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A B S T R A C T   

Timestamps and their correct interpretation play a crucial role in digital forensic investigations, particularly 
when the objective is to establish a timeline of events a.k.a. event reconstruction. However, the way these 
timestamps are generated heavily depends on an internal clock, or ‘system time’, from which many are derived. 
Consequently, when this system time is skewed due to tampering, natural clock drift, or system malfunctions, 
recorded timestamps will not reflect the actual times the (real-world) events occurred. This raises the question of 
how to validate the correctness of the system clock when recording timestamps and, if found incorrect, how to 
determine system clock skew. To address this problem, this paper defines several important concepts such as time 
anchors, anchoring events, non-anchoring events and time anomalies which can be used to determine if the system 
time was correct. Using two examples - a Google search and a file creation - and comparing correct and skewed 
versions of the same set of performed actions, we illustrate the use and potential benefits of time anchors to 
demonstrate the correctness of the system clock for event reconstruction.   

1. Introduction 

In criminal investigations, event reconstruction plays a central role 
in uncovering the truth, solving crimes, and administering justice. It is 
used to understand complex phenomena and historical events by piecing 
together fragmented information into a coherent narrative. A corner
stone of event reconstruction within digital forensics is timestamps 
which when extracted, normalized, and sorted allow inference of events 
that occurred. 

The origins of timestamps can vary, but many are derived from the 
internal clock of the computer hardware, i.e., operating system com
ponents and applications retrieve the time via an API such as GetSys
temTime on Windows (Microsoft Corp., 2024). The origin of this ‘system 
time’ is the device hardware frequently referred to as a Real Time Clock 
(RTC). However, this time does not need to relate to the time in the real 
world, and often does not (Marouani and Dagenais, 2008; Acer et al., 
2017). These inconsistencies may occur due to active tampering or 
arbitrary changes, natural variations in clocks, or malfunctioning of the 

system, e.g., a failing battery (Sandvik and Årnes, 2018). In other words, 
“[s]tored timestamps may not accurately reflect the times that the 
events occurred” (Willassen, 2008b). This phenomenon is described as 
clock skew (Kaart and Laraghy, 2014). 

An undetected clock skew can have severe consequences on event 
reconstruction and thus ultimately for the outcome of a case. For 
instance, let us assume a fictive case where a person was murdered using 
Potassium cyanide. The police seized the computer of a primary suspect 
and found the search query ‘how does Potassium cyanide react to the 
body’. If this search query was sent after the body was found and re
ported, the person may have been interested in details of a crime that 
they have read about or been accused of. In contrast, if the search query 
occurred before the incident, it would be incriminating evidence. This 
example underlines the importance of aligning the times of events in the 
real world with events reconstructed from digital devices. A real-world 
example is given in Appendix A. 

This leads to the question: 
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For a given reconstructed event that is inferred using stored timestamps, 
how can the correctness of the clock from which those timestamps origi
nated, and at the time they were recorded, be demonstrated? 

In case the outcome is that the system time is false, a subsequent 
question arises: 

How can we determine the system clock skew? 

To answer these questions, we formalize the concept of time anchors, 
i.e. characteristic elements that categorize and define components that 
are essential for assessing the accuracy and correctness of system time. 
In this context, a time anchor is a combination of local and external time 
references. We demonstrate the validity of these concepts using two 
multi-part controlled experiments, respectively focusing on scenarios 
where the correctness of the clock is questioned: during a Google search 
(Example 1) and a file creation (Example 2). Note that these examples 
are intended to be illustrative rather than exhaustive. Although these 
experiments were conducted on Windows, we note that our concepts 
extend beyond this platform. 

In summary, this article provides the following contributions: 

• We define and explain the concept of time anchors which allow in
vestigators to assess the correctness of the system clock for a certain 
event. 

• We introduce and define the concept of time anomalies, the differ
ences between anchoring and non-anchoring events or local and remote 
time anchors, which complement the general definition of time an
chors and help in the evaluation.  

• We present experiments showcasing these concepts and share the 
corresponding datasets. 

These terms provide formalization that is currently not present in 
this area of digital forensics and aims to not just improve the process, 
and potentially make event reconstruction more reliable, but also to 
provide a published, peer-reviewed reference that practitioners can use 
to support their use of such approaches. 

1.1. Placement 

The focus of this work is detecting clock skew, such as modifications 
to the system time either through the OS or BIOS/EFI or clock drift. We 
focus exclusively on aspects that influence the outcome of a timestamp 
generated by the system clock. Therefore, this paper discounts the 
possibility of timestamps being manipulated after their generation, e.g., 
an active adversary modifies a timestamp in a database. 

This work also discounts the possibility that some timestamps may 
have initially originated from a different system (e.g., through file 
transfers) and disregards any timestamp transference issues, such as a 
file system incorrectly interpreting a timestamp from another file system 
(Nordvik and Axelsson, 2022). 

Future work will investigate these possible manipulations in more 
detail. 

1.2. Outline 

The rest of the paper is structured as follows. Sec. 2 provides an 
overview and discussion of the current state of the field. In Sec. 3, we 
describe the research problem and introduce four key concepts to the 
paper: time anchors, anchoring and non-anchoring events, time anomalies, 
and local time anchors. Sec. 5 details the experimental setup. We illus
trate the practical application of these concepts in two examples where 
the correctness of the clock is in question: a Google Search (Sec. 6) and a 
File Creation (Sec. 7), which highlight the alternative approaches 
needed when different types of events are being reconstructed. In Sec. 8, 
we highlight the limitations of this paper and explore possible future 
work, and conclude this work in Sec. 9. 

2. Related work 

The complexity of date and time has been discussed in early digital 
forensic research and includes approaches to making sure the clock is 
correct. 

2.1. Using clock models 

The behavior of clocks over time can be described using clock 
models. For instance, Buchholz and Tjaden (2007) employed a graphical 
approach in a long-term study involving 8000 hosts on the Internet to 
characterize the clock behaviors of synchronized hosts, revealing that a 
significant number were not aligned with UTC. Given the importance of 
external time sources for this work, Buchholz and Tjaden findings un
derscore the necessity for updated research in this area. 

