
2

An Experimental Assessment of Inconsistencies in Memory

Forensics

JENNY OTTMANN , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

FRANK BREITINGER , University of Lausanne, Switzerland

FELIX FREILING , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany

Memory forensics is concerned with the acquisition and analysis of copies of volatile memory (memory
dumps). Based on an empirical assessment of observable inconsistencies in 360 memory dumps of a running
Linux system, we confirm a state of overwhelming inconsistency in memory forensics: almost a third of
these dumps had an empty process list and was therefore obviously incomplete. Out of those dumps that
were analyzable, almost every second dump showed some form of inconsistency that potentially impacts the
interpretation of the dump in a forensic investigation. These results are based on a new way to estimate the
level of causal consistency of a memory dump. The factors influencing these inconsistencies are less clear but
in general correlate with the level of concurrency (system load and number of threads).

CCS Concepts: • Applied computing → System forensics ;

Additional Key Words and Phrases: Memory forensics, memory acquisition, inconsistencies, memory analysis

ACM Reference format:

Jenny Ottmann, Frank Breitinger, and Felix Freiling. 2023. An Experimental Assessment of Inconsistencies in

Memory Forensics. ACM Trans. Priv. Sec. 27, 1, Article 2 (December 2023), 29 pages.
https://doi.org/10.1145/3628600

1

D

o

p

u

m

a

f

m

a

T

R

A

E

C

T
p
©
h

 INTRODUCTION

igital evidence—that is, data stored on digital media with relevance to a criminal offense [5]—is
f vital importance in investigations and incident management. Sources of digital evidence are still
redominantly persistent storage devices which become increasingly harder to access due to the
se of trusted hardware and encryption. In addition, incident response must deal with advanced
alware that resides in memory only and leaves traces on disk in encrypted form, if traces are left

t all.
From the viewpoint of forensic computing, these challenges can be mitigated doing memory

orensics . This means that not only persistent storage is acquired but also a copy of physical main
emory is taken as a so-called memory dump , resulting in an increasing necessity of reliable tools

nd methods to acquire and analyze such memory dumps.
his work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the

esearch and Training Group 2475 “Cybercrime and Forensic Computin” under grant 393541319/GRK2475/1-2019.

uthors’ addresses: J. Ottmann and F. Freiling, Department of Computer Science, Friedrich-Alexander-Universität

rlangen-Nürnberg (FAU), Erlangen, Germany; e-mails: {jenny.ottmann, felix.freiling}@fau.de; F. Breitinger, School of

riminal Justice, University of Lausanne, Lausanne, Switzerland; e-mail: frank.breitinger@unil.ch.

his is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was
ublished in ACM Transactions on Privacy and Security, Vol. 27, No. 1, Article 2.

2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ttps://doi.org/10.1145/3628600

https://orcid.org/0000-0003-1090-0566
https://orcid.org/0000-0001-5261-4600
https://orcid.org/0000-0002-8279-8401
https://doi.org/10.1145/3628600
mailto:permissions@acm.org
https://doi.org/10.1145/3628600
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3628600&domain=pdf&date_stamp=2023-12-12

2:2

d

w

c

(

h

m

t

V

p

s

u

c

t

u

d

m

w

a

t

d

p

h

f

s

s

a

r

s

t

1

P

I

b

s

i

i

a

d

e

F

t
There are different ways to acquire main memory, but advances in technology have narrowed
own the spectrum of methods that were available 10 years ago [36] to two main approaches which
e characterize as clean and dirty . In the clean approach, the system can be halted, and memory

an be accessed by independent means. This is possible if the system runs as a Virtual Machine

VM) [20] or if the memory hardware is modified to offer such specific functionality [9]. When
alting the system, all system activities on main memory are frozen and the contents of main
emory can conveniently be written to a file. Another approach to clean memory acquisition is

he application of cold boot techniques [23].
When cold boot techniques cannot be used, the clean approach requires privileged access to the

M monitor or non-standard hardware. If this is not available, the established method is to execute
ost-hoc kernel level dumping, an approach that is inherently self-referential because the dumping
oftware accesses its own memory. This approach is characterized as dirty because the system and
ser processes remain active during the acquisition of the memory dump. It is well known that the
oncurrency between these activities leads to inconsistencies such as page smearing [4] because
he contents of the acquired pages continue to change.

To illustrate the problem, consider a system where low physical addresses store the contents of
ser programs and high addresses contain kernel code and data. Now assume that the code and
ata of user programs might have already been acquired at the beginning of the acquisition. If a
alware infection occurs, new threads are created in data structures that are subsequently also
ritten to the memory dump. However, the executable code of the malware, which is stored in low

ddresses, will be missing in the memory dump, potentially misleading criminal investigators to
he wrong conclusion that no malware was present. Therefore, even a correctly working memory
umping software presents an investigator with an inconsistent view of physical memory, causing
roblems during structured analysis or completely hampering it. An in-depth understanding of
ow consistent a memory dump is and how inconsistencies may affect the interpretation of this
orm of digital evidence is vital for criminal investigations and incident response.

For this work, we constructed an automated evaluation method and decided on a comparatively
mall memory size of 4 GB for our experiments and a minimal system configuration. Setting the
ize to 4 GB ensures that results are obtained in a feasible amount of time and, more importantly,
llows us to share the dataset. Additionally, to enable precise control of the degree of concurrently
unning processes and their memory usage, benchmarking processes were chosen to vary the
ystem load. The accumulated knowledge can be used when setting up experiments with other
ools or for evaluation environments that mimic real-world scenarios.

.1 Related Work

revious work has attempted to determine the quality of memory acquisition tools. For example,
noue et al. [18], Campbell [3], and Lempereur et al. [24] compared the memory dumps produced
y the tools with the memory contents of the system on which they were executed. Their findings
how that some tools impact memory contents more than others. Additionally, they highlight the
mportance and difficulty of obtaining ground truth.

Later, Vömel and Freiling [37] defined formal quality criteria, and the one this work builds on
s called atomicity . It describes inconsistencies on the causal level. Intuitively, a memory dump is
tomic if the cause-effect relationships between the memory regions are consistent. If a memory
ump is not atomic, inconsistent states might be present in the memory dump (e.g., between PT
ntries and the actual contents of the physical pages).

A practical evaluation of memory acquisition tools using the criteria defined by Vömel and
reiling [37] was performed by Vömel and Stüttgen [38] shortly after the conceptualization of
he criteria. They used Bochs as the testing environment and took a white-box testing approach,

2:3

r

t

b

l

a

l

t

n

a

t

t

a

M

o

s

V

t

i

t

d

b

c

w

w

f

c

c

o

l

s

d

c

a

T

o

1

A

p

t

m

w

d

elying on inserting hypercalls into the tools’ code. Consequently, their evaluation was limited to
ools for which source code was available. In their evaluation, the degree of atomicity could only
e estimated. They observed a higher percentage of pages for which atomicity was possibly vio-
ated for larger memory sizes. Gruhn and Freiling [15] took a black-box approach to test memory
cquisition tools to evaluate techniques without having access to their source code. However, the
evel of atomicity a method achieves could only be approximated. Overall, the results confirmed
hat methods that allow freezing the state of the system achieve the highest atomicity.

Pagani et al. [31] introduced several new inconsistency definitions which were motivated by sce-
arios that could occur when memory contents change while they are being copied. In all of them,
 mismatch between the contents obtained for the respective memory regions and the contents
hat were coexistent in memory at some point in time occurs. As an example of such mismatches
hat could potentially hamper the analysis of processes contained in the memory dump, they took
 closer look at the data structures of the Linux kernel and compared the number of stored Virtual

emory Areas (VMAs) of a process in two different kernel data structures to the VMA counter
f the process. They report that inconsistencies were found in more than 80% of the analyzed snap-
hots and that in some cases the code and/or stack segment of processes could not be found with
olatility [26].
In subsequent work, Ottmann et al. [29] added two more consistency definitions that narrow

he gap between the notions of causal consistency and the notion of a completely frozen system:
nstantaneous consistency and quasi-instantaneous consistency . Instantaneous consistency describes
he ideal case for memory acquisition, the system can be frozen, and no memory contents change
uring the acquisition. Quasi-instantaneous consistency is a concept that respects causal order
ut is indistinguishable from a frozen system. When a memory dump is quasi-instantaneously
onsistent, a point in time during the acquisition can be found at which the memory contents
ere in the same state as the acquired ones. A method to observe quasi-instantaneous consistency
as presented recently [30].

Distinction to Other Areas of Research. The preceding consistency definitions are not to be con-
used with those of shared memory models. Such models define the views that concurrent pro-
esses can have on shared memory. The classical notion of linearizability (also known as atomic

onsistency) [16], for example, demands that all processes see the same “real time” order of write
perations in the system, whereas causal consistency [17] allows processes to see different orders as
ong as they respect potential causality [22]. Unfortunately, inconsistent snapshots of memory can
till occur even if the memory model satisfies causal consistency, as the preceding example shows.

Our work is related to the large body of results that investigate the creation of snapshots in
istributed concurrent systems often with the aim to detect predicates on the state of a distributed
omputation [6 , 7 , 8 , 12 , 32]. In this line of research, it is usually assumed that all read and write
ccesses to memory can be intercepted (or at least monitored). We do not make this assumption.
his also holds for work that relates the consistency criteria of shared memory to the possibility
f creating atomic snapshots [1].

.2 Contributions

lthough there are numerous concepts to define different forms of consistency of memory dumps,
ractitioners regularly report that many memory dumps are in some unknown form inconsis-
ent, and even sophisticated analysis tools like Volatility fail, for example, by producing no or a
isleading output. Nevertheless, we have (1) no empirical evidence confirming this feeling of over-

helming inconsistency , and (2) we know surprisingly little about in what way practical memory
umps are inconsistent and the factors that influence the consistency.

2:4

s

w

s

t

t

f

1

T

m

i

S

2

T

(

i
This work attempts to quantitatively assess the general types of inconsistencies that occur using
tate-of-the-art memory acquisition and analysis. Since inconsistencies are fueled by concurrency,
e also empirically explore the influence of “concurrency enabling” factors on the level of incon-

istency such as the number of CPUs, number of concurrent threads, and system load. Overall,
his work provides the following contributions:

(1) We propose a new way to estimate the level of causal consistency of a memory dump by
injecting a pivot process that generates predictable patterns from which causal relations
can be inferred using concepts of virtual time from concurrency theory.

