Digital forensic tools: Recent advances and enhancing the status quo

Tina Wu * ", Frank Breitinger °, Stephen O'Shaughnessy ©

@ Department of Computer Science, University of Oxford, Parks Road, Oxford, UK

b Hilti Chair for Data and Application Security, Institute of Information Systems, University of Liechtenstein, Fiirst-Franz-josef-Strasse, 9490, Vaduz,

Liechtenstein

€ Department of Informatics, Technological University Dublin, Blanchardstown Campus, Dublin 15, Ireland

1. Introduction

Compared to other domains, the digital forensics community
has a very applied focus, meaning that we are not solving problems
in theory but practically. Consequently, research endeavors
frequently come with prototype implementations. For instance,
Clark et al. (2017) analyzed the DJI Phantom III Drone. Their paper
presented findings on the proprietary, encrypted file format
including a reference implementation to automate the process.
Additionally, tool development is encouraged by creating Digital
Forensic Competitions, a prominent example of which is the Digital
Forensics Research Workshop (DFRWS) Challenges: From 2005
onwards the DFRWS-conferences challenged researchers and
practitioners with the goal of pushing the state-of-art into devel-
oping forensic tools. The idea is that each year a new challenge
surrounding a different theme is set depending on what is voted
the most popular topic, a scenario, guidelines and dataset is pro-
vided. The results from the DFRWS 2014—2019 challenges have
been released and are summarized in Appendix B.

While these tools are essential to validate the proposed

* Corresponding author.
E-mail address: Tina.Wu@cs.ox.ac.uk (T. Wu).

research, they can also provide benefits later for investigators in
case they run into a similar problem. However, there have been no
studies with respect to the diversity, availability or quality of the
published tools; nor has there been a discussion with respect to
challenges and problems. Consequently, this led us to the following
research questions:

RQ1 What tools have been published? (categorization)

RQ2 Are tools freely available and/or maintained? (license,
downloadable)

RQ3 Are tools applicable and useable? (assessment with respect
to programming style, interfaces, code quality, tested, and
documentation)

Knowing what has been released and various aspects of existing
tools, this led us to a final question which will lead the discussion
section:

RQ4 What are the current challenges in the area of forensic tool
development?

This last question focuses on aspects that we think are currently
missing with respect to tools themselves but also broader thoughts
which we believe makes tool development more durable.

mailto:Tina.Wu@cs.ox.ac.uk

To answer these questions, we reviewed 799 research publica-
tions from various digital forensics journals and conferences be-
tween 2014 and 2019 and filtered out those presenting tools. For
each tool-related paper, we answered (where possible) the afore-
mentioned questions R[1—3]. In summary, our article provides the
following three contributions:

e An updated version of the subfields in digital forensics based on
prior work from Netherlands Register of Court Experts (NRGD)
(2016) to better cluster (existing) tools.

e A list (overview) of recently published (in peer-reviewed
venues) tools that can be used for various purposes.

e A discussion of challenges with published tools including some
recommendations on how to enhance the status quo.

One may argue that technology (software and hardware) is
changing rapidly and that tools are already outdated by the time
they are published. Although this may be true in some cases,
practitioners still encounter old hardware as well as software. For
instance, Steven Watson (VTO Labs) said during his keynote at
DFRWS EU 2019 that they still find old file systems on recently
purchased devices such as Drones.

The rest of the paper is organized as follows: first, we discuss the
limitations of the study followed by a Related work section. Next,
we outline the survey methodology which starts by defining tool in
Sec. 4.In Sec. 5 we present a summary of our findings followed by a
clustering of the tools. Sec. 7 includes a critical discussion followed
by the last section — the conclusion.

2. Limitations

Our work is based on a manual analysis of hundreds of research
articles. Although we conducted several runs, there is the possi-
bility for human errors. Given the sheer amount of publications, we
also had to limit the scope and only consider the years 2014—2019
as well as seven different venues. Lastly, when validating the
availability of a tool, it may have been moved/renamed which did
not allow us to find it. However, we believe that this paper provides
a solid overview of what tools are available and where to find them.

3. Related work

The study was inspired by Grajeda et al. (2017)', who published
an article on the availability of datasets and what is missing. In their
paper the authors analyzed various conference and journal publi-
cations from 2010 to 2015 with respect to the utilization of datasets
and if they were released. They concluded that often datasets are
used but most often they are not shared.

The usefulness and power of open source tools was discussed by
Altheide and Carvey (2011) in their book ‘Digital forensics with
open source tools’. The authors discuss software which can be
helpful during the forensic process including benefits of using open
source software. However, given that the book was released in 2011
and does not focus on recent published research, the work differs
from this article. Manson et al. (2007) underline the usefulness of
open source products. In their work, they compared Sleuth Kit
(open source software) to the commercial products EnCase and
FTK. “The results indicated that the tools provided the same results
with varying degrees of intricacy.”

Carrier (2002) addresses digital forensic analysis tools and their
use in a legal setting, stating that to enter scientific evidence into
court, a tool must be reliable and relevant. Reliability is tested by

T Note, Grajeda et al. (2017) was inspired by Abt and Baier (2014).

the Daubert standard, taken from a rule of evidence regarding the
admissibility of expert witness testimony (Daubert vs Merrell,
1993). This standard utilizes four guiding questions to assess tools’:

e Testing: Can and has the procedure been tested?

o Error Rate: Is there a known error rate of the procedure?

e Publication: Has the procedure been published and subject to
peer review?

e Acceptance: Is the procedure generally accepted in the relevant
scientific community?

Using the guidelines of the Daubert tests, Carrier demonstrates
that open source tools may “meet the guideline requirements than
closed source commercial tools” by publishing source code and
data, which would allow the digital forensic community to examine
and validate the procedures used to produce digital evidence for
each tool. The reliability of tools is discussed further in Sec. 7.1.

With respect to digital forensic tools, we found two platforms
providing lists of tools: ForensicsWiki.org/wiki/Tools and
toolcatalog.nist.gov, where both platforms provide a com-
bination of commercial and open source software and hardware
tools. The former is a catalog that is categorized by their functions
and then on the operating platform, vendor and version. The latter
is part of the National Institute for Standards and Technology (NIST)
Computer Forensic Tool Testing (CFIT) project, which allows
searching a catalog by functionalities and then further refined by
operating platform and various other technical parameters
depending on the forensic tool. More details about these platforms
are discussed in Sec. 5.1.

4. Methodology

While these aforementioned platforms are valuable to the
community, they often focus on complete software solutions (e.g.,
from commercial vendors). In contrast, the goal of this paper is to
identify software that has primarily been developed for research
purposes and analyze any follow-up work as well as other aspects
of these tools. As a first step and before reviewing the literature, the
upcoming section defines what a tool is.

4.1. Definition of tool (software)

According to Lexico (2019), a tool is defined as a device or
implementation used to carry out a particular function. Sammons
(2015), on the other hand, has described tools as not only
designed for a specific purpose but also for broader functionality.

For us, a tool is self-contained and provides a certain level of
automation, i.e., user interaction is minimized, reduced and
abstracted. For instance, a user should not have to manually find
sector numbers for the tool to access the disk or translate virtual to
physical addresses. Valid tools, for example, would include, but are
not limited to, scripts that can be used to parse files, a code snipped
that can reassemble (carve) files, or a program that helps visual-
izing information. Tools can be written in any programming lan-
guage and are often developed by individuals or research groups.
Lastly, a tool may use another program if it is automated. For
instance, Autopsy is a tool supporting plugins which we also
considered tools (they add additional functionality to Autopsy).

In contrast, we do not consider comprehensive software as a
tool if it is a fully featured application such as EnCase or Cellebrite.
This work will also ignore any articles that only explain procedures

2 Questions/itemization are copied from Carrier (2002).

or models without any reference implementation. Here are some
examples: forensic process models, frameworks, methods, schemes
and approaches. We also exclude algorithms as a tool unless it has
been implemented and tested.

