
Forensic Science International: Digital Investigation 49 (2024) 301759

Available online 5 July 2024
2666-2817/© 2024 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

DFRWS USA 2024 - Selected Papers from the 24th Annual Digital Forensics Research Conference USA

Was the clock correct? Exploring timestamp interpretation through time
anchors for digital forensic event reconstruction

Céline Vanini a,*, Christopher J. Hargreaves b, Harm van Beek c, Frank Breitinger a,**

a School of Criminal Justice, University of Lausanne, 1015, Lausanne, Switzerland
b Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, United Kingdom
c Netherlands Forensic Institute (NFI), Laan van Ypenburg 6, 2497 GB, Den Haag, the Netherlands

A R T I C L E I N F O

Keywords:
Event reconstruction
Time anchor
Timestamp interpretation
Timeline
Formalization
Digital forensic
Dataset

A B S T R A C T

Timestamps and their correct interpretation play a crucial role in digital forensic investigations, particularly
when the objective is to establish a timeline of events a.k.a. event reconstruction. However, the way these
timestamps are generated heavily depends on an internal clock, or ‘system time’, from which many are derived.
Consequently, when this system time is skewed due to tampering, natural clock drift, or system malfunctions,
recorded timestamps will not reflect the actual times the (real-world) events occurred. This raises the question of
how to validate the correctness of the system clock when recording timestamps and, if found incorrect, how to
determine system clock skew. To address this problem, this paper defines several important concepts such as time
anchors, anchoring events, non-anchoring events and time anomalies which can be used to determine if the system
time was correct. Using two examples - a Google search and a file creation - and comparing correct and skewed
versions of the same set of performed actions, we illustrate the use and potential benefits of time anchors to
demonstrate the correctness of the system clock for event reconstruction.

1. Introduction

In criminal investigations, event reconstruction plays a central role
in uncovering the truth, solving crimes, and administering justice. It is
used to understand complex phenomena and historical events by piecing
together fragmented information into a coherent narrative. A corner
stone of event reconstruction within digital forensics is timestamps
which when extracted, normalized, and sorted allow inference of events
that occurred.

The origins of timestamps can vary, but many are derived from the
internal clock of the computer hardware, i.e., operating system com
ponents and applications retrieve the time via an API such as GetSys
temTime on Windows (Microsoft Corp., 2024). The origin of this ‘system
time’ is the device hardware frequently referred to as a Real Time Clock
(RTC). However, this time does not need to relate to the time in the real
world, and often does not (Marouani and Dagenais, 2008; Acer et al.,
2017). These inconsistencies may occur due to active tampering or
arbitrary changes, natural variations in clocks, or malfunctioning of the

system, e.g., a failing battery (Sandvik and Årnes, 2018). In other words,
“[s]tored timestamps may not accurately reflect the times that the
events occurred” (Willassen, 2008b). This phenomenon is described as
clock skew (Kaart and Laraghy, 2014).

An undetected clock skew can have severe consequences on event
reconstruction and thus ultimately for the outcome of a case. For
instance, let us assume a fictive case where a person was murdered using
Potassium cyanide. The police seized the computer of a primary suspect
and found the search query ‘how does Potassium cyanide react to the
body’. If this search query was sent after the body was found and re
ported, the person may have been interested in details of a crime that
they have read about or been accused of. In contrast, if the search query
occurred before the incident, it would be incriminating evidence. This
example underlines the importance of aligning the times of events in the
real world with events reconstructed from digital devices. A real-world
example is given in Appendix A.

This leads to the question:

* Corresponding author.
** Corresponding author.

E-mail addresses: celine.vanini@unil.ch (C. Vanini), christopher.hargreaves@cs.ox.ac.uk (C.J. Hargreaves), harm.van.beek@nfi.nl (H. van Beek), frank.
breitinger@unil.ch (F. Breitinger).

URL: https://FBreitinger.de (F. Breitinger).

Contents lists available at ScienceDirect

Forensic Science International: Digital Investigation

journal homepage: www.elsevier.com/locate/fsidi

https://doi.org/10.1016/j.fsidi.2024.301759

mailto:celine.vanini@unil.ch
mailto:christopher.hargreaves@cs.ox.ac.uk
mailto:harm.van.beek@nfi.nl
mailto:frank.breitinger@unil.ch
mailto:frank.breitinger@unil.ch
https://FBreitinger.de
www.sciencedirect.com/science/journal/26662817
https://www.elsevier.com/locate/fsidi
https://doi.org/10.1016/j.fsidi.2024.301759
https://doi.org/10.1016/j.fsidi.2024.301759
https://doi.org/10.1016/j.fsidi.2024.301759
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsidi.2024.301759&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Forensic Science International: Digital Investigation 49 (2024) 301759

2

For a given reconstructed event that is inferred using stored timestamps,
how can the correctness of the clock from which those timestamps origi
nated, and at the time they were recorded, be demonstrated?

In case the outcome is that the system time is false, a subsequent
question arises:

How can we determine the system clock skew?

To answer these questions, we formalize the concept of time anchors,
i.e. characteristic elements that categorize and define components that
are essential for assessing the accuracy and correctness of system time.
In this context, a time anchor is a combination of local and external time
references. We demonstrate the validity of these concepts using two
multi-part controlled experiments, respectively focusing on scenarios
where the correctness of the clock is questioned: during a Google search
(Example 1) and a file creation (Example 2). Note that these examples
are intended to be illustrative rather than exhaustive. Although these
experiments were conducted on Windows, we note that our concepts
extend beyond this platform.

In summary, this article provides the following contributions:

• We define and explain the concept of time anchors which allow in
vestigators to assess the correctness of the system clock for a certain
event.

• We introduce and define the concept of time anomalies, the differ
ences between anchoring and non-anchoring events or local and remote
time anchors, which complement the general definition of time an
chors and help in the evaluation.

• We present experiments showcasing these concepts and share the
corresponding datasets.

These terms provide formalization that is currently not present in
this area of digital forensics and aims to not just improve the process,
and potentially make event reconstruction more reliable, but also to
provide a published, peer-reviewed reference that practitioners can use
to support their use of such approaches.

1.1. Placement

The focus of this work is detecting clock skew, such as modifications
to the system time either through the OS or BIOS/EFI or clock drift. We
focus exclusively on aspects that influence the outcome of a timestamp
generated by the system clock. Therefore, this paper discounts the
possibility of timestamps being manipulated after their generation, e.g.,
an active adversary modifies a timestamp in a database.

This work also discounts the possibility that some timestamps may
have initially originated from a different system (e.g., through file
transfers) and disregards any timestamp transference issues, such as a
file system incorrectly interpreting a timestamp from another file system
(Nordvik and Axelsson, 2022).

Future work will investigate these possible manipulations in more
detail.

1.2. Outline

The rest of the paper is structured as follows. Sec. 2 provides an
overview and discussion of the current state of the field. In Sec. 3, we
describe the research problem and introduce four key concepts to the
paper: time anchors, anchoring and non-anchoring events, time anomalies,
and local time anchors. Sec. 5 details the experimental setup. We illus
trate the practical application of these concepts in two examples where
the correctness of the clock is in question: a Google Search (Sec. 6) and a
File Creation (Sec. 7), which highlight the alternative approaches
needed when different types of events are being reconstructed. In Sec. 8,
we highlight the limitations of this paper and explore possible future
work, and conclude this work in Sec. 9.

2. Related work

The complexity of date and time has been discussed in early digital
forensic research and includes approaches to making sure the clock is
correct.

2.1. Using clock models

The behavior of clocks over time can be described using clock
models. For instance, Buchholz and Tjaden (2007) employed a graphical
approach in a long-term study involving 8000 hosts on the Internet to
characterize the clock behaviors of synchronized hosts, revealing that a
significant number were not aligned with UTC. Given the importance of
external time sources for this work, Buchholz and Tjaden findings un
derscore the necessity for updated research in this area.

Other research has expanded the application of clock models to
simulate historical clock behaviors and remove errors on timestamps.
For example, Stevens (2004) used clock models to align timestamps
originating from various system clocks to a reference time. However,
constructing these models necessitates knowledge of the adjustments a
clock has undergone. As these may not be known to an examiner,
Willassen (2008a) suggested the formulation of clock hypotheses, which
consistency can be assessed using timestamps stored on a device. The
work, which was later refined by Willassen (2008b) lies on causal con
nections between events using Lamport’s happened before-relation
(Lamport, 1978). For example, under a correct clock hypothesis, if an
event a happened before an event b, timestamp a must indicate an
earlier time than timestamp b. Similarly, Gladyshev and Patel (2005)
and Marrington et al. (2011) respectively use causal connections be
tween events to define event time bounding around an event whose time
is unknown, and automate the detection of inconsistencies in timelines.

