𝛺0
−
(

Gr ad 𝒗,𝐅𝐒
)

𝛺0
+ (𝒗,𝑩)𝛺0

∀𝒗 ∈ 𝐻1
0 (𝛺0),

with the directional derivative D𝒖𝐒 defined shortly. As indicated, the tensors 𝐒 (symmetric) and 𝐅 can be precomputed and stored.
Note that the additional tensors and local operations only involve a modest number of simple operations, such as multiplications
nd additions, to be performed in local variables, typically mapped to registers for execution on hardware. These are cheaper than
emory accesses on all temporary hardware architectures. The alternative approach integrating over the spatial domain requires

olving for 𝛥𝒖 ∈ 𝐻1
0 (𝛺𝑡), such that there holds

(

1∕𝐽 g r ad 𝒗, 𝐽c ∶ g r adS𝛥𝒖 + g r ad𝛥𝒖 𝝉
)

𝛺𝑡
=
(

𝒗(𝝓−1),𝒉𝑁
)

𝛤N
0
−
(

1∕𝐽 g r adS𝒗, 𝝉
)

𝛺𝑡
+
(

𝒗(𝝓−1),𝑩
)

𝛺0
∀𝒗 ∈ 𝐻1

0 (𝛺𝑡),

where we store the scalar quantity 1∕𝐽 as well as the symmetric tensor 𝝉. The stress tensors and their derivatives depend on the
aterial model given in the following.

Compressible neo-Hookean model in material configuration.
𝐒cNH = 𝜇𝐈 −

(

𝜇 − 2𝜆ln 𝐽)𝐂−1 𝑑=3
= 𝐂−1

(

2𝜇𝐄 + 2𝜆 𝐈 ln+1 𝐽−1
)

(14)

D𝒖𝐒cNH =
(

𝜇 − 2𝜆ln 𝐽) 2
(

𝐅−1 (Gr ad𝛥𝒖)𝐂−1
)S

+ 2𝜆 t r
(

𝐅−1Gr ad𝛥𝒖
)

𝐂−1

=
(

𝜇 − 2𝜆ln+1 𝐽−1
)

2
(

𝐅−1 (Gr ad𝛥𝒖)𝐂−1
)S

+ 2𝜆 t r
(

𝐅−1Gr ad𝛥𝒖
)

𝐂−1

The notation 𝑑=3
= indicates that we assume 𝑑 = 3 for the sake of presentation, since a term of the form 𝐈 (1 − 𝑑∕3) cancels here and at

similar places in this manuscript.

Spatial integration of the compressible neo-Hookean model.
𝝉cNH = 𝜇 𝐛 −

(

𝜇 − 2𝜆ln 𝐽) 𝐈 𝑑=3
= 2𝜇 𝐛̃ + 2𝜆 𝐈 ln+1 𝐽−1 (15)

𝐽ccNH ∶ (⋅)S = 2 (𝜇 − 2𝜆ln 𝐽) (⋅)S + 2𝜆 t r (⋅) 𝐈 = 2
(

𝜇 − 2𝜆ln+1 𝐽−1
)

(⋅)S + 2𝜆 t r (⋅) 𝐈

Nearly incompressible neo-Hookean model in material configuration.
𝐒iNH = 𝜇 𝐽−2∕3𝐈 + 𝑐1 𝐂−1𝑑=3= 𝐂−1

[

𝜅𝑏∕2 𝐽−1(𝐽−1 + 2) 𝐈 + 2𝜇 𝐽−2∕3 (𝐄 − 1∕3 𝐈 t r 𝐄)
]

D𝒖𝐒iNH = −2𝜇∕3𝐽−2∕3 (1∕𝐽 D𝒖𝐽
)

𝐈 + 2𝑐1
[

𝐅−1 (Gr ad𝛥𝒖)𝐂−1
]S

+
[

𝑐2
(

1∕𝐽 D𝒖𝐽
)

− 2𝜇∕3𝐽−2∕3t r
(

𝐅TGr ad𝛥𝒖
)]

𝐂−1

The additional scalars are

𝑐1 ∶= 𝜅𝑏∕2(𝐽 2 − 1) − 𝜇∕3𝐽−2∕3𝐼1 = 𝜅𝑏∕2 𝐽−1(𝐽−1 + 2) − 𝜇∕3 𝐽−2∕3(𝑑 + 2 t r 𝐄), (16)

𝑐2 ∶= 2𝜇∕9𝐽−2∕3𝐼1 + 𝜅𝑏𝐽
2 = 2𝜇∕9𝐽−2∕3(𝑑 + 2 t r 𝐄) + 𝜅𝑏 𝐽

2. (17)

Spatial integration of the nearly incompressible neo-Hookean model.
𝝉 iNH = 𝜇 𝐽−2∕3𝐛 + 𝑐1𝐈

𝑑=3
= 𝜅𝑏∕2 𝐽−1(𝐽−1 + 2) 𝐈 + 2𝜇 𝐽−2∕3 (𝐛̃ − 1∕3 𝐈 t r 𝐛̃),

𝐽ciNH ∶ (⋅)S = −4𝜇∕3𝐽−2∕3t r (⋅)𝐂 − 2𝑐1(⋅)S + 𝑐2t r (⋅) 𝐈,

where we exploit t r 𝐂 = t r 𝐛 = 2t r 𝐛̃ + 𝑑 and use 𝑐1 (16) and 𝑐2 (17).

Nearly incompressible fiber model in material configuration.
𝐒f iber = 𝐒iNH +

∑

𝑖=4,6
𝑐3 𝐸𝑖 𝐇𝑖, D𝒖𝐒f iber = D𝒖𝐒iNH +

∑

𝑖=4,6
𝑐3

(

2𝑘2𝐸𝑖
2 + 1

)

[

𝐇𝑖 ∶
(

2𝐅TGr ad𝛥𝒖
)S

]

𝐇𝑖

with an additional scalar

𝑐3 ∶=

⎧

⎪

⎨

⎪

⎩

2𝑘1 exp
(

𝑘2𝐸𝑖
2
)

if 𝐼⋆𝑖 > 1,

0 else.
(18)
7 
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Table 2
Quantities loaded per integration point for the variants storing scalars or scalars and tensors with related memory using double precision and 𝑑 = 3. The Jacobian

atrices of the finite element maps, 𝐉0 and 𝐉𝑡, are stored for each domain. 𝒖𝑘 refers to nodal DoF vector entries loaded and interpolated (not stored as vector at
ntegration point level). 𝐒, 𝝉, 𝐂, 𝐂−1, 𝐇𝑖 and 𝐅𝐇𝑖𝐅⊤, 𝑖 = 4, 6 are symmetric. Numbers in brackets indicate contribution to asymptotic memory traffic in linearized
perator application where differing from storage requirement.

Integration over reference domain 𝛺0 Integration over spatial domain 𝛺𝑡

Quantities Memory in B Quantities Memory in B
Scalar Tensor Scalar Tensor Scalar Tensor Scalar Tensor

cNH 𝐉0, 𝒖𝑘, ln 𝐽 𝐅,𝐒, 𝐅−1, 𝐂−1 104 320 𝐉0, 𝐉𝑡, 𝒖𝑘, 1∕𝐽 , ln 𝐽 𝝉 184 208 (136)
iNH 𝐉0, 𝒖𝑘, 𝐽−1, 𝐽

−2∕3, 𝐅,𝐒, 𝐅−1, 𝐂−1 128 (120) 344 (336) 𝐉0, 𝐉𝑡, 𝒖𝑘, 1∕𝐽 , 𝐽−1, 𝝉, 𝐂 208 280 (200)
𝑐1, 𝑐2 𝐽 −2∕3, 𝑐1, 𝑐2

fiber iNH, 𝑐3, 𝐼⋆
𝑖 , 𝐸𝑖, 𝐇𝑖 iNH 272 (248) 488 (464) iNH, 𝑐3, 𝐼⋆

𝑖 , 𝐸𝑖, 𝐇𝑖 iNH, 𝐅𝐇𝑖𝐅⊤ 352 520 (328)

Fig. 1. Visualization of a multigrid V-cycle (left) and an exemplary ℎ𝑝-multigrid hierarchy (right), with degrees of freedom indicated by circles.