4.2. Collecting and analyzing articles

The first step focused on collecting articles from digital forensics
conference proceedings and journal publications spanning the last
six years (from 2014 to 2019). Our selection of venues was similar to
Grajeda et al. (2017), however, we only focused on digital forensic
platforms (venues are listed in Sec. 5) and ignored more traditional
cybersecurity centered venues as our research was focused purely
on digital forensic tools.

Next, we removed all articles that were not tool related as
defined in Sec. 4.1. For the remaining tool-centered articles, we
grouped them based on the subfields in digital forensics (details see
Sec. 6) and tried to find information about: licensing, possible up-
dates and availability. Lastly, we reviewed the program source code
as discussed in Sec. 4.4. Additionally, to verify the tools we found
listed in the articles, we carried out an automated search using a
Python script that searches for the keyword ‘tool/tools’ in the PDF
files.

4.3. Online searches

We also searched online for available digital forensic tool re-
positories using the following terms: ‘digital forensic tool catalog’
and ‘digital forensic tool repository’. We focused our analysis on the
first 50 results for each query. Once a forensic tool repository was
identified, we collected the following information (when possible):
author(s), the number of tools, how the tools have been catego-
rized, whether the repository was being updated regularly and if it
included any additional links to other websites related to digital
forensics. Findings are presented in Sec. 5.1.

4.4. Code review

The code review process started with a brief manual review to
see if it is commented (we assume that commented code has a
better quality and allow other to make modifications). Additionally,
the programs’ source code was analyzed using an automated code
review tool (Codacy?®; see next paragraph). This is an important
process in software development as it helps improve the quality of
the software. Usually these tools analyze various aspects to check
the quality (Ashfaq et al., 2019):

e Code complexity: Highly complex methods and classes that
should be refactored

e Compatibility: Used mainly for front-end code, detects
compatibility problems on different browser versions

e Errors: Code that may hide bugs and language keywords that

should be used with caution.

Security: Common security issues

Code style: Code formatting and syntax problems. For example

variable name style, enforce the use of brackets and quotation

marks

Documentation: Detects methods and classes that do not have

the correct comment annotations

Performance: Code that could have performance problems

Unused code: Unused variables and methods

w

WWW.COdaCy.COlTl.

3

There are a diverse number of automated code analysis tools
available, however the only one that met the aforementioned re-
quirements was Codacy. Codacy is an open source tool that is in-
tegrated into Github and benefits from being transparent on the
type of tools used during the code review process. For example,
when finding security issues in Python code, it informs the user
that it uses Bandit. An overall grade that ranges from A to F is given
(with A being the highest) which makes it easier to assess the
quality of each tool. In total, there are 33 tools where the source
code for one tool was unavailable. The remaining 32 tools available
on Github, Bitbucket and Gitlab were cloned or forked onto a new
Github account. Tools available on private websites were manually
uploaded to the new Github account. Codacy was then used to
analyse each repository.

5. Results overview and availability of tools

This section examines the availability of the tools and whether
they are maintained (see RQ2). Creating new tools can potentially be
of great value to the digital forensics community. As tools become
established, they encourage the growth of close-knit communities of
developers providing consistently updated and patched or main-
tained code, bug-fixes and comprehensive documentation. We
categorized the results from our tool search under the attributes of
availability, code maintainability, documentation and licenses.

For this article, we reviewed 799 research publications where 62
(7%) included tools according to our definition. Almost 25% of all
reviewed articles came from the Digital Forensics Research Work-
shops (US & EU) where 27 out of the 199 included tools; followed
by Digital Investigation® (journal) where 20 out of 212 were found.
Other venues had similar results: (a) International Conference on
Digital Forensics & Cyber Crime (ICDF2C°) had 3 out of 44; (b)
Association of Digital Forensics, Security & Law (ADFSL, Confer-
ence) contained 3 out of 84; (c) IFIP Working Group 11.9 on Digital
Forensics had 5 out of 111; (d) International Workshop on Digital
Forensics (WSDF) contained 1 out of 29; and (e) Journal of Digital
Forensics, Security and Law (JDFSL) also had 3 out of 120. An
overview of all identified tools can be found here: https://www.
fbreitinger.de/wp-content/uploads/2020/05/ToolsTable.xIsx.

Availability of tools. On further examination of the 62 tools, we
found that currently 53.2% (33/62) are available online (note, we
did not contact the authors to see if they were willing to share the
tool). The 33 available tools are listed in A. 78.7% (26/33) of the
available tools were on public repositories (Github/25 and Bit-
bucket/1). Five of the tools were available on private/personal
websites (e.g., downloadable from research group websites). The
two remaining locations were Source Forge and Dropbox.

By implication, this means that 29 tools were not available
where the most common (28) reason was unknown source. We
found one article with a link to an empty Github which appears to
have never been uploaded.

Code Review. Codacy was used to analyze the 32 tools and no
issues were found relating to code complexity, compatibility,
documentation or unused code. Overall, all the tools had issues in
their source code with coding style, however this is subjective and
parameters/rules can be adjusted. 24 of the tools had security is-
sues, 14 had errors and 4 had performance issues. If major security
issues were found in the code this could have an effect on the
integrity of the tool. For example Codacy highlighted one tool that
uses an insecure MD5 and SHA1 hash function, instead it is

4 Volume 30 was the last volume considered for this research.
5 We only considered articles between 2014 and 2018 as there is/was no ICDF2C
2019.

https://www.fbreitinger.de/wp-content/uploads/2020/05/ToolsTable.xlsx
https://www.fbreitinger.de/wp-content/uploads/2020/05/ToolsTable.xlsx
http://www.codacy.com

4

recommended that SHA512 be used (NIST, 2015).

To get a better understanding of the quality of the code, the tools
were then scored from A to F where 6 tools scored an A; 20 tools
scored a grade B; 5 scored a C and lastly 1 tool scored a D. The tool
with the least issues was developed in C++ and had only 4 issues
related to security and coding style. The tool with the most issues
(and scored a D) was developed in C++, and had 1044 issues, these
were coding style, errors, security and compatibility.

Code maintainability. We examined the 22 tools developed
between 2014 and 2018 to determine whether they were being
maintained after they had been developed/last modified, the 11
tools from 2019 were excluded due to being too recent. 72.7% (16/
22) tools have not been maintained after development; for 2 we
were unable to identify the date they were last modified; and only 4
have had recent updates.

Programming language. Tools have been developed in various
programming languages, ranked in descending order of popularity;
Python, C++, Java, C, Golang and JavaScript (note that some of tools
were developed to be compatible with more than one program-
ming language). Python was by far the most popular programming
language and is frequently used for plugin-development for exist-
ing tools such as Volatility® or Autopsy.”

Documentation. 29 of 33 tools had some comments in their
source code, which makes maintaining the code after publishing
easier. However, the quality of those comments varied widely from
being very helpful to of little help. Furthermore, 24 of the 33 tools
provided documentation, while the majority included a description
of the tool(20), some provided additional information including;
usage commands(13), installation instructions (dependencies and
requirements) (5), configuration(2), execution of the tool(1) and
results from the output of the tool(1). There is no standard format
for developers to follow when documenting their tools, however
several sources have provided a recommended format. For example
in Github a Readme file should be included with the following in-
formation: project name, description, table of contents, installation,
usage, contributing, credits and license (Lyczywek, 2018).

License. Online repositories such as Github allow the licensing
of source code so that they are open source (Github, 2019). How-
ever, only 11 out of 33 tools had licenses, this means that the tools
without licenses would need to request permission from the
copyright holder in order to redistribute the code which is
cumbersome.

5.1. Tools from other sources

Overall, we identified five sources from online searches that
provided repositories of forensic tools: Four were websites that
provided links to a variety of tools from different categories; one
source only focused on acquisition and analysis tools.