Other research has expanded the application of clock models to 
simulate historical clock behaviors and remove errors on timestamps. 
For example, Stevens (2004) used clock models to align timestamps 
originating from various system clocks to a reference time. However, 
constructing these models necessitates knowledge of the adjustments a 
clock has undergone. As these may not be known to an examiner, 
Willassen (2008a) suggested the formulation of clock hypotheses, which 
consistency can be assessed using timestamps stored on a device. The 
work, which was later refined by Willassen (2008b) lies on causal con
nections between events using Lamport’s happened before-relation 
(Lamport, 1978). For example, under a correct clock hypothesis, if an 
event a happened before an event b, timestamp a must indicate an 
earlier time than timestamp b. Similarly, Gladyshev and Patel (2005) 
and Marrington et al. (2011) respectively use causal connections be
tween events to define event time bounding around an event whose time 
is unknown, and automate the detection of inconsistencies in timelines. 

2.2. Using timestamp correlation 

Within a ‘checklist’ for date/time evidence by Boyd and Forster 
(2004), aside from handling timezone issues, it is recommended to 
“Record the CMOS time on seized or examined system units in relation 
to actual time” and also to correlate timestamps with “additional times, 
dates and activities both on the computer and away from it”. 

Such additional dates and times can take many forms and correlation 
can also be used to assess the correctness of the clock generating these 
timestamps at the time of their generation. For example, Weil (2002) 
investigated the use of locally stored external timestamps inserted by 
web servers in dynamic web pages (e.g., a news site). When stored in the 
web browser’s cache, these timestamps can be correlated with the cre
ation time of the local cache file that contains the web page, and clock 
skew can be estimated by calculating the average difference between 
external and file system timestamps. However, this work is limited to a 
single data source and does not attempt to generalize the approach. 
Later, Kaart and Laraghy (2014) exemplified the practicality of 
employing similar external timestamps from mobile operators stored 
within messages, like missed call notifications and voicemail alerts, 
through a case study conducted on an Android smartphone. These 
timestamps were compared in that particular context with file system 
timestamps in the message database, to determine time zone and clock 
settings within a period of interest. 

Schatz et al. (2006) continued the work of Weil (2002) and proposed 
an automated approach that compares timestamps in cache and history 
records to external timestamps stored remotely within squid logs (proxy 
logs provided by the Internet Service Provider). Similarly, Kaart and 
Laraghy (2014) also suggested correlating call detail records (CDR) 
contents with call logs or SMS messages stored within smartphone de
vices but lacked an experiment. The practical applicability of such 
external sources of time is intrinsically tied to their availability and 
accessibility. These data sources may require legal access for retention 
and may also be subject to deletion after a specific time frame. 
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2.3. Summary 

While the literature has looked into clock skew and the methods for 
detecting it, many approaches have relied on sources stored remotely 
that might not always be available to the investigator (e.g., phone 
operator/ISP), or they have focused on a single artifact (e.g., cache files), 
which alone cannot be used to assess the correctness of clocks at any 
point in time. It should also be noted that these discussions are primarily 
found in older studies, with no recent evident developments. Although 
the reason remains unclear, one explanation could be the default syn
chronization, which may foster the assumption that today most system 
clocks are correct. However, this is not always the case as stated by Acer 
et al. (2017) who demonstrated that incorrect client clocks are one of the 
major causes of Chrome HTTPS certificate errors. To address these 
problems, this work builds upon previous findings and introduces the 
concept of time anchors, evaluating their strengths, and discussing 
alternative approaches such as time anomalies that can be used to 
complement the time anchoring approach. 

3. Definitions 

This work uses various times which are defined in this section. Spe
cifically, we differentiate between the system clock time CS which is 
time according to the operating system, and the real-world time CW; We 
also define an external clock time CE which originates from an external 
source, e.g., a server on the Internet. Generally, this time cannot be 
controlled by us/an attacker. In an ideal world, CS = CE = CW. If this is 
not the case, i.e., the clocks differ by a non-trivial amount, we denote 
this as skew S. 

Ideally S = 0 throughout the lifetime of a system. However, if this is 
not the case, we can only compare clocks at a certain point in time 
(timestamp) which we denote by TS, TE, and TW, respectively. 

Consequently, 

Definition 1. Clock skew S refers to the difference (positive or nega
tive) between the TS and TW and can be calculated by S = TW − TS. 

where TS is derived from the system clock and TW is derived from the 
real-world clock. 

Note, for this work, we do not need a perfect alignment and we 
accept S = 0 ± ‘a few seconds’ and TS ≈ TE ≈ TW which may occur due to 
network delays. While it is acceptable for this work as we primarily focus 
on user events, we acknowledge that a few seconds may matter in some 
cases, e.g., as discussed by Bi et al. (2006). 

A brief discussion on limitations can be found in Sec. 8.1. Further
more, we do not consider timezones, and compare TS to TW independent 
of any timezone settings applied on top of the basic UTC, but we 
recognize their importance when dealing with time-based digital evi
dence (Boyd and Forster, 2004). 

3.1. Time anchor 

To reliably reconstruct events from digital data, we need to ascertain 
if stored timestamps are reliable. As the system clock CS may not be 
correct, one approach is to identify artifacts that include both TS and TE, 
i.e., the recorded system time, and a recorded timestamp from an 
external source that we consider to be correct. An example can be a 
single record that contains data derived from both time sources. If such 
an artifact exists, we consider this to be a time anchor with the following 
formal definition: 

Definition 2. A time anchor TA refers to any digital artifact that is 
associated with both TS (a timestamp generated by the system clock) and 
TE (a corresponding timestamp originating from a reliable external 
source of time). 

If such an artifact exists, there are two possibilities:  

1. If TS ≈ TE, the system time (CS) was correct at that time. 
2. If TS ∕= TE, then CS was subject to clock skew S at that time; specif

ically S = TE − TS. 

3.2. Anchoring events 

There are important differences in time anchoring that relate to the 
type of event that is being reconstructed. To discuss these differences, 
we separate events in low-level events (derived from artifacts with 
associated timestamps) and high-level events (abstracted sets of low- 
level events used to reconstruct higher-level more ‘human understand
able’ events) as proposed by Hargreaves and Patterson (2012). 