(2) We establish a hierarchical classification of memory dumps from the viewpoint of prac-
tical analyzability . This classification is based on the ability to perform certain steps of
structured analysis in memory forensics and therefore assesses observable effects of in-
consistency (without explaining its cause). The classification ranges from memory dumps
that are obviously incomplete to ones that allow address space extraction and analysis of
the pivot process to assess causal consistency .

(3) Using this classification, we perform an empirical assessment of the practical conse-
quences of observable inconsistencies based on 360 memory dumps of a running Linux
system, thereby confirming a state of overwhelming inconsistency in memory forensics:
• Out of these 360 dumps, 102 were meaningless in the sense that they were incomplete

(the process list was empty).
• Out of the 258 valid (i.e., analyzable) memory dumps, for each combination of pa-

rameter settings we randomly selected 20 dumps, resulting in a dataset of 180 dumps.
Overall, 80 out of 180 contained VMA inconsistencies and 73 out of 180 showed causal
inconsistencies within the pivot program.

(4) The factors influencing these inconsistencies are less clear, but in general, the number of
inconsistencies correlates with the level of concurrency:
• The main influencing factor regarding VMA inconsistencies appears to be system load.

Although no system load resulted in no VMA inconsistencies, with a high system load,
54 out of 60 valid memory dumps contained VMA inconsistencies.

• Causal inconsistencies appear to correlate not with load but with the number of threads.
If one thread is used, 8 out of 60 memory dumps showed causal inconsistencies. If two
or four threads were used, 35 and 30 dumps were causally inconsistent.

(5) We make the 180 analyzed memory dumps and the data gathered about meaningless
dumps publicly available [28].

All experiments were performed using current hardware and state-of-the-art memory acquisi-
ion and analysis tools (LiME [21] for memory acquisition and Volatility [26] for memory analysis;
or more details on the tools, see Section 2).

.3 Outline

he remainder of the article is structured as follows. First, we provide background information on
emory forensics and causal consistency in Section 2 . Then, the experimental design is described

n Section 3 . This is followed by the experimental results in Section 4 and their discussion in
ection 5 . Finally, Section 6 summarizes our conclusions and gives an outlook on future work.

 MEMORY FORENSICS AND CAUSAL CONSISTENCY

his section first provides the background on how memory acquisition at the kernel level works
e.g., LiME dumps). Then, structured memory analysis is explained, and an overview of the Volatil-
ty functionalities we use for our evaluation is given. Last, the definition of causal consistency is

2:5

Fig. 1. Translation of a virtual to a physical address with page size of 4 KiB. During address translation, the

address of a process’s PML4 is read from control register CR3. Then, the corresponding part of the virtual

address is used to identify the entry which points to the address of the PDPT. In each structure in the

hierarchy, this is repeated with a different part of the virtual address, until the entry in the PT identifies

the address of the page frame. Finally, the lowest 12 bits of the virtual address are added, resulting in the

physical address [19 , ch. 4, p. 20].

p

e

2

M

r

p

a

a

a

t

t

i

c

c

P

v

p

u

P

w

d

t

a

o

t

F

s

a

resented, and a possible method to observe the causal consistency in a set of memory regions is
xplained.

.1 Kernel Level Memory Dumping

emory acquisition tools operating at the kernel or OS level dump the memory contents concur-
ently with the system activity, and therefore we characterize them as dirty (see Section 1). They
roceed sequentially from one end of the physical address space to the other. Before the sequential
cquisition is started, the tool needs to determine which parts of the physical address space are
vailable to the OS as RAM and which are reserved. Reserved ranges are used for device DMA and
ccessing them can lead to system crashes. Under Linux, the ranges can be identified by examining
he symbol iomem_resource [33].

Virtual address spaces allow to isolate different processes from each other while allowing them
o allocate more memory than is available in the physical address space. The virtual memory is split
nto pieces of the same size called pages. A process can see and access only the pages of its own
ontinuous virtual address space. Although the virtual addresses of the pages are continuous, their
ounterparts in the physical address space, page frames, do not have to be located consecutively.
aging data structures are used to store mappings from virtual to physical addresses. When a
irtual address is accessed, the memory management unit uses them to identify the corresponding
age frame [34 , p. 194–198]. On x86-64 [19 , ch. 2, p. 6], four levels of paging data structures are
sed to translate a virtual to a physical address when the page size is 4 KiB. The entry point is the
age Map Level 4 (PML4) . It contains references to Page Directory Pointer Tables (PDPTs) ,
hich in turn contain references to Page Directories (PDs) . These contain references to the last
ata structure the Page Tables (PTs) . Each entry in a PT references a page frame. In addition to
he addresses of the next paging data structure or page frame, the entries in all translation levels
lso contain access rights and other information for memory management. The physical address
f a process’s PML4 is loaded into the CR3 control register when execution switches to it. Then
he address translation from virtual to physical is performed by the memory management unit.
igure 1 summarizes the translation process from a virtual to a physical address. Because they play
uch an important role in reconstructing the virtual address spaces, the paging data structures are
 vital part of the memory dump for analysis.

2:6

Fig. 2. Structures used in the Linux kernel to organize processes and their memory. For each process, a

task_structure is created. Information about the process’s memory can be found in its mm_struct . The

individual VMAs are organized in a list of structures of type vm_area_struct . All structures are shown

according to the kernel version used in the experiment.

c

s

l

t

a

g

w

b

f

e

m

p

q

t

A

e

L

2

T

s

t

t

I

t

e

i

u

a

t

a

s

s

A central data structure in the Linux kernel is the process list consisting of a sequence of process

ontrol blocks , one for each active process in the system. In Linux, a process control block corre-
ponds to a structure of type task_struct [2 , p. 81] (Figure 2). These task structures form a linked
ist using the list_head structures embedded in each of them. The list starts with the init_task ,
he first task that is created during the initialization of the kernel [2 , p. 89].

The different memory regions a process allocates are called virtual memory areas (VMAs). These
re maintained by the Linux kernel as a linked list attached to the process control block and or-
anized as follows. The mm member of the task structure points to a structure of type mm_struct
hich gathers all information about the memory assigned to the process. VMAs are represented

y structures of type vm_area_struct . The VMA structures assigned to the task can be found by
ollowing the linked list starting with the mmap pointer in the mm_struct which points to the first
lement in the list. Additionally, the VMA structures are saved in a red-black tree in the member
m_rb . The total number of VMAs is also saved in the mm_struct in the integer map_count [2 ,
p. 353–362].
The idea of kernel level memory dumping is to map physical addresses systematically and se-

uentially into the kernel address space by creating PT entries that resolve a kernel virtual address
o the desired physical address. This can be done with the help of kernel APIs (e.g., kmap in Linux).
lternatively, the paging hierarchy traversal, as shown in Figure 1 , and manipulation of the PT
ntry can be implemented from scratch to reduce the reliance on the potentially untrusted OS [33].
iME relies on kernel APIs to create the mappings.

.2 Structured Analysis in Memory Forensics

he simplest approach to analyze a memory dump is to search the dump for occurrences of specific
trings. Although this can lead to helpful results if the keywords are well chosen, the context of
he found strings (e.g., the process address space it belongs to is generally unknown. Therefore,
his method is called unstructured .

Structured analysis offers a more sophisticated way to gather relevant data from a memory dump.
t relies on OS specific management data structures to reconstruct the state of the system at the
ime of the memory acquisition. This allows us to reproduce the context of found information. For
xample, if a process of interest is found, it is possible to find its parent process or reconstruct
ts address space. Detailed knowledge about the inner workings of a specific OS version and the
sed data structures is necessary to enable this. This information is often not well documented
nd changes frequently. Because of changes depending on specific OS versions or configurations,
ools like Volatility rely on profiles to provide the necessary information for the analysis. Profiles
re created for specific OS versions and contain information allowing us to find and parse OS data
tructures. In the case of Linux, a profile contains the specific kernel’s debug symbols and data
tructures.

2:7

Fig. 3. In the space time diagram, two memory regions r 1 and r 2 can be seen. Their change over time is shown

on the arrows with time passing from left to right. Accesses to the regions are called events and denoted as

black dots labeled with e . Should the events be executed by more than one process, the process number x is

denoted together with the event as P x .

I

s

2

T

n

m

H

c

r

o

h

i

s

e

s

w

a
Currently, Volatility [26] is one of the most advanced tools for structured memory analysis.
t organizes its functionality as modules (called plugins). This work makes use of the following
tandard plugins:

With the linux_pslist plugin , the process list is reconstructed following the pointers to the next
task_struct starting with the init_task (see Section 2.1). Even when a process has
finished executing and is removed from the process list, its task_struct might still exist
in the memory dump.

With the linux_psscan plugin , such unlinked structures can be found. Using the knowledge
about the structure’s layout contained in the profile, data patterns are searched in the
memory dump that could be task_struct structures. Then, the plugin checks if the found
struct’s pid is in the expected range and if the process state is a valid one to confirm that
the found pattern can be correctly interpreted as a task_struct .

With the linux_psxview plugin , a comparative view of processes recovered by different plugins,
among others, linux_pslist and linux_psscan , can be obtained.

With the linux_dump_map plugin , the memory allocated to processes contained in the process list
can be extracted. This requires the translation of the virtual addresses of VMAs that were
allocated by the processes into physical ones. This is done by interpreting the paging
structures and accessing the corresponding parts of the memory dump.

.3 Defining and Observing Causal Consistency

he notion of causal consistency (originally called atomicity by Vömel and Freiling [37] and re-
amed by Ottmann et al. [29] for a clearer contextual differentiation from the other consistency
odels) evaluates if the state of causally dependent changes on memory regions is consistent.
ere, consistency is assessed with regard to causally dependent changes to memory regions. The

ausal dependencies are constructed by the order in which processes access memory regions. The
emainder of the section summarizes the more detailed explanation of causal consistency and its
bservability given in the work of Ottmann et al. [29].
To visualize causal relationships, space-time diagrams are used as depicted in Figure 3 . The

orizontal arrows r 1 and r 2 represent memory regions over time. The black dots represent events
ndicating write accesses to the memory regions. In the example, three events, e 1 , e 2 , and e 3 , are
hown; e 1 and e 2 are executed by process P 1 and e 3 by process P 2 . In the example, P 1 first executes
 1 and then e 2 . Therefore, an arrow starting at e 1 and ending at e 2 connects the two events. Con-
equently, the arrow represents a possible causal relationship between e 1 and e 2 [22]. For example,
ith event e 1 , a pointer to an address in region r 2 could be set and with e 2 the contents at this

ddress could be changed. Or in e 1 , data could be written to the first half of the buffer and in e 2 to

2:8

Fig. 4. Vector clocks keep track of the local order of events as well as connections to other memory regions.