Spatial integration of the nearly incompressible fiber model.
𝝉 f iber = 𝝉 iNH +

∑

𝑖=4,6
𝑐3 𝐸𝑖𝐅𝐇𝐢𝐅T,

𝐽cf iber ∶ (⋅)S = 𝐽ciNH ∶ (⋅)S +
∑

𝑖=4,6
2𝑐3

(

2𝑘2𝐸𝑖
2 + 1

)

[(

𝐅𝐇𝑖 𝐅T
)

∶ (⋅)
]

𝐅 𝐇𝑖 𝐅T,

with 𝑐3 defined in (18).
An overview of all the variants and the respective precomputed and stored variables is given in Table 2, which also lists the

required memory for storing in double precision (1 double-precision variable = 8 bytes, 8 B). For the fiber model, storing scalar
quantities requires 248 B (material configuration) or 328 B (spatial configuration), while storing tensorial quantities requires 488 B
material configuration) or 520 B (spatial configuration) per integration point. Depending on the exact form of the integrals and

arithmetic operations to evaluate them, the increased memory traffic storing second-order tensors might pay off. Furthermore, this
example also shows that it is not clear per se, if integrating over the material or spatial configuration is favorable in terms of memory
traffic, since this depends also on whether or not tensors or scalars are precomputed and stored. For the linearized operator, not all
tensors need to be loaded when integrating over the spatial domain.

6. Matrix-free preconditioning

The linear systems corresponding to the Newton update step are solved with the preconditioned flexible generalized minimal
esidual method (FGMRES) [60]. We use a flexible formulation since we use a Krylov solver at the coarse level in the multigrid
reconditioner, which renders the operation non-stationary. The Krylov solver only requires the action of the operator on a vector,
ot the explicit entries of the matrix. The matrix-free evaluation of the action of the matrix on a vector is realized via numerical
uadrature, exploiting the tensor product structure of the shape functions and quadrature rule via sum factorization techniques
see [2,3,61]) and employing SIMD vectorization over batches of elements [2].

For constructing a preconditioner that is compatible with the matrix-free evaluation, an ℎ𝑝-multigrid preconditioning strategy
ith matrix-free smoothers is adopted from Fehn et al. [14], where first the polynomial degree is lowered recursively from 𝑝 to

⌊

𝑝∕2⌋, that is halved and rounded down to the nearest integer, going from level 𝑙 to 𝑙− 1, after which ℎ-coarsening is performed, see
Fig. 1. This strategy is denoted as 𝑝ℎ-multigrid in [14] and ExaDG. The outer Krylov solver operates in double precision, while the
reconditioner operates in single precision, see [2,62]. The individual ℎ-levels are created by uniformly refining an initial coarse grid,

where the finest grid is equipped with a potentially higher-order accurate mapping. This higher-order mapping is then interpolated
to the coarser levels keeping the order of the mapping constant, i.e., equal to the finest grids’ polynomial degree. The mappings are
assumed invertible on all levels, which is checked for the grid hierarchies used in the numerical examples.

In a standard multigrid V-cycle (see, e.g., [63–65]), smoothers reduce the high-frequency part of the error associated to each level,
and restriction and prolongation operators transfer residuals and corrections between the levels, respectively. The smoother chosen
8 
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is a Chebyshev-accelerated Jacobi scheme [13,14,66], which uses the inverse of the matrix diagonal on each level (precomputed
before solving) and the level operator application for computing residuals in the Jacobi-type iteration. Note that also the additional
fine-scale errors resulting from round-off due to the mixed-precision strategy are well-captured by the multigrid smoothers [62].
For the coarse solver, we use a conjugate gradient method (CG) preconditioned via AMG from the Trilinos ML package [67,68],
which runs in double precision only. Employing a constant preconditioner would enable using CG as outer solver. Herein, however,

e present a more general approach, noting that it might not be the optimal choice.
Updating the quadrature point data of the multigrid hierarchy means updating data of all operators on all levels using the

multigrid transfer operator. Invertibility of the displacement map on all levels is checked, is not violated in the numerical examples
iscussed in the following, but is not enforced with the present approach.

7. Numerical results

We first conduct forward stability tests comparing double and single precision evaluations of the stress tensor and linearization,
hereafter the single-node performance is showcased in a simplified setting. Lastly, we solve a finite-strain elasticity problem using
 patient-specific geometry of an iliac bifurcation adopting the fiber model.

7.1. Forward stability test

Forward numerical stability of the first and second Piola–Kirchhoff stress tensors and the directional derivatives is investigated
by evaluating them with a pseudo-random sampled second-order tensor 𝐆, whose components fulfill

−𝜖 ≤ 𝐆𝑖𝑗 ≤ −𝜖∕10 ∨ 𝜖∕10 ≤ 𝐆𝑖𝑗 ≤ 𝜖 𝑖, 𝑗 = 1,… , 𝑑 ,
with a pseudo-random sign and an additional scale 𝜖. This scale is used to emulate strain rates ranging from (10−8) to (102) in
00 steps, while the interval [−𝜖∕10, 𝜖∕10] is not considered to ensure samples of the desired order of magnitude only. To illustrate,
ssume 𝐆11 = 1.0, while the remaining entries of 𝐆 are zero; this means that 𝜕𝒖1∕𝜕𝒙1 = 1.0, that is, a stretch of 100% in 𝒙1-direction,
eing already well beyond reasonable design limits in most engineering applications. However, note that the randomly generated
ensor 𝐆 does in general not fulfill det (𝐈 +𝐆) = 1. For each gradient scale, we generate 103 independent samples, set Gr ad 𝒖 = 𝐆
nd evaluate the stress tensors and the directional derivatives using double and single precision arithmetic. The relative error 𝜖r el
etween the double precision and single precision representations is then computed as the maximum over all samples and over all
orresponding tensor entries.

From this experiment we can infer forward stability (up to the observed limit) also for double precision arithmetic. It has to be
mentioned, however, that this is not intended to be a rigorous analysis of numerical stability, but rather serves to showcase the
improvements in the small strain limits adopting the stable formulations. Specifically, no analysis has been performed to quantify
the effect of the uniform scaling of the tensor on the obtained results.

The investigations here extend the work by Shakeri et al. [37], compared to which we also present results for the directional
derivatives, which enter the linear system directly. Fig. 2 illustrates the relative error in stresses (stress) and directional derivatives
(D/Du stress) adopting the material or spatial integration strategies (𝛺0 or 𝛺𝑡) using stable and standard formulations. The stable
formulations yield small relative errors in the small strain limit, while the standard formulations show significant numerical
instability. The individual material models also show different behavior in the medium strain range of 10−3 to 100. Interestingly,
the second Piola–Kirchhoff stress tensor of the compressible neo-Hookean model in stable formulation shows numerical instability
or (excessively) large strains. This might be related to the stable form in Eq. (14) using 𝐂−1𝐄 instead of 𝐂−1 only in the standard
ormulation. While the standard formulation is stable for large strains, it is not numerically stable in the small strain limit, such that

the stable form is considered regardless. The St.Venant–Kirchhoff model, that is, 𝐒VK ∶= 𝜆t r (𝐄)𝐈+ 2𝜇𝐄 with 𝐄 according to Eq. (12),
for comparison yields relative errors 𝜖r el ∈ [10−5, 10−3] for all strains considered here.