Based on this event inference idea, in the context of evaluating the 
correctness of the system clock, there are two different types of event 
reconstruction. As examples, first consider the high-level event of ‘a 
Google search was conducted’ which can be inferred from a URL in the 
browser history, along with entries in a cache data structure, along with 
file creation times for associated cached objects if they are stored as 
external files on disk. Since one of the low-level events (cache entry 
record) contains a timestamp derived from the system clock, and a 
corresponding external timestamp (see Sec. 6.1), it is a time anchor, and 
therefore the reconstruction of the Google search event is ‘self- 
anchoring’. This is an important distinction because it means that 
statements can be made about the correctness of CS at the precise time of 
the reconstructed event. 

Definition 3. An anchoring event eTA is one that is inferred from one or 
more artifacts that are themselves time anchors. 

Here, the term “anchoring event” must be distinguished from similar 
and related concepts described by previous research. Cohen (2013) first 
introduced the concept of an anchor event as “some event that can be 
asserted by the examiner based on personal experience or other similar 
authority”. The term “anchor event” is also used by Trenwith and Venter 
(2013) as an event that “can draw clear lines between the physical world 
and the digital world”. The term is used to describe an event that can be 
proved had taken place, e.g., that the user did indeed perform an action 
on the device and that it was not the result of malicious software. 

3.3. Non-anchoring events 

Not all events are anchoring events, i.e., conclusive statements 
cannot be made about the correctness of the clock at the precise time of 
the event. For instance, let us consider the high-level event ‘a file was 
accessed’, which can be inferred from the access times of a file 
(depending on the operating system), potentially the creation or modi
fication of a link file, entries in most recently used (MRU) lists in the 
Registry, and other operating system artifacts. Here, none of the artifacts 
contain external timestamps, and thus they are not time anchors. 

Naturally, non-anchoring events (e) and anchoring events (eTA) are 
intertwined. That is, artifacts from which non-anchoring events are 
inferred can be surrounded by a lower bound anchor TAl and an upper 

Fig. 1. Two time anchors TAl and TAu (expressed as blue dotted lines) sur
rounding an arbitrary artifact that is not a time anchor, e.g., the ‘last accessed 
time’ of a file. Here, TAl indicates CS ≈ CE whereas TAu indicates CS ∕= CE. 
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bound anchor TAu as depicted in Fig. 1. 
Intuitively, one approach is to use these TAs as temporal boundaries 

to determine the closest anchoring times around artifacts that are not 
time anchors themselves. While one may think that this is ‘good enough’ 
as long as the anchors (TAl, TAu) are close to this artifact (e.g., in the 
range of seconds or minutes), this is more complex. Returning to the ‘file 
was accessed’ example, let us consider two anchors as illustrated in 
Fig. 1 surrounding the ‘last accessed time’ of a file at time TS = 10:02. In 
this scenario, the artifact lacks external timestamps, and the real-world 
time the file was last accessed remains unknown. Therefore, if the file 
was accessed with a system clock negatively skewed by 5 h (i.e., TW =

15:02), the ‘last accessed time’ would fall between the two anchors, TAl 
and TAu at 10:02. In such a situation, inferring that the clock was correct 
would be a false interpretation. 

3.4. Time anomalies 

To validate the correctness of non-anchoring events, the concept of 
anchors should be complemented by time anomalies: 

Definition 4. A time anomaly is an indicator from within the system 
suggesting that the system clock did not follow a temporal progression 
aligned with the real-world time. 

Identifying anomalies comprehensively is difficult. Intuitively, one 
has to holistically search for everything that may indicate that the clock 
was skewed. Some examples that can be seen as time anomalies are the 
following: 

Explicit artifact: For example, a record in a Windows event log may 
indicate ‘the system time was changed - previous TS is 13:05:21 and 
new TS is 08:05:21’. 
Incorrect relative sequence: Inconsistencies in sequential infor
mation or a relative position may indicate a time anomaly. This could 
be an incorrect relative sequence in filename incrementation, order 
of (raw) entries in a database, or logical positions on a hard drive. 
Example: A filename IMG_003.JPG with an earlier creation time than 
IMG_002.JPG. 
Differences in measurable changes: For example, should w32time 
synchronize every 9 h, any deviation in the regular time frame be
tween these synchronizations could be indicative of an anomaly. 

3.5. Local vs. remote time anchors 

Depending on where the reference timestamp TE is stored, we 
differentiate between local and remote anchors. If the timestamp used to 
validate the local system timestamp is stored locally along with the 
system timestamp, then the time anchor can always be constructed 
which is denoted as local. In contrast, if the external timestamp does not 
exist as an artifact on the local system and requires access to an external 
data source to create the time anchor, we denote this as remote. 

For instance, Weil (2002) discusses external timestamps stored 
within dynamically generated web content that are cached locally. This 
scenario is referred to as local as the data point can be found on the 
device under investigation; the artifact itself contains a system-derived 
timestamp TS, and a corresponding external one TE. In contrast, Kaart 
and Laraghy (2014) suggest comparing call detail records (accessible via 
a remote service provider) with local artifacts of call logs or messages. 
Consequently, the evidence is remote. 

The boundaries of available data sources will change between in
vestigations, organizations, and investigators, for example, not all will 
have access to Call Data Records, or not all cases will have a cache proxy 
to correlate with. However, in the first example, where artifacts of the 
local and corresponding external timestamps are stored on the same 
device that is under investigation, this represents a more generic sce
nario and is defined below as a local time anchor. However, the potential 
for the collection of data from additional sources for correlation is 

acknowledged and included in the earlier time anchor definition, but this 
work focuses on the more generally applicable situation of local time 
anchors. 

Definition 5. A local time anchor is a specific instance of a time anchor 
where both the timestamp generated by the system clock CS and the 
corresponding external timestamp CE are available on the same device. 

In summary, this section defined time anchor, (anchoring and non- 
anchoring events, time anomalies, and local time anchors. The next sec
tion provides discussions as well as experiments demonstrating the 
validity of these terms and their usefulness in practice. 

4. Time anchors in investigations 

Time anchors and anchoring events allow one to make statements 
about the correctness of the system clock. Specifically, an examiner can 
say that the clock was likely correct when TS ≈ TE. We say likely as this is 
not the case for active tampering. 