2.2. Using timestamp correlation

Within a ‘checklist’ for date/time evidence by Boyd and Forster
(2004), aside from handling timezone issues, it is recommended to
“Record the CMOS time on seized or examined system units in relation
to actual time” and also to correlate timestamps with “additional times,
dates and activities both on the computer and away from it”.

Such additional dates and times can take many forms and correlation
can also be used to assess the correctness of the clock generating these
timestamps at the time of their generation. For example, Weil (2002)
investigated the use of locally stored external timestamps inserted by
web servers in dynamic web pages (e.g., a news site). When stored in the
web browser’s cache, these timestamps can be correlated with the cre
ation time of the local cache file that contains the web page, and clock
skew can be estimated by calculating the average difference between
external and file system timestamps. However, this work is limited to a
single data source and does not attempt to generalize the approach.
Later, Kaart and Laraghy (2014) exemplified the practicality of
employing similar external timestamps from mobile operators stored
within messages, like missed call notifications and voicemail alerts,
through a case study conducted on an Android smartphone. These
timestamps were compared in that particular context with file system
timestamps in the message database, to determine time zone and clock
settings within a period of interest.

Schatz et al. (2006) continued the work of Weil (2002) and proposed
an automated approach that compares timestamps in cache and history
records to external timestamps stored remotely within squid logs (proxy
logs provided by the Internet Service Provider). Similarly, Kaart and
Laraghy (2014) also suggested correlating call detail records (CDR)
contents with call logs or SMS messages stored within smartphone de
vices but lacked an experiment. The practical applicability of such
external sources of time is intrinsically tied to their availability and
accessibility. These data sources may require legal access for retention
and may also be subject to deletion after a specific time frame.

C. Vanini et al.

Forensic Science International: Digital Investigation 49 (2024) 301759

3

2.3. Summary

While the literature has looked into clock skew and the methods for
detecting it, many approaches have relied on sources stored remotely
that might not always be available to the investigator (e.g., phone
operator/ISP), or they have focused on a single artifact (e.g., cache files),
which alone cannot be used to assess the correctness of clocks at any
point in time. It should also be noted that these discussions are primarily
found in older studies, with no recent evident developments. Although
the reason remains unclear, one explanation could be the default syn
chronization, which may foster the assumption that today most system
clocks are correct. However, this is not always the case as stated by Acer
et al. (2017) who demonstrated that incorrect client clocks are one of the
major causes of Chrome HTTPS certificate errors. To address these
problems, this work builds upon previous findings and introduces the
concept of time anchors, evaluating their strengths, and discussing
alternative approaches such as time anomalies that can be used to
complement the time anchoring approach.

3. Definitions

This work uses various times which are defined in this section. Spe
cifically, we differentiate between the system clock time CS which is
time according to the operating system, and the real-world time CW; We
also define an external clock time CE which originates from an external
source, e.g., a server on the Internet. Generally, this time cannot be
controlled by us/an attacker. In an ideal world, CS = CE = CW. If this is
not the case, i.e., the clocks differ by a non-trivial amount, we denote
this as skew S.

Ideally S = 0 throughout the lifetime of a system. However, if this is
not the case, we can only compare clocks at a certain point in time
(timestamp) which we denote by TS, TE, and TW, respectively.

Consequently,

Definition 1. Clock skew S refers to the difference (positive or nega
tive) between the TS and TW and can be calculated by S = TW − TS.

where TS is derived from the system clock and TW is derived from the
real-world clock.

Note, for this work, we do not need a perfect alignment and we
accept S = 0 ± ‘a few seconds’ and TS ≈ TE ≈ TW which may occur due to
network delays. While it is acceptable for this work as we primarily focus
on user events, we acknowledge that a few seconds may matter in some
cases, e.g., as discussed by Bi et al. (2006).

A brief discussion on limitations can be found in Sec. 8.1. Further
more, we do not consider timezones, and compare TS to TW independent
of any timezone settings applied on top of the basic UTC, but we
recognize their importance when dealing with time-based digital evi
dence (Boyd and Forster, 2004).

3.1. Time anchor

To reliably reconstruct events from digital data, we need to ascertain
if stored timestamps are reliable. As the system clock CS may not be
correct, one approach is to identify artifacts that include both TS and TE,
i.e., the recorded system time, and a recorded timestamp from an
external source that we consider to be correct. An example can be a
single record that contains data derived from both time sources. If such
an artifact exists, we consider this to be a time anchor with the following
formal definition:

Definition 2. A time anchor TA refers to any digital artifact that is
associated with both TS (a timestamp generated by the system clock) and
TE (a corresponding timestamp originating from a reliable external
source of time).

If such an artifact exists, there are two possibilities:

1. If TS ≈ TE, the system time (CS) was correct at that time.
2. If TS ∕= TE, then CS was subject to clock skew S at that time; specif

ically S = TE − TS.

3.2. Anchoring events

There are important differences in time anchoring that relate to the
type of event that is being reconstructed. To discuss these differences,
we separate events in low-level events (derived from artifacts with
associated timestamps) and high-level events (abstracted sets of low-
level events used to reconstruct higher-level more ‘human understand
able’ events) as proposed by Hargreaves and Patterson (2012).

Based on this event inference idea, in the context of evaluating the
correctness of the system clock, there are two different types of event
reconstruction. As examples, first consider the high-level event of ‘a
Google search was conducted’ which can be inferred from a URL in the
browser history, along with entries in a cache data structure, along with
file creation times for associated cached objects if they are stored as
external files on disk. Since one of the low-level events (cache entry
record) contains a timestamp derived from the system clock, and a
corresponding external timestamp (see Sec. 6.1), it is a time anchor, and
therefore the reconstruction of the Google search event is ‘self-
anchoring’. This is an important distinction because it means that
statements can be made about the correctness of CS at the precise time of
the reconstructed event.

Definition 3. An anchoring event eTA is one that is inferred from one or
more artifacts that are themselves time anchors.

Here, the term “anchoring event” must be distinguished from similar
and related concepts described by previous research. Cohen (2013) first
introduced the concept of an anchor event as “some event that can be
asserted by the examiner based on personal experience or other similar
authority”. The term “anchor event” is also used by Trenwith and Venter
(2013) as an event that “can draw clear lines between the physical world
and the digital world”. The term is used to describe an event that can be
proved had taken place, e.g., that the user did indeed perform an action
on the device and that it was not the result of malicious software.

3.3. Non-anchoring events

Not all events are anchoring events, i.e., conclusive statements
cannot be made about the correctness of the clock at the precise time of
the event. For instance, let us consider the high-level event ‘a file was
accessed’, which can be inferred from the access times of a file
(depending on the operating system), potentially the creation or modi
fication of a link file, entries in most recently used (MRU) lists in the
Registry, and other operating system artifacts. Here, none of the artifacts
contain external timestamps, and thus they are not time anchors.

Naturally, non-anchoring events (e) and anchoring events (eTA) are
intertwined. That is, artifacts from which non-anchoring events are
inferred can be surrounded by a lower bound anchor TAl and an upper

Fig. 1. Two time anchors TAl and TAu (expressed as blue dotted lines) sur
rounding an arbitrary artifact that is not a time anchor, e.g., the ‘last accessed
time’ of a file. Here, TAl indicates CS ≈ CE whereas TAu indicates CS ∕= CE.

C. Vanini et al.

Forensic Science International: Digital Investigation 49 (2024) 301759

4

bound anchor TAu as depicted in Fig. 1.
Intuitively, one approach is to use these TAs as temporal boundaries

to determine the closest anchoring times around artifacts that are not
time anchors themselves. While one may think that this is ‘good enough’
as long as the anchors (TAl, TAu) are close to this artifact (e.g., in the
range of seconds or minutes), this is more complex. Returning to the ‘file
was accessed’ example, let us consider two anchors as illustrated in
Fig. 1 surrounding the ‘last accessed time’ of a file at time TS = 10:02. In
this scenario, the artifact lacks external timestamps, and the real-world
time the file was last accessed remains unknown. Therefore, if the file
was accessed with a system clock negatively skewed by 5 h (i.e., TW =

15:02), the ‘last accessed time’ would fall between the two anchors, TAl
and TAu at 10:02. In such a situation, inferring that the clock was correct
would be a false interpretation.