As a next experiment, Fig. 3 presents the accuracy of the fast evaluation of 𝐽−2∕3 and exp(𝑥) as discussed in Section 4, which are
relevant for the nearly incompressible neo-Hookean and fiber models. These results show that the effect of the fast evaluation of
xp(⋅) exploiting the floating point representation only mildly affects the numerical stability. For large strain scales, we observe large

relative errors or even values out of the admissible range for the approximation of 𝐽−2∕3. This is due to the fact that the sampling
strategy does not enforce 𝐽 ≈ 1, and hence the initial guess 𝐽−2∕3 = 1 used in the Newton solver (see Algorithm 2) is inadequate.
Note however, that this only occurs for large strain scales, and did not lead to any problems in the results presented within this
work. Hence, we employ the Newton solver for 𝐽−2∕3 by default. Fast evaluation of 𝐽−2∕3 has similar effects as shown in Fig. 3(a)
when using the iNH model, such that we omit these results.

Summing up, we do not observe excessive round-off errors in the relevant strain range (0 to 100%) employing the stable
formulations. The fast evaluation strategies as described in Section 4 only mildly affect numerical stability in that reasonable range.

7.2. Node-level performance analysis

The single-node performance of operator evaluation is tested on an Intel Xeon Platinum 8360Y ‘‘Ice Lake’’ with 36 physical cores
with 2.0 GHz base frequency per socket, and two sockets per node with 256 GB of DDR4-3200 memory and 100 GBit/s full-duplex
9 
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Fig. 2. Relative errors in the stress and directional derivative (D/Du stress) for sampled Gr ad 𝒖 comparing standard and stable formulations in the material (𝛺0)
and spatial (𝛺𝑡) configurations. The nearly incompressible neo-Hookean and fiber models yield similar results, as the iNH model is one part of the fiber model.

Fig. 3. Relative errors in the stress and directional derivative (D/Du stress) for sampled Gr ad 𝒖 comparing standard and stable formulations in the material (𝛺0)
and spatial (𝛺𝑡) configurations with fast evaluation strategies.

Infiniband interconnect. The sum of L2 and L3 caches amounts to 200 MB, which corresponds to 25 × 106 floating point double-
precision numbers. The full width of the AVX-512 instruction set (8 double-precision or 16 single-precision floating point numbers)
is used in a vectorization-across-cells strategy [3]. The GNU compiler version 12.1.0 with flags ‘‘-O3 -march=icelake-server’’
and OpenMPI version 4.1.3 are used.

The grids are constructed by uniformly refining an initial coarse cube of 𝑁0 ×𝑁0 ×𝑁0 elements of polynomial degree 𝑝 = 1,… , 8
until 2.5 − 5 × 106 DoFs are reached. With this DoF count, caches are saturated according to our tests (omitted here for brevity).
In the tests, we analyze the performance for different polynomial degrees 𝑝 as a parameter. However, the objective of this work is
to identify regimes of high throughput, not exploiting high asymptotic convergence rates of higher-order methods for sufficiently
smooth solutions. We thus assume similar accuracy per unknown in all examples within this work, noting that general geometries of
practical interest and resulting complexities related to mesh construction limit the practically feasible maximum polynomial degree.
Table 3 lists the resulting grid parameters, showing discretizations with similar numbers of DoFs, where the discretizations with
degrees 𝑝 = 5 and 𝑝 = 7 differ by 13% and 58%, respectively. To account for non-trivial geometries in a practical setting, the
generated cube is deformed, resulting in a non-constant Jacobian of the isoparametric mapping.

The tests consist of (i) applying the linearized operator corresponding to the directional derivative, that is, the left-hand side of the
Newton update step (4) on a vector as repeatedly executed within a Krylov solver, and (ii) evaluating the nonlinear residual, i.e., the
right-hand side of said equations and storing it in a vector. The full node is used with 72 threads and an MPI-only parallelization,
measuring the throughput in DoF/s and total memory transfer in B/DoF via LIKWID [69]. The results are derived by measuring
multiples of 100 repetitions that are stopped once at least 1 s of execution time has been elapsed. The quadrature point and mapping
data are updated only once in the beginning for the linearized operator application, but for every evaluation of the nonlinear residual.
This is motivated by the fact that in a Newton scheme, the linearized operator is repeatedly evaluated in a single Newton iteration,
but the residual needs to be evaluated with the current iterate. Tests are repeated 10 times, where the best 3 runs are averaged
10 
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Table 3
Number of continuous finite elements 𝑁el and DoFs per polynomial degree 𝑝 on a 𝑙 times refined initial coarse grid of 𝑁0 × 𝑁0 × 𝑁0
elements.
𝑝 1 2 3 4 5 6 7 8

𝑁0 3 3 1 3 5 1 1 3
𝑙 5 4 5 3 2 4 4 2
𝑁el 884 736 110 592 32 768 13 824 8000 4096 4096 1728
MDoFs 2.74 2.74 2.74 2.74 3.09 2.74 4.33 2.74

to reduce effects stemming from other jobs on the compute system. Fig. 4 depicts the obtained results for the application of the
inearized operator/single evaluation of the residual for various polynomial degrees and switching between the approaches adopting

integration over the spatial or material configuration and precomputing strategies. The following observations are made:

(i) The residual evaluation involves less terms in the related integrals than the linearized operator application, but requires
updating all integration point data. Therefore, integration over the reference or spatial configuration yield significantly
different results, where the former competes with the fastest precomputing strategy for the linearized operator application,
and the latter requires an update of all geometry-related data structures in the implementation of the deal.II library, including
the detection of possible data compression and reuse of metric terms of the underlying finite element grid [3,19], and can
thus only achieve a throughput of 5–8×107 DoF/s.

(ii) Increasing the polynomial degree for linearized operator application reduces the memory transfer per DoF as the ratio 𝑝3∕(𝑝+
1)3 between unique DoFs and quadrature points gets more favorable, such that the throughput is significantly (up to 5 times)
increased up to a polynomial degree 𝑝 = 4, 5, 6. For higher polynomial degrees, the memory transfer per DoF increases slightly
due to cache effects in the element-wise integration [3].

(iii) Regarding the precomputing and integration strategies in linearized operator application, we observe that when integrating
over 𝛺0, storing scalars is faster than recomputing all data, which is faster than storing tensors. Integrating over 𝛺𝑡, this trend
changes: storing tensors is the fastest option, followed by storing scalars, followed by recomputing all data. This sequence only
mildly depends on the material model, but is of course highly dependent on the ratio of the number of operator evaluations
to number of data updates. The fastest variant for integration over 𝛺0 achieves in general better performance than the fastest
variant for integration over 𝛺𝑡.

(iv) The amount of linearization data stored per integration point does not directly translate to memory traffic as already indicated
in Table 2. Storing tensors hence might circumvent loading the non-symmetric Jacobians (𝐉0 and 𝐉𝑡) of the finite element
maps and the DoF vector of the linearization point needed otherwise — see, e.g., Eq. (15) for 𝝉cNH which is symmetric, but
depends on Gr ad 𝒖 (hence requiring 𝐉0 and 𝒖𝑘, see Table 2).