4.1. Time-anchoring artifacts 

By definition, time anchors require external time sources. Conse
quently, only those artifacts that trigger remote events can produce 
anchoring events. Examples of such artifacts are: 

Browsers: Events related to browser activity may generate 
anchoring artifacts. This could be cache files, temporary files, history 
(i.e., databases), cookies, or downloads. Example: the creation time 
of cookies is local and the expiry time is external (Whitfield, 2011). 
Messaging applications: Installed software used for communication 
may include anchors within messages or data that have been trans
mitted. Example: A message received via the Signal Desktop appli
cation records the times ‘sent’ (time of sending from external) and 
‘received’ (local time). 
Email software: Programs such as Thunderbird or MS Outlook may 
include time anchors. Example: Emails sent via Thunderbird have 
local times stored within the Global Database global-messages-db. 
sqlite or the popstate.dat file (time of sending the email) and in the 
email headers (server times) located in the Inbox file. 
Online storage providers: Applications such as Dropbox, OneDrive, 
or Google Drive may include time anchors when files are synchro
nized and activities are logged. Example: Files synchronized on a 
Google Drive have modified times stored in a database called met
adata_sqlite_db (Joun et al., 2023), and from observations, the 
modified time is based on server time, which can be compared with 
the (local) file system modification times of these files. 

This is not an exhaustive list. Many apps are web-based and can 
provide external timestamps. In addition, network logs that contain 
peer/server timestamps may be considered. This article uses three 
different time anchors within the Chrome cache, history files, and 
Windows event logs. Additional time anchors would enhance the tech
nical analysis in the case studies, but the concept would remain the 
same. 

4.2. Time anchor identification 

The automatic identification of anchors is non-trivial and beyond the 
scope of this paper. For this article, we employed a manual approach 
that consists of comparing artifact generation under both skewed and 
correct system time conditions. 

Initially, the idea was to use timeline generation and visualization 
tools such as Plaso/Log2timeline (Plaso documentation) and Timesketch 
(Berggren, 2018) to automate the analysis. However, we found that 
Plaso does not extract all required information, specifically, timestamps 
generated by an external time source (e.g., received timestamps in email 
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headers). 
This manual approach is sufficient for our example but is not suitable 

for comprehensive analyses. Therefore, it is necessary to advance the 
automation of the analysis of time anchors and time anomalies. This 
could be done by creating a software tool or extending existing frame
works such as Plaso by creating plugins. The software would need to fill 
in the timestamps not extracted by timeline generation tools, and either 
identify discrepancies or automatically tag time anchors in timelines. 

5. Experimental setup 

This section describes the setup before the details of the specific 
experiments are provided. To demonstrate and validate the concept of 
time anchors, two multi-part experiments were performed: one 
exploring anchoring events (Example 1: Google Search), and the other 
one exploring non-anchoring events (Example 2: File Creation). The 
experiments are based on Microsoft Windows 10 Professional and 
VMware Workstation 17 Player. 

5.1. Baseline system preparation 

In preparation for these experiments, we created a playbook (further 
detailed in the upcoming sections). This included setting up all neces
sary accounts, such as email accounts. Next, we built a baseline virtual 
machine (VM) and installed the corresponding programs. Lastly, we 
conducted a series of preliminary user actions, which included file cre
ation, sending emails, and navigating websites. 

5.2. Data set creation 

For the purpose of this work, we established a pair of identical VMs 
for each experiment: one with CS synchronized and the other with CS 
deliberately skewed. To simulate clock skew within the virtual ma
chines, we chose to adjust the system time backward through the user 
interface. 

As VMs have unusual properties when it comes to time management, 
modifications were made to ensure they behaved as close as possible to 
regular devices (details can be found in Appendix B). 

For each experiment, we performed the following steps: (1) duplicate 
the baseline system twice; (2) launch one copy of the VM, (3) execute the 
sequence of predefined actions, (4) shut down the VM, (5) launch the 
other copy, (6) modify the settings of the system time backward in the 
user interface, (7) execute the same sequence of predefined actions, (8) 
reset system time using the “automatic synchronization” setting in the 
user interface, and (9) shut down the VM. All actions were performed 
manually to simulate normal user activity. The timing of each user ac
tion (in CW) was also manually documented using as a reference the host 
clock, synchronized with the native Windows Time service (Microsoft 
Corp, 2022). 

5.3. Data set analysis 

As mentioned in Sec. 4.2, timelining tools mostly ignore external 
timestamps. Hence, disk images were manually analyzed using X-Ways 
Forensics.1 For some artifacts requiring further data to be parsed, we also 
used specialized forensic tools, which will be mentioned throughout the 
text. A comparative analysis of artifacts resulting from each action on 
both virtual machines (CS correct vs. CS skewed) allowed us to identify 
external times and time anchors. These artifacts are publicly available 
Vanini et al. (2024). 

6. Example 1: Google Search 

This section illustrates the use of time anchors in instances where the 
event of interest is an anchoring event. Specifically, we chose to focus on 
Google searches as previously explored by Weil (2002). An example of 
an investigative question may be: 

Was CS correct when conducting the search? 

To answer this question, we followed the procedure described in Sec. 
5.2. The base VM was duplicated and two identical copies (VM3 and 
VM4) were created. For VM1, CS remained unaltered and reflects CW. 
For VM2, CS was backdated by approximately 3h using the Graphical 
User Interface (16:04 to 13:09 on Sept. 25, 2023), after we had disabled 
automatic synchronization. Later, time synchronization was re-enabled 
and the time of VM2 was corrected to 16:27. For this example, a range of 
web browsing activities were conducted on both virtual machines; 
expanding the list of potential browsing activities to the Google search to 
identify any edge cases. Sample activities included visiting different 
websites, sending/receiving emails (via Outlook on the web and Gmail), 
reopening tabs, refreshing a web page, downloading/uploading files, 
and synchronizing files with local applications. The web browser that 
was used throughout these experiments was Google Chrome. 

6.1. Time anchors 

Based on the investigative question, our analysis focused on two data 
sources: Chrome cache and Chrome history, which are used to (tempo
rarily) store data about visited websites. Chrome history records are 
stored in an SQLite database called History and cache entries are dis
patched in different files in the user’s Chrome data. The tool Chrome
CacheView2 was used to simplify the parsing of cache entries and the 
History database was opened in DB Browser for SQLite.3 

6.1.1. Chrome cache 
Each cache file stores a copy of the web resource along with its 

corresponding HTTP header response returned by the server that issued 
this resource. As previously discussed by Weil (2002), these cached re
sources (although not explicitly labeled as such in his work) function as 
time anchors: The HTTP header response contains a timestamp issued by 
the server (TE) that can be compared with the last accessed timestamp 
included in the associated cache entry (TS). 