3.4. Time anomalies

To validate the correctness of non-anchoring events, the concept of
anchors should be complemented by time anomalies:

Definition 4. A time anomaly is an indicator from within the system
suggesting that the system clock did not follow a temporal progression
aligned with the real-world time.

Identifying anomalies comprehensively is difficult. Intuitively, one
has to holistically search for everything that may indicate that the clock
was skewed. Some examples that can be seen as time anomalies are the
following:

Explicit artifact: For example, a record in a Windows event log may
indicate ‘the system time was changed - previous TS is 13:05:21 and
new TS is 08:05:21’.
Incorrect relative sequence: Inconsistencies in sequential infor
mation or a relative position may indicate a time anomaly. This could
be an incorrect relative sequence in filename incrementation, order
of (raw) entries in a database, or logical positions on a hard drive.
Example: A filename IMG_003.JPG with an earlier creation time than
IMG_002.JPG.
Differences in measurable changes: For example, should w32time
synchronize every 9 h, any deviation in the regular time frame be
tween these synchronizations could be indicative of an anomaly.

3.5. Local vs. remote time anchors

Depending on where the reference timestamp TE is stored, we
differentiate between local and remote anchors. If the timestamp used to
validate the local system timestamp is stored locally along with the
system timestamp, then the time anchor can always be constructed
which is denoted as local. In contrast, if the external timestamp does not
exist as an artifact on the local system and requires access to an external
data source to create the time anchor, we denote this as remote.

For instance, Weil (2002) discusses external timestamps stored
within dynamically generated web content that are cached locally. This
scenario is referred to as local as the data point can be found on the
device under investigation; the artifact itself contains a system-derived
timestamp TS, and a corresponding external one TE. In contrast, Kaart
and Laraghy (2014) suggest comparing call detail records (accessible via
a remote service provider) with local artifacts of call logs or messages.
Consequently, the evidence is remote.

The boundaries of available data sources will change between in
vestigations, organizations, and investigators, for example, not all will
have access to Call Data Records, or not all cases will have a cache proxy
to correlate with. However, in the first example, where artifacts of the
local and corresponding external timestamps are stored on the same
device that is under investigation, this represents a more generic sce
nario and is defined below as a local time anchor. However, the potential
for the collection of data from additional sources for correlation is

acknowledged and included in the earlier time anchor definition, but this
work focuses on the more generally applicable situation of local time
anchors.

Definition 5. A local time anchor is a specific instance of a time anchor
where both the timestamp generated by the system clock CS and the
corresponding external timestamp CE are available on the same device.

In summary, this section defined time anchor, (anchoring and non-
anchoring events, time anomalies, and local time anchors. The next sec
tion provides discussions as well as experiments demonstrating the
validity of these terms and their usefulness in practice.

4. Time anchors in investigations

Time anchors and anchoring events allow one to make statements
about the correctness of the system clock. Specifically, an examiner can
say that the clock was likely correct when TS ≈ TE. We say likely as this is
not the case for active tampering.

4.1. Time-anchoring artifacts

By definition, time anchors require external time sources. Conse
quently, only those artifacts that trigger remote events can produce
anchoring events. Examples of such artifacts are:

Browsers: Events related to browser activity may generate
anchoring artifacts. This could be cache files, temporary files, history
(i.e., databases), cookies, or downloads. Example: the creation time
of cookies is local and the expiry time is external (Whitfield, 2011).
Messaging applications: Installed software used for communication
may include anchors within messages or data that have been trans
mitted. Example: A message received via the Signal Desktop appli
cation records the times ‘sent’ (time of sending from external) and
‘received’ (local time).
Email software: Programs such as Thunderbird or MS Outlook may
include time anchors. Example: Emails sent via Thunderbird have
local times stored within the Global Database global-messages-db.
sqlite or the popstate.dat file (time of sending the email) and in the
email headers (server times) located in the Inbox file.
Online storage providers: Applications such as Dropbox, OneDrive,
or Google Drive may include time anchors when files are synchro
nized and activities are logged. Example: Files synchronized on a
Google Drive have modified times stored in a database called met
adata_sqlite_db (Joun et al., 2023), and from observations, the
modified time is based on server time, which can be compared with
the (local) file system modification times of these files.

This is not an exhaustive list. Many apps are web-based and can
provide external timestamps. In addition, network logs that contain
peer/server timestamps may be considered. This article uses three
different time anchors within the Chrome cache, history files, and
Windows event logs. Additional time anchors would enhance the tech
nical analysis in the case studies, but the concept would remain the
same.

4.2. Time anchor identification

The automatic identification of anchors is non-trivial and beyond the
scope of this paper. For this article, we employed a manual approach
that consists of comparing artifact generation under both skewed and
correct system time conditions.

Initially, the idea was to use timeline generation and visualization
tools such as Plaso/Log2timeline (Plaso documentation) and Timesketch
(Berggren, 2018) to automate the analysis. However, we found that
Plaso does not extract all required information, specifically, timestamps
generated by an external time source (e.g., received timestamps in email

C. Vanini et al.

Forensic Science International: Digital Investigation 49 (2024) 301759

5

headers).
This manual approach is sufficient for our example but is not suitable

for comprehensive analyses. Therefore, it is necessary to advance the
automation of the analysis of time anchors and time anomalies. This
could be done by creating a software tool or extending existing frame
works such as Plaso by creating plugins. The software would need to fill
in the timestamps not extracted by timeline generation tools, and either
identify discrepancies or automatically tag time anchors in timelines.

5. Experimental setup

This section describes the setup before the details of the specific
experiments are provided. To demonstrate and validate the concept of
time anchors, two multi-part experiments were performed: one
exploring anchoring events (Example 1: Google Search), and the other
one exploring non-anchoring events (Example 2: File Creation). The
experiments are based on Microsoft Windows 10 Professional and
VMware Workstation 17 Player.

5.1. Baseline system preparation

In preparation for these experiments, we created a playbook (further
detailed in the upcoming sections). This included setting up all neces
sary accounts, such as email accounts. Next, we built a baseline virtual
machine (VM) and installed the corresponding programs. Lastly, we
conducted a series of preliminary user actions, which included file cre
ation, sending emails, and navigating websites.

5.2. Data set creation

For the purpose of this work, we established a pair of identical VMs
for each experiment: one with CS synchronized and the other with CS
deliberately skewed. To simulate clock skew within the virtual ma
chines, we chose to adjust the system time backward through the user
interface.

As VMs have unusual properties when it comes to time management,
modifications were made to ensure they behaved as close as possible to
regular devices (details can be found in Appendix B).

For each experiment, we performed the following steps: (1) duplicate
the baseline system twice; (2) launch one copy of the VM, (3) execute the
sequence of predefined actions, (4) shut down the VM, (5) launch the
other copy, (6) modify the settings of the system time backward in the
user interface, (7) execute the same sequence of predefined actions, (8)
reset system time using the “automatic synchronization” setting in the
user interface, and (9) shut down the VM. All actions were performed
manually to simulate normal user activity. The timing of each user ac
tion (in CW) was also manually documented using as a reference the host
clock, synchronized with the native Windows Time service (Microsoft
Corp, 2022).

5.3. Data set analysis

As mentioned in Sec. 4.2, timelining tools mostly ignore external
timestamps. Hence, disk images were manually analyzed using X-Ways
Forensics.1 For some artifacts requiring further data to be parsed, we also
used specialized forensic tools, which will be mentioned throughout the
text. A comparative analysis of artifacts resulting from each action on
both virtual machines (CS correct vs. CS skewed) allowed us to identify
external times and time anchors. These artifacts are publicly available
Vanini et al. (2024).

6. Example 1: Google Search

This section illustrates the use of time anchors in instances where the
event of interest is an anchoring event. Specifically, we chose to focus on
Google searches as previously explored by Weil (2002). An example of
an investigative question may be:

Was CS correct when conducting the search?

To answer this question, we followed the procedure described in Sec.
5.2. The base VM was duplicated and two identical copies (VM3 and
VM4) were created. For VM1, CS remained unaltered and reflects CW.
For VM2, CS was backdated by approximately 3h using the Graphical
User Interface (16:04 to 13:09 on Sept. 25, 2023), after we had disabled
automatic synchronization. Later, time synchronization was re-enabled
and the time of VM2 was corrected to 16:27. For this example, a range of
web browsing activities were conducted on both virtual machines;
expanding the list of potential browsing activities to the Google search to
identify any edge cases. Sample activities included visiting different
websites, sending/receiving emails (via Outlook on the web and Gmail),
reopening tabs, refreshing a web page, downloading/uploading files,
and synchronizing files with local applications. The web browser that
was used throughout these experiments was Google Chrome.