(v) Comparing the constitutive models, we see that the fiber model yields the lowest throughput and has the highest memory
traffic. However, the peak throughput achieved for each of the constitutive models is ≈ 12.5 × 108 DoF/s (fiber), ≈ 17.5 ×
108 DoF/s (iNH and cNH), which is due to the higher complexity of the fiber model.

(vi) Using 𝑝 = 4, the variant storing tensors is close to saturating the memory bandwidth of the machine (approx. 260–280 GB/s),
whereas the variant storing scalars reaches a lower memory transfer (approx. 220 GB/s), but is limited by the additional
computations and unstructured data access. Recomputing all linearization data yields 140–160 GB/s.

(vii) Jacobian-free Newton–Krylov solvers might be an attractive alternative to the present approach. Based on the current results,
integration has to be carried out over the reference configuration, or the mapping and/or other integration point data has to
be updated selectively.

Given these observations, it is thus not clear a priori, which of the presented strategies reliably delivers the highest throughput.
This decision has to be made based on measurements and hence depends on the problem at hand and the target hardware.
Additionally, the fraction of updates performed per linearized operator application or residual evaluation impacts the obtained
esults as well. The choice of executing 100 repetitions here is therefore to be taken into account when interpreting the results.
onetheless, the data transfer measurements shown in Fig. 4 and theoretical considerations of Section 5 provide guidelines for
ther hardware with possibly different arithmetic performance and memory bandwidth. For the practical influence of these low-level

measurements, we apply the proposed schemes to a real-life example in the following section.
For a broader perspective, we further compare these results to linear elasticity, where 𝐏 ∶= 𝜆 𝐈Div 𝒖 + 2𝜇Gr ad S𝒖, and an

alternative matrix-based implementation based on identical integration routines, which assembles and stores the system matrix.
aking the fastest variant of the fiber model, i.e., integrating over the reference configuration and storing scalars, as baseline,

Table 4 lists the relative throughput and memory transfer. The linear elastic model yields 2.6–3.1 times higher throughput having
0.17–0.36 times the memory transfer, while the matrix based implementation delivers merely 0.71 (𝑝 = 1) to 0.01 (𝑝 = 6) times the
throughput. The memory transfer using the matrix-based variant of the fiber model is higher by a factor of 1.40 for 𝑝 = 1, which
further increases up to 112.0 for 𝑝 = 6, taking the matrix-free implementation as baseline.

7.3. Application to biomechanics: iliac bifurcation

The numerical results in this section focus on the application to a patient-specific geometry of an iliac bifurcation, which can be
onsidered a prototypical configuration of practical interest. The spatial approximation via a pure-hex finite element grid follows
11 
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Fig. 4. Throughput (top row) and memory transfer (bottom row) using various material models considering integration over the reference configuration (𝛺0) or
the spatial configuration (𝛺𝑡) and precomputing (i) no data, (ii) scalar values, or (iii) tensorial quantities. Throughput for residual evaluation integrating over
𝛺𝑡 yields values of 5 − 8 × 107 DoF/s.

Table 4
Relative throughput and memory transfer of linearized operator application compared to a baseline method (value 1.0). The baseline method refers to the fiber
model, integration over 𝛺0 and a matrix-free evaluation that stores scalars. This baseline method is modified in two ways: (i) by changing the material model
to linear elasticity, and (ii) by choosing a matrix-based implementation for the fiber model.

Polynomial degree 𝑝 1 2 3 4 5 6

(i) linear elasticity, matrix-free rel. throughput 2.66 2.73 2.69 2.71 2.63 2.93
rel. memory transfer 0.36 0.23 0.25 0.22 0.24 0.17

(ii) fiber model, matrix-based rel. throughput 0.71 0.15 0.06 0.03 0.02 0.01
rel. memory transfer 1.39 7.32 20.71 43.47 72.84 112.29

ideas from Bošnjak et al. [70], resulting in higher-order discretizations as shown in Fig. 5 for refinement level 𝑙 = 0, 1, 2 and mapping
egree 𝑝 = 1, 2. To demonstrate the advantages of the present approach, we aim for a problem size of 106 DoFs on the finest level,
mulating engineering-size structural mechanics problems. The polynomial degree is varied from 𝑝 = 1 to 𝑝 = 5, executing uniform
efinement to generate the nested multigrid hierarchy and reaching the target number of DoFs based on a coarse grid with 78 cells
ielding 516 DoFs for 𝑝 = 1. Given the fact that the coarse mesh is non-trivial and already contains a certain number of elements
o resolve the topology, the resulting discretizations yield slightly differing DoF numbers, see Table 5.

Contrary to the previous example, which lies in the regime with saturated caches, this practical example of limited size showcases
he effects of (partial) caching. Such a setup is relevant for practical application, when the fastest time to solution given sufficient
ompute resources is of interest. For the discretizations as listed in Table 5 and memory traffic related to integration point data,

see Table 2, we estimate that roughly 50%–70% of the overall data can be cached in some cases. Polynomial degrees 𝑝 = 2, 3, 4 are
avorable in this regard, but this also depends on the spatial or material integration approach chosen and if linearization data is

stored. However, even when precomputing scalar or tensorial quantities, a significant fraction might be cached as well.
This test involves an initial boundary value problem, adding an acceleration term, 𝜌𝒖̈, to the linear momentum balance equation

employing a standard single-step WBZ-𝛼 time integration scheme [71] with spectral radius 𝜌∞ = 0.8 and a time step size 𝛥𝑡 = 0.1 ms.
The fiber model is employed with parameters listed in Table 1, a physiological density of 𝜌 = 1200 kg/m2, and the local coordinate
12 
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Fig. 5. Discretizations of the iliac bifurcation using 𝑙 = 0, 1, 2 refinement levels and mapping degree 𝑝 = 1, 2.

Table 5
Number of continuous finite elements 𝑁el and DoFs per polynomial degree 𝑝 on an 𝑙-times uniformly refined initial coarse grid of the iliac bifurcation with
78 elements. The discretizations left to the vertical double line are intermediate ℎ-refined levels with 𝑝 = 1, whereas entries on the right list fine-level
discretizations.
𝑝 1 1 1 2 1 1 2 3 4 5

𝑙 0 1 2 2 3 4 3 2 2 2
𝑁el 78 624 4992 4992 39 936 319 488 39 936 4992 4992 4992
DoFs 516 2961 19 245 136 701 136 701 1.03 × 106 1.03 × 106 442 221 1.03 × 106 1.98 × 106

Fig. 6. Iliac bifurcation structural mechanics: tissue displacement due to pressure differential (a), material orientation (b) and sketch for derived mean fiber
orientations (c). The circumferential (𝑬1, red) and longitudinal direction vectors (𝑬2, blue) are used to describe the helical fiber reinforcement on each ℎ-level.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

systems as shown in Fig. 6(b) (see [48,50] for details). Focusing on a simplified structural mechanics problem, the fluid flow’s
effect on the tissue is roughly approximated by a uniform pressure differential acting on the vessel wall. Naturally, a fluid–structure
interaction approach might in fact yield quite different results. In our simplified setup, the in- and outlets of the vessel are fixed; a
rough simplification, which should be replaced for a more realistic model. Due to the lack of viscoelastic support on the exterior,
the internal pressure ‘‘straightens’’ the curved vessel. For the present purposes, it suffices to choose the pressure differential such
that a displacement of ≈ 1.3 mm is obtained as shown in Fig. 6(a), referring the interested reader to [48–50].