In VM1, where the system clock remained unaltered, our observa
tions generally revealed that for most artifacts TS ≈ TE (plus or minus a 
few seconds). However, this was not always the case, as we noted in
stances where TS > TE. This phenomenon can be partially explained 
since the last accessed timestamp reflects the most recent date and time 
a cached resource has been accessed. Therefore, encountering situations 
where TS > TE is not surprising, especially in our data set where we 
revisited previously accessed web pages multiple times. Nevertheless, 
we observed that many of these records had time differences ranging 
from a few hours to several days. Possible explanations include that 
some servers might not maintain accurate clocks, or that the server time 
indicates when a resource was uploaded to the web server rather than 
reflecting the ’actual time’. 

Furthermore, we also discovered that while the activities for VM1 
spanned from 10:40 to 11:45, cache records were only found starting 
from 11:35 onward. This phenomenon may be because around that time 
the virtual machine was restarted and all tabs previously opened were 
reopened using the shortcut CTRL+SHIFT+T. This underlines the fact 
that cached data may not always be retrieved. 

In VM2, CS was backdated by approximately 3 h. Thus, we primarily 
observed artifacts with TS < TE, as depicted in Fig. 2 (records highlighted 

1 https://www.x-ways.net/forensics/(v19.8). 

2 https://www.nirsoft.net/utils/chrome_cache_view.html (v2.46).  
3 https://sqlitebrowser.org/(v3.12.2). 
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in blue). Here, the skew S can be estimated by comparing the results of 
the subtraction between TE and TS from multiple records: S ≈ 2:55h. As 
shown in the figure, after resynchronizing CS to CW around 16:27, CS ≈

CE. 

6.1.2. Chrome history 
The History database contains a visits table which, when combined 

(sql: join) with the url table, outputs when web pages were visited. Each 
of these records is associated with a timestamp (TS) that is based on the 
system time, indicating when a specific address was accessed (‘vis
it_time’ field). During our comparative analysis, we identified that some 
records also included an external timestamp (TE) in UTC embedded 
within particular URLs (‘url’ field). These specific records are thus by 
definition time anchors. Several of these external timestamps were 
found in URLs associated with Google searches or logins to online 
platforms such as Gmail and Outlook on the web. Note that their format 
was different across web servers and services. As an example, an outlook 
URL from the url table of VM2 is considered: https://login.live.com/ 
logout.srf?ct=1695651904&rver=7.0.6738.0&id=292841&ru=https: 
%2F%2Foutlook.live.com%2Fowa%2Fcsignout.aspx%3F%3f%3fumkt 
%3Dfr-FR%26exch%3D1%26RpsCsrfState%3D09cad5ee-c6cd-d359 
-61b1-c9e18b3df45c. 

While not immediately obvious, the URL key ct represents a time
stamp: 1695651904 which equals 25.09.2023 at 16:25:04 (local time). 

Table 1 shows the results for several actions that were performed on 
both virtual machines (VM1 and VM2), in which timestamps TS stored 
within the ‘visit_time’ field and timestamps TE embedded within URLs 
are compared with the documented timing of events TW. Note that for 
comparison purposes, all timestamps were normalized to the timezone 
set in the virtual machines. This table shows that TE ≈ TW for each 
experiment. For VM2, S can be approximated by subtracting TE with TS 
(≈ 2:54h). 

It is worth mentioning that we identified some edge cases. For 
instance, when “refreshing a web page” or “reloading tabs from the 
history”, timestamps TE may refer to the first date and time a URL was 
accessed (i.e., requests contain timestamps with the ‘old’ timestamp as a 
parameter). An example of the Google search is depicted in Table 2 
(where visit (1) corresponds to the first time the specific resource was 
accessed). On both VMs, we observe that TE is equivalent for each action. 
While this may be obvious (the browser reloads an existing URL that 
already includes the timestamp), this shows that care is needed when 
comparing TS and TE (false positives are possible). 

6.2. Was TS correct when conducting the search? 

Going back to the investigative question raised earlier, we show how 
time anchors can be used to answer it: Consider an example where an 
investigator examines a suspect’s computer (embodied by our two vir
tual machines VM1 and VM2). The investigator discovers a ‘peculiar’ 
search query in the keyword_search_terms table of the Google Chrome 
history database: ‘do digital forensic investigators dream in hexadec
imal?’ (for illustration, we selected a query that we genuinely performed 
on both VMs, albeit one that does not appear particularly inquisitive). 
The examiner wants to determine if CS was correct when conducting the 
search query. 

To express an opinion, an examiner may use the C-Scale as proposed 
by Casey (2020) (also referred to as the ‘Strength of Evidence scale’). 
The scale aims at helping practitioners to express their evaluative 
opinion in a more understandable and refined manner, at the final stages 
of the investigation. It includes two core elements: the number of 
sources that agree and their resistance to tampering. According to the 
C-Scale, the strength of evidence is higher when multiple and indepen
dent sources agree and these sources are tamper proof/more difficult to 
tamper with. 

6.2.1. Findings (VM1) 
After consideration of the keyword_search _terms table, the examiner 

discovers that the query of interest is linked to three distinct URL IDs. 
These IDs, also present in the urls and visits tables, link to three URL 
strings. Two of these include external timestamps and are (by definition) 
time anchors. These time anchors indicate TE ≈ TS ≈ 10:45. When 
looking at cached data on the computer, the examiner finds that records 
only cover a period from 11:35 to 11:45. Hence, no cached data linked to 
the search query can be found. Considering these observations, the 
examiner may conclude that the strength of evidence is very strong (C5) 
under the hypothesis that the clock was correct when conducting the 
Google search. The examiner assigns C1 to the observed digital evidence 
under the hypothesis that the clock was skewed as the time anchors 
contradict the hypothesis, but future observations might necessitate a 
reevaluation. 