6.1. Time anchors

Based on the investigative question, our analysis focused on two data
sources: Chrome cache and Chrome history, which are used to (tempo
rarily) store data about visited websites. Chrome history records are
stored in an SQLite database called History and cache entries are dis
patched in different files in the user’s Chrome data. The tool Chrome
CacheView2 was used to simplify the parsing of cache entries and the
History database was opened in DB Browser for SQLite.3

6.1.1. Chrome cache
Each cache file stores a copy of the web resource along with its

corresponding HTTP header response returned by the server that issued
this resource. As previously discussed by Weil (2002), these cached re
sources (although not explicitly labeled as such in his work) function as
time anchors: The HTTP header response contains a timestamp issued by
the server (TE) that can be compared with the last accessed timestamp
included in the associated cache entry (TS).

In VM1, where the system clock remained unaltered, our observa
tions generally revealed that for most artifacts TS ≈ TE (plus or minus a
few seconds). However, this was not always the case, as we noted in
stances where TS > TE. This phenomenon can be partially explained
since the last accessed timestamp reflects the most recent date and time
a cached resource has been accessed. Therefore, encountering situations
where TS > TE is not surprising, especially in our data set where we
revisited previously accessed web pages multiple times. Nevertheless,
we observed that many of these records had time differences ranging
from a few hours to several days. Possible explanations include that
some servers might not maintain accurate clocks, or that the server time
indicates when a resource was uploaded to the web server rather than
reflecting the ’actual time’.

Furthermore, we also discovered that while the activities for VM1
spanned from 10:40 to 11:45, cache records were only found starting
from 11:35 onward. This phenomenon may be because around that time
the virtual machine was restarted and all tabs previously opened were
reopened using the shortcut CTRL+SHIFT+T. This underlines the fact
that cached data may not always be retrieved.

In VM2, CS was backdated by approximately 3 h. Thus, we primarily
observed artifacts with TS < TE, as depicted in Fig. 2 (records highlighted

1 https://www.x-ways.net/forensics/(v19.8).

2 https://www.nirsoft.net/utils/chrome_cache_view.html (v2.46).
3 https://sqlitebrowser.org/(v3.12.2).

C. Vanini et al.

https://www.x-ways.net/forensics/
https://www.nirsoft.net/utils/chrome_cache_view.html
https://sqlitebrowser.org/

Forensic Science International: Digital Investigation 49 (2024) 301759

6

in blue). Here, the skew S can be estimated by comparing the results of
the subtraction between TE and TS from multiple records: S ≈ 2:55h. As
shown in the figure, after resynchronizing CS to CW around 16:27, CS ≈

CE.

6.1.2. Chrome history
The History database contains a visits table which, when combined

(sql: join) with the url table, outputs when web pages were visited. Each
of these records is associated with a timestamp (TS) that is based on the
system time, indicating when a specific address was accessed (‘vis
it_time’ field). During our comparative analysis, we identified that some
records also included an external timestamp (TE) in UTC embedded
within particular URLs (‘url’ field). These specific records are thus by
definition time anchors. Several of these external timestamps were
found in URLs associated with Google searches or logins to online
platforms such as Gmail and Outlook on the web. Note that their format
was different across web servers and services. As an example, an outlook
URL from the url table of VM2 is considered: https://login.live.com/
logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https:
%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt
%3Dfr-FR%26exch%3D1%26RpsCsrfState%3D09cad5ee-c6cd-d359
-61b1-c9e18b3df45c.

While not immediately obvious, the URL key ct represents a time
stamp: 1695651904 which equals 25.09.2023 at 16:25:04 (local time).

Table 1 shows the results for several actions that were performed on
both virtual machines (VM1 and VM2), in which timestamps TS stored
within the ‘visit_time’ field and timestamps TE embedded within URLs
are compared with the documented timing of events TW. Note that for
comparison purposes, all timestamps were normalized to the timezone
set in the virtual machines. This table shows that TE ≈ TW for each
experiment. For VM2, S can be approximated by subtracting TE with TS
(≈ 2:54h).

It is worth mentioning that we identified some edge cases. For
instance, when “refreshing a web page” or “reloading tabs from the
history”, timestamps TE may refer to the first date and time a URL was
accessed (i.e., requests contain timestamps with the ‘old’ timestamp as a
parameter). An example of the Google search is depicted in Table 2
(where visit (1) corresponds to the first time the specific resource was
accessed). On both VMs, we observe that TE is equivalent for each action.
While this may be obvious (the browser reloads an existing URL that
already includes the timestamp), this shows that care is needed when
comparing TS and TE (false positives are possible).

6.2. Was TS correct when conducting the search?

Going back to the investigative question raised earlier, we show how
time anchors can be used to answer it: Consider an example where an
investigator examines a suspect’s computer (embodied by our two vir
tual machines VM1 and VM2). The investigator discovers a ‘peculiar’
search query in the keyword_search_terms table of the Google Chrome
history database: ‘do digital forensic investigators dream in hexadec
imal?’ (for illustration, we selected a query that we genuinely performed
on both VMs, albeit one that does not appear particularly inquisitive).
The examiner wants to determine if CS was correct when conducting the
search query.

To express an opinion, an examiner may use the C-Scale as proposed
by Casey (2020) (also referred to as the ‘Strength of Evidence scale’).
The scale aims at helping practitioners to express their evaluative
opinion in a more understandable and refined manner, at the final stages
of the investigation. It includes two core elements: the number of
sources that agree and their resistance to tampering. According to the
C-Scale, the strength of evidence is higher when multiple and indepen
dent sources agree and these sources are tamper proof/more difficult to
tamper with.

6.2.1. Findings (VM1)
After consideration of the keyword_search _terms table, the examiner

discovers that the query of interest is linked to three distinct URL IDs.
These IDs, also present in the urls and visits tables, link to three URL
strings. Two of these include external timestamps and are (by definition)
time anchors. These time anchors indicate TE ≈ TS ≈ 10:45. When
looking at cached data on the computer, the examiner finds that records
only cover a period from 11:35 to 11:45. Hence, no cached data linked to
the search query can be found. Considering these observations, the
examiner may conclude that the strength of evidence is very strong (C5)
under the hypothesis that the clock was correct when conducting the
Google search. The examiner assigns C1 to the observed digital evidence
under the hypothesis that the clock was skewed as the time anchors
contradict the hypothesis, but future observations might necessitate a
reevaluation.

6.2.2. Findings (VM2)
Performing the identical analysis steps to a skewed machine leads to

a different conclusion. When analyzing the urls and visits tables, the
examiner finds two time anchors indicating that CS ∕= CE (TS ≈ 13:10 and
TE ≈ 16:05). The examiner also finds multiple cached resources linked to
the search query (web pages, pictures, etc) similarly indicating that TS ≈

13:10 and TE ≈ 16:05. The examiner may conclude then that the
strength of evidence is very strong (C5.5) under the hypothesis that the
clock was skewed by approximately 2:55h behind when conducting the
Google search, and erroneous/extremely weak (C0.5) under the alter
nate hypothesis (contradictive evidence).

7. Example 2: file creation

As discussed previously, there are situations in which an event
relevant to an investigation is not an anchoring event, i.e., it does
generate artifacts that are themselves time anchors. The second example
therefore focuses on file creation, which in many instances, is a non-
anchoring event. Here, an example of a question of interest is:

Was CS correct when creating the file?

To answer this question, we followed the same procedure for
Example 1. The base VM was duplicated and two identical copies (VM3
and VM4) were created. For VM3, CS remained unaltered and reflected
CW. For this case, we performed a variety of actions (subject to the
creation of time anchors as described in Sec. 4.1) including browsing
activities (again on Google Chrome), creating and modifying files of
different formats (texts, PDFs, spreadsheets, etc.), sending emails using
both the native Windows mail client and Outlook for Windows. For

Fig. 2. Results from VM2. Sample of Chrome cache records (text/html body type) around the time of resynchronizing CS to CW.