Regarding the preconditioner settings, we employ 6 smoothing sweeps of the Jacobi-type smoother, see Section 6. The coarse-
level preconditioner uses the Amesos-KLU direct solver on the coarsest algebraic level once the total number of degrees of freedom
on the level falls below 2000, which is in this present example reached immediately with 516 DoFs on level 𝑙 = 0. However, AMG is
also used for comparison with a matrix-based preconditioner on the finest level, simply referred to as AMG approach. It is important
to note that the matrix–vector product of both alternatives are realized in matrix-free fashion in the Krylov solver, but the AMG
preconditioner utilizes the system matrix for setup and matrix–vector products internally. If not stated otherwise, the matrix-free
preconditioner operates in single precision, while the AMG preconditioner operates in double precision. When used on the fine level,
the AMG preconditioner adopts a single V-cycle with Chebyshev smoother (degree 6). All these settings were tuned to yield shortest
runtimes in the present scenario with a polynomial degree of 𝑝 = 5, while increasing the number of sweeps or changing the smoother
type in the AMG case did not speed-up runtimes significantly for the other polynomial degrees employed. In fact, a time-dependent
13 
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Table 6
Overview of the employed variants of the finite strain elasticity solver.

Variant Preconditioner Preconditioner Operator Floating point Domain of Precomputing
evaluation evaluation precision integration strategy

ℎ𝑝MG-MF-MP-𝛺0-none ℎ𝑝-multigrid Matrix-free Matrix-free Mixed Material config. 𝛺0 Recompute all
ℎ𝑝MG-MF-MP-𝛺0-scalar ℎ𝑝-multigrid Matrix-free Matrix-free Mixed Material config. 𝛺0 Store scalars
ℎ𝑝MG-MF-MP-𝛺0-tensor ℎ𝑝-multigrid Matrix-free Matrix-free Mixed Material config. 𝛺0 Store tensors
ℎ𝑝MG-MF-MP-𝛺𝑡-none ℎ𝑝-multigrid Matrix-free Matrix-free Mixed Spatial config. 𝛺𝑡 Recompute all
ℎ𝑝MG-MF-MP-𝛺𝑡-scalar ℎ𝑝-multigrid Matrix-free Matrix-free Mixed Spatial config. 𝛺𝑡 Store scalars
ℎ𝑝MG-MF-MP-𝛺𝑡-tensor ℎ𝑝-multigrid Matrix-free Matrix-free Mixed Spatial config. 𝛺𝑡 Store tensors
AMG-𝛺0-none AMG Matrix-based Matrix-free Double Material config. 𝛺0 Recompute all
AMG-𝛺0-scalar AMG Matrix-based Matrix-free Double Material config. 𝛺0 Store scalars
AMG-𝛺0-tensor AMG Matrix-based Matrix-free Double Material config. 𝛺0 Store tensors
AMG-𝛺𝑡-none AMG Matrix-based Matrix-free Double Spatial config. 𝛺𝑡 Recompute all
AMG-𝛺𝑡-scalar AMG Matrix-based Matrix-free Double Spatial config. 𝛺𝑡 Store scalars
AMG-𝛺𝑡-tensor AMG Matrix-based Matrix-free Double Spatial config. 𝛺𝑡 Store tensors
ℎ𝑝MG-MF-DP-𝛺0-tensor ℎ𝑝-multigrid Matrix-free Matrix-free Double Material config. 𝛺0 Store tensors
ℎ𝑝MG-MB-DP-𝛺0-tensor ℎ𝑝-multigrid Matrix-based Matrix-based Double Material config. 𝛺0 Store tensors

problem was chosen for this test due to the AMG preconditioner encountering convergence issues for higher-order finite element
iscretizations. With this numerical setup, we investigate the wall time per Newton solve averaged over 5 time steps and record the

number of average FGMRES iterations (absolute tolerance of 10−12, relative tolerance of 10−3, maximal Krylov space dimension of
30 before a restart) to solve the arising Newton update steps in the nonlinear solver, which considers an absolute tolerance of 10−8

and relative tolerance of 10−3. Due to the small time step size, convergence is reached in one to two Newton steps per time step
due to the rather loose convergence criteria.

Results comparing integration over the material or spatial configuration and the different storage strategies are depicted in Fig. 7.
The related speed-up of the matrix-free over the matrix-based preconditioner is reported in Tables 7–9. The considered variants
summarized in Table 6 encompass matrix-free and matrix-based preconditioners, single-precision and double-precision floating point
arithmetic, integration over the spatial configuration (𝛺𝑡) or the material configuration (𝛺0), and precomputing strategies storing
scalars or tensors, or recomputing all quantities.

Based on this data, we make the following observations:

(i) The linearized operators formed by integration of the respective weak forms over the spatial and material configurations yield
different approximations of the same operator. Once the nonlinear solver converges, both operators are the same up to round-
off. The performance of the AMG preconditioner for higher polynomial degrees and integrating over 𝛺𝑡 suffers remarkably.
This is due to the AMG smoother settings aimed at fastest time to solution, which is not the most robust choice. That is,
more expensive smoothers and/or multiple V-cycles in the AMG case yield nearly identical iteration counts irrespective of
the domain of integration, similar to the matrix-free approach. The remaining combinations result in low and almost 𝑝-
independent iteration counts. Here, the matrix-free ℎ𝑝-multigrid has been found to be more robust than the AMG variant
used in a black-box fashion.

(ii) The overall throughput of the proposed matrix-free approach is 1.34–52 times higher than the throughput of the AMG
approach (Table 7, top). Factoring out bad preconditioner performance, we note improvements of 1.32–19 times , respectively
(Table 7, bottom).

(iii) Storing tensors is the fastest option in most cases, see Table 8. For the matrix-free approach and integrating over the spatial
configuration, speed-ups of 1.18–2.09 are observed, while integrating over 𝛺0, we note a relative speed of 0.86–1.64 (storing
scalars is faster for 𝑝 = 1, 2). For the AMG approach, however, integration of the operators is no longer the dominating part
of the algorithm, such that only mild improvements stemming from faster integration are observed.

(iv) Integrating over the material configuration is in almost all cases faster than integrating over the spatial configuration with
the only exception being the tensor-storing matrix-free variant, see Table 9. For the matrix-free variant, speed-up factors are
0.95–1.33, while with the AMG preconditioner leads to factors of 1.00–1.99, with higher values related to increased iteration
counts.

(v) In summary, storing tensorial quantities barely pays off compared to storing scalars for the present constitutive models, since
the most complex operations involve the stored scalars and many tensorial quantities cannot be precomputed as they depend
on the solution vector. Updating the mapping data for the approach integrating over 𝛺𝑡 is costly and this variant is thus not
preferable over the alternative integrating over 𝛺0 despite the more involved integrals. This depends on the constitutive law
and ratio of linear iterations required per Newton step. However, both formulations perform similar here when precomputing
tensors.

Note that especially point (iii) in the above list is opposed to the throughput example from Section 7.2, where storing scalars was
faster than recomputing all quantities, which was faster than storing tensors. In the present example, storing tensors is the fastest
option, followed or tied with the variant storing scalars, while the variant recomputing all terms was consistently the slowest. This is
due to the small problem size compared to the available 200 MB of combined L2 and L3 cache, which fits potentially large portions
of the (integration point) data depending on the approach chosen. Recomputing all data is the most compute intense approach,
14 
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Fig. 7. FGMRES iterations until convergence adopting the AMG preconditioner on the fine grid directly in variants AMG-𝛺0/𝛺𝑡-none/scalar/tensor (a) or
matrix-free geometric multigrid in variants ℎ𝑝MG-MF-MP-𝛺0/𝛺𝑡-none/scalar/tensor (c) and respective average throughput for a single system solve (b, d).