6.2.2. Findings (VM2) 
Performing the identical analysis steps to a skewed machine leads to 

a different conclusion. When analyzing the urls and visits tables, the 
examiner finds two time anchors indicating that CS ∕= CE (TS ≈ 13:10 and 
TE ≈ 16:05). The examiner also finds multiple cached resources linked to 
the search query (web pages, pictures, etc) similarly indicating that TS ≈

13:10 and TE ≈ 16:05. The examiner may conclude then that the 
strength of evidence is very strong (C5.5) under the hypothesis that the 
clock was skewed by approximately 2:55h behind when conducting the 
Google search, and erroneous/extremely weak (C0.5) under the alter
nate hypothesis (contradictive evidence). 

7. Example 2: file creation 

As discussed previously, there are situations in which an event 
relevant to an investigation is not an anchoring event, i.e., it does 
generate artifacts that are themselves time anchors. The second example 
therefore focuses on file creation, which in many instances, is a non- 
anchoring event. Here, an example of a question of interest is: 

Was CS correct when creating the file? 

To answer this question, we followed the same procedure for 
Example 1. The base VM was duplicated and two identical copies (VM3 
and VM4) were created. For VM3, CS remained unaltered and reflected 
CW. For this case, we performed a variety of actions (subject to the 
creation of time anchors as described in Sec. 4.1) including browsing 
activities (again on Google Chrome), creating and modifying files of 
different formats (texts, PDFs, spreadsheets, etc.), sending emails using 
both the native Windows mail client and Outlook for Windows. For 

Fig. 2. Results from VM2. Sample of Chrome cache records (text/html body type) around the time of resynchronizing CS to CW.  
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VM4, CS was backdated and set to CW-3:53h (i.e., 17:00 to 13:07 on Sept. 
25, 2023), again using the Graphical User Interface. After performing 
the same series of actions, synchronization was enabled and CS was 
adjusted to 17:23. 

7.1. Time anchors 

In contrast to Example 1, the investigative question necessitates 
broadening the range of artifacts to analyze. Based on the usage simu
lated in this case, we extracted and analyzed the following artifacts that 
we knew or suspected to contain TE timestamps: again Chrome history 
and cache files, and Windows Time Service event logs. 

Windows event log files are used by the operating system to record a 
variety of system events. These files are located in the Windows/Sys
tem32/winevt directory. We discovered while investigating the func
tioning of the Windows Time Service that a set of events related to time 
synchronization are stored within the event log file Microsoft-Windows- 
Time-Service%4Operational.evtx. According to the Microsoft docu
mentation, the event IDs range from 257 to 266 (Microsoft Corp., 
2021b). A description of the most relevant event IDs is provided in the 
following section. In addition, we also extracted and analyzed file in
ternal and external metadata, along other Windows event logs. Files’ 
internal and file system metadata were examined using X-Ways Forensics 
and Exiftool,4 whereas event logs were examined using the EvtxECmd 
command line tool.5 Lastly, the History and cache files were analyzed 
using the same process and tools as described in Sec. 6. 

7.1.1. Windows Time Service event logs 
The analysis of the Windows Time service events logs on both ex

periments allowed us to determine the following: events 257 and 258 
respectively indicate the times at which the time service starts and stops, 
according to CS. Event 261 records any changes in the system time and 
provides the old TS and new TS. As the new TS is provided by the 
configured set of time servers during time synchronization, this new TS 
reflects TE (TS ≈ TE). Event 216 is thus by definition a time anchor. Other 
events provide some contextual information: Event 264 stores the name 
of these time servers, e.g., ‘time.windows.com’, and event 266 keeps 
track of any time synchronization request and indicates the reason code 
for this request, e.g., ‘reason code 0: an explicit request from an 
administrator’. An example of event 261 extracted from VM4 is pro
vided below: 

W32time service has set the system time to 2023-09- 
25T15:22:59.610Z(UTC). Previous system time was 2023-09- 
25T11:29:03.926Z (UTC). System Tick Count: 1174671 

7.2. Time anomalies 

As CS on VM3 remained unaltered, this section concerns findings 
from VM4. Due to the clock being set backward, several examples of 
time anomalies were observed and are described in the following: 

7.2.1. Specific artifacts 
Within the Security.evtx file, events with ID 4616 are generated 

every time CS is changed (Microsoft Corp, 2021a). Unlike event ID 261, 
which logs only changes by the Windows Time service, this event ID 
records all adjustments to the system time, including manual adjust
ments. For example, within VM4, one event ID created at 25.09.2023 
13:07:31 indicates ‘The system time was changed (previous CS 
25.09.2023 17:01:26, new CS: 25.09.2023 13:07:31)’. 

7.2.2. Incorrect relative sequence 
Several sequential order (time) anomalies were identified during 

analysis. As both the event log files and history database store records 
using a specific order, having an incorrect clock for VM4 caused a 
number of these records to not be ordered chronologically. This is 
illustrated in Table 3, where an inconsistency in the sequence of record 
IDs was observed in the visits table of the Chrome history database. 

7.2.3. Differences in measurable changes 
The time between each time synchronization with the Windows time 

service is stored in the SpecialPollIntervalsetting.6 On the virtual ma
chines, this setting is set to approximately 9 hours, meaning a syn
chronization event is triggered every 9 hours on the system. As the time 
interval during which the activities were performed was relatively short 
(less than 9 hours), we did not observe any specific changes in these time 
dynamics. However, it is possible to assume that over a longer period, 
the time synchronization requests resulting from the correction of the 
clock within VM4 would have manifested as a typical pattern within 

Table 1 
Comparison of timestamps as a result of several events in the Chrome history database of VM1 and VM2. We can see on VM1 that TS ≈ TE while TS < TE on VM2.  

n◦ Action Stored TS (VM1) Stored TE (VM1) TW Stored TS (VM2) Stored TE (VM2) TW 

(1) Google search using keywords 10:45:20 10:44:59 10:45 13:10:52 16:05:55 16:05 
(2) Navigating through the results of (1) 10:45:40 10:44:59 10:45 13:10:53 16:05:55 16:05 
(3) Accessing Outlook 11:17:26 11:17:26 11:17 13:19:57 16:15:09 16:15 
(4) Log out from Outlook 11:42:23 11:42:54 11:42 13:29:51 16:25:04 16:25  