C. Vanini et al.

https://login.live.com/logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https:%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt%3Dfr-FR&exch%3D1&RpsCsrfState%3D09cad5ee-c6cd-d359-61b1-c9e18b3df45c
https://login.live.com/logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https:%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt%3Dfr-FR&exch%3D1&RpsCsrfState%3D09cad5ee-c6cd-d359-61b1-c9e18b3df45c
https://login.live.com/logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https:%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt%3Dfr-FR&exch%3D1&RpsCsrfState%3D09cad5ee-c6cd-d359-61b1-c9e18b3df45c
https://login.live.com/logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https:%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt%3Dfr-FR&exch%3D1&RpsCsrfState%3D09cad5ee-c6cd-d359-61b1-c9e18b3df45c
https://login.live.com/logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https:%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt%3Dfr-FR&exch%3D1&RpsCsrfState%3D09cad5ee-c6cd-d359-61b1-c9e18b3df45c

Forensic Science International: Digital Investigation 49 (2024) 301759

7

VM4, CS was backdated and set to CW-3:53h (i.e., 17:00 to 13:07 on Sept.
25, 2023), again using the Graphical User Interface. After performing
the same series of actions, synchronization was enabled and CS was
adjusted to 17:23.

7.1. Time anchors

In contrast to Example 1, the investigative question necessitates
broadening the range of artifacts to analyze. Based on the usage simu
lated in this case, we extracted and analyzed the following artifacts that
we knew or suspected to contain TE timestamps: again Chrome history
and cache files, and Windows Time Service event logs.

Windows event log files are used by the operating system to record a
variety of system events. These files are located in the Windows/Sys
tem32/winevt directory. We discovered while investigating the func
tioning of the Windows Time Service that a set of events related to time
synchronization are stored within the event log file Microsoft-Windows-
Time-Service%4Operational.evtx. According to the Microsoft docu
mentation, the event IDs range from 257 to 266 (Microsoft Corp.,
2021b). A description of the most relevant event IDs is provided in the
following section. In addition, we also extracted and analyzed file in
ternal and external metadata, along other Windows event logs. Files’
internal and file system metadata were examined using X-Ways Forensics
and Exiftool,4 whereas event logs were examined using the EvtxECmd
command line tool.5 Lastly, the History and cache files were analyzed
using the same process and tools as described in Sec. 6.

7.1.1. Windows Time Service event logs
The analysis of the Windows Time service events logs on both ex

periments allowed us to determine the following: events 257 and 258
respectively indicate the times at which the time service starts and stops,
according to CS. Event 261 records any changes in the system time and
provides the old TS and new TS. As the new TS is provided by the
configured set of time servers during time synchronization, this new TS
reflects TE (TS ≈ TE). Event 216 is thus by definition a time anchor. Other
events provide some contextual information: Event 264 stores the name
of these time servers, e.g., ‘time.windows.com’, and event 266 keeps
track of any time synchronization request and indicates the reason code
for this request, e.g., ‘reason code 0: an explicit request from an
administrator’. An example of event 261 extracted from VM4 is pro
vided below:

W32time service has set the system time to 2023-09-
25T15:22:59.610Z(UTC). Previous system time was 2023-09-
25T11:29:03.926Z (UTC). System Tick Count: 1174671

7.2. Time anomalies

As CS on VM3 remained unaltered, this section concerns findings
from VM4. Due to the clock being set backward, several examples of
time anomalies were observed and are described in the following:

7.2.1. Specific artifacts
Within the Security.evtx file, events with ID 4616 are generated

every time CS is changed (Microsoft Corp, 2021a). Unlike event ID 261,
which logs only changes by the Windows Time service, this event ID
records all adjustments to the system time, including manual adjust
ments. For example, within VM4, one event ID created at 25.09.2023
13:07:31 indicates ‘The system time was changed (previous CS
25.09.2023 17:01:26, new CS: 25.09.2023 13:07:31)’.

7.2.2. Incorrect relative sequence
Several sequential order (time) anomalies were identified during

analysis. As both the event log files and history database store records
using a specific order, having an incorrect clock for VM4 caused a
number of these records to not be ordered chronologically. This is
illustrated in Table 3, where an inconsistency in the sequence of record
IDs was observed in the visits table of the Chrome history database.

7.2.3. Differences in measurable changes
The time between each time synchronization with the Windows time

service is stored in the SpecialPollIntervalsetting.6 On the virtual ma
chines, this setting is set to approximately 9 hours, meaning a syn
chronization event is triggered every 9 hours on the system. As the time
interval during which the activities were performed was relatively short
(less than 9 hours), we did not observe any specific changes in these time
dynamics. However, it is possible to assume that over a longer period,
the time synchronization requests resulting from the correction of the
clock within VM4 would have manifested as a typical pattern within

Table 1
Comparison of timestamps as a result of several events in the Chrome history database of VM1 and VM2. We can see on VM1 that TS ≈ TE while TS < TE on VM2.

n◦ Action Stored TS (VM1) Stored TE (VM1) TW Stored TS (VM2) Stored TE (VM2) TW

(1) Google search using keywords 10:45:20 10:44:59 10:45 13:10:52 16:05:55 16:05
(2) Navigating through the results of (1) 10:45:40 10:44:59 10:45 13:10:53 16:05:55 16:05
(3) Accessing Outlook 11:17:26 11:17:26 11:17 13:19:57 16:15:09 16:15
(4) Log out from Outlook 11:42:23 11:42:54 11:42 13:29:51 16:25:04 16:25

Table 2
Edge cases events in the Chrome history database of VM1 and VM2. We can see for both experiments that for each event the same TE is stored.

n◦ Action Stored TS (VM1) Stored TE (VM1) TW Stored TS (VM2) Stored TE (VM2) TW

(1) Google search using keywords 10:45:20 10:44:59 10:45 13:10:52 16:05:55 16:05
(2) Closing and reopening tab (1) 11:34:18 10:44:59 11:34 13:24:14 16:05:55 16:19
(3) Reloading page (2) 11:36:01 10:44:59 11:36 13:26:39 16:05:55 16:21

Table 3
Results from VM4. Samples of visit records from the
Chrome history database show an inconsistency in
the sequence of record IDs (time jumping backwards
from 16:55:34 to 13:21:29).

id Stored TS

116 25.09.2023 16:55:25
117 25.09.2023 16:55:34
118 25.09.2023 13:21:29
119 25.09.2023 13:21:35

4 https://exiftool.org/(v12.67).
5 https://github.com/EricZimmerman/evtx (v1.5.0.0). 6 SYSTEM/CurrentControlSet/services/W32Time/Time-Providers/NtpClient

C. Vanini et al.

https://exiftool.org/
https://github.com/EricZimmerman/evtx

Forensic Science International: Digital Investigation 49 (2024) 301759

8

these time dynamics.

7.3. Was CS correct when creating the file?

This section illustrates an example of the potential benefits and
limitations of time anchors when the investigative question concerns an
event that is not anchoring.

Let us again assume that during an investigation, a suspect’s com
puter is seized and analyzed (embodied here by VM3 and VM4). The
examiner is interested in determining if CS was correct when the file
under investigation was created. For illustration purposes, let us further
assume that this investigative question concerns the file Ideas.odt
created on VM3 (the equivalent file on VM4 was called PaperIdeas.
odt). The file system timestamps (MACE) stored within the $STAND
ARD_INFORMATION attribute (SIA) of these files are described in
Table 4.

Compared to the first example, the reasoning for non-anchoring
events is more delicate: As the file creation does not include an
external timestamp, a holistic search of (all) time anchors and time
anomalies in the system is required.

7.3.1. Findings (VM3)
After consideration of several time anchors within VM3, including

artifacts from the Chrome cache, browsing history, and Windows Time
service event logs, the examiner identifies multiple cache records (all
containing the same TS and TE values) as the closest time anchors to the
creation timestamp of Ideas.odt, as illustrated in Fig. 3. In this scenario,
no time anomalies are found.

The time anchors identified are 01:36:01 before and 01:11:19 after
the event of interest. While this is an indication that the clock may have
been correct, the evidence for the correctness of the clock is weak (C3 on
the C-scale7). Even if there are no apparent discrepancies, this is not
enough to conclude about the time of the event, therefore the examiner
may assign C3 under the alternate hypothesis too. However, a negative
result for a search for time anomalies provides an additional data point
and can be an additional source of evidence. This increases our confi
dence that the time may have been correct (C4).