Table 7
Overall (top) and per iteration (bottom) speed-up of the matrix-free ℎ𝑝-multigrid (ℎ𝑝-MG) preconditioner (ℎ𝑝MG-MF-MP-𝛺0/𝛺𝑡-
none/scalar/tensor) over double-precision matrix-based AMG preconditioner (AMG-𝛺0/𝛺𝑡-none/scalar/tensor). Both variants use
matrix-free operator evaluation in the Krylov solver. Computed from data displayed in Fig. 7.

Polynomial degree 𝑝 1 2 3 4 5

Speed-up ℎ𝑝-MG vs. AMG

𝛺0, recompute all 1.54 4.29 6.88 11.05 14.97
𝛺0, store scalars 1.78 5.40 9.53 15.00 20.68
𝛺0, store tensors 1.50 5.10 10.23 17.59 23.18
𝛺𝑡, recompute all 1.34 3.68 5.52 11.30 25.76
𝛺𝑡, store scalars 1.51 4.27 7.28 14.20 33.08
𝛺𝑡, store tensors 1.65 5.42 9.56 21.58 52.22

Speed-up/iter. ℎ𝑝-MG vs. AMG

𝛺0, recompute all 1.87 4.73 7.51 9.55 12.29
𝛺0, store scalars 2.17 5.95 10.40 12.97 16.97
𝛺0, store tensors 1.82 5.62 11.16 15.20 19.02
𝛺𝑡, recompute all 1.64 4.06 6.02 7.39 8.63
𝛺𝑡, store scalars 1.84 4.71 7.94 9.28 11.08
𝛺𝑡, store tensors 2.01 5.97 10.42 14.11 17.50

Table 8
Speed-up of the tensor-storing variants (ℎ𝑝MG-MF-MP-𝛺0/𝛺𝑡-tensor or AMG-𝛺0/𝛺𝑡-tensor) over the scalar-storing and recompute all
variants (ℎ𝑝MG-MF-MP-𝛺0/𝛺𝑡-none/scalar or AMG-𝛺0/𝛺𝑡-none/scalar). Computed from data displayed in Fig. 7.

Polynomial degree 𝑝 1 2 3 4 5

Speed-up AMG

𝛺0, recompute all 1.07 1.06 1.06 1.06 1.04
𝛺0, store scalars 1.02 1.03 1.04 1.02 1.01
𝛺0, store tensors 1.00 1.00 1.00 1.00 1.00
𝛺𝑡, recompute all 1.15 1.09 1.08 1.05 1.03
𝛺𝑡, store scalars 1.08 1.06 1.06 1.04 1.02
𝛺𝑡, store tensors 1.00 1.00 1.00 1.00 1.00

Speed-up ℎ𝑝-MG

𝛺0, recompute all 1.04 1.26 1.58 1.69 1.61
𝛺0, store scalars 0.86 0.98 1.12 1.20 1.13
𝛺0, store tensors 1.00 1.00 1.00 1.00 1.00
𝛺𝑡, recompute all 1.42 1.61 1.86 2.01 2.09
𝛺𝑡, store scalars 1.18 1.34 1.39 1.59 1.62
𝛺𝑡, store tensors 1.00 1.00 1.00 1.00 1.00

while storing scalar or tensorial data trades arithmetic operations for loading data from main memory. If a potentially large fraction
of the integration point data resides in cache, as is the case for some of the variants in this example, loading precomputed data
comes with a smaller penalty with regards to achievable throughput. In the present example, trends are hence partially different
from the previously presented throughput results. The results in Section 7.2 show trends for saturated caches, while the results here
show trends for engineering-size problems with plenty compute resources used to reduce solver turnaround times.

For the present scenario, using the standard formulations with impaired numerical stability in the small strain limit does not
impact the results significantly in terms of iteration counts (results omitted for brevity), hinting at the effectiveness of the smoothers
t reducing the fine-scale errors introduced by numerical round-off. This observation, however, does not extend to other scenarios
traight-forwardly and cannot be generalized. Since performance is not affected tremendously, stable reformulations are thus to be
referred, while further benefits in the light of low-precision arithmetic are to be investigated in the future.

In a final comparison, we investigate the relative throughput of double-precision matrix-free and matrix-based ℎ𝑝-multigrid
variants, the latter of which also consider matrices for the matrix–vector products on all levels for this comparison, taking the matrix-
free mixed-precision ℎ𝑝-multigrid solver as baseline. Integration over the reference configuration and storing tensorial quantities are
15 
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Table 9
Speed-up integrating over the material configuration (variants indicated with 𝛺0) rather than over the spatial configuration (variants
indicated with 𝛺𝑡). Computed from data displayed in Fig. 7.

Polynomial degree 𝑝 1 2 3 4 5

Speed-up 𝛺0/𝛺𝑡

ℎ𝑝-MG
Recompute all 1.29 1.21 1.26 1.16 1.14
Store scalars 1.30 1.30 1.33 1.28 1.24
Store tensors 0.95 0.95 1.07 0.97 0.87

AMG
Recompute all 1.13 1.04 1.01 1.18 1.95
Store scalars 1.10 1.03 1.02 1.22 1.99
Store tensors 1.05 1.01 1.00 1.19 1.96

Table 10
Relative throughput of ℎ𝑝-multigrid solvers using double precision in matrix-free and matrix-based settings, taking the matrix-free mixed-
precision version as baseline (see Table 6). Integration over the reference configuration and storing tensorial quantities are considered.
Iteration counts are identical for all variants.

Polynomial degree 𝑝 1 2 3 4 5

rel. throughput, mixed precision, matrix-free (ℎ𝑝MG-MF-MP-𝛺0-tensor) 1.00 1.00 1.00 1.00 1.00
rel. throughput, double precision, matrix-free (ℎ𝑝MG-MF-DP-𝛺0-tensor) 0.57 0.57 0.62 0.58 0.58
rel. throughput, double precision, matrix-based (ℎ𝑝MG-MB-DP-𝛺0-tensor) 0.40 0.14 0.07 0.05 0.04
avg. FGMRES iterations per system solve 11.2 10.8 9.6 10.2 12.8

considered. As indicated in Table 10, iterations are independent of the choice of mixed/double precision (and of course for matrix-
ree/matrix-based variants). The throughput using a matrix-free double precision variant is roughly 0.60 of the mixed-precision
quivalent, while a matrix-based implementation achieves 0.40 of the throughput for 𝑝 = 1, which drastically decreases for higher
olynomial degrees in the present example. These factors match the ones presented in Section 7.2. For a mixed-precision matrix-

based variant, similar trends as shown here for double precision are to be expected. Again, this comparison underlines that for
lower order finite elements, matrix-free and matrix-based solution strategies are competitive. These results indicate that for higher
polynomial degrees, assembled sparse matrices are a poor format for achieving high performance in this application. Combining
Table 10 and Fig. 7, we deduce that for a problem with the same number of DoFs using 𝑝 = 1 and a matrix-based approach (1.1

DoF/s × 0.4) vs. 𝑝 = 2, 3, 4 and a matrix-free approach (3.3 MDoF/s × 0.6), the latter is roughly 4.5 times faster, and using a
ingle-precision preconditioner for the latter (3.3 MDoF/s × 1.0), this factor increases to 7.5.