The vector’s size equals the number of observed memory regions. Each region has a unique index in the

vector that serves as its local counter that is incremented when an event happens. Processes carry the values

of the vector of their last accessed region with them, which are used when the vector of the next visited

region is updated.

t

s

m

e

m

o

o

i

w

e

A

r

r

t

r

i

a

c

o

c

r

o

(

c

f

a

T

(

he second half. The process of copying memory contents is shown in orange where a rectangle
hows the point in time at which the region was dumped. Figure 3 (a) shows a causally consistent
emory acquisition. r 1 is copied after e 1 has been executed, then e 2 happens and r 2 is copied; last,

 3 is executed. This order respects the cause-effect relationship between e 1 and e 2 . In contrast, the
emory dump shown in Figure 3 (b) is causally inconsistent because of a small change in the order

f memory acquisition and execution of events. Here, r 1 is copied before e 1 happens instead of the
ther way around. Because e 1 happened before e 2 and is missing in the memory dump, this dump
s causally inconsistent. If the two events were not executed by the same process but concurrent
ith each other, causal consistency would not be violated.
Causal relations between memory regions can be tracked using the concept of vector clocks [27]:

ach memory region is assigned a vector that contains one row for each surveyed memory region.
ll memory regions get a unique index into the vector assigned. The value of this index is the

egion’s local counter of events. It is incremented by one each time an event is executed on the
egion. The other indices are updated whenever a process executes an event on a different region
han the one it was accessed before. For this purpose, the processes save the vector clock of the
egion they accessed last. When they execute an event on a different region, the local counter is
ncremented by 1. The local and saved vector clocks are compared and the values of the local one
re updated to the higher value at each index. Intuitively, the value of a vector clock represents the
ausal past of an event: it is a compact expression of which events have been observed and which
nes have not. By comparing the vector clocks of the different regions, a partial order of events
an be constructed and causal relationships identified.

Figure 4 shows an example execution with two different memory snapshots. The index of region
 1 ’s local counter is 1, r 2 ’s is 2, and r 3 ’s is 3. To illustrate the update process, we follow the actions
f P 3 from left to right. First, P 3 executes an event on r 2 setting its vector from initially all zeros to
0 , 1 , 0). When it subsequently accesses r 3 , r 3 ’s local counter is updated to 1, and the vector now
ontains (0 , 1 , 0). Then, the vector P 3 saved after the event on r 2 is compared to this vector and
or every index the higher value is kept, resulting in the final values (0 , 1 , 1). Next, P 3 accesses r 3
gain, incrementing only the local counter. When it moves on to r 2 , the local counter is set to 3.
he local vector (1 , 3 , 0) and the saved vector (0 , 1 , 2) are combined, resulting in the new values
1 , 3 , 2) for r 2 ’s vector clock.

2:9

v

d

T

a

v

s

v

g

o

s

l

t

t

t

c

c

3

T

d

i

t

w

i

L

M

/

w

k

t

w

t

c

t

o

b

s
m

1

To identify an inconsistency, the global time vector t s of the snapshot s must be calculated. This
ector consists of the highest values for each index in all vector clocks C 1 , . . . , C n in the memory
ump [27] as

t s = sup (C 1 , . . . , C n).

he function sup returns the supremum of the vectors—that is, the maximum for each index over
ll vectors C 1 , . . . , C n [27].

Next, each region’s vector clock is compared to the global time. Only the values of the regions’
ector clocks at their respective indices are compared to t s at the same index. Snapshot s is con-
istent iff t s = (C 1 [1] , . . . , C n [n]) [27].

Figure 4 (a) shows an example of a consistent snapshot. Comparing the global time to the regions’
ector clocks shows that for all memory regions, the value at the respective index is equal to the
lobal time vector at the same index. Thus, for all regions, the causing event of the latest access
n them is included in the snapshot. However, Figure 4 (b) shows an example of an inconsistent
napshot. In this case, the last event on r 3 is missing from the snapshot. This is a problem as the
ast event on r 2 , which is included in the snapshot, is causally dependent on the event. Therefore,
he vector clock has not been updated yet and the inconsistency can be identified by comparing
he vector clock to the global time vector.

Intuitively, a causally consistent memory dump can be acquired concurrently with normal sys-
em operation as long as the sequence in which memory regions are acquired does not violate the
ausality relation. To express that the system is “frozen” during the acquisition of memory, stricter
onsistency models must be used, such as instantaneous consistency [29].

 EXPERIMENTAL SETUP

he objective of this study is to analyze the likeliness of the occurrence of inconsistencies under
ifferent degrees of concurrent activity. For this study, we focus on kernel level acquisition which
s often applied but also frequently suffers from concurrent activity. The tool we used to create
he memory dumps is LiME v1.9.1 [21], which is implemented as loadable kernel module. LiME
as chosen as it operates at the kernel level, is open source, and any analysis results based on

ts usage can be freely shared. It is one of the few freely available memory acquisition tools for
inux. However, in the past years, it has only been maintained sporadically. An alternative is
icrosoft AVML, 1 and contrary to LiME, it operates at the user level and uses either /dev/crash ,
proc/kcore or /dev/mem as sources for the acquisition. Therefore, it is limited to systems on
hich the kernel feature kernel_lockdown is not enabled.
All experiments were executed in a VM with 4 GB of RAM running Ubuntu 18.04.2 LTS, Linux

ernel 4.15.0-177-generic. A minimal system installation without GUI was chosen. No configura-
ions regarding RAM usage were changed (e.g., swapping was not disabled). The number of CPUs
as initially set to 2 but changed to 4 after the pre-study. Apart from the script used to control

he execution of a pivot program and the loading of LiME, the system load was changed using the
ommand line tool stress [35]. The purpose of the pivot program, the different load levels, and
he parameters necessary for the experiments are explained in the subsequent sections.

The pivot program enables the investigation of causal inconsistencies in a part of the main mem-
ry. Setting up a system to track the causal relationships between physical pages should be possible
ut would require modifications at kernel and/or hypervisor level and possibly introduce a high
ystem overhead. Instead, we concentrate on the causal relationships within one pivot program—
ore precisely, the causal relationships between data structures located on a process’s heap.
 Acquire Volatile Memory for Linux: https://github.com/microsoft/avml

https://github.com/microsoft/avml

2:10

Fig. 5. In the pivot process’s heap after a list element (LE), first the vector clock structure (VC), then the

vector (V), and finally the buffer (B) follows. The sequence is the same for every allocated list element.

r

e

e

d

T

s

e

l

u

p

u

p

t

a

3

E

p

o

s

p

o

o

c

a

W

m

w

3

T

s
The program initializes a synchronized linked list (one thread). Next, several threads start to
emove elements from the list at random positions, pause, and reinsert them behind the head
lement. Each list element has a vector clock that is updated when a thread removes or inserts a list
lement, thereby allowing to track the causal relationships between the list elements. Between the
ifferent list elements, a buffer is allocated to enforce a constant distance between the list elements.
he buffer allows to enlarge the heap of the process. Its size was chosen to be 4,048 bytes, the page
ize in the test environment minus the size of the list element and vector clock structures. This
nsures a distance of at least one page between subsequently allocated list elements. The heap
ayout, determined by the allocation order, is shown in Figure 5 . Glibc’s heap implementation is
sed. The number of list elements and the number of threads are passed as parameters when the
rogram is started.
It is unlikely that the analysis of causal inconsistencies in the list will contribute to a better

nderstanding of inconsistencies in other parts of the system. But it provides insight into how
arallel activity in the process itself might influence the consistency of the acquired heap. Addi-
ionally, the analysis of the pivot process’s heap serves as an example of the obstacles that might
rise during the analysis of a simple (no relocations, no child processes) user process.

.1 Parameters

ach test run uses two parameters: system load generated additionally to the execution of the pivot
rogram and the number of threads that are active in the pivot program. To observe the influence
f different degrees of concurrent system activity, the number of threads was set to 1, 2, and 4;
ystem load was generated on top by executing the tool stress for 120 seconds with different
arameters. Thereby, we increased the memory and CPU usage. We define three different levels
f system load:

(1) None : No added activity.
(2) Medium : stress --vm 2 -t 120 .
(3) High : stress --vm 4 -c 2 -t 120 .

For both system load levels, the duration of the execution of stress is specified by passing the
ption -t . For medium system load, the --vm option is used to start two processes that repeatedly
all malloc and free . The high system load level uses the same option but with four processes, and
dditionally two processes are started with the -c option to repeatedly call the sqrt() function.
hereas the first option focuses on the average memory usage, the latter option mostly imposes
ore load onto the CPUs. The two processes are added to increase the number of running processes
ithout further increasing the memory load.

.2 Method

o create the memory dumps, the same steps were executed on the VM. First, the pivot program is
tarted with 100 list elements and varying threads as described earlier. Depending on the chosen

2:11

s

T

l

u

f

a

a

n

e

-

n

/

“

3

T

c

i

d

V

a

f

n

c

t

p

o

2

ystem load level, stress is started as well, and the memory contents are dumped using LiME.
he execution time of LiME is recorded, and the main memory load is captured with the command

ine program free . The load is grabbed 15 times during the execution with an interval of 8 seconds
sing the command free -h -c 15 -s 8 . In more detail, for all parameter combinations, the
ollowing procedure was executed automatically:

(1) Reboot the VM.
(2) Wait 60 seconds.
(3) Start the pivot program.
(4) Wait 60 seconds.
(5) If a load level other than none , start stress with appropriate parameters.
(6) Load LiME, and capture execution time using bash command time.
(7) Execute free periodically, and capture output,
(8) Wait for LiME to finish,
(9) Continue with step 1.

The VM is rebooted before each experiment execution to ensure an identical system state. To
void errors, the manual interaction with the system is limited to the first reboot. For automation,
 cronjob, executed automatically upon reboot, is used to start the experiment. When the desired
umber of iterations is reached, the bash script notifies a remote machine about the successful
xecution. The memory dumps are named according to the following scheme: pid of pivot process

 start address of heap - end address of heap - number of list elements - number of threads - execution

umber . The start and end address of the process’s heap are determined by parsing the contents of
proc/ pid of pivot process /maps and extracting the address in the line where the pathname equals
[heap].”

.3 Analysis

o identify inconsistencies, the following points are investigated:

• Inconsistencies regarding the number of VMAs allocated by a process
• Capability to extract the heap of the pivot program

• If heap extraction fails : Inconsistencies in the process list
• On extracted heap : Causal inconsistencies.