7.3.2. Findings (VM4)
In VM4, the examiner finds similar neighboring time anchors which

are illustrated in Fig. 4. Interestingly, the upper time anchors (TAu)
indicate that CS is different from CE by approximately 2:55h. When
searching for anomalies, the examiner discovers an event 4616 in the
Security.evtx log file which suggests CS was changed from 17:01:26 to
13:07:31. Additionally, incorrect relative sequences, as discussed in Sec.
7.2, are found in the visits and downloads table. For example, a download
file with ID 14 which has a starting time (TS) at 25.09.2023 16:55:05 is
followed by download 15 which has a starting time at 25.09.2023
13:22:06. As numerous time anomalies were found around the creation
time of PaperIdeas.odt and one of the closest time anchors indicates
CS ∕= CE, the examiner concludes that the strength of evidence is strong/
very strong (C4.5) under the hypothesis that the clock was skewed at the

time of the creation of the file. The examiner assigns C1 to the observed
digital evidence under the hypothesis that the clock was correct as the
time anchors and anomalies contradict the hypothesis, but future ob
servations might necessitate a reevaluation.

8. Discussion and future work

[RQ1] For a given reconstructed event that is inferred using stored
timestamps, how can the correctness of the clock from which those time
stamps originated, and at the time they were recorded, be demonstrated? Our
experiments demonstrated the distinct differences in determining the
system time between an anchoring event, such as Google searches, and a
non-anchoring event like file creation. When the event of interest is an
anchoring event, time anchors produced by this event can demonstrate
the correctness of the system clock at the time of the event by comparing
TS and TE. Of course, if the event generates a multitude of time anchors,
the confidence is increased (e.g., a search query may produce entries in
cache files and the history database). However, the procedure is more
complex when the investigative question concerns a non-anchoring
event. In these instances, time anchors are employed to establish tem
poral boundaries surrounding the event. Our experiments highlighted
the necessity to complement the approach with a comprehensive search
for time anomalies. Nevertheless, the task is non-trivial and, when
approached manually, becomes time-consuming. Future work should
therefore look into the automatization of time anchor and anomaly
detection.

[RQ2] How can we determine the system clock skew? The examples
illustrated that when a time anchor indicates CS ∕= CE, the system clock
skew S at this point in time can be calculated by TS − TE. However, in
situations where time anchors do not reveal an obvious clock skew, the
examiner must rely on and infer the skew based on time anomalies. For
instance, when the anomaly is explicit, such as an entry in Windows
event logs, the skew can be computed directly.

Table 4
File system timestamps (M: Last modified, C: File creation, E: MFT entry
changed, and A: Last accessed).

Filename SIA-MCE SIA-A

Ideas.odt 25.09.2023 12:05:29 25.09.2023 13:22:21
PaperIdeas.odt 25.09.2023 13:17:11 25.09.2023 13:17:12

Fig. 3. Illustration of a file creation (non-anchoring event) surrounded by two
time anchors. Here, the closest time anchors to the creation timestamp of
Ideas.odt are two cache records (TAl, TAu) indicating that the times were
aligned, i.e., CS ≈ CE.

Fig. 4. Illustration of a file creation (non-anchoring event) surrounded by two
time anchors. Here, the closest time anchors to the creation timestamp of
PaperIdeas.odt are two cache records where TAl: CS ≈ CE and TAu:

CS ∕= CE. A time anomaly (in red) also indicates CS was backdated

(expressed by an arrow).

7 “The source(s) of evidence are more difficult to tamper with but there is not
enough evidence to support a firm conclusion […].” (Casey, 2020).

C. Vanini et al.

Forensic Science International: Digital Investigation 49 (2024) 301759

9

8.1. Reliability of external time sources

To define and illustrate time anchors, the external time sources (NTP
servers, servers hosting cached content, etc.) have been assumed to be
correct. However, a study by Buchholz and Tjaden (2007) has shown
that not all servers maintain accurate clocks. In case the external source
is incorrect, those external time skews manifest in the locally stored
data. During our experiments, we were able to determine that time
stamps returned by highly-frequented servers all reflected the current
time. Performing a detailed study of external time sources is beyond the
scope of this paper but should be considered in the future.

Relying on a single time anchor creates some uncertainty. This is
why, even for anchoring events, a probabilistic approach should be used.
This is consistent with qualitative descriptions on the C-Scale by Casey
(2020) which would place this as C3 - ‘weak evidence’. However,
examining multiple time anchors, which originate from different inde
pendent sources, and are in agreement, allows us to move to C4/C5.

It is also important to note that external time sources can be further
separated into external-and-trustable or external-and-not-trustable. For
instance, an external source is not always physically distant and main
tained by a different entity but could be a device linked to the seized
device such as a laptop that syncs with a phone. If the suspect can access
the external source, we denote this as external-and-not-trustable and
vice versa.

8.2. Forward dating

This article explores backdating but does not address forward dating.
Although backdating seems more common and is the main timestamp
manipulation example used by Casey (2020), forward dating also has its
relevance, such as when establishing an alibi. Precisely, if a suspect
plans a crime for tomorrow at 14:00 and wants to prove they were using
a computer, they can adjust the system time (CS) today to 13:55 the next
day, browse for 30 min, and power off the device. When the device is
eventually seized, potentially days later, the logs will confirm the sus
pect’s statement.

While no experiments have been conducted, we believe that our
concepts also apply to forward dating and that time anchors can be used
to assess the correctness of CS. However, there may be some new pe
culiarities that come with forward dating especially if the device is used
(1) after reverting the time and tomorrow at 13:55 and/or (2) during the
fictive time, i.e., tomorrow between 13:55 and 14:25.

9. Conclusion

Event reconstruction is a core procedure for uncovering the truth and
relies on timestamps. Consequently, it is important to ensure the cor
rectness of the system clock TS when a timestamp is recorded. To address
this concern, the paper formalized the concept of time anchors which can
be used to show the correctness of TS at a specific time in a device’s
history. This concept is complemented by different types of events, e.g.,
anchoring and non-anchoring events, which have major implications for
the uncertainty that remains after the approach is used. With respect to
the latter, we also defined time anomalies which can be used to increase
confidence in clock accuracy in scenarios involving non-anchoring
events. The practicality of these concepts has been demonstrated
based on two examples. Lastly, this article includes several examples of
time anchors and categorizations, making additional types of time an
chors easier to identify.

CRediT authorship contribution statement

Céline Vanini: Conceptualization, Methodology, Validation, Inves
tigation, Writing - Original Draft, Writing - Review and Editing. Chris
topher J. Hargreaves: Conceptualization, Methodology, Writing -
Original Draft, Writing - Review and Editing, Supervision. Harm van

Beek: Conceptualization, Methodology, Writing - Review and Editing.
Frank Breitinger: Conceptualization, Methodology, Writing - Original
Draft, Writing - Review and Editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We thank Jan Gruber and Felix Freiling for their feedback during our
discussions. Additionally, we express our appreciation to the anonymous
reviewers whose constructive critiques contributed to the enhancement
of this research.

Appendix A. Case overview

On the morning of the 23rd of December 2015, Richard Dabate re
ported that his wife, Connie Dabate, had been shot by a masked man
who had broken into their house. First responders promptly arrived at
the scene and found Richard Dabate tied in the kitchen, while Connie’s
lifeless body lay in the basement. During questioning, Richard Dabate
informed authorities he had driven back home around 9 a.m. that
morning because he had forgotten his computer on his way to work.
Upon his arrival, he was attacked by the masked intruder. He claimed to
have heard Connie Dabate return home earlier than usual, and shortly
after, to have heard two shots. Following that, Dabate explained that he
managed to free himself enabling him to activate the alarm and call the
police.

In May 2022, Richard Dabate was convicted of the murder of his
wife. Among the traces used during the trial were data obtained from
Connie’s Fitbit activity tracker and iPhone. Fitbit data played a crucial
role in the prosecution’s argumentation, revealing significant discrep
ancies in the timeline of events provided by the accused. While Dabate
claimed that his wife was killed around 9:05 a.m., the data retrieved
from her wearable device indicated alternate patterns of activity and
inactivity persisting until 10:05 a.m. Similarly, traces extracted from her
iPhone revealed Facebook activity around 9:40 a.m.8

In response, the defense questioned the reliability of the traces
retrieved from the Fitbit, casting doubts about the accuracy of the
timestamps used to invalidate Richard Dabate’s claims. They argued
that the precision of timing data is intricately linked to the device with
which the Fitbit is synchronized, and those devices could be inaccurate
(Rohrlich, 2022; NBC Connecticut, 2022; Associated Press, 2022).