Closing the discussion of this practical application, it should be noted that the numerical results presented here strongly depend
on the tuning of the preconditioner and problem setup, where difficulties were encountered reaching convergence for the AMG-
preconditioned solver and higher polynomial degrees, as this preconditioner is not particularly well suited for this scenario. The
AMG-preconditioned variant also adopts the matrix-free operator evaluation in the FGMRES solver, such that only the impact of
the matrix-free vs. matrix-based preconditioners can be evaluated. Results for matrix-free vs. matrix-based approaches are given in
Table 10. Hence, all other results do not show the full speed-ups achievable via matrix-free solution strategies. Furthermore, the AMG
preconditioner operates in double precision, while the matrix-free ℎ𝑝-multigrid alternative operates in single precision. Assuming
hat an AMG preconditioner delivering constant iteration counts exists, factoring out the increasing iteration counts reveals that
specially for higher polynomial degrees, the matrix-free variants are significantly faster. Due to the limitations of this comparison,

we refrain from extending these observations towards 𝑝 = 1, as more involved or better tuned AMG preconditioners might outperform
the matrix-free variant for this case, while factors of larger than 4 and up to 19 (for 𝑝 = 2, 3, 4, 5) might be much harder to compensate.
Overall, this example represents practically relevant scenarios, and the results shown are hence very promising beyond academic
setups. Furthermore, we want to emphasize at this point that choosing a Poisson’s ratio 𝜈 → 0.5 (fully incompressible case) and
hence 𝜅𝑏 → ∞ impacts performance significantly through ill-conditioning of the linear system, which is a well-studied limitation
of the purely displacement-based formulations in general. For such scenarios, the problem formulation itself, the restriction and
prolongation operators, and the smoothers might need to be adapted, while the presented combination of methods is an excellent
starting point as demonstrated.

8. Summary and concluding remarks

This work presents a matrix-free finite element solver for finite-strain elasticity, where several variants for fast and numerically
table integration are discussed. We devise stable reformulations of the classical continuum mechanical relations for the anisotropic

hyperelastic model for vascular tissue by Holzapfel et al. [20], which are demonstrated in a simplified forward stability test to not
uffer from excessive round-off errors in the small strain limit. The results also encompass stable reformulations of the directional

derivatives for this fiber model as well as for compressible and nearly incompressible neo-Hookean models extending the work
y [37] in this regard.

We further discuss variants integrating over the material configuration or, alternatively, over the spatial configuration and
precompute and store data in integration points extending work by [5] towards more complex constitutive models. Changing the
domain of integration alters the integrals to be evaluated, where, depending on the material model and precomputing strategy
onsidered, any of the two integration approaches might turn out to be favorable.
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In the presented tests, integrating over the reference configuration and storing scalars turned out to be faster in most cases,
as the constitutive models used here feature complex terms for scalar quantities and many tensor-valued operations involve the
current iterate and thus cannot be precomputed. Comparing matrix-free and matrix-based preconditioners, we observe increased
robustness with respect to the polynomial degree 𝑝 and significantly reduced time to solution for the matrix-free approach using
higher polynomial degrees 𝑝 > 1 due to increased iteration counts using an AMG preconditioner in a black-box fashion.

Even for linear elements, where the matrix-based AMG preconditioner is found to perform well, the matrix-free approach was
ound to yield speed-ups of 1.34–1.78 in the present setup. For higher polynomial degrees, speed-up factors of 3.68–19.02 have
een recorded. These results are primarily due to faster operator evaluation, i.e., matrix–vector products, in the matrix-free case.
ere, cache effects might play a central role in the comparison as well, as the problem is purposely chosen to be of engineering

ize. However, the presented results showcase one particular problem size, while optimized caching strategies go beyond the scope
of this contribution. The presented results have not exhaustively analyzed AMG settings tailored to finite-strain hyperelasticity. For
example, more sophisticated smoothers or coarsening strategies, not available in the matrix-free ℎ𝑝-multigrid solver, have not been
considered. In consequence, the present results have to be interpreted with caution, and further research would be necessary to
quantify these options. Nonetheless, factors of 3.68–19.02 for 𝑝 = 2, 3, 4, 5 might be difficult to overcome.

Altogether, the matrix-free finite element solvers for finite-strain problems presented in this work show excellent properties
also when tackling challenging real-world applications. The additional implementation effort of matrix-free methods and the
different variants discussed in the present work appears justified in light of the significant speed-up that can be achieved over
matrix-based methods, in particular when considering higher-order finite element methods, which additionally counteracts locking
effects [21–24].

While the present results were recorded on a particular hardware, the computational models quantifying the memory transfer and
rithmetic work allow for predictions also on evolving hardware: In general, moderate polynomial degrees 𝑝 = 2,… , 6 give the most
avorable memory access per DoF. In consequence, the best performance can also be expected in this regime for memory-limited
ases. As the proposed models are relatively heavy on operations at quadrature points with many register spills to local memory,
rchitectures with limited cache sizes such as GPUs can be expected to benefit even more from the storage option of tensors than
he results presented here.

Ongoing developments are centered around further improving the routines to update quadrature point data to experiment with
acobian-free Newton–Krylov methods, which avoid the formulation and optimization of the linearized operator, but require fast

residual evaluation (see, e.g. [72]). The multigrid solver can be improved following many ideas: First, resolving the incompressibility
constraint via mixed formulations instead of the penalty-based approach prevents locking for coarse discretizations and may hence
better approximate the solution on coarser multigrid levels. Second, structure-preserving strategies regarding the finite element
mapping and restriction/prolongation operators might significantly improve robustness of the solver when facing large deformations.
Similar concepts might also be used to derive tailored smoothers for the fully incompressible case. Third, the outer FGMRES solver
might be replaced by a CG method once the preconditioner is constant, which is the case for the specific iliac bifurcation example
shown here, but the principal solver design allows for rather large, general coarse-level problems, without relying too much on
problem-dependent tuning or a fixed number of AMG V-cycles, a fixed number of AMG-preconditioned Krylov solver iterations or
low-tolerance preconditioned iterative solvers.
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Appendix. Material models: Directional derivatives

Providing the strain energy density suffices to define a hyperelastic material model. Therefore, we present further derivations
ere to not clutter the main document. For the compressible neo-Hookean model (8), the directional derivative of the second

Piola–Kirchoff stress reads

D𝒖𝐒cNH = − (𝜇 − 2𝜆 ln 𝐽 ) D𝒖𝐂−1 + 2𝜆 (1∕𝐽 D𝒖𝐽
)

𝐂−1,

with the following terms not being specific to the material model:

D𝒖𝐂−1 =
(

D𝒖𝐅−1)𝐅−T + 𝐅−1D𝒖𝐅−T = 2 [(D𝒖𝐅−1)𝐅−T]S ,

D𝒖𝐅 = Gr ad𝛥𝒖, D𝒖𝐅−1 = −𝐅−1 (Gr ad𝛥𝒖)𝐅−1, 1∕𝐽 D𝒖𝐽 = t r (𝐅−1Gr ad𝛥𝒖) .
Likewise, for nearly incompressible neo-Hookean materials (9), we obtain

D𝒖𝐒iNH = −2𝜇∕3𝐽−2∕3 (1∕𝐽 D𝒖𝐽
)

𝐈 +
[

𝜅𝑏∕2
(

𝐽 2 − 1) − 𝜇∕3𝐽−2∕3 𝐼1
]

D𝒖𝐂−1

+
[(

1∕𝐽 D𝒖𝐽
) (

2𝜇∕9𝐽−2∕3𝐼1 + 𝜅𝑏𝐽
2) − 𝜇∕3𝐽−2∕3D𝒖𝐼1

]