Whereas the first three points examine inconsistencies in kernel data structures, the last point
oncerns those in the heap of the process that are monitored using vector clocks. Inconsistencies
n the kernel’s data structures are identified using Volatility 2.6 [10].

The Volatility plugin described by Pagani et al. [31], linux_validate_vmas , 2 makes use of the
ifferent ways in which information about a process’s VMAs is saved. It compares the number of
MAs in the list and the red-black tree with the total number of VMAs. If the numbers are different,
n inconsistency has been found. For each memory dump, the total number of inconsistencies
ound with the plugin is noted. To get to each process’s mm_struct , the linked list of processes
eeds to be recovered from the memory dump. Then for each process, the address of the mm_struct
an be extracted from the task_struct .

Extracting the heap of our pivot process from the memory dumps also relies on the list of
asks and the task structure itself. The Volatility plugin linux_dump_map is used to extract the
ages allocated for the process’s heap. The appropriate address range is taken from the name
f the memory dump (see Section 3.2). If the heap extraction fails, the state of the task list is
 Published by the authors under https://github.com/pagabuc/atomicity _ tops

https://github.com/pagabuc/atomicity_tops

2:12

Table 1. Problems Observed in the Created Memory Dumps with the Different

Combinations of Load Level and Thread Number

Threads Load

No suitable
address space No heap

Volatility

assertion error < 4 GB

none 3 8 – –
1 medium 3 13 – 4

high 3 12 1 2
none 9 18 – 10

2 medium 9 20 – 14
high 9 18 1 11

i

s

b

f

e

t

i

o

t

t

m

3

I

t

f

w

p

p

o

e

a

e

t

a

o

o

e

t

3

c

e

w

nvestigated in more detail using the plugin linux_psxview . Both plugins’ functionality is de-
cribed in Section 2.2 .

If the heap extraction succeeds, causal inconsistencies between the list elements are determined
ased on the vector clocks of the list elements. The list elements and vector clocks are extracted
rom the heap using a Python script that carves for the hex values at the beginning and end of
ach of the structures. List elements and vector clocks are matched using the address of the vec-
or clock saved in the list element structure. After all vector clocks are gathered, the global time
s computed as described in Section 2.3 and causal inconsistencies can be identified. The number
f inconsistencies between the vectors and the global time is saved for each dump. As a precau-
ion, the number of list elements and vector clocks that are expected to be found is compared to
he number of actually found list elements and vector clocks. Should the number differ, an error
essage is printed.

.4 Pre-Study

nitially, our setup used two CPUs. This decision was motivated by wanting to observe how of-
en inconsistencies occur even under very restricted concurrency. We conducted the experiment
or one and two threads with different load levels. For each combination, 20 memory dumps
ere created, and the execution time of LiME was not logged during the pre-study. Last, we
roceeded with the analysis as described previously. LiME was loaded running sudo insmod
ath/to/source/lime-4.15.0-177-generic.ko path = path/to/outputfile format = lime .

Surprisingly, in many cases, we could not perform the analysis steps. Table 1 shows a summary
f the encountered problems. Although we had created and tested a Volatility profile for the test
nvironment, in some cases executing a Volatility plugin led to this error message: “No suitable
ddress space mapping found.” The heap extraction failed for even more memory dumps. A closer
xamination of the process list revealed that it was incomplete: processes known to have run while
he memory was acquired were missing—among others, our pivot process. As Volatility uses the
cquired process list to search the pid for which the memory range should be extracted, the heap
f a process not found in the list cannot be extracted. In two cases, Volatility started the execution
f the linux_validate_vmas plugin, but when trying to construct the list of tasks, an assertion
rror in one of the original Volatility scripts stopped the execution. We also observed that some of
he memory dumps were smaller than the expected 4 GB. 3
 We tried to investigate the reason for the memory dumps that were smaller than 4 GB after the main experiment was

onducted. But even after having restored the system and experiment procedure (e.g., two CPUs, no logging of LiME’s

xecution time, enabled LiME timeout), to the best of our knowledge, to their state at the time of the pre-study, dumps that

ere smaller than 4 GB were not produced anymore. However, the “no suitable address space” error did still occur.

2:13

l

a

a

w

4

i

c

d

p

s

l

t

h

l

3

A

m

a

o

t

m

c

4

F

t

w

s

(

r

o

e

l

v

c

m
To further investigate the problem, we reexamined the system load caused by the different load
evels and concluded that it was difficult to slowly raise the CPU usage with only two CPUs and
 multi-threaded pivot program. Therefore, we decided to change the number of CPUs to 4. We
lso enabled the debug output of LiME and created another 40 memory dumps. All were created
ith only one thread—half of them with medium and the other half with high system load. All

0 memory dumps had the expected size, but the “no suitable address space” error still occurred
n 13 (respectively, 15) memory dumps out of 20. For both combinations, the pivot process’s heap
ould not be extracted from one more memory dump. This left us with 6 (respectively, 4) memory
umps for analysis.
A possible reason for this behavior was found in the debug output of LiME: LiME skips parts of

age ranges when reading a page in the range takes more than 1 second. By default, this timeout is
et to skip memory ranges for which reading is slow. Therefore, we repeated the same procedure
oading LiME with timeout disabled. Within these newly generated dumps, we did not observe
he “no suitable address space” problem, and only for three (respectively, six) memory dumps, no
eap could be extracted. Therefore, we decided to continue the study with four CPUs and always

oaded LiME with timeout disabled . Debugging was disabled.

.5 Summary: A Hierarchical Classification of Analyzability

s a result of our experimental setup and the pre-test, we establish a hierarchical classification of
emory dumps from the viewpoint of practical analyzability . This classification is based on the

bility to perform certain steps of structured analysis in memory forensics and therefore assesses
bservable effects of inconsistency (without explaining their cause). The classification consists of
he following four categories:

• Broken : This class comprises memory dumps for which not all memory was acquired (less
than 4 GB) or are broken in other ways (e.g., or Volatility assertion error). In consequence,
this class contains memory dumps that cannot be practically analyzed.

• Meaningless : This class comprises memory dumps which are complete and can be loaded
into Volatility, but the process list only contains one process such that it does not make
sense to analyze any further inconsistencies of virtual memory structures.

• Valid : The process list contains the pivot process, and process memory could be extracted.

Only valid memory dumps allow us to assess causal consistency . Note, however, that even a valid
emory dump might still be causally inconsistent (even if the pivot program does not show any

ausal inconsistencies).

 EXPERIMENTAL RESULTS

or the main experiment, the number of CPUs was set to 4 and all other settings were left un-
ouched. The timeout of LiME was disabled by adding the parameter timeout = 0 when loading it
ith insmod . Furthermore, the pre-study revealed that some memory dumps were damaged (clas-

ification broken) or were missing information crucial to our analysis regarding inconsistencies
classification meaningless). To counteract, we decided to create 40 memory dumps for each pa-
ameter combination, ensuring 20 valid ones, which is our desired amount. Consequently, a total
f 360 dumps were generated, analyzed, and classified (40 times 9 different combinations of param-
ters). Table 2 provides an overview of the classification of the created memory dumps for each
oad level. In contrast to the pre-study, no memory dumps were broken ; all were either classified as
alid or meaningless. The results of meaningless dumps regarding VMA and causal inconsisten-
ies were removed from the overall results, and all other data (e.g., execution time of LiME, used
emory) were stored separately. In case more than 20 samples per combination remained, we

2:14

Table 2. In the Main Experiment, 360 Memory Dumps Were

Created in Total

Total Broken Meaningless Valid ⊃ Final dataset
360 0 102 258 180

Subtracting the meaningless memory dumps left us with 258 valid dumps,

as defined in Section 3.5 . To ensure the comparability of the results, for

each combination of thread number and load level, 20 randomly selected

valid memory dumps, 180 in total, were included in the final dataset.

Fig. 6. Relationship between time and VMA inconsistencies over all dumps.

Table 3. Number of VMA Inconsistencies and Number of Memory Dumps That Contained VMA

Inconsistencies Per Load Level and Per Thread Number

Number of threads
1 2 4 Total

Inc. Dumps Inc. Dumps Inc. Dumps Inc. Dumps
none 0 0/20 0 0/20 0 0/20 0 0/60

System Load medium 6 6/20 10 9/20 11 11/20 27 26/60
high 47 18/20 45 18/20 51 18/20 143 54/60
Total 53 24/60 55 27/60 62 29/60 170 80/180

r

t

d

o

4

W

L

t

t

o

c

l
andomly deleted valid ones until 20 were reached. This was done to ensure comparability across
he different settings. Thus, the final dataset comprises 180 functional dumps; 20 for each setting.

The following evaluation first presents the observations made on valid memory dumps, all
umps for which the heap of the pivot process could be extracted. Then, the observations made
n meaningless dumps, the ones for which the heap extraction failed, are discussed.

.1 VMA Inconsistencies

e observed no VMA inconsistencies for the none system load setting during the execution of
iME. However, as soon as system load was added, VMA inconsistencies appeared. Generally,
hey are more frequent for high system load than for medium system load. Figure 6 (a) summarizes
he spread of inconsistencies per load level and their occurrence in relation to the execution time
f LiME. Table 3 shows the total number of VMA inconsistencies and how many memory dumps
ontained VMA inconsistencies per load level and per thread number. While under medium system
oad, slightly less than half of the created memory dumps contained VMA inconsistencies, and

2:15

Fig. 7. Correlation between the execution time of LiME and the observed number of VMA inconsistencies.

Table 4. Mean and Standard Deviation (σ) of the

LiME Execution Times in Seconds Calculated over

60 Memory Dumps for Each Load

System load Mean exec time (s) σ
none 60.88 19.11
medium 60.00 17.51
high 76.49 19.55

h

l

U

o

a

n

a

c

t

r

T

i

a

o

L

a

m

t

s

l
igh system load caused inconsistencies in almost all the dumps. Additionally, under high system
oad, the highest observed number of VMA inconsistencies was 4, occurring in 10 memory dumps.
nder medium system load, only one memory dump contained two VMA inconsistencies, and the
ther dumps contained at most one inconsistency. The number of threads does not seem to have
 significant impact on the number of VMA inconsistencies, as depicted in Figure 6 (b). The total
umber of inconsistencies per thread number, shown in Table 3 , supports this. When more threads
re running, the number of VMA inconsistencies as well as the number of memory dumps that
ontain them only rises slightly.

The Spearman correlation test indicates that there is a moderate monotonic relationship be-
ween the execution time of LiME and VMA inconsistencies. Figure 7 shows the Spearman cor-
elation between the execution time of LiME and the number of observed VMA inconsistencies.
he statistical relevancy of the observed moderate correlation is supported by the p-value, which

s less than 0.05.