Computer Forensic Tools & Techniques Catalogue is a
comprehensive list of forensic tools developed by NIST. As stated on
the website, “the primary goal of the tool catalogue is to provide an
easily searchable catalogue of forensic tools and techniques”. It
contains 37 different categories of forensic tools across all disci-
plines, e.g., disk imaging, live response, drone forensics or info-
tainment & vehicle forensics.

Forensic Wiki (https://www.forensicwiki.org/) contains about
110 either commercial or open source tools that have been grouped
into 10 main categories based on their functionalities, e.g., disk
imaging tools, memory imaging, memory analysis or network
forensic. A category may have subcategories, e.g., disk imaging tools

8 https://www.volatilityfoundation.org/.
7 https://www.autopsy.com/.

have been split based on Operating System (OS). Note, sub-
categories are different for each main category, e.g., file analysis has
image analysis, software forensics, open source and file analysis
tools as subdomains; there appears to be no universal method of
categorizing the tools. Additionally, this website also includes links
to websites hosting digital forensic challenges, various lists of
topics and a mixed list of datasets.

Awesome-Forensics is a Github repository that provides a
comprehensive list of forensic tools and was created by Jonas Plum.
This repository was created in March 29", 2016 and as stated on the
website provides a, “curated list of awesome free (mostly open
source) forensic analysis tools and resources”. This resource con-
tains about 60 tools in 14 categories and was last updated on April
29t 2019. We found the repository also has a list of tools for
various other domains including pentesting, malware analysis,
hacking or honeypots.

DFIR Training lists 27 main categories with four categories
being loosely categorized under “Forensic Utilities” and by OS
(Linux, Mac, Misc and Windows) where Misc and Windows have
further subcategories. We could not find any information on how
often this repository is updated/last update: https://www.dfir.
training/dfirtools/advanced-search.

DF tools catalogue (dftoolscatalogue.eu) was developed
by the Institute of Legal Information Theory and Technique of the
National Research of Council of Italy. This repository differentiates
between acquisition and analysis digital forensic tools where it lists
464 acquisition tools and 1045 analysis tools that are clustered by
forensic domains, e.g., network, mobile, malware etc. We could not
find information on updates/last update.

6. Types of tools

To answer RQ1, this section focuses on published tools which
allows practitioners to easily identify an appropriate tool for a given
task. In order to cluster them, it is important to follow a digital
forensics taxonomy. For example, Carrier (2003) introduced the
notion of abstraction layers for digital forensics at multiple levels,
identifying abstraction layers for physical media, media manage-
ment, file system analysis, network analysis and memory analysis.
He proposed that “the purpose of digital forensic analysis tools is to
accurately present all data at a layer of abstraction and format that
can be effectively used by an investigator to identify evidence”.

More recently, Netherlands Register of Court Experts (NRGD)
(2016) identified six subfields of digital forensics: (1) Computer, (2)
Software, (3) Database, (4) Multimedia, (5) Device and (6) Network
forensics; where software is defined as “uncovering potential evi-
dence through examining software”.

We feel the latter approach is more intuitive and easier to
navigate,® so in this regard, we present a modified and extended
version of the NRGD taxonomy as shown in Fig. 1.

In our updated classification taxonomy, we place databases
under the software category, due to the lack of available database
forensics tools. We also extend the taxonomy to include malware
and memory forensics categories, since they both constitute
distinct and significant realms within the scope of digital forensics.
Universal tools (shown in red) are classified under computer fo-
rensics as we do not consider it to be a direct subfield of digital
forensics. Additionally, the origin of these tools often started in
traditional computer forensics (e.g., string search or timeline
analysis). The subfields for each category (shown in gray) corre-
spond to paragraphs in the upcoming subsections. Note, despite the

8 Note: this is a personal preference and we do not say that one is better than the
other.

https://www.forensicwiki.org/
https://www.dfir.training/dfirtools/advanced-search
https://www.dfir.training/dfirtools/advanced-search
https://www.volatilityfoundation.org/
https://www.autopsy.com/

‘ Digital Forensics ’

—

4. Device /

1. Computer 2. Software 3. Multime-
forensics forensics incl. DBs dia forensics loT forensics

5. Network 6. Malware
forensics forensics

NG

7. Memory
forensics

Universal tools includes string search, approximate match-
ing or timeline analysis.

L

[Universal tools | [Email \ [Video files | {—[Mobile devices | [Protocols | [Computer | [Acquisition |
—[Wndovs apps | | ~Webbrowser | ol ® | oo] e] L e
4‘ File system ‘ [Database | > Smarthome | [Cloud |

e T

—> PLC / SCADA

<
jns)

Fig. 1. An overview of Digital Forensics subfields which expands on the recommendations made by Netherlands Register of Court Experts (NRGD) (2016). Compared to the original
version, we combined Software and Database forensics, renamed Device forensics to device/loT forensics and added two new subfields: malware forensics and memory forensics.
Additionally, we added some explicit examples (marked gray) compared the verbal description from the original document.

updated version, there are some tools that fit in several subfields. In
these cases, we decided to place the work only in the subfield we
identified as most appropriate.

One may argue that devices/IoT forensics could be placed into
other sections as they typically contain well-known OSes and
operating environments (e.g. Linux, BSD). However, we decided to
have a separate subfield for this due to (a) they frequently also use
proprietary file formats, (b) they are often in their own ecosystem
involving Smartphone Apps, on-device information, cloud data and
network communication that need to be correlated and (c) less
common procedures like chip-off or JTAG forensics.

Although this paper is limited to tools developed from academic
papers, other popular forensic tool suites should not be ignored.
One source we identified is Forensic Control that lists over 100 open
source forensic tools (last updated in Oct. 2019). Another source is
GFl.com®” which lists the top 20 forensic suites such as Volatility and
The Sleuth Kit (Autopsy); tools can be easily extended via plugins to
include new functionalities (last updated in 2019).

6.1. Computer forensics

This section discusses tools relating to various OSes as well as
universal tools that can be used independently of the operating
systems.

Windows Apps. In Windows 8, Microsoft introduced light-
weight sand-boxed applications called “apps” to provide a full
range of functionality on top of touch-enabled displays. Murtuza
et al. (2015) created a tool called MetroExtractor to gather static
and volatile forensic data from Windows apps but does not
consider in-active hibernation files.

File provenance. Tools are available to extract the provenance of
a file, but these require prior installation during the provenance
generating events. Good (2017) presented the tool AutoProv which
uses temporal artifacts to rebuild the file provenance of a Windows
forensic image. However, there is the possibility a user can alter the
provenance to incriminate another party.

® https://techtalk.gfi.com/top-20-free-digital-forensic-investigation-tools-for-
sysadmins/.

File system. The Linux Ext4 file system saves metadata in the
superblock or the group descriptor table. Previously this informa-
tion was required to understand the correct structure of the file
system in order to recover the data. Dewald and Seufert (2017)
created a tool as a module within the Sleuthkit framework that
does not require this information, instead uses a file carving
method and metadata analysis to reconstruct the file.

Object IDs (OIDs) are created when a file is opened or saved by
an application. Allocated files that have a OID can be used to
reconstruct user activity, often multiple entries are created. The
tool NTFSObjIDParser was developed to automatically parse these
entries, however it is possible the OID can be manipulated using
anti-forensic tools such as fsutil (Nordvik et al., 2019).

In the following we summarize tools that we classified as uni-
versal tools which means that they are general enough that they
can (could) be used for various OSes.