While the prosecution’s expert ensured the court that it would be
very unlikely for the device’s clock to be off by an hour, it is not entirely
unreasonable to consider the defense’s argument a valid point.

Appendix B. Virtual machines and their time

The management of time within VMs differs from a standard Win
dows. In general, VMs are configured to periodically synchronize with
the host. When the guest time deviates from the host time, a process of
correction comes into action. This is typically done with the help of
additional services installed on the guest OS. On VMware, these addi
tional services (VMware Tools) provide two types of time synchroniza
tion to track host time: (1) periodic (disabled by default) where the guest
clock is checked by default every 60 s, and (2) one-off where the syn
chronization occurs upon specific events such as taking a snapshot or
starting the VMware tools daemon when booting the virtual machine

8 The details presented in this example are based on reported newspaper
content and are employed for illustrative purposes.

C. Vanini et al.

Forensic Science International: Digital Investigation 49 (2024) 301759

10

(VMware, 2023).
To be able to manipulate the guest clock and to use the native syn

chronization service on Windows (Windows Time service), we made the
following changes to the baseline virtual machine: (1) installed VMware
Tools, (2) checked that periodic time synchronization was off and (3)
disabled one-off time synchronization by adding a set of instructions
within the .vmx file of the machine.9 It is worth mentioning that these
changes propagate to any copy of the virtual machine.

References

Acer, M.E., Stark, E., Felt, A.P., Fahl, S., Bhargava, R., Dev, B., Braithwaite, M., Sleevi, R.,
Tabriz, P., 2017. Where the Wild warnings are: root causes of Chrome HTTPS
certificate errors. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, Dallas Texas USA, pp. 1407–1420. https://doi.
org/10.1145/3133956.3134007.

Associated Press, 2022. Jury Begins Deliberating in Richard Dabate Murder Trial. URL:
https://nypost.com/2022/08/18/connecticut-man-richard-dabate-sentenced-in-fi
tbit-murder-case-of-wife-connie-dabate/.

Berggren, J., 2018. Timesketch. URL: https://timesketch.org/.
Bi, J., Wu, Q., Li, Z., 2006. On estimating clock skew for one-way measurements.

Comput. Commun. 29, 1213–1225.
Boyd, C., Forster, P., 2004. Time and date issues in forensic computing—a case study.

Digit. Invest. 1, 18–23. https://doi.org/10.1016/j.diin.2004.01.002.
Buchholz, F., Tjaden, B., 2007. A brief study of time. Digit. Invest. 4, 31–42. https://doi.

org/10.1016/j.diin.2007.06.004. URL: https://www.sciencedirect.com/science/
article/pii/S1742287607000394.

Casey, E., 2020. Standardization of forming and expressing preliminary evaluative
opinions on digital evidence. Forensic Sci. Int.: Digit. Invest. 32, 200888 https://doi.
org/10.1016/j.fsidi.2019.200888. URL: https://www.sciencedirect.com/science/
article/pii/S1742287619303147.

Cohen, F., 2013. Digital Forensic Evidence Examination, fifth ed. 2013 ed. Fred Cohen &
Associates, Livermore, CA.

Gladyshev, P., Patel, A., 2005. Formalising event time bounding in digital investigations.
Int. J. Digit. Evid. 4, 1–14. https://www.semanticscholar.org/paper/Formalisin
g-Event-Time-Bounding-in-Digital-Gladyshev-Patel/11ab843e473f834c3204c1bc
dde1e4b5ceda3192.

Hargreaves, C., Patterson, J., 2012. An automated timeline reconstruction approach for
digital forensic investigations. Digit. Invest. 9, S69–S79. https://doi.org/10.1016/j.
diin.2012.05.006. URL: https://www.sciencedirect.com/science/article/pii/S17
4228761200031X.

Joun, J., Lee, S., Park, J., 2023. Discovering spoliation of evidence through identifying
traces on deleted files in macos. Forensic Sci. Int.: Digit. Invest. 44, 301502 https://
doi.org/10.1016/j.fsidi.2023.301502. https://www.sciencedirect.com/science/artic
le/pii/S2666281723000033. selected papers of the Tenth Annual DFRWS EU
Conference.

Kaart, M., Laraghy, S., 2014. Android forensics: interpretation of timestamps. Digit.
Invest. 11, 234–248. https://doi.org/10.1016/j.diin.2014.05.001. URL: https://
www.sciencedirect.com/science/article/pii/S1742287614000449.

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21, 558–565. https://doi.org/10.1145/359545.359563.

Marouani, H., Dagenais, M.R., 2008. Internal clock drift estimation in computer clusters.
Journal of Computer Systems, Networks, and Communications 2008, 583162.
https://doi.org/10.1155/2008/583162 publisher: Hindawi Publishing Corporation.

Marrington, A., Baggili, I., Mohay, G., Clark, A., 2011. CAT Detect (Computer Activity
Timeline Detection): a tool for detecting inconsistency in computer activity
timelines. Digit. Invest. 8, S52–S61. https://doi.org/10.1016/j.diin.2011.05.007.
URL: https://www.sciencedirect.com/science/article/pii/S1742287611000314.

Microsoft Corp, 2021a. 4616(s): the System Time Was Changed. URL: https://learn.
microsoft.com/en-us/windows/security/threat-protection/auditing/event-4616.

Microsoft Corp., 2021b. Windows Time for Traceability. URL: https://learn.microsoft.
com/en-us/windows-server/networking/windows-time-service/windows-time-for-
traceability.

Microsoft Corp, 2022. How the Windows Time Service Works. URL: https://learn.mi
crosoft.com/en-us/windows-server/networking/windows-time-service/how-the-wi
ndows-time-service-works.

Microsoft Corp., 2024. Getsystemtime Function (sysinfoapi.H). https://learn.microsoft.
com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtime.

NBC Connecticut, 2022. Jury Begins Deliberating in Richard Dabate Murder Trial. URL:
https://www.nbcconnecticut.com/news/local/closing-arguments-to-begin-in-rich
ard-dabate-murder-trial/2780196/.

Nordvik, R., Axelsson, S., 2022. It is about time–Do exFAT implementations handle
timestamps correctly? Forensic Sci. Int.: Digit. Invest. 42–43, 301476 https://doi.
org/10.1016/j.fsidi.2022.301476.

Plaso documentation, Parsers and plugins. URL: https://plaso.readthedocs.io/en/latest/s
ources/user/Parsers-and-plugins.html.

Rohrlich, J., 2022. Guilty! Two-Timing Hubby Is Undone by Murdered Wife’s Fitbit. The
Daily Beast. https://www.thedailybeast.com/two-timing-husband-richard-dabate-
found-guilty-of-wife-connies-murder-in-connecticut-fitbit-case.

Sandvik, J.P., Årnes, A., 2018. The reliability of clocks as digital evidence under low
voltage conditions. Digit. Invest. 24, S10–S17. https://doi.org/10.1016/j.
diin.2018.01.003. URL: https://www.sciencedirect.com/science/article/pii/S17
42287618300355.

Schatz, B., Mohay, G., Clark, A., 2006. A correlation method for establishing provenance
of timestamps in digital evidence. Digit. Invest. 3, 98–107. https://doi.org/10.1016/
j.diin.2006.06.009.

Stevens, M.W., 2004. Unification of relative time frames for digital forensics. Digit.
Invest. 1, 225–239. https://doi.org/10.1016/j.diin.2004.07.003. URL: https://www.
sciencedirect.com/science/article/pii/S174228760400057X.

Trenwith, P.M., Venter, H., 2013. Digital forensic readiness in the cloud. In: 2013
Information Security for South Africa, pp. 1–5. https://doi.org/10.1109/
ISSA.2013.6641055 iSSN: 2330-9881.

Vanini, C., Hargreaves, C.J., Breitinger, F., van Beek, H., 2024. Time anchoring artifacts
for digital forensic event reconstruction (Version 1.0.0) [Data set]. UNIL data
service. https://doi.org/10.48657/55mc-5440.

VMware, 2023. Vmware Tools Administration. URL: http://www.vmware.com/files/
pdf/Timekeeping-In-VirtualMachines.pdf.

Weil, M.C., 2002. Dynamic time & date stamp analysis. Int. J. Digit. EVid. URL:. https://
www.semanticscholar.org/paper/Dynamic-Time-%26-Date-Stamp-Analysis-Weil/77
c5edbba3710d9e614012f2615ab6926e5219d0.

Whitfield, L., 2011. Detecting Cmos Clock Changes. https://forensic4cast.com/2011/01/
detecting-cmos-clock-changes/.