4.1.1 Load and Time. Given the observed correlation between time and VMA inconsistencies,
s well as load and VMA inconsistencies, we take a closer look at the influence of the system load
n the execution time of LiME. Figure 8 shows the distribution of the observed execution times of
iME separated by load level. Note that execution times are spread out widely for all load levels
nd contain outliers toward particularly long execution times. The standard deviations from the
ean execution times, shown in Table 4 , support this observation. The difference in execution

imes between none and medium load level is marginal. In fact, the mean execution time per load
hown in Table 4 is less for medium system load than for none.

Figure 9 and Table 5 provide a detailed overview by splitting the observations according to the
oad level and the number of threads. Overall, we observe the highest execution times for two

2:16

Fig. 8. Execution times of LiME grouped by load for all 180 memory dumps for which heap extraction was

possible.

Fig. 9. Execution times of LiME per thread number grouped by load.

Table 5. Mean and Standard Deviation (σ) of the LiME Execution Times in Seconds Calculated over

20 Memory Dumps Per Load Level and Number of Threads

Number of threads
1 2 4

Mean exec.
time (s) σ

Mean exec.
time σ

Mean exec.
time σ

none 49.61 11.08 73.49 24.06 59.53 11.37
System Load medium 41.90 4.98 72.78 15.44 65.33 11.92

high 73.63 14.32 89.30 25.24 66.54 7.71

t

s

c

h

t

hreads. But here the variance in execution times is also the highest for the different load levels as
hown by the standard deviations. Whereas for one and two threads the highest execution times
an be observed for medium system load, for four threads the mean execution time increases the
igher the load level is. Additionally, the execution times for four threads were generally less varied
han for the other thread numbers.

2:17

Fig. 10. Relationship between time and vector inconsistencies over all dumps.

Table 6. Number of Causal Inconsistencies and Number of Memory Dumps That Contained Causal

Inconsistencies Per Load Level and Per Thread Number

Number of threads
1 2 4 Total

Inc. Dumps Inc. Dumps Inc. Dumps Inc. Dumps
none 5 3/20 14 6/20 72 12/20 91 21/60

System Load medium 1 1/20 41 17/20 39 8/20 81 26/60
high 14 4/20 32 12/20 76 10/20 122 26/60
Total 20 8/60 87 35/60 187 30/60 294 73/180

n

t

s

4

C

d

t

t

s

t

n

t

h

t

b

p

h

t

n

b
When running the pivot program with two threads, three extreme outliers were observed. With
o added system load, one acquisition took 143 seconds; with added system load, the acquisition
ook 124 seconds in two cases. In these cases, stress was not running during the complete acqui-
ition, as it was only running for 120 seconds. All other runs were below 120 seconds.

.2 Causal Inconsistencies

ausal inconsistencies were observed for all combinations of load levels and threads. For each
ump, the expected number of list elements and vector clocks was found. Figure 10 shows both
he distribution of inconsistencies found based on the vector clocks for the different load levels and
he same distribution grouped by the number of threads in the pivot program. The thread number
eems to have more impact on the number of causal inconsistencies than the load level. The rela-
ionship between causal inconsistencies, load level, and thread number is shown in Table 6 . The
umber of inconsistencies rises more distinctly when the thread number is increased than when
he system load is increased. The number of memory dumps that contain inconsistencies is also
igher for two and four threads than for one thread. Comparing the number of memory dumps
hat contain causal inconsistencies across the different load levels shows only a small difference
etween load levels. This supports the impression that the number of active threads in the pivot
rocess has a higher impact on the number of causal inconsistencies than the load. Note that for
igh system load and four threads, one extreme observation was made where 39 causal inconsis-
encies were counted in one memor y dump while in all other memor y dumps the highest obser ved
umber was 14.
To validate that the observed number of inconsistencies varies significantly for the thread num-

ers, a Kruskal-Wallis rank sum test was performed as the data does not seem to be normally

2:18

Table 7. Number of Meaningless Memory Dumps Per Load Level

and Thread Number

Number of threads
1 2 4 Total

none 17/40 9/40 16/40 42/120
System Load medium 16/40 11/40 8/40 35/120

high 11/40 8/40 6/40 25/120
Total 44/120 28/120 30/120 102/360

d

p

s

W

t

p

s

d

c

e

4

T

b

e

1

f

f

w

b

L

s

t

w

t

H

5

D

d

e

5

T

l

s

T
istributed. We assumed a significant observation for p-values smaller than 0.05. The test yielded
 = 1 . 556 × 10 −6 , and therefore the differences between the observed numbers of causal incon-
istencies for the different thread numbers were significant. A pairwise comparison using the

ilcoxon rank sum test with a Bonferroni correction was performed to identify between which
hread numbers significant differences in the observed VMA inconsistencies exist. For the com-
arison between one and two threads, and between one and four threads, the computed p-values
howed a significant difference between the groups. Between two and four threads, no significant
ifference was detected. The computed p-values can be found later in Table 13 in the appendix. In
omparison, no significant difference between the observed causal consistencies across the differ-
nt load levels was detected with the Kruskal-Wallis rank sum test (p = 0 . 6858).

.3 Failed Heap Extractions

able 7 shows the number of meaningless memory dumps per system load level and thread num-
er. For these memory dumps, the heap of the pivot program could not be extracted. Overall, we
ncountered this more often with no added system load than with added system load. In total,
02 out of the 360 extractions failed. The lowest number of failed heap extractions was observed
or high system load. The observed mean execution times of LiME are similar to those observed
or the valid memory dumps. But it should be noted that for the failed heap extractions, the mean
as not computed for each load level for the same number of samples.
In the output of the linux_psxview plugin for these memory dumps, the process list produced

y the linux_pslist plugin contained at most one element which was always systemd (pid 1).
ess often, the list did not even contain this process. The linux_psscan plugin found more task
tructures. However, often the structures of processes that are known to have been running during
he acquisition, such as instances of stress or the pivot program, were not included. Sometimes,
hen the pivot process was found, the assigned pid matched that of the previous test run, not

hat of the current test run. In 15 cases, linux_psxview did not produce an output within 1 hour.
owever, running the linux_pslist and linux_psscan plugins separately did return output.

 DISCUSSION

uring the main experiment, data on the relation between system load and acquisition time, and
ifferent types of inconsistencies, was gathered. In the following sections, the observations are
xamined and possible explanations are discussed.

.1 VMA Inconsistencies

he nature of the processes running concurrently with the acquisition has an influence on the
ikeliness to observe VMA inconsistencies. In the minimal execution environment chosen for our
tudy, the only processes that often change their memory layout are those started by stress .
herefore, all observed VMA inconsistencies occurred in the task structures of the multiple

2:19

Table 8. Means of Used and Available Memory in Gigabytes for the Different

Load Levels

System load Mean used (GB) σ Mean available (GB) σ
none 0.1206 0.0014 3.5 0
medium 0.3837 0.0363 3.2354 0.0359
high 0.6329 0.0382 2.9942 0.0379

i

t

t

f

b

o

s

d

l

b

i

o

t

h

b

m

s

l

w

a

p

U

d

d

s

t

f

i

i

h

i

f

n

W

o
nstances of the program. One reason for observing more VMA inconsistencies under high load
han under medium load may be that under high load, four instead of two processes are started
hat continuously perform malloc and free . However, this does not seem to be the only reason
or the higher number, because although the number of processes performing the actions was dou-
led, more than five times the number of inconsistencies than under medium system load were
bserved.
Higher activity in the kernel under high system load could also contribute to the rise in incon-

istencies. For high load, on top of four memory allocating processes, two are started that mostly
emand CPU time. In total, four more processes are active under high than under medium system
oad. This should lead to more activity in the kernel, as the scheduler needs to frequently switch
etween those processes and background processes to assign system resources to all of them.
Another contributing factor could be the higher execution time for the high load level, observed

n Section 4.1.1 . If the acquisition takes longer for the kernel pages, changes in the memory layout
f processes are more likely to take place between the acquisition of the pages. Therefore, changes
o the different total number of VMAs, the corresponding structures, and the links between them
appen while the pages are acquired. Thereby, the occurrence of VMA inconsistencies should
ecome more likely. The results of Pagani et al. [31] support this assumption. This also matches the
oderate correlation between longer execution times of LiME and a rise in VMA inconsistencies,

hown in Figure 7 . An exception can be seen in Figure 6 (a) in the scatter plot for high system
oad. Here, for one of the extreme outliers of LiME’s execution time, no VMA inconsistencies
ere observed. A possible explanation could be that during this run, the pages that took longer to

cquire were located before or after those that contain the relevant kernel structures.
To further investigate the influence of higher load, we performed another iteration of the ex-

erimental procedure in which we increase the number of processes that are started with stress .
nder high system load, four processes were started that allocate and free memory, and in the ad-
itional iteration, 16 are started. The number of threads is set to 4. For 1 of the 40 created memory
umps, the heap extraction failed. All of the 20 analyzed memory dumps contained VMA incon-
istencies, and a total of 207 were found. Compared to the observed VMA inconsistencies for four
hreads and high system load shown in Table 3 , the number of inconsistencies has increased about
our times, the same factor with which the number of memory allocation changing processes was
ncreased. We do not observe a comparably distinct increase in inconsistencies as when compar-
ng the inconsistencies observed for medium and high load. The mean execution time of LiME is
igher than for four threads, and load level high, it is 75.20 seconds (σ = 9.68).