Triage. Computer evidence can be quickly examined to assess
the likelihood of acquiring artefacts using triage tools. Vidas et al.
(2014) produced a tool called OpenLV for the purpose of quickly
identifying relevant evidence, however the tools require adminis-
trator permissions. A second triage tool called Forensic2020 runs
within a bootable environment and provides the ability to view
results while the evidence is processed. In the evaluation they
found the tool made slight changes to the file system (Baggili et al.,
2014). The next tool was designed to allow an investigator to
quickly view the devices that had recently synced with the seized
devices. Hargreaves and Marshall (2019) proposed a plugin called
Sync Triage which extracts details and provenance of the devices
connected. Only a selected number of apps have been tested on this
proof-of-concept, however the tool is compatible with a number of
0Ss, including Windows, i0S and Android. Advanced Automated
Disk Investigation Toolkit (AUDIT) integrates commonly used
command-line tools onto a Graphical User Interface (GUI). This was
designed to support investigators with minimal technical knowl-
edge searching the disk for evidence in files, emails and documents
(Karabiyik and Aggarwal, 2016).

Non-relevant data. When a bitwise copy of a system is taken,
non-relevant or sensitive data must be securely deleted from the
image. Zoubek and Sack (2017) proposed a selective deletion
method and implemented this as a plugin for the Digital Forensic

https://techtalk.gfi.com/top-20-free-digital-forensic-investigation-tools-for-sysadmins/
https://techtalk.gfi.com/top-20-free-digital-forensic-investigation-tools-for-sysadmins/

6

Framework (DFF). Testing of the tool was limited to the NTFS file
system and required manual intervention from the investigator,
hence the authors stated that all irrelevant data may not be
identified.

Timelines. Timelines are used to reconstruct events and are an
important step in an investigation. Log2Timeline is a command-
line tool used to create timelines by combining several log files
and events of a system. Timeline2GUI is based on Log2timeline but
was created as a GUI tool to provide an easier interface for in-
vestigators (Debinski et al., 2019).

Approximate Matching (AM). The similarity between files and
file fragments can be measured using Approximate Matching (AM)
algorithms. Breitinger et al. (2014) presented mrsh-v2, an AM tool
for detecting similarities at both file and fragment level. mrsh-v2 is
an improvement on the original mrsh algorithm by Roussev et al.
(2007). mrsh-net by Breitinger and Baggili (2014) is the network
implementation of mrsh-v2 which has a single huge Bloom filter
for the signature. Further work by Gupta and Breitinger (2015)
created the tool mrsh-cf using a Cuckoo filter. mrsh-cf provides
an improvement on the previous AM tools in terms of processing
speed, memory footprint, compression rate and false positive rate.

Litigation. During the legal process all forms of documents
related to the lawsuit including those stored in the cloud must be
preserved. However, there is the possibility that documents can be
manipulated by the parties involved. The authors developed the
Litigation hold eNabled Cloud Storage (LINCS) prototype so that
auditors can verify whether evidence has been manipulated
(Zawoad et al., 2015).

String search. Search hit ranking algorithms can help in-
vestigators to search through retrieved evidence. The tool Sifter
uses this method to rank the forensic importance of strings
searches. It is capable of searching both allocated and unallocated
space but have only validated their algorithms on a single synthetic
case (Beebe and Liu, 2014).

Evidence container. Traditional evidence storage use vendor
specific formats and lack formal specifications. Schatz (2019) pro-
posed an open specified logical evidence container based on the
original AFF4 evidence format (Cohen et al., 2009). It has the benefit
of efficient storage of file content and is easily extended.

6.2. Software forensics including database forensics

As mentioned previously, “software forensics covers for
example operating system forensics, application software forensics
and digital forensic analysis tools” (Netherlands Register of Court
Experts (NRGD), 2016).

Email. In total, three tools specific to the analysis of emails were
found. (1) Armknecht and Dewald (2015) was implemented into
the Autopsy framework as a plugin called Privacy Preserving Email
Forensics (PPEF). The plugin encrypts the suspect’s email account to
protect their privacy. A keyword search is then performed and only
ones that match are decrypted. The plugin works only if the
keyword search provides an exact match. (2) InVEST (Koven et al.,
2016) is used to discover evidence and information in large email
datasets. This is a visual analytic tool that assists investigator in
finding emails related to their case when the exact nature is un-
clear. (3) The last tool uses interactive graphical visualization and
statistical information to identify patterns in emails. (Stadlinger
and Dewald, 2017).

Web browser. Web storage is a client-side data storage con-
taining web browser artefacts. Mendoza et al. (2015) built the
prototype BrowStEx to parse both SQLite files and XML files. This
provides a timeline for an investigator to search and present the
web storage data based on the date/time frame. This prototype was
only tested on Windows OS 64bit and modifications will be

required for this tool to be compatible with another OS.

Database forensics. Research in this area has centered around
relational databases. In all, we found five tools for recovering data
from particular databases. Kim et al. (2016) tool recovered deleted
records and tables from the Extensible Storage Engine (ESE) data-
base but cannot recover deleted data with damaged record header.
Database Image Content Explorer (DICE) recovers unallocated data
from ten different Relational Database Management System
(RDBMS) e.g. MySQL, Oracle (Wagner et al., 2016). Another recovery
tool by Yoon and Lee (2018) focused on the MongoDB. The tool used
metadata information, namespace file and the signature of deleted
records to recover data. Meng and Baier (2019) developed a parser
called Bring2lite to process deleted SQLite records. On evaluating
the parser, they found it had slightly higher recovery rates than
competing tools, although it does not work on encrypted databases.
The last tool by Wagner et al. (2019) recovers data from multiple
DBMSs then stores this in the Database Forensic File Format. The
DF-Toolkit is then used to view and search the extracted data.
Although investigators may struggle to interpret the data as some
artefacts in plain-text alone may not mean anything.

6.3. Multimedia forensics

This section deals with tools used to recover and analyze video
and images.

Video file formats. Gloe et al. (2014) developed parsers to
extract file format structures and metadata from various cameras
and mobile devices. They focused on the internal file structure of
AVI and MP4 multimedia containers. Their tests did not comprise of
multiple devices per camera model so they were unable to verify
that this would be the same outcome for other devices of the same
model.

Image file carving. Due to the increasing capacity of storage
disks, file carving would be an ideal triage solution. The Decision
Theoretic Carving (DECA) tool was developed to specifically carve
JPEG files and uses decision theoretic analysis to consider the likely
locations the data is stored (Gladyshev and James, 2017).

6.4. Device/loT forensics

This subfield of device forensics is a broad topic, which gathers
evidence from a range of small-scale devices such as mobile devices
and smart home devices to larger-scale devices such as drones and
games consoles.

Mobile devices. WhatsApp is the most widely used mobile
messaging app. Capturing messages between the WhatsApp client
and server can prove useful as part of an investigation since they
can contain important forensic artefacts. The tool ConvertPDML
was developed to decrypt and view the messages exchanged be-
tween the client and server (Karpisek et al., 2015). For the tool to
function it required a rooted device and the password associated
with the WhatsApp account.

The Forensic Evidence Acquisition and Analysis System (FEAAS)
tool is used to recover data from the iPhone backup files such as
date, time and changes created by multiple smart home devices.
The results are presented in a report which can be used to establish
whether the data was produced through voice command or the
mobile app. This study focused on data acquired logically meaning
the tool will only work if the data has not been deleted before
examination (Dorai et al., 2018).

Drone. Due to their increasing popularity drones or unmanned
aerial vehicles are being exploited by criminals and therefore are a
potential source of evidence in an investigation. Clark et al. (2017)
developed DRone Open source Parser (DROP) designed to parse
DAT files from the DJI Phantom IIl drone and then correlate the DAT

files to TXT files. Using this tool, data can be correlated and linked to
the user of a specific device based on the extracted metadata. This
tool is limited to DAT and TXT files that are proprietary. The tool by
Renduchintala et al. (2019) was used to analyze the log parameters
of two drones; Yuneec Typhoon H and DJI Phantom 4. This tool is
used to extract, examine flight information and convert files for 3D
flight trajectory visualization. The tool is ineffective on drones with
no logging capabilities or where storage of data is on the mobile
application only.