Table 2 
Edge cases events in the Chrome history database of VM1 and VM2. We can see for both experiments that for each event the same TE is stored.  

n◦ Action Stored TS (VM1) Stored TE (VM1) TW Stored TS (VM2) Stored TE (VM2) TW 

(1) Google search using keywords 10:45:20 10:44:59 10:45 13:10:52 16:05:55 16:05 
(2) Closing and reopening tab (1) 11:34:18 10:44:59 11:34 13:24:14 16:05:55 16:19 
(3) Reloading page (2) 11:36:01 10:44:59 11:36 13:26:39 16:05:55 16:21  

Table 3 
Results from VM4. Samples of visit records from the 
Chrome history database show an inconsistency in 
the sequence of record IDs (time jumping backwards 
from 16:55:34 to 13:21:29).  

id Stored TS 

116 25.09.2023 16:55:25 
117 25.09.2023 16:55:34 
118 25.09.2023 13:21:29 
119 25.09.2023 13:21:35  

4 https://exiftool.org/(v12.67).  
5 https://github.com/EricZimmerman/evtx (v1.5.0.0). 6 SYSTEM/CurrentControlSet/services/W32Time/Time-Providers/NtpClient 
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these time dynamics. 

7.3. Was CS correct when creating the file? 

This section illustrates an example of the potential benefits and 
limitations of time anchors when the investigative question concerns an 
event that is not anchoring. 

Let us again assume that during an investigation, a suspect’s com
puter is seized and analyzed (embodied here by VM3 and VM4). The 
examiner is interested in determining if CS was correct when the file 
under investigation was created. For illustration purposes, let us further 
assume that this investigative question concerns the file Ideas.odt 
created on VM3 (the equivalent file on VM4 was called PaperIdeas. 
odt). The file system timestamps (MACE) stored within the $STAND
ARD_INFORMATION attribute (SIA) of these files are described in 
Table 4. 

Compared to the first example, the reasoning for non-anchoring 
events is more delicate: As the file creation does not include an 
external timestamp, a holistic search of (all) time anchors and time 
anomalies in the system is required. 

7.3.1. Findings (VM3) 
After consideration of several time anchors within VM3, including 

artifacts from the Chrome cache, browsing history, and Windows Time 
service event logs, the examiner identifies multiple cache records (all 
containing the same TS and TE values) as the closest time anchors to the 
creation timestamp of Ideas.odt, as illustrated in Fig. 3. In this scenario, 
no time anomalies are found. 

The time anchors identified are 01:36:01 before and 01:11:19 after 
the event of interest. While this is an indication that the clock may have 
been correct, the evidence for the correctness of the clock is weak (C3 on 
the C-scale7). Even if there are no apparent discrepancies, this is not 
enough to conclude about the time of the event, therefore the examiner 
may assign C3 under the alternate hypothesis too. However, a negative 
result for a search for time anomalies provides an additional data point 
and can be an additional source of evidence. This increases our confi
dence that the time may have been correct (C4). 

7.3.2. Findings (VM4) 
In VM4, the examiner finds similar neighboring time anchors which 

are illustrated in Fig. 4. Interestingly, the upper time anchors (TAu) 
indicate that CS is different from CE by approximately 2:55h. When 
searching for anomalies, the examiner discovers an event 4616 in the 
Security.evtx log file which suggests CS was changed from 17:01:26 to 
13:07:31. Additionally, incorrect relative sequences, as discussed in Sec. 
7.2, are found in the visits and downloads table. For example, a download 
file with ID 14 which has a starting time (TS) at 25.09.2023 16:55:05 is 
followed by download 15 which has a starting time at 25.09.2023 
13:22:06. As numerous time anomalies were found around the creation 
time of PaperIdeas.odt and one of the closest time anchors indicates 
CS ∕= CE, the examiner concludes that the strength of evidence is strong/ 
very strong (C4.5) under the hypothesis that the clock was skewed at the 

time of the creation of the file. The examiner assigns C1 to the observed 
digital evidence under the hypothesis that the clock was correct as the 
time anchors and anomalies contradict the hypothesis, but future ob
servations might necessitate a reevaluation. 

8. Discussion and future work 

[RQ1] For a given reconstructed event that is inferred using stored 
timestamps, how can the correctness of the clock from which those time
stamps originated, and at the time they were recorded, be demonstrated? Our 
experiments demonstrated the distinct differences in determining the 
system time between an anchoring event, such as Google searches, and a 
non-anchoring event like file creation. When the event of interest is an 
anchoring event, time anchors produced by this event can demonstrate 
the correctness of the system clock at the time of the event by comparing 
TS and TE. Of course, if the event generates a multitude of time anchors, 
the confidence is increased (e.g., a search query may produce entries in 
cache files and the history database). However, the procedure is more 
complex when the investigative question concerns a non-anchoring 
event. In these instances, time anchors are employed to establish tem
poral boundaries surrounding the event. Our experiments highlighted 
the necessity to complement the approach with a comprehensive search 
for time anomalies. Nevertheless, the task is non-trivial and, when 
approached manually, becomes time-consuming. Future work should 
therefore look into the automatization of time anchor and anomaly 
detection. 

[RQ2] How can we determine the system clock skew? The examples 
illustrated that when a time anchor indicates CS ∕= CE, the system clock 
skew S at this point in time can be calculated by TS − TE. However, in 
situations where time anchors do not reveal an obvious clock skew, the 
examiner must rely on and infer the skew based on time anomalies. For 
instance, when the anomaly is explicit, such as an entry in Windows 
event logs, the skew can be computed directly. 

Table 4 
File system timestamps (M: Last modified, C: File creation, E: MFT entry 
changed, and A: Last accessed).  

Filename SIA-MCE SIA-A 

Ideas.odt 25.09.2023 12:05:29 25.09.2023 13:22:21 
PaperIdeas.odt 25.09.2023 13:17:11 25.09.2023 13:17:12  

Fig. 3. Illustration of a file creation (non-anchoring event) surrounded by two 
time anchors. Here, the closest time anchors to the creation timestamp of 
Ideas.odt are two cache records (TAl, TAu) indicating that the times were 
aligned, i.e., CS ≈ CE. 