5.1.1 Load and Time. An expectation was that when the load increases, the execution time also
ncreases (i.e., similar to the behavior for four threads shown on the right in Figure 9). However,
or one and two threads, we observed lower execution times of LiME for medium load than for
o added load. In contrast, the used and available memory shown in Table 8 behaved as expected.
ith increasing load, the amount of used memory is increasing, and the amount of available mem-

ry is decreasing. The means were calculated for all successful runs based on the output of free

2:20

(

b

p

t

t

f

a

t

e

d

F

K

K

t

s

a

T

d

l

s

l

i

5

T

l

t

m

i

E

i

f

V

p

m

t

c

n

t

5

D

w

t

w

f

c
see Section 3.2). The changes in available memory for no added system load were too small to
e displayed by free with the chosen parameters. Therefore, a Kruskal-Wallis rank sum test was
erformed to verify if the differences in execution time across the different load levels for one and
wo threads are significant. We assume a significant observation for p-values smaller than 0.05. For
he observations made for one thread, p = 1 . 59 × 10 −8 is yielded, suggesting that the observed dif-
erences between at least two load levels are significant. The load levels for which the differences
re statistically significant are identified with pairwise comparisons using the Wilcoxon rank sum
est with Bonferroni correction. Between load levels of none and medium, no significant differ-
nce is detected. However, between load levels none and high, and medium and high, significant
ifferences are detected. The computed p-values can be found later in Table 14 in the appendix.
or two threads, no statistically significant differences between load levels are detected using the
ruskal-Wallis rank sum test (p = 0 . 0929). For the complete dataset, the p-value calculated with the
ruskal-Wallis rank sum test is 2 . 38 × 10 −7 , and a significant difference in the observed execution

imes between at least two load levels exists. Further examination with a paired Wilcoxon rank
um test shows significant differences in the observed execution times between load level none
nd high, and medium and high. Between none and medium, no significant difference can be seen.
he computed p-values can be found later in Table 15 in the appendix. In conclusion, even though,
epending on the thread number, it looks like LiME’s execution time is smaller for medium system
oad than none, no significant difference exists. Therefore, even though measurements with top
how that under medium system load more time is spent executing processes than under system
oad none, the increased time the CPUs are spending executing other processes is not enough to
ncrease the execution time of LiME on a statistically noticeable level.

.2 Causal Inconsistencies

he observed relation between higher thread numbers and inconsistencies in the vector clocks is
ikely caused by the increased activity on the heap’s pages during their acquisition. As changes
o list elements are more frequent, it becomes likely that during the acquisition a change will be
ade that causes a causal inconsistency. The frequency with which changes occur could also be

ncreased by decreasing the time the threads sleep after removing an element before reinserting it.
ven if the sleep time was decreased, we assume that the increase of vector inconsistencies with

ncreased thread number will at some point cease.
In contrast to the thread number, higher system load, as implemented in our study, increases the

requency with which changes in kernel data structures occur, such as changes in the number of
MAs a process allocated. It does not increase the concurrent activity on the pivot process’s heap
ages. However, in our minimal test setup, the heap’s physical pages should not be highly frag-
ented. In a setup with more fragmentation, the observed prolonged execution time of LiME for

he high system load level (see Section 4.1.1) could influence the occurrence of causal inconsisten-
ies more distinctly. When it takes longer to acquire the heap’s pages, it becomes more likely that
ew contents are written to already acquired pages before all pages can be copied. This increases
he risk of missing causes of effects visible in the final memory dump.

.3 Failed Heap Extractions

uring the analysis of the output of the Volatility plugin linux_pslist for the memory dumps
ith which the heap extraction failed, the list often contained only the process with pid 1. Some-

imes no processes were listed at all. The first case could be explained by the pointer from the task
ith pid 1 to the next task structure in the list being damaged. In the latter case, a damaged pointer

rom the init_task to the task with pid 1 could explain the observation. This could arise if the spe-
ific memory contents were acquired during an update of the pointers. But it seems improbable

2:21

t

t

c

o

t

h

b

i

s

t

f

f

d

p

a

t

t

V

r

c

m

s

e

t

c

k

V

s

p

T

m

t

s

a

t

l

b

a

w

b

t

p

t

c

a

e
hat these pointers are updated very often. Therefore, the observation could point to inconsis-
encies in the dump causing problems for the analysis tool. Or, a bug in the analysis tool could
ause the incomplete retrieval of the process list. Thus, for comparison, we examined the output
f Volatility 3 [11], version 2.0.1, and Rekall [13], release 1.7.1, for the memory dumps on which
he heap extraction failed and the linux_psxview plugin did not produce any output within an
our. Rekall is a memory forensic framework originally branched from Volatility. It is also Python
ased and provides its functionalities within various plugins. Because there are differences in the
mplementation of Volatility and Rekall, it seems meaningful to compare the outputs. However,
ince 2020, the project is not maintained anymore, and thus it was not chosen as the main tool for
he evaluation. Volatility 3 is an updated rewrite of Volatility using Python 3. Some functionalities
or Linux are still missing, and therefore it was not used as the main tool for the evaluation either.

In the presence of Kernel Address Space Layout Randomization (KASLR), one of the first steps
or a meaningful analysis is to find out the virtual and physical shift to locate the kernel’s ad-
ress space. Without the shifts, the addresses of kernel symbols provided to Volatility with the
rofile cannot be correctly resolved. Therefore, we first compared the shift computed by each tool
nd then the reconstructed process lists. For Volatility, the plugin linux_aslr_shift was used
o compute the shift. In Volatility3, we executed the plugin linux.pslist.PsList which extracts
he process list with option -vvv for complete verbose output that includes the computed shift.
olatility and Volatility 3 produced identical virtual and physical shifts (it is possible that the algo-
ithm for computing them has not changed between the versions). The Rekall plugin find_kaslr
an return more than one possibility for the shifts which was the case for one of the examined
emory dumps. It returned the same one as computed by Volatility/Volatility 3, and a different

hift. Passing the first shift as an option to the pslist plugin did not produce more output. How-
ver, when passing the second shift, a longer process list was produced containing among others
he pivot process and other processes known to have been running during the analysis. In this
ase, the right address for the PML4, called the directory table base in Rekall and Volatility, of the
ernel could be found. For this memory dump, the implementation used to reconstruct the shift in
olatility and Volatility 3 seems to be unable to identify the right shift. For the other dumps, the
ame shifts were computed by Rekall as by Volatility and Volatility 3. For one memory dump, the
lugin failed because only one possible PML4 address had been found but its verification failed.
he process lists produced by Rekall are similar to those produced by Volatility. Sometimes a few
ore outputs are produced but they are unnamed, and all have pid 0. Here, an inconsistency in

he memory dumps might hamper the correct computation of the shift and PML4 address. Or, the
hift is computed correctly but inconsistencies, for example, in the paging data structures, do not
llow to read the memory contents. It is also possible that all implementations contain an error
hat causes them to fail at identifying the right shift in these cases. With Volatility 3, no process
ist entries were produced at all for the 14 tested memory dumps. A requested page that could not
e resolved caused the execution of the plugin to be aborted. The reported error was the same for
ll memory dumps.

With the linux_psscan plugin, sometimes task structures were found that looked like they
ere created for instances of the pivot program from the previous run. This is most likely possible
ecause during a reboot the physical memory of the host system is not cleared. Even on a system
hat is not virtualized, this could happen because the RAM should be voltage carrying for most
arts of the reboot. This does not pose a problem for our study, as we rely on the structures linked in
he process list to find the heap of the pivot program. If it was an objective to evaluate the efficacy of
arving algorithms, this would need to be considered when choosing an execution environment
nd designing the experimental procedure. Regarding the pivot program, it is possible that list
lements from a previous run can also still be found in the memory dump. However, it is less

2:22

Table 9. Number of VMA Inconsistencies and Number of Memory Dumps That

Contained VMA Inconsistencies Per Load Level and Per Thread Number for

8 GB RAM Size

Number of threads
2 4 Total

Inc. Dumps Inc. Dumps Inc. Dumps

System Load

medium 1 1/20 7 7/20 8 8/40
high 0 0/20 10 6/20 10 6/40
Total 1 1/40 17 13/40 18 14/80

Table 10. Mean and Standard Deviation (σ) of the

LiME Execution Times in Seconds Calculated over

40 Memory Dumps for Medium and High Load

System load Mean exec time (s) σ
medium 120.06 21.10
high 152.51 36.83

l

t

n

5

T

s

f

t

t

s

c

t

a

l

r

i

F

a

f

F

c

m

a

t

s

t
ikely that they are also contained in the newly set up process address space. Even if they were,
his would not pose a problem, as the Python script used to recover list elements checks if the
umber of found vector clocks matches the expected number of list elements.

.4 8 GB Memory Experiment

o gain an understanding of how well the experimental setup can be transferred to bigger RAM
izes, a part of the experiment was repeated for 8 GB. As for 4 GB, VMA inconsistencies appear only
or medium and high system load. Consequently, additional experiments were only performed for
hese load levels. To reduce the number of experiments (and thereby the amount of data that had
o be stored), the setting with only one thread running in the pivot program was excluded.

The observed VMA inconsistencies are shown in Table 9 . Compared to the numbers for 4 GB
hown in Table 3 , fewer inconsistencies are observed. As in the experiments with 4 GB, the pro-
esses that are responsible for VMA inconsistencies are instances of stress . This could indicate
hat for bigger RAM sizes, more active processes are necessary to create memory pressure that
ffects the occurrence of inconsistencies. Another potential influencing factor can be identified by
ooking at the mean execution time of LiME for the bigger RAM size shown in Table 10 . As the
untime of stress was not changed for the bigger RAM size and is still set to 120 seconds, at least
n some cases its execution can be expected to have ended before the memory dump was complete.
or medium system load in 13 cases, the memory dump creation took longer than 120 seconds,
nd for high system load, this was the case for 35 memory dumps.

Therefore, a second set of memory dumps was created for 8 GB. This time stress was executed
or 180 seconds. All memory dumps were created with four active threads in the pivot program.
or one set of memory dumps, the load level was set to high, and for the other, a higher load level
alled high + was used. For this load level, the number of running instances of stress that allocate
emory is increased to 24. Table 11 shows the observed VMA and causal inconsistencies as well

s the mean execution time of LiME for these cases. With the longer execution time of stress ,
he numbers of observed VMA inconsistencies match those observed for four threads and high
ystem load with 4 GB of RAM. For the distinctly higher load level high+, a little bit more than
wice the number of VMA inconsistencies than under high load are observed. This might show

2:23

Table 11. Number of VMA and Causal Inconsistencies, Number of Memory Dumps

That Contained Them, Mean Execution Time, and Standard Deviation (σ) in

Seconds, with an Increased Runtime of stress

VMA incons. Causal incons. Execution time
No. Dumps No. Dumps Mean σ

System Load

high 51 19/20 43 12/20 186.33 64.04
high+ 120 15/20 38 13/20 171.81 18.45

The threat number was always set to 4.