Smart home. The increasing number of 10T devices present in
smart homes creates new opportunities for obtaining evidence. We
identified two tools that extracted user behavior artefacts from the
cloud. The tools focused on a specific type of smart home device the
Al Speaker ecosystem. The first tool is for the Amazon Echo and is
called CIFT: Cloud-based IoT Forensic Toolkit, used the unofficial
cloud API as a method of extraction. With the possibility of the cloud
API being depreciated, this method of extraction can be seen as being
unreliable. For example, Nest'” have stopped new users from
accessing their API. This study focused on four Al speaker ecosystems
from different manufacturers released by South Korea. Jo et al. (2019)
produced a tool to retrieve artefacts for one of the Al speakers
(NAVER Clova), that identified commands the user had previously
executed. The application can only retrieve this information with this
unique access token which can only be obtained by intercepting the
network traffic between the Al speaker and the cloud. The number of
commands displayed is restricted to 20 requiring the investigator to
continuously scroll to see other commands.

In a study of multiple smart home devices such as cameras, hub
and an alarm system, evidence was extracted from multiple data
sources. Servida and Casey (2019) developed three Autopsy plugins
and one standalone tool to automate the extraction process. Two of
the plugins could only be used to extract cloud credentials. The
third, was used to extract cloud credentials, events and user actions.
The standalone tool was used to download debug logs and parse
events. These tools are the first to demonstrate that open source
forensic tools can be customised for its use in IoT forensics.

XBox. In a study we found one tool the File System N-View
(FSNView) developed to document metadata, using multiple stor-
age system parsers on the same disk. The individual parsers then
present their interpretation of the metadata in Digital Forensics
XML, a storage language used to carry out differential analysis
(Nelson et al., 2014).

Programmable Logic Controller (PLC)/Supervisory Control
and Data Acquisition (SCADA). The PLC is one of the most
important components on a SCADA system, used in various in-
dustries such as water, electrical etc., to automate many production
processes. In this study we found three tools used to acquire and
analyze data from individual manufacturers of PLCs. Yau (2015) tool
called the Control Program Logic Change Detector (CPLCD) is used
to detect two types of attacks; reprogramming of the PLC and
alteration of the memory variables on the Siemens S7-1200 PLC. A
further tool by Denton et al. (2017) was developed for the GE-SRTP
network protocol PLC, that provides direct communication with the
PLC to read the ladder logic program. The last tool called Cutter by
Senthivel et al. (2017) is compatible with PLCs using the Program-
mable Controller Communication Commands (PCCC) protocol. The
tool is capable of extracting updates, ladder logic program and
configuration information.

Virtual Reality (VR). The rising popularity of VR devices on the
consumer market make them a valuable source of digital evidence.
To analyze the memory of a VR device, Casey et al. (2019) have

10 https://www.home-assistant.io/blog/2019/05/08/nest-data-bye-bye/(last
accessed 2019-10-10).

7

produced a Volatility plugin to automate the extraction of memory
artefacts such as location, state and class of devices.

6.5. Network forensics

This section summarizes a variety of different network forensic
tools which includes protocols, wireless/wired security and cloud
forensics.

In addition to network forensic tools, one publication by
Vondracek et al. (2018) presented an offensive tool to raise
awareness. Their tool Wifimitm “provides functionality for the
automation of [Man-in-the-middle] MitM attacks in the wireless
environment. The package combines several existing tools and
attack strategies to bypass the wireless security mechanisms, such
as WEP, WPA, and WPS.”

Protocols. This study found three tools related to the network
analysis for IP protocols. Gugelmann et al. (2015) built a visualiza-
tion tool called Hviz, that structures, aggregates and correlates
HTTP events between workstations. The evaluation of the tool
identified that a day's network traffic required many hours of
extracting the HTTP requests and responses. TLS Key EXtractor
(TLSkex) by Taubmann et al. (2016) is used to detect and analyze
threats from adversaries using TLS encryption to hide their attacks.
This tool is used to extract the master key from a TLS connection to
decrypt the TLS session. IPv6 is the most recent version of the
Internet Protocol (IP), introduced to replace IPv4 which has vul-
nerabilities that can be exploited to create covert channels. Hansen
et al. (2016) have developed a prototype that demonstrated IPv6 is
also susceptible to covert channels. In this study testing was not
carried out in a real-world environment.

Attack-identification. In all, we found three tools to analyze
network attacks. Britt et al. (2015) presented the Simple Set Com-
parison tool that allows investigators to identify the target. The tool
BotDAD uses DNS fingerprinting to identify bot infected machines on
a network. Although the tool cannot detect a bot outside of the
investigation time or if the IP address is changed (Singh et al., 2019).
IoT botnets are rapidly increasing, hence Gannon and Warner (2017)
have developed a Wireshark dissector to identify IoT DDoS C&C.

Cloud. In this study we found two tools for the recovery of ev-
idence from consumer cloud storage services. The first tool called
Synchronization Service Evidence Retrieval Tool (SSERT) remotely
recovers evidence from the open source cloud service Syncthing
and provides an audit log of actions. This tool is limited as it relies
on the recovery of the public/private RSA key pairs and Device IDs
from the suspects device (Quinn et al., 2015). Roussev et al. (2016)
presented a proof-of-concept acquisition tool, Kumodd that can
acquire historical data of document revisions from four major cloud
storage providers. A limitation to this tool is that it requires the
username and password of the account holder.

6.6. Malware forensics

This section includes tools used to perform the analysis of
malware on computers and mobile devices (Android).

Computer. Our study found two tools that use binary analysis to
analyze malware. The first tool uses compiler provenance informa-
tion to understand how the malware binary is produced. Rahimian
et al. (2015) built BinComp that automatically recovers compiler
provenance of program's binaries using the syntax, structure and
semantic features to capture compiler behavior. The second tool uses
binary analysis to detect malware. Alrabaee et al. (2016) have
designed the tool BinGold, that automatically recovers semantics of
a binary code. The tool does require a compiler or the installation of
additional tools. Results are unlikely to be accurate if the user has
packed the binary or has used obfuscation techniques.

https://www.home-assistant.io/blog/2019/05/08/nest-data-bye-bye/

Mobile devices (Android). We found three tools for the acqui-
sition and analysis of Android malware. AMExtractor (Yang et al.,
2016) was created to acquire and analyze the volatile memory to
detect malware e.g. rootkits. Although this tool will not work on
Android devices running an ARM CPU. The next tool called
AndroParse (Schmicker et al., 2019), contains a database of Android
application (APK) features to speed up the analysis process. The
final tool Fordroid analyzes APK by automatically identifying what,
where and how sensitive information locally stored (Wei et al.,
2018).

6.7. Memory forensics

Acquisition of the memory is used to gather a snapshot of the
system in its current state, this is then analyzed with the appro-
priate tools. The acquisition and analysis tools is further divided
based on the OS for which it has been developed.

Acquisition. In total, we found two tools that can be used to
acquire memory. A tool that can acquire memory from Windows
has been implemented as two plugins for Volatility and Rekall. It
can extract ACPI tables from a memory image and scans for po-
tential rootkits (Stiittgen et al., 2015). The next tool, Layout Expert,
acquires memory from a Linux system, however knowledge of the
memory layout is required (Socata and Cohen, 2016). To overcome
this complication, the tool is used to predict the memory layout.
This is implemented in Python due to having better accessibility to
parsing libraries, but this limits the speed.

Analysis. In all, three tools were found to analyze memory for
Linux OS: (1) System swap files are a back-up for the OS's virtual
memory system. Both Linux and Mac OS compress the RAM to
reduce the swapping of these files. Richard and Case (2014)
developed four plug-ins that work within Volatility which is used
to analyze the compressed RAM. (2) Roussev et al. (2014) presented
the tool called sdkernel, which is used to identify the version of the
OS kernel. This method does not require heavy reverse engineering
but can only fingerprint kernel versions that are known. Lastly (3)
Block and Dewald (2017) produced six Rekall plugins that automate
the analysis of heap memory. Four of the plugins find the required
information in the heap then places it into separate files. The
remaining two plugins are used to analyze and extract command
history for various applications. To fully analyze the heap memory,
it is vital that the swap files are also analyzed, however this is not
featured in the tool.