𝐂−1, (19)

with D𝒖𝐼1 = t r (D𝒖𝐅T𝐅 + 𝐅TD𝒖𝐅
)

= 2 t r (𝐅TGr ad𝛥𝒖). For the fiber model [20], we sum contributions from the nearly incompressible
eo-Hookean ground material (19) and collagen fibers to obtain

D𝒖𝐒f iber = D𝒖𝐒iNH + D𝒖𝐒c = D𝒖𝐒iNH +
∑

𝑖=4,6
2𝑘1 exp

(

𝑘2𝐸
2
𝑖
) (

2𝑘2𝐸2
𝑖 + 1) (𝐇𝑖 ∶ D𝒖𝐂

)

𝐇𝑖, (20)

where we use

D𝒖𝐸𝑖 = D𝒖(𝐇𝑖 ∶ 𝐂) = 𝐇𝑖 ∶ D𝒖𝐂, and D𝒖𝐂 = 2 (𝐅TGr ad𝛥𝒖)S .
Turning our attention to the approach integrating over the spatial configuration, we have

𝐽c ∶= 𝜒
(

4
𝜕2𝛹 (𝐂)
𝜕𝐂⊗ 𝜕𝐂

)

,

where the contravariant push-forward of a fourth-order tensor is defined as 𝜒(⋅)𝑖𝑗 𝑘𝑙 ∶= 𝐅𝑖𝐴𝐅𝑗 𝐵(⋅)𝐴𝐵 𝐶 𝐷𝐅𝑘𝐶𝐅𝑙 𝐷 using Einstein’s
ummation convention. For the compressible neo-Hookean model (8), we have

𝝉cNH = 𝜇 𝐛 − (𝜇 − 2𝜆 ln 𝐽 ) 𝐈, and
𝜕2𝛹cNH(𝐂)
𝜕𝐂⊗ 𝜕𝐂

= 1∕2 (𝜇 − 2𝜆 ln 𝐽 )𝐂−1 ⊙𝐂−1 + 𝜆∕2𝐂−1 ⊗𝐂−1,

with the left Cauchy–Green tensor 𝐛 ∶= 𝐅 𝐅T and using 𝜕𝐂−1

𝜕𝐂 = −𝐂−1 ⊙𝐂−1 (see [38]),
(

𝐂−1 ⊙𝐂−1)
𝐴𝐵 𝐶 𝐷 ∶= − 𝜕𝐂−1

𝐴𝐵
𝜕𝐂𝐶 𝐷

= 1∕2
(

𝐂−1
𝐴𝐶𝐂

−1
𝐵 𝐷 + 𝐂−1

𝐴𝐷𝐂
−1
𝐵 𝐶

)

,

such that we further have

𝐽ccNH ∶ (⋅)S = 2 (𝜇 − 2𝜆 ln 𝐽 )𝜒 (

𝐂−1 ⊙𝐂−1) ∶ (⋅)S + 2𝜆 𝜒 (

𝐂−1 ⊗𝐂−1) ∶ (⋅)S
= 2 (𝜇 − 2𝜆 ln 𝐽 )S ∶ (⋅)S + 2𝜆 (𝐈⊗ 𝐈) ∶ (⋅)S

= 2 (𝜇 − 2𝜆 ln 𝐽 ) (⋅)S + 2𝜆 t r (⋅) 𝐈, (21)

using 𝜒
(

𝐂−1 ⊙𝐂−1)
𝑖𝑗 𝑘𝑙 = S𝑖𝑗 𝑘𝑙 ∶= 1∕2

(

𝛿𝑖𝑘𝛿𝑗 𝑙 + 𝛿𝑖𝑙𝛿𝑗 𝑘
)

, and 𝜒
(

𝐂−1 ⊗𝐂−1) = 𝐈⊗ 𝐈, and where the symmetry of the argument is
exploited in the inner product with the fourth-order tensor S. For the nearly incompressible neo-Hookean model (9), similar steps
lead to

𝝉 iNH = 𝜇 𝐽−2∕3𝐛 +
[

𝜅𝑏∕2(𝐽 2 − 1) − 𝜇∕3𝐽−2∕3𝐼1
]

𝐈,

and
𝜕2𝛹iNH(𝐂)
𝜕𝐂⊗ 𝜕𝐂

= −𝜇∕3𝐽−2∕3𝐈⊗𝐂−1 +
[

𝜇∕6𝐽−2∕3𝐼1 − 𝜅𝑏∕4(𝐽 2 − 1)]𝐂−1 ⊙𝐂−1 +
(

𝜇∕18𝐽−2∕3𝐼1 + 𝜅𝑏∕4𝐽 2)𝐂−1 ⊗𝐂−1,

which together with 𝜒
(

𝐈⊗𝐂−1) ∶ (⋅) = (𝐂⊗ 𝐈) ∶ (⋅) = 𝐂 [𝐈 ∶ (⋅)] = t r (⋅)𝐂 then finally gives a compact expression similar to Eq. (21)
only involving second-order tensors,

𝐽ciNH ∶ (⋅)S = −4𝜇∕3𝐽−2∕3𝐂 t r (⋅) + [

2𝜇∕3𝐽−2∕3𝐼1 − 𝜅𝑏(𝐽 2 − 1)] (⋅)S + (

2𝜇∕9𝐽−2∕3𝐼1 + 𝜅𝑏𝐽
2) t r (⋅) 𝐈,

again exploiting symmetry of the argument in the inner product with the fourth-order symmetric identity tensor S. For the model
ncluding non-symmetrically dispersed fibers [20], we have

𝝉 f iber = 𝝉 iNH + 𝝉c = 𝝉 iNH +
∑

𝑖=4,6
2𝑘1 exp

(

𝑘2𝐸
2
𝑖
)

𝐸𝑖𝐅 𝐇𝑖 𝐅T,

and
𝜕2𝛹f iber (𝐂)
𝜕𝐂⊗ 𝜕𝐂

=
𝜕2𝛹iNH(𝐂)
𝜕𝐂⊗ 𝜕𝐂

+
∑

𝑖=4,6
𝑘1 exp

(

𝑘2𝐸
2
𝑖
) (

2𝑘2𝐸2
𝑖 + 1)𝐇𝑖 ⊗𝐇𝑖.

The directional derivative of the fiber contribution is easiest found by pushing forward the fiber contribution in (20) and using
Gr ad𝛥𝒖 = (g r ad𝛥𝒖)𝐅, yielding
18 
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∑

𝑖=4,6
2𝑘1 exp

(

𝑘2𝐸
2
𝑖
) (

2𝑘2𝐸2
𝑖 + 1) [𝐇𝑖 ∶

(

𝐅T(g r ad𝛥𝒖)𝐅 + 𝐅T(g r ad T𝛥𝒖)𝐅
)]

𝐅 𝐇𝑖 𝐅T

=
∑

𝑖=4,6
2𝑘1 exp

(

𝑘2𝐸
2
𝑖
) (

2𝑘2𝐸2
𝑖 + 1) 2 [(𝐅𝐇𝑖 𝐅T) ∶ g r ad𝛥𝒖]𝐅 𝐇𝑖 𝐅T

For symmetric arguments, this then finally leads to
𝐽cf iber ∶ (⋅)S = 𝐽ciNH ∶ (⋅)S +

∑

𝑖=4,6
4𝑘1 exp

(

𝑘2𝐸
2
𝑖
) (

2𝑘2𝐸2
𝑖 + 1) [(𝐅𝐇𝑖 𝐅T) ∶ (⋅)]𝐅 𝐇𝑖 𝐅T.

Data availability

Data will be made available on request.
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