Willassen, S., 2008a. Hypothesis-based investigation of digital timestamps. In: Ray, I.,
Shenoi, S. (Eds.), Advances in Digital Forensics IV, vol. 285. Springer US, Boston,
MA, pp. 75–86. https://doi.org/10.1007/978-0-387-84927-0_7. http://link.springer.
com/10.1007/978-0-387-84927-0_7. iSSN: 1571-5736 Series Title: IFIP — The
International Federation for Information Processing.

Willassen, S.Y., 2008b. Timestamp evidence correlation by model based clock hypothesis
testing. In: Proceedings of the 1st International Conference on Forensic Applications
and Techniques in Telecommunications, Information, and Multimedia and
Workshop. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), Brussels, BEL, pp. 1–6.

9 The precise list of instructions can be found here: https://kb.vmware.com/
s/article/1189.

C. Vanini et al.

https://doi.org/10.1145/3133956.3134007
https://doi.org/10.1145/3133956.3134007
https://nypost.com/2022/08/18/connecticut-man-richard-dabate-sentenced-in-fitbit-murder-case-of-wife-connie-dabate/
https://nypost.com/2022/08/18/connecticut-man-richard-dabate-sentenced-in-fitbit-murder-case-of-wife-connie-dabate/
https://timesketch.org/
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref4
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref4
https://doi.org/10.1016/j.diin.2004.01.002
https://doi.org/10.1016/j.diin.2007.06.004
https://doi.org/10.1016/j.diin.2007.06.004
https://www.sciencedirect.com/science/article/pii/S1742287607000394
https://www.sciencedirect.com/science/article/pii/S1742287607000394
https://doi.org/10.1016/j.fsidi.2019.200888
https://doi.org/10.1016/j.fsidi.2019.200888
https://www.sciencedirect.com/science/article/pii/S1742287619303147
https://www.sciencedirect.com/science/article/pii/S1742287619303147
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref8
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref8
https://www.semanticscholar.org/paper/Formalising-Event-Time-Bounding-in-Digital-Gladyshev-Patel/11ab843e473f834c3204c1bcdde1e4b5ceda3192
https://www.semanticscholar.org/paper/Formalising-Event-Time-Bounding-in-Digital-Gladyshev-Patel/11ab843e473f834c3204c1bcdde1e4b5ceda3192
https://www.semanticscholar.org/paper/Formalising-Event-Time-Bounding-in-Digital-Gladyshev-Patel/11ab843e473f834c3204c1bcdde1e4b5ceda3192
https://doi.org/10.1016/j.diin.2012.05.006
https://doi.org/10.1016/j.diin.2012.05.006
https://www.sciencedirect.com/science/article/pii/S174228761200031X
https://www.sciencedirect.com/science/article/pii/S174228761200031X
https://doi.org/10.1016/j.fsidi.2023.301502
https://doi.org/10.1016/j.fsidi.2023.301502
https://www.sciencedirect.com/science/article/pii/S2666281723000033
https://www.sciencedirect.com/science/article/pii/S2666281723000033
https://doi.org/10.1016/j.diin.2014.05.001
https://www.sciencedirect.com/science/article/pii/S1742287614000449
https://www.sciencedirect.com/science/article/pii/S1742287614000449
https://doi.org/10.1145/359545.359563
https://doi.org/10.1155/2008/583162
https://doi.org/10.1016/j.diin.2011.05.007
https://www.sciencedirect.com/science/article/pii/S1742287611000314
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4616
https://learn.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4616
https://learn.microsoft.com/en-us/windows-server/networking/windows-time-service/windows-time-for-traceability
https://learn.microsoft.com/en-us/windows-server/networking/windows-time-service/windows-time-for-traceability
https://learn.microsoft.com/en-us/windows-server/networking/windows-time-service/windows-time-for-traceability
https://learn.microsoft.com/en-us/windows-server/networking/windows-time-service/how-the-windows-time-service-works
https://learn.microsoft.com/en-us/windows-server/networking/windows-time-service/how-the-windows-time-service-works
https://learn.microsoft.com/en-us/windows-server/networking/windows-time-service/how-the-windows-time-service-works
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtime
https://learn.microsoft.com/en-us/windows/win32/api/sysinfoapi/nf-sysinfoapi-getsystemtime
https://www.nbcconnecticut.com/news/local/closing-arguments-to-begin-in-richard-dabate-murder-trial/2780196/
https://www.nbcconnecticut.com/news/local/closing-arguments-to-begin-in-richard-dabate-murder-trial/2780196/
https://doi.org/10.1016/j.fsidi.2022.301476
https://doi.org/10.1016/j.fsidi.2022.301476
https://plaso.readthedocs.io/en/latest/sources/user/Parsers-and-plugins.html
https://plaso.readthedocs.io/en/latest/sources/user/Parsers-and-plugins.html
https://www.thedailybeast.com/two-timing-husband-richard-dabate-found-guilty-of-wife-connies-murder-in-connecticut-fitbit-case
https://www.thedailybeast.com/two-timing-husband-richard-dabate-found-guilty-of-wife-connies-murder-in-connecticut-fitbit-case
https://doi.org/10.1016/j.diin.2018.01.003
https://doi.org/10.1016/j.diin.2018.01.003
https://www.sciencedirect.com/science/article/pii/S1742287618300355
https://www.sciencedirect.com/science/article/pii/S1742287618300355
https://doi.org/10.1016/j.diin.2006.06.009
https://doi.org/10.1016/j.diin.2006.06.009
https://doi.org/10.1016/j.diin.2004.07.003
https://www.sciencedirect.com/science/article/pii/S174228760400057X
https://www.sciencedirect.com/science/article/pii/S174228760400057X
https://doi.org/10.1109/ISSA.2013.6641055
https://doi.org/10.1109/ISSA.2013.6641055
https://doi.org/10.48657/55mc-5440
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf
https://www.semanticscholar.org/paper/Dynamic-Time-%26-Date-Stamp-Analysis-Weil/77c5edbba3710d9e614012f2615ab6926e5219d0
https://www.semanticscholar.org/paper/Dynamic-Time-%26-Date-Stamp-Analysis-Weil/77c5edbba3710d9e614012f2615ab6926e5219d0
https://www.semanticscholar.org/paper/Dynamic-Time-%26-Date-Stamp-Analysis-Weil/77c5edbba3710d9e614012f2615ab6926e5219d0
https://forensic4cast.com/2011/01/detecting-cmos-clock-changes/
https://forensic4cast.com/2011/01/detecting-cmos-clock-changes/
https://doi.org/10.1007/978-0-387-84927-0_7
http://link.springer.com/10.1007/978-0-387-84927-0_7
http://link.springer.com/10.1007/978-0-387-84927-0_7
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref32
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref32
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref32
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref32
http://refhub.elsevier.com/S2666-2817(24)00078-7/sref32
https://kb.vmware.com/s/article/1189
https://kb.vmware.com/s/article/1189

	Was the clock correct? Exploring timestamp interpretation through time anchors for digital forensic event reconstruction
	1 Introduction
	1.1 Placement
	1.2 Outline

	2 Related work
	2.1 Using clock models
	2.2 Using timestamp correlation
	2.3 Summary

	3 Definitions
	3.1 Time anchor
	3.2 Anchoring events
	3.3 Non-anchoring events
	3.4 Time anomalies
	3.5 Local vs. remote time anchors

	4 Time anchors in investigations
	4.1 Time-anchoring artifacts
	4.2 Time anchor identification

	5 Experimental setup
	5.1 Baseline system preparation
	5.2 Data set creation
	5.3 Data set analysis

	6 Example 1: Google Search
	6.1 Time anchors
	6.1.1 Chrome cache
	6.1.2 Chrome history

	6.2 Was TS correct when conducting the search?
	6.2.1 Findings (VM1)
	6.2.2 Findings (VM2)

	7 Example 2: file creation
	7.1 Time anchors
	7.1.1 Windows Time Service event logs

	7.2 Time anomalies
	7.2.1 Specific artifacts
	7.2.2 Incorrect relative sequence
	7.2.3 Differences in measurable changes

	7.3 Was CS correct when creating the file?
	7.3.1 Findings (VM3)
	7.3.2 Findings (VM4)

	8 Discussion and future work
	8.1 Reliability of external time sources
	8.2 Forward dating

	9 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Case overview
	Appendix B Virtual machines and their time
	References