In this study, we found four tools used to analyze memory for the
Windows OS: (1) Pool tag scanning is a process used in memory
analysis to locate kernel objects, often hidden from the OS. The au-
thors (Sylve et al., 2016) created a plugin to only scan the memory
pool tags. (2) Uroz and Rodriguez (2019) designed a Volatility plugin
called Winesap, which is used to analyze the Windows Auto Start
Extendibility Points (ASEPs) for evidence of persistent malware. The
tool is limited to registry ASEPs and cannot check the original ASEPs
that triggered the execution of some programs. (3) The next tool
looked at malware code injected into executable pages which can
manipulate other processes or hide its existence. Block and Dewald
(2019) have created a Rekall plugin called Ptenum to detect these
hiding techniques. It is limited as it reports all executable pages
whether malicious or not, producing a large amount of unwanted
data. The final tool by Case et al. (2019) produced a Volatility plugin
named Hooktracer, so that inexperienced investigators can analyze
API hooks and quickly identify suspicious APIs.

7. Discussion of challenges and opportunities

While having a closer look at the last two research questions -
RQ3 and RQ4 - we realized that both are closely related and thus we

address those in the upcoming sections. A clearer separation of the
two questions is provided in the section Conclusion and future
work.

While freely available software/tools have many advantages,
there are also challenges. As discussed by Tips4PC (2014) or
Vadalasetty (2003), there are several risks of using free tools/soft-
ware such as the lack of support, documentation and updates or
safety of the software. Indeed, when analyzing the papers and tools,
we realized that tools often were poorly commented or had no/
little accompanying documentation. Another aspect pointed out by
Tips4PC (2014) was advertising banners which we did not
encounter. The last two reasons mentioned in this blog were quality
of the user interface as well as developer loses interest where
especially the latter one seems to be common: we noticed that
although tools have been published, most of them were only used
in their referenced articles. In other words (often) neither the au-
thors themselves continued working the tools nor have other re-
searches/practitioners utilized the tools. Of course, there are
exceptions. The upcoming subsections present some ideas on how
the community may be able to address these issues.

7.1. Reliability of tools

Much like crime scene forensics, digital forensics must follow a
clear process of collecting, analyzing and reporting such that it can
be deemed admissible in a court of law. Therefore, the tools used to
collect digital evidence must be subject to stringent testing to verify
their reliability to produce “forensically sound” digital evidence.
Despite increasing reliance on digital forensics in criminal cases
and hence the need for reliable tools, the only sustained effort to-
wards standard tool testing is NIST's Computer Forensics Tool
Testing Program.!! Additionally, no specific international standard
exists for digital forensic tools. Some countries have adopted the
ISO 17025 standard, which was drafted for testing and calibration
laboratories, but can be applied to digital forensics. In the UK, for
example, the Forensic Science Regulator's code of practice stipu-
lates that all digital forensic service providers must be ISO 17025
compliant.

Given the obvious need for digital forensics tools to produce
accurate, repeatable and reproducible results, the question arises:
Do research-based tools have a place in a digital forensics labora-
tory that is ISO 17025 accredited? While tools are not validated
individually under I1SO 17025, the standard sets out requirements
for equipment and validation of methods and results.

Equipment. Sec. 6.4 of the ISO 17025 sets out the requirements
for equipment and states that a laboratory shall have access to
equipment including software “that is required for the correct
performance of laboratory activities and that can influence the
results.” To meet the requirements, the laboratory must:

o Verify equipment conforms to specified requirements before
being used (Sec. 6.4.4)

e Ensure the equipment is capable of achieving accurate results
(Sec. 6.4.5)

o Establish a calibration programme for equipment that is subject
to review (Sec. 6.4.7)

e Ensure that any equipment giving questionable results or is
defective be taken out of service (Sec. 6.4.9)

Validation of methods and results. Sec. 7.2.2 of ISO 17025 re-
quires that the laboratory validate non-standard methods to the

" https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-
testing-program-cftt (last accessed 2019-10-10).

https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt
https://www.nist.gov/itl/ssd/software-quality-group/computer-forensics-tool-testing-program-cftt

necessary extent to meet the needs of the given application or field
of application. Validation requires that the laboratory implement
robust testing methods through variation of controlled parameters,
comparison of results achieved with other validated tools and inter-
laboratory comparisons. Furthermore ISO 17025 Sec. 7.7 requires
that laboratories have procedures for ensuring and monitoring the
validity of their results.

It can be concluded that a laboratory may use research-based
tools as long as they can ensure tools meet the requirements set
out in the standard as outlined above for equipment and validation
of methods and results.

Whilst the Daubert process, discussed in Sec. 3 is not an inter-
national standard, it may still be used to establish the reliability of a
research tool to produce results that are admissible as legal evi-
dence. To satisfy the requirements of the Daubert process, the tools
from peer reviewed articles would need to be well documented,
maintained and their development and testing processes, including
code and data, clearly documented. While maintenance is difficult
to enforce, documentation and testing could be ensured. Out of the
62 tools reviewed, while 46 have been evaluated within the articles,
inconsistencies exist in their evaluations. Some tools tested pro-
vided a detailed evaluation on accuracy and reliability using mul-
tiple datasets/test sets e.g., the accuracy in detecting malware
hiding techniques using a real-world malware sample. Whereas
others tested on the performance and efficiency e.g., the time it
took the tool to run on a memory dump and process artefacts. As
stated by Garfinkel et al. (2009),“techniques developed and tested
by one set of researchers cannot be verified by others since the
different research groups use different data sets to test and evaluate
their techniques”.

With this in mind, verifying the reliability of the tools we
reviewed is a non-trivial task. As a starting point, we searched the
Computer Forensics Tool Testing catalog database,'? but none of the
tools found in the peer reviewed academic publications shown in
Sec. 6 were found, yet this fact does not negate the tools suitability
for use in digital forensic investigations.

Examining the tool catalog reveals it is somewhat limited, with
just 198 tool reports published since the year 2000, which falls
considerably short of the number of digital forensic tools in exis-
tence and in regular use by the digital forensic community.
Furthermore, as Horsman (2019a) points out, NIST's tool testing
criteria is “narrowly defined” in areas such as limited test data, use
of specific tool versions and confinement to single image formats. It
would appear that the lack of testing methods for tool reliability not
only applies to tools developed for research but extends also to
established tools. Globally accepted standards, overseen by a
centralized governing body are evidently required to regulate the
reliability of evidence produced from digital forensic tools.

7.2. Usability of tools in real world settings

When discussing challenges, we must also address the usability
of research-based tools. Specifically, their use in real world digital
forensics scenarios. We must be cognisant of the fact that the digital
forensics landscape is ever changing, where advancements in
technology lead to new or previously unseen digital artefacts
encountered during a investigation. For this reason, no single dig-
ital forensics tool, can accomplish every task and so researchers
often develop tools out of a necessity to bridge the gaps in missing
functionalities or capabilities of such existing tools. Prime examples
are RegRipper byCarvey (2011) or Bulk Extractor Garfinkel (2012)
tools. These tools were borne from the researchers need to

12 https://toolcatalog.nist.gov/(last accessed 2019-10-10).