Table 12. Number of Causal Inconsistencies and Number of Memory Dumps That

Contained Causal Inconsistencies Per Load Level and Per Thread Number for

8 GB RAM Size

Number of threads
2 4 Total

Inc. Dumps Inc. Dumps Inc. Dumps

System Load

medium 44 13/20 38 13/20 82 26/40
high 21 7/20 31 12/20 52 19/40
Total 65 20/40 69 25/40 134 45/80

t

w

t

e

i

r

c

t

s

c

5

T

a

T

u

h

b

t

b

d

G

w

b

h

he limits of increasing the number of running instances of stress , since six times more instances
ere running for load level high+ than for load level high.
Table 12 shows the number of causal inconsistencies observed for 8 GB of RAM. At first glance,

he observed inconsistencies also seem to be less than those observed for 4 GB (see Table 6). How-
ver, for the smaller RAM size, one extreme outlier can be seen for four threads and high load (39
nconsistencies in one dump). Without this observation, the causal inconsistencies are in a similar
ange for both RAM sizes. Unlike the observed number of VMA inconsistencies, the occurrence of
ausal inconsistencies does not seem to be influenced by the shorter runtime of stress compared
o the mean execution time of LiME. The observed causal inconsistencies for a longer runtime of
tress which are shown in Table 11 are also in the same range. This supports the observation that
ausal inconsistencies are more dependent on the thread number than the load level.

.5 Experimental Setup

he presented results were acquired with the setup described in Section 3 . For the experiments,
 VM in which Ubuntu without GUI was set up as OS was chosen as the execution environment.
hese choices were made deliberately to create an controllable environment. Using a VM allowed
s to change settings such as RAM size and number of CPUs without having to use different
ardware. Virtualization is often used in experiments regarding memory forensics (with the work
y Pagani et al. [31] being a recent example). This is viable because the guest system is unaware of
he virtualization and performs memory allocation as on a bare metal system. However, it should
e noted that certain observations might be influenced by the virtualized environment, such as the
ifficulties with the timeout option of LiME.
To reduce unexpected peaks in memory usage and system activity, we chose an OS setup without

UI to minimize the number of active background processes. For the same reason, system load
as only added by starting instances of stress on top of the pivot program. Thereby, variations
etween experiment iterations were meant to be reduced. With fewer variations, it is easier to see
ow the observed factors influence the occurrence of inconsistencies.

2:24

c

e

f

H

m

c

t

o

c

m

m

o

t

6

T

m

c

c

p

s

i

t

u

w

m

c

b

c

i

i

k

t

h

d

m

t

t

b

f

V

p

i

d
5.5.1 Pivot Program. Independent of the execution environment, the pivot program for which
ausal inconsistencies can be detected is a core element of the evaluation method. Using it has ben-
fits but also limitations. With the pivot program, only the address space of one process is checked
or causal inconsistencies. No parts of the kernel memory or other processes can be checked.
owever, if one process address space contains causal inconsistencies, it follows that the complete
emory dump is not causally consistent. The size of the pivot program can also be adjusted to

over a larger range of memory, such as by starting it with more list elements. Alternatively, mul-
iple instances of it could be used. By checking one process address space, it is also possible to
bserve the influence of fragmentation on the consistency within the heap of a process.
It would be beneficial to use the observation method for other processes as well, such as pro-

esses of interest to an investigation or in incident response scenarios. To do this, either adjust-
ents would have to be made to the programs themselves or vector clocks would have to be
anaged at a higher level (i.e., from within the kernel). Similarly, checking the causal consistency

f (parts of) the kernel address space could be insightful. Such an observation could be set up at
he hypervisor level.

 CONCLUSION AND FU T URE WORK

he objective of this study was to further the insights into the behavior of inconsistencies in main
emory dumps under different conditions. To this end, we constructed an evaluation process, in-

luding a new method to observe causal consistency, and presented our evaluation results. The
reated memory dumps are made publicly available to support further research [14]. For our ex-
eriment, we chose a minimal execution environment to reduce uncontrolled influences on the
ystem load and behavior. During the analysis of the memory dumps, we encountered expected
nconsistencies but also unexpected problems like memory dumps that were smaller than the ac-
ual main memory.

Both the results of the pre-study and the inconsistencies observed during the main experiment
nderline the fragility of kernel level memory acquisition. Because of the likeliness of problems
ith memory dumps, depending on the circumstances, one countermeasure would be to acquire
ultiple memory dumps from a system under investigation. With each memory dump, information

ould be lost, but obtaining a memory dump that can be analyzed in a structured way is still
eneficial because carving data structures is time consuming and error prone. Considering the
orrelation between the execution time and the number of VMA inconsistencies (see Section 4.1),
n some cases it could be favorable to first obtain the memory of processes suspected to contain
mportant information and then, if required, acquire a full memory dump, since inconsistencies in
ernel structures could hinder the reconstruction of the address spaces of these processes.
Our observations in the pre-study also stress the importance of meticulously testing tools for

he targeted systems and specific circumstances. The timeout feature added to LiME might be a
elpful feature for some systems and RAM sizes, but in our case it led to more flawed memory
umps. If this happens during an investigation, the suspect system might not be accessible any-
ore when the problem is noticed (e.g., as a lot of time passed between acquisition and analysis and

he relevant volatile data is not accessible anymore). The same is true for memory dumps smaller
han the actual RAM size. Systematic evaluations are of course not only important for acquisition
ut also for analysis tools. One example presented in this article is the search for the cause of the
ailed heap extractions (see Section 5.3). Now that we know that there are (edge) cases for which
olatility cannot compute the address of the PML4 correctly, we can investigate this further and
ossibly improve the address reconstruction. Without a larger number of memory dumps created

n the same environment, we might not have been capable of identifying this problem. All memory
umps for which the heap extraction failed during the additional experiments with 8 GB were kept

2:25

t

i

a

e

P

o

i

i

o

r

o

s

i

h

p

b

s

c

t

t

i

“

f

v

d

P

L

e

o

c

c

i

S

w

A

A

A

W

s

v

4

o provide a larger basis for further investigations about the reasons for the failures and possible
mprovements of analysis tools.

Many questions remain open for future work. Given the small RAM size and minimal system
ctivity, our observations can be taken as a lower bound of possible inconsistencies. Repeating the
xperiment in an environment with more background noise, or with a larger RAM size like most
Cs or servers have today, or on a smartphone, would allow us to study how the occurrence rate
f the different types of inconsistency develops under more realistic conditions. It would also be
nteresting to know if there is a load level after which increasing the system load further does not
ncrease the number of inconsistencies. Moreover, an experimental setup that increases the load
n the system in a controlled manner but, unlike the experiment presented in this article, uses
ealistic user applications could give more insights. Especially, it could allow us to make a decision
n when to acquire the memory of specific processes first.
Such a repetition of the experiments on a “normal” system, using real-world programs and a

etup with GUI, instead of a minimal execution environment would also be interesting regard-
ng the varying execution times of LiME we observed (Section 4.1.1) and the decrease of failed
eap extractions with higher load (Section 4.3). If the observed effects are also visible when more
rocesses are active, the influence of multi-threaded applications on the acquisition time could
e investigated further. Since we observed high variances in the execution time, performing mea-
urements with more than 20 memory dumps created per combination of load and thread number
ould be favorable to reduce the influence of acquisition time outliers on the mean acquisition
ime. When executing experiments in a non-virtualized environment, it would also be interesting
o check if the timeout option of LiME is problematic in this setting as well, and if the variations
n the execution times of LiME are similar to the ones reported in this article.

Overall, our results can also be interpreted as a call for acquisition approaches that achieve
more consistency.” This was already observed by Pagani et al. [31], who suggested moving away
rom a purely sequential memory dumping approach. Instead, memory ranges known to contain
ital information could be dumped first. Subsequently, all remaining parts of memory could be
umped. Thereby, a quick acquisition of the integral parts of the kernel memory could be ensured.
agani et al. presented one possible implementation of the approach with a modified version of
iME that provides the option smart . 4 Such an approach should be included in future empirical
valuations.

Taking this approach further would be to more strongly integrate the sweep sequence of mem-
ry acquisition with activities of the OS. Similar to how memory is copied using the fork system
all in Linux or in snapshots of main memory databases [25], memory could be acquired using a
opy-on-write approach. Ottmann et al. [29] already conjectured that this would achieve quasi-

nstantaneous snapshots, which would be a quantum leap in kernel-based memory acquisition.
uch advances could finally make dirty approaches achieve results that are similarly consistent
ith the clean approaches.

PPENDIX

 STATISTICAL TESTS

.1 Variation of Observed Causal Inconsistencies

e verify if a significant difference between at least two groups exists using a Kruskal-Wallis rank
um test, as the data does not seem to follow a normal distribution. We assume a significant obser-
ation for p-values smaller than 0.05. The test yields Kruskal-Wallis chi-squared = 26.746, degrees
 https://github.com/pagabuc/atomicity _ tops

https://github.com/pagabuc/atomicity_tops

2:26

o

s

A

W

K

0

1

T

W

t

T

t

f freedom = 2, and p-value = 1 . 556 × 10 −6 . Therefore, a post-hoc analysis with the Wilcoxon rank
um test is performed, and Table 13 contains the computed p-values.

.2 Variation of Observed Execution Times

e verify if a significant difference between at least two load levels for one thread exists using a
ruskal-Wallis rank sum test, and we assume a significant observation for p-values smaller than
.05. The test yields Kruskal-Wallis chi-squared = 35.915, degrees of freedom = 2, and p-value =
 . 59 × 10 −8 . Therefore, a post-hoc analysis with the Wilcoxon rank sum test is performed, and
able 14 contains the computed p-values.
We verify if a significant difference between at least two load levels exists using a Kruskal-
allis rank sum test, and we assume a significant observation for p-values smaller than 0.05. The

est yields Kruskal-Wallis chi-squared = 35.915, degrees of freedom = 2, and p-value = 1 . 59 × 10 −8 .
herefore, a post-hoc analysis with the Wilcoxon rank sum test is performed, and Table 15 contains

he computed p-values.

Table 13. Results of the Pairwise Comparison Using the

Wilcoxon Rank Sum Test with Bonferroni Correction

between the Numbers of Vector Inconsistencies across
the Different Thread Numbers

Threads 1 2
2 3 . 5 x10 −6 –
4 1 . 6 x10 −5 1

Table 14. Results of the Pairwise Comparison Using the

Wilcoxon Rank Sum Test with Bonferroni Correction

between the Variations in the Observed Execution Times of

LiME across the Different Load Levels for One Thread

Load none medium

medium 0.043 –
high 4 . 8 x10 −5 2 . 0 x10 −7

Table 15. Results of the Pairwise Comparison Using the

Wilcoxon Rank Sum Test with Bonferroni Correction between

the Variations in the Observed Execution Times of LiME across

the Different Load Levels for All Thread Numbers

Load none medium

medium 1 –
high 4 . 5 x10 −6 6 . 5 x10 −6

2:27

A

W

r

R

[

[

[

[

[

[

[

[

[

[

[

[

[
CKNOWLEDGMENTS

e thank Frank Block, Tobias Latzo, Fabio Pagani, and Florian Schmaus for their valuable feedback
egarding our work.