Fig. 4. Illustration of a file creation (non-anchoring event) surrounded by two 
time anchors. Here, the closest time anchors to the creation timestamp of 
PaperIdeas.odt are two cache records where TAl: CS ≈ CE and TAu: 

CS ∕= CE. A time anomaly (in red) also indicates CS was backdated 

(expressed by an arrow). 

7 “The source(s) of evidence are more difficult to tamper with but there is not 
enough evidence to support a firm conclusion […].” (Casey, 2020). 
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8.1. Reliability of external time sources 

To define and illustrate time anchors, the external time sources (NTP 
servers, servers hosting cached content, etc.) have been assumed to be 
correct. However, a study by Buchholz and Tjaden (2007) has shown 
that not all servers maintain accurate clocks. In case the external source 
is incorrect, those external time skews manifest in the locally stored 
data. During our experiments, we were able to determine that time
stamps returned by highly-frequented servers all reflected the current 
time. Performing a detailed study of external time sources is beyond the 
scope of this paper but should be considered in the future. 

Relying on a single time anchor creates some uncertainty. This is 
why, even for anchoring events, a probabilistic approach should be used. 
This is consistent with qualitative descriptions on the C-Scale by Casey 
(2020) which would place this as C3 - ‘weak evidence’. However, 
examining multiple time anchors, which originate from different inde
pendent sources, and are in agreement, allows us to move to C4/C5. 

It is also important to note that external time sources can be further 
separated into external-and-trustable or external-and-not-trustable. For 
instance, an external source is not always physically distant and main
tained by a different entity but could be a device linked to the seized 
device such as a laptop that syncs with a phone. If the suspect can access 
the external source, we denote this as external-and-not-trustable and 
vice versa. 

8.2. Forward dating 

This article explores backdating but does not address forward dating. 
Although backdating seems more common and is the main timestamp 
manipulation example used by Casey (2020), forward dating also has its 
relevance, such as when establishing an alibi. Precisely, if a suspect 
plans a crime for tomorrow at 14:00 and wants to prove they were using 
a computer, they can adjust the system time (CS) today to 13:55 the next 
day, browse for 30 min, and power off the device. When the device is 
eventually seized, potentially days later, the logs will confirm the sus
pect’s statement. 

While no experiments have been conducted, we believe that our 
concepts also apply to forward dating and that time anchors can be used 
to assess the correctness of CS. However, there may be some new pe
culiarities that come with forward dating especially if the device is used 
(1) after reverting the time and tomorrow at 13:55 and/or (2) during the 
fictive time, i.e., tomorrow between 13:55 and 14:25. 

9. Conclusion 

Event reconstruction is a core procedure for uncovering the truth and 
relies on timestamps. Consequently, it is important to ensure the cor
rectness of the system clock TS when a timestamp is recorded. To address 
this concern, the paper formalized the concept of time anchors which can 
be used to show the correctness of TS at a specific time in a device’s 
history. This concept is complemented by different types of events, e.g., 
anchoring and non-anchoring events, which have major implications for 
the uncertainty that remains after the approach is used. With respect to 
the latter, we also defined time anomalies which can be used to increase 
confidence in clock accuracy in scenarios involving non-anchoring 
events. The practicality of these concepts has been demonstrated 
based on two examples. Lastly, this article includes several examples of 
time anchors and categorizations, making additional types of time an
chors easier to identify. 
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Appendix A. Case overview 

On the morning of the 23rd of December 2015, Richard Dabate re
ported that his wife, Connie Dabate, had been shot by a masked man 
who had broken into their house. First responders promptly arrived at 
the scene and found Richard Dabate tied in the kitchen, while Connie’s 
lifeless body lay in the basement. During questioning, Richard Dabate 
informed authorities he had driven back home around 9 a.m. that 
morning because he had forgotten his computer on his way to work. 
Upon his arrival, he was attacked by the masked intruder. He claimed to 
have heard Connie Dabate return home earlier than usual, and shortly 
after, to have heard two shots. Following that, Dabate explained that he 
managed to free himself enabling him to activate the alarm and call the 
police. 

In May 2022, Richard Dabate was convicted of the murder of his 
wife. Among the traces used during the trial were data obtained from 
Connie’s Fitbit activity tracker and iPhone. Fitbit data played a crucial 
role in the prosecution’s argumentation, revealing significant discrep
ancies in the timeline of events provided by the accused. While Dabate 
claimed that his wife was killed around 9:05 a.m., the data retrieved 
from her wearable device indicated alternate patterns of activity and 
inactivity persisting until 10:05 a.m. Similarly, traces extracted from her 
iPhone revealed Facebook activity around 9:40 a.m.8 

In response, the defense questioned the reliability of the traces 
retrieved from the Fitbit, casting doubts about the accuracy of the 
timestamps used to invalidate Richard Dabate’s claims. They argued 
that the precision of timing data is intricately linked to the device with 
which the Fitbit is synchronized, and those devices could be inaccurate 
(Rohrlich, 2022; NBC Connecticut, 2022; Associated Press, 2022). 

While the prosecution’s expert ensured the court that it would be 
very unlikely for the device’s clock to be off by an hour, it is not entirely 
unreasonable to consider the defense’s argument a valid point. 

Appendix B. Virtual machines and their time 

The management of time within VMs differs from a standard Win
dows. In general, VMs are configured to periodically synchronize with 
the host. When the guest time deviates from the host time, a process of 
correction comes into action. This is typically done with the help of 
additional services installed on the guest OS. On VMware, these addi
tional services (VMware Tools) provide two types of time synchroniza
tion to track host time: (1) periodic (disabled by default) where the guest 
clock is checked by default every 60 s, and (2) one-off where the syn
chronization occurs upon specific events such as taking a snapshot or 
starting the VMware tools daemon when booting the virtual machine 

8 The details presented in this example are based on reported newspaper 
content and are employed for illustrative purposes. 
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(VMware, 2023). 
To be able to manipulate the guest clock and to use the native syn

chronization service on Windows (Windows Time service), we made the 
following changes to the baseline virtual machine: (1) installed VMware 
Tools, (2) checked that periodic time synchronization was off and (3) 
disabled one-off time synchronization by adding a set of instructions 
within the .vmx file of the machine.9 It is worth mentioning that these 
changes propagate to any copy of the virtual machine. 
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