9

address the capability limitations of existing tools. Tools such as
these have become almost “de facto” in the toolkit of digital fo-
rensics investigators. Horsman (2019b) points out that the impact
of research on real world digital investigations is difficult to
quantify as the current factors for evaluating research impact are
primarily academic-focused, where there is a trade-off between the
competing interests of the academic industry and that of the field
which any work is aimed at. Evidently, a tools worth in real world
digital investigations can only be realised if it is accepted by the
digital forensics community. But how do we bridge this gap? As
pointed out by Carrier and Spafford (2003), the digital forensics
discipline serves several different communities, i.e., military, law
enforcement, private sector, public sector and academia, all of
which have operated in silos with little or no sharing of information
or ideas. There is a definite need for a mindset of cooperation and
openness, perhaps through initiatives where research-based tools
are disseminated to industry actors who otherwise historically
would not interact with academia. Some efforts have been made in
this regard, an example of which is the Digital Forensics and Inci-
dent Response (DFIR) Review, which seeks to serve as a focal point
for up-to-date community-reviewed applied research and testing
in digital forensics and incident response (DFIR, 2020). Researchers
can make submissions to the DFIR Review, where they are reviewed
by practioners, academics and graduate students. The view of the
DFIR Review is that the faster new knowledge can be produced,
reviewed, and shared among the DFIR community, the better able
the digital forensics industry will be able to cope with advances in
device technology, digital artefacts and criminal activities. Despite
such efforts however, we are still a long way from bridging the gap
between academia and industry.

7.3. Centralized forensic tool repository

When doing our research, we found many tools/resources, but
these were spread across the Internet on various platforms such as
Github, personal websites or repositories (as listed in Sec. 5.1).
Especially in the latter case, these repositories mostly contain com-
mercial and open source tools, but do not include tools from peer-
reviewed academic papers or those developed for the DFRWS chal-
lenges. Additionally, ‘forensic catalogues’ had different structures
(subfields) and thus identical tools were found in different spots. On
the other hand, publishers allow/ask for tools during submission. For
instance, the [EEE-Dataport'> “is a valuable and easily accessible data
platform that enables users to store, search, access and manage data”.
Elsevier also encourages sharing research data'® but positions itself a
bit broader as research data is defined as: Raw or processed data files,
software, code, models, algorithms, protocols, or methods. While we
agree that this is necessary, tools will be even more spread across
platforms making it harder to find them. In order to counteract, the
community needs to agree on a standardized taxonomy which makes
clustering tools easier. Furthermore, publishers and other platforms
should agree on a single platform or a way to exchange information.
Lastly, there should be a discussion if it should be mandatory to up-
load source code.

7.4. Increasing of reusability/maintainability

Most tools developed for research are done opportunistically.
The tool is built to fit a specific purpose in a language that is chosen
by the developer, that may not prove to be the best solution. The

13 https://ieee-dataport.org/about-ieee-dataport (last accessed 2019-10-10).
1 https://www.elsevier.com/authors/author-resources/research-data (last
accessed 2019-10-10).

https://toolcatalog.nist.gov/
https://ieee-dataport.org/about-ieee-dataport
https://www.elsevier.com/authors/author-resources/research-data

10

emphasis is not on robustness or maintainability, so the tool does
not undergo sufficient testing or meet necessary standards of
coding and documentation. Lack of good coding practices can lead
to many issues, such as:

e Security: inconsistent, badly written code can introduce security
and logic flaws that threaten the integrity of the tool.
Reliability: If tools are not coded correctly, it can lead to in-
consistencies in results from the tool. Known inconsistencies in
tool outputs could cause evidence to be ruled inadmissible in a
criminal case.

Extensible: More often than not, tools are written for a stand-
alone, single purpose, making updates or extensions inherently
complex.

Scalability: tools developed in confined conditions using con-
strained resources and data may not scale well

If open source tools are to be accepted as reliable by both the
digital forensic community and courts of law, they must be devel-
oped using a clear methodology that is consistent and adheres to
good coding practice. However, imposing good coding practices and
standards globally may prove to be difficult in the realm of digital
forensic tool development, especially in the case of tools built for
academic research. There are solutions currently available to tool
developers that will enable consistency in code structure, syntax
and documentation and thus help support acceptance of the tool
and ultimately its reliability. Tools such as linters and static code
analyzers can greatly enhance code quality. Linters help identify
general programming errors such as syntactic and stylistic errors as
well as known coding bugs. Static code analyzers can identify
similar errors in addition to searching for known vulnerabilities in
the code, such as identifying where code is susceptible to SQL in-
jection or cross-site scripting attacks. These tools are of course up to
the discretion of the tool developer, so may never be considered.

One solution to increasing the maintainability of a tool is to
develop it as a plugin for an already established tool. Generally,
such software has good community support, so a useful plugin
could easily achieve widespread acceptance. For example, Sleuthkit
Autopsy is a widely accepted digital forensic tool that enables
plugin additions and has a vibrant community repository on
GitHub (Sleuthkit-Autopsy, 2019). Plugins have been developed for
forensic tasks such as viewing forensic data, data extraction,
approximate matching and reporting.

7.5. Development of IoT forensic tools

Our study also showed that the development of IoT forensic
tools is still in its infancy; it has highlighted the gaps in IoT forensic
tool development. While we identified multiple standalone tools
and plugins that work with Autopsy, these are limited to specific
manufacturers of smarthome devices. There is yet to be a generic
tool compatible with multiple manufacturers or a comprehensive
framework. Given the sheer amount of IoT devices, it is unclear if
commercial tools alone can cover the market or if practitioners will
require/depend on the research community to provide tools.

In particular, we found there needs to be more tools to extract
traces left by IoT applications on mobile devices. Another chal-
lenging aspect is tools to acquire and analyse the memory of IoT
devices. Lastly, we require an expansion of network forensics tools:
IoT devices often use other protocols such as Bluetooth, Zigbee and
Z-Wave and thus more development/research is required to pro-
cess these protocols. It is also important to identify and triage IoT
devices on the network, although there has yet to be a tool to
automate this process. Analysing the communication protocols of
an IoT devices network traffic can determine whether information

is encrypted or in plaintext. This information can help identify
different entry points and ways to obtain information from the
devices.

8. Conclusion and future work

For this paper we reviewed almost 800 articles to study the
digital forensic tools produced through research since 2014 from
various venues. All identified tools were analyzed with respect to
various criteria which allowed us to answer four research questions:

RQ1: What tools have been published? (categorization). As stated
in the introduction, digital forensics is a discipline that often
involves tool development. Those tools were highlighted in Sec.
6 where we identified 62 different tools which we categorized
according to digital forensics subfields. These subfields were
proposed by Netherlands Register of Court Experts (NRGD)
(2016) and have been extended to cover the growing areas of
digital forensics such as device/IoT forensics.

RQ2: Are tools freely available and/or maintained? (license,
downloadable). Out of the 62 identified tools, unfortunately only
33 were found (still) to be publicly available. The majority
(~ 80%) of these tools have been released on the Github with the
potential to be used by the digital forensic community as viable
tools. We closely examined whether these tools were main-
tained after development and found many were not. Regarding
the quality of the comments within the source code we found
29/33 made comments, although the quality of these comments
varied in how comprehensive they were. While 24 out of the 33
tools did provide documentation e.g. description of the tool,
installation instructions. The level of detail in the documenta-
tion for each tool varied, as there is no standard format for de-
velopers to follow and present this information.

RQ23: Are tools applicable and useable? (assessment with respect to
programming style, interfaces, code quality, testing, and docu-
mentation). We found that, of the tools available, a high per-
centage have not been maintained since their publish date, nor
have sufficient documentation. The problem lies with the fact
that in most cases, tool development is not the focus of the
research, but rather a by-product. With a combined lack of
coding standards, limited testing, disparate repository locations
and poor documentation, it is unlikely these tools will ever be
widely adopted by the digital forensic community. Commercial
or established open source software remain the de facto “go to”
tools for forensic investigators and thus have become accepted
as reliable sources of evidence in criminal trials. However, with a
distinct lack of proper tool testing standards across the board, it
can be argued that the tools identified in our research may have
still the potential to produce reliable evidence. In order for these
tools to be recognized, we need to develop and adopt a set of
guidelines and standards for developing and testing tools for
quality, maintainability and ultimately reliability.