EFERENCES

[1] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit. 1993. Atomic snapshots of shared

memory. Journal of the ACM 40, 4 (1993), 873–890. DOI: https://doi.org/10.1145/153724.153741

[2] Daniel P. Bovet and Marco Cesati. 2005. Understanding the Linux Kernel: From I/O Ports to Process Management .

O’Reilly Media.

[3] William Campbell. 2013. Volatile memory acquisition tools—A comparison across taint and correctness. In Proceedings

of the 11th Australian Digital Forensics Conference .

[4] Andrew Case and Golden G. Richard III. 2017. Memory forensics: The path forward. Digital Investigation 20 (2017),

23–33.

[5] Eoghan Casey. 2011. Digital Evidence and Computer Crime: Forensic Science, Computers and the Internet (3rd ed.).

Academic Press. http://w w w.elsevierdirect.com/product.jsp?isbn=9780123742681

[6] Craig M. Chase and Vijay K. Garg. 1998. Detection of global predicates: Techniques and their limitations. Distributed

Computing 11, 4 (1998), 191–201. DOI: https://doi.org/10.1007/s004460050049

[7] Chunbo Chu and Monica Brockmeyer. 2008. Predicate detection modality and semantics in three partially syn-

chronous models. In Proceedings of the 7th IEEE/ACIS International Conference on Computer and Information Science

(ICIS’08) . IEEE, Los Alamitos, CA, 444–450. DOI: https://doi.org/10.1109/ICIS.2008.95

[8] Robert Cooper and Keith Marzullo. 1991. Consistent detection of global predicates. In Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging. ACM, New York, NY, 167–174. DOI: https://doi.org/10.1145/122759.

122774

[9] Guilherme Cox, Zi Yan, Abhishek Bhattacharjee, and Vinod Ganapathy. 2018. Secure, consistent, and high-

performance memory snapshotting. In Proceedings of the 8th ACM Conference on Data and Application Security and

Privacy (CODASPY’18) . ACM, New York, NY, 236–247. DOI: https://doi.org/10.1145/3176258.3176325

10] Volatility Foundation. 2009. Volatility Framework—Volatile Memory Extraction Utility Framework. Retrieved

October 30, 2023 from https://github.com/volatilityfoundation/volatility; Commit:a438e768194a9e05eb4d9ee9338

b881c0fa25937.

11] Volatility Foundation. 2019. Volatility 3: The Volatile Memory Extraction Framework. Retrieved October 30, 2023

from https://github.com/volatilityfoundation/volatility3; Commit:f8506862c4d92422a5e8927f70778f7faf69faf9.

12] Felix C. Gärtner and Sven Kloppenburg. 2000. Consistent detection of global predicates under a weak fault assump-

tion. In Proceedings of the 19th IEEE Symposium on Reliable Distributed Systems (SRDS’00) . IEEE, Los Alamitos, CA,

94–103. DOI: https://doi.org/10.1109/RELDI.2000.885397

13] Google. 2013. Rekall Memory Forensic Framework. Retrieved October 30, 2023 from https://github.com/google/rekall;

Commit:55d1925f2df9759a989b35271b4fa48fc54a1c86.

14] Cinthya Grajeda, Frank Breitinger, and Ibrahim Baggili. 2017. Availability of datasets for digital forensics—And what

is missing. Digital Investigation 22 (2017), S94–S105.

15] Michael Gruhn and Felix C. Freiling. 2016. Evaluating atomicity, and integrity of correct memory acquisition methods.

Digital Investigation 16 (2016), S1–S10.

16] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems 12, 3 (1990), 463–492. DOI: https://doi.org/10.1145/78969.78972

17] Phillip W. Hutto and Mustaque Ahamad. 1990. Slow memory: Weakening consistency to enhance concurrency in

distributed shared memories. In Proceedings of the 10th International Conference on Distributed Computing Systems

(ICDCS’90) . IEEE, Los Alamitos, CA, 302–309. DOI: https://doi.org/10.1109/ICDCS.1990.89297

18] Hajime Inoue, Frank Adelstein, and Robert A. Joyce. 2011. Visualization in testing a volatile memory forensic tool.

Digital Investigation 8 (2011), S42–S51.

19] Intel Corporation. 2016. Intel ©64 and IA-32 Architectures: Software Developer’s Manual Volume 3A: System Program-

ming Guide, Part 1 . Intel Corporation.

20] Peter F. Klemperer, Hye Yoon Jeon, Bryan D. Payne, and James C. Hoe. 2020. High-performance memory snapshot-

ting for real-time, consistent, hypervisor-based monitors. IEEE Transactions on Dependable and Secure Computing 17,

3 (2020), 518–535. DOI: https://doi.org/10.1109/TDSC.2018.2805904

21] 504ENSICS Labs. 2014. LiME—Linux Memory Extractor. (2014). https://github.com/504ensicsLabs/LiME; Commit:

9c734770f27f79e392cb726c97871bc27fbd013b.

22] Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM

21, 7 (1978), 558–565. DOI: https://doi.org/10.1145/359545.359563

https://doi.org/10.1145/153724.153741
http://www.elsevierdirect.com/product.jsp?isbn$=$9780123742681
https://doi.org/10.1007/s004460050049
https://doi.org/10.1109/ICIS.2008.95
https://doi.org/10.1145/122759.122774
https://doi.org/10.1145/122759.122774
https://doi.org/10.1145/3176258.3176325
https://github.com/volatilityfoundation/volatility;
https://github.com/volatilityfoundation/volatility3;
https://doi.org/10.1109/RELDI.2000.885397
https://github.com/google/rekall;
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/ICDCS.1990.89297
https://doi.org/10.1109/TDSC.2018.2805904
https://github.com/504ensicsLabs/LiME;
https://doi.org/10.1145/359545.359563

2:28

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

23] Tobias Latzo, Ralph Palutke, and Felix Freiling. 2019. A universal taxonomy and survey of forensic memory acquisition

techniques. Digital Investigation 28 (March2019), 56–69.

24] Brett Lempereur, Madjid Merabti, and Qi Shi. 2012. Pypette: A platform for the evaluation of live digital forensics.

International Journal of Digital Crime and Forensics 4, 4 (2012), 31–46.

25] Liang Li, Guoren Wang, Gang Wu, Ye Yuan, Lei Chen, and Xiang Lian. 2021. A comparative study of consistent

snapshot algorithms for main-memory database systems. IEEE Transactions on Knowledge and Data Engineering 33,

2 (2021), 316–330. DOI: https://doi.org/10.1109/TKDE.2019.2930987

26] Michael Hale Ligh, Andrew Case, and Jamie Levy. 2014. The Art of Memory Forensics: Detecting Malware and Threats

in Windows, Linux, and Mac Memory . Wiley. See also https://github.com/volatilityfoundation/volatility

27] Friedemann Mattern. 1989. Virtual time and global states of distributed systems. In Proceedings of the International

Workshop on Parallel and Distributed Algorithms . 215–226.

28] Jenny Ottmann. 2023. An Experimental Assessment of Inconsistencies in Memory Dumps: Experimental Data. Re-

trieved October 30, 2023 from https://doi.org/10.5281/zenodo.8246001

29] Jenny Ottmann, Frank Breitinger, and Felix Freiling. 2022. Defining atomicity (and integrity) for snapshots of storage

in forensic computing. In Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU’22) .

30] Jenny Ottmann, Üsame Cengiz, Frank Breitinger, and Felix Freiling. 2023. As if time had stopped—Checking memory

dumps for quasi-instantaneous consistency. In Proceedings of the Digital Forensics Research Conference USA (DFRWS

USA’23) . https://doi.org/10.48550/arXiv.2307.12060

31] Fabio Pagani, Oleksii Fedorov, and Davide Balzarotti. 2019. Introducing the temporal dimension to memory forensics.

ACM Transactions on Privacy and Security 22, 2 (2019), 1–21.

32] Scott D. Stoller. 2000. Detecting global predicates in distributed systems with clocks. Distributed Computing 13,

2 (2000), 85–98. DOI: https://doi.org/10.1007/s004460050069

33] Johannes Stüttgen and Michael Cohen. 2013. Anti-forensic resilient memory acquisition. Digital Investigation

10 (2013), S105–S115.

34] Andrew Tanenbaum and Herbert Bos. 2015. Modern Operating Systems . Pearson Education.

35] Ubuntu Man Pages. 2010. Stress—Tool to Impose Load on and Stress Test Systems , v1.0.4. Ubuntu.

36] Stefan Vömel and Felix C. Freiling. 2011. A survey of main memory acquisition and analysis techniques for the

Windows operating system. Digital Investigation 8, 1 (2011), 3–22. DOI: https://doi.org/10.1016/j.diin.2011.06.002

37] Stefan Vömel and Felix C. Freiling. 2012. Correctness, atomicity, and integrity: Defining criteria for forensically-sound

memory acquisition. Digital Investigation 9, 2 (2012), 125–137.

38] Stefan Vömel and Johannes Stüttgen. 2013. An evaluation platform for forensic memory acquisition software. Digital

Investigation 10 (2013), S30–S40.

https://doi.org/10.1109/TKDE.2019.2930987
https://github.com/volatilityfoundation/volatility
https://doi.org/10.5281/zenodo.8246001
https://doi.org/10.48550/arXiv.2307.12060
https://doi.org/10.1007/s004460050069
https://doi.org/10.1016/j.diin.2011.06.002

	1 INTRODUCTION
	1.1 Related Work
	1.2 Contributions
	1.3 Outline

	2 MEMORY FORENSICS AND CAUSAL CONSISTENCY
	2.1 Kernel Level Memory Dumping
	2.2 Structured Analysis in Memory Forensics
	2.3 Defining and Observing Causal Consistency

	3 EXPERIMENTAL SETUP
	3.1 Parameters
	3.2 Method
	3.3 Analysis
	3.4 Pre-Study
	3.5 Summary: A Hierarchical Classification of Analyzability

	4 EXPERIMENTAL RESULTS
	4.1 VMA Inconsistencies
	4.2 Causal Inconsistencies
	4.3 Failed Heap Extractions

	5 DISCUSSION
	5.1 VMA Inconsistencies
	5.2 Causal Inconsistencies
	5.3 Failed Heap Extractions
	5.4 8 GB Memory Experiment
	5.5 Experimental Setup

	6 CONCLUSION AND FUTURE WORK
	7 APPENDIX
	8 STATISTICAL TESTS
	8.1 Variation of Observed Causal Inconsistencies
	8.2 Variation of Observed Execution Times

	9 ACKNOWLEDGMENTS
	REFERENCESendgraf