RQ4: What are the current challenges in the area of forensic tool
development?. As suggested, a centralized repository specifically
for tested tools is required if tools are to be exposed to the wider
community and thus achieve widespread acceptance. We hope
that tool researchers (developers) will spend some more time
on code documentation and preferably develop plugins instead
of stand-alone tools. This would increase re-usability.

Lastly, we found that there is underdevelopment of tools in the
area of IoT forensics. Despite being a growing field, there are still
many gaps in tool development to automate the process of iden-
tifying and triage of IoT devices and new extraction tools/methods
of new traces created by the IoT mobile applications. In particular,

we found the need for network forensic tools to study the various
communication channels used by IoT devices, knowing whether
data is encrypted or in plaintext will help find ways to extract in-
formation from the devices.

Declaration of competing interest
The authors declare that they have no known competing

financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We wish to thank the UK EPSRC who have funded this research

11
through a PhD studentship in Cyber Security. Special thanks go

Matthew Vastarelli who started this project during his graduate
studies at the University of New Haven.

Appendix C. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.fsidi.2020.300999.

Appendix A. Available tools

Table A1
Available tools
Year Category Tool Name Source Last Modified P.Language Licence
2014 Device incl. [oT FSNView Github 5 years Python No
forensics
2014 Software forensics ~ Mrsh_net Private/personal 6 years C/C++ No
incl. DBs website
2014 Software forensics Sifter Github 5 years Python No
incl. DBs
2014 Software forensics ~ OpenLV Github 5 years Java GNU General Public License
incl. DBs v2.0
2015 Software forensics Advanced forensic Ext4 inode carving (ADEIC) Private/personal 1 year C++ No
incl. DBs website
2015 Memory forensics ~ Winpmem
Pmem Github N/A Python Apache
License 2.0
2015 Device incl. [oT ConvertPDML Dropbox 4 years Python (2.7) No
forensics
2015 Software forensics ~ Mrsh-cf Private/personal 4 years C/C++ No
incl. DBs website
2016 Network forensics ~ Kumodd Github 4 years Python GNU General Public License
v2.0
2016 Computer forensics Advanced Automated Disk Investigation Source Forge 3 years Java No
Toolkit (AUDIT)
2016 Malware forensics =~ AMEXtractor Github 4 years C No
2017 Software forensics A Forensic Email Analysis Tool Using Dynamic Private/personal 4 years Python, JavaScript No
incl. DBs Visualization website
2017 Device incl. [oT DRone Open source Parser (DROP) Github 3 years Python MIT License
forensics
2017 Software forensics Digital Forensics Framework (DFF) plugin Github 2 years Python/C++ No
incl. DBs
2017 Device incl. [oT GE-FANUC controller Private/personal 7 months C++ No
forensics website
2017 Multimedia forensics DECA: a decision-theoretic carving program Bitbucket 1 year C++ No
2017 Memory forensics Heapinfo Github 1 year Python No
Heapdump
Heapsearch
Heaprefs
2017 Computer forensics AutoProv Github 1 year Python Apache License 2.0
2018 Device incl. [oT AndroParse Github 1 year Golang GNU General Public License
forensics v3.0
2018 Software forensics MongoDB Deleted Data Recovery Tool Github - Python (3.5) No
incl. DBs
2018 Device incl. [oT Forensic Evidence Acquisition and Analysis Github — Python No
forensics System (FEAAS)
2018 Network forensics ~ Wifimit Github - Python GNU General Public License
v3.0
2019 Software forensics Timeline2GUI Github - Python No
incl. DBs
2019 Device incl. IoT Arlo_autopsy Github - Python GNU General Public License
forensics v3.0
Ismartalarm_autopsy
Ismartalarm
Wink_db
Qbee_autopsy
Crypto_dec
2019 Computer forensics NTFSObjIDParser Github — C++ GNU General Public License

v3.0
(continued on next page)

https://doi.org/10.1016/j.fsidi.2020.300999

12

Table A.1 (continued)

Year Category Tool Name Source Last Modified P. Language Licence

2019 Memory forensics ~ Winesap Github — Python No

2019 Software forensics Bring2lite Github - CC-BY-NC - Creative
incl. DBs Commons license

2019 Memory forensics Hooktracer Github - No

2019 Software forensics ~ AFF4 evidence container Github - Python Apache License 2.0
incl. DBs

2019 Memory forensics ~ Ptenum Github — Python No

2019 Memory forensics Vivedump Github - Python No

2019 Device incl. IoT Digital Drone Forensic application Github - Java 8(JDK 1.8), JavaFX 8 No
forensics libraries

2019 Malware forensics BotDAD Github - Python Apache License 2.0

Appendix B. DFRWS Challenges

Table B.2
Tools developed from DFRWS challenges from 2014 to 2019

Year Challenge topic Developer Tool name P. language Last modified
2014 Android Malware Society (2014) Manal N/A 2015
2015 GPU memory Antonio & Davide (2015) Gpuhost proc maps N/A
Gpuhost dump map
Quates (2015) Nullfinder C++ 2015
2016 Software Defined Networking (SDN) Bull et al. (2016) Booze Allen Hamilton(BAH) Python N/A
2 Volatility patch Files find file.patch
Recover filesystem.patch
2017—-2018 IoT Kost et al. (2017) Google OnHub parser Python 2018
Cho et al. (2017) Google OnHub log parser
JSON parser
SQLite database extractor
Timeline viewer Python 2018
Gramajo et al. (2017) OnHub parsing Python 2018
SmartThings
Kodi
Googlehangouts message
2018—-2019 IoT Hines et al. (2018) IsmartAlarm android
Android gmail plugin
Lee et al. (2018) Alexa cift parser Python —

IsmartAlarm dairy parser

IsmartAlarm base station Server Stream Parser
Nest video recovery

Wink activity parser

References

Abt, S., Baier, H., 2014. Are we missing labels? a study of the availability of ground-
truth in network security research. In: 2014 Third International Workshop on
Building Analysis Datasets and Gathering Experience Returns for Security
(BADGERS), pp. 40—55. https://doi.org/10.1109/BADGERS.2014.11.

Alrabaee, S., Wang, L., Debbabi, M., 2016. BinGold: towards robust binary analysis by
extracting the semantics of binary code as semantic flow graphs (SFGs). Digit.
Invest. 18, S11—-S22. https://doi.org/10.1016/j.diin.2016.04.002. URL, 10.1016/
j-diin.2016.04.002.

Altheide, C., Carvey, H.A., 2011. Digital Forensics with Open Source Tools. Syngress,
Burlington, MA.

Antonio, V., Davide, B., 2015. GPU Malware Research. http://www.cs.uno.edu/
~golden/Materials/gpumalware/dfrws-challenge-cquates.zip.

Armknecht, F., Dewald, A., 2015. Privacy-preserving email forensics. Digit. Invest. 14,
S$127-S136. https://doi.org/10.1016/j.diin.2015.05.003. URL, 10.1016/
j.diin.2015.05.003.

Ashfaq, Q., Khan, R., Farooq, S., 2019. A comparative analysis of static code analysis
tools that check java code adherence to java coding standards. In: 2019 2nd
International Conference on Communication, Computing and Digital Systems
(C-CODE), pp. 98—103.

Baggili, I., Marrington, A., Jafar, Y., 2014. Performance of a logical, five- phase,
multithreaded, bootable triage tool. In: Peterson, G., Shenoi, S. (Eds.), Advances
in Digital Forensics X. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 279—-295.

Beebe, N.L, Liu, L., 2014. Ranking algorithms for digital forensic string search hits.

Digit. Invest. 11, S124—S132. https://doi.org/10.1016/j.diin.2014.05.007. URL:,
10.1016/j.diin.2014.05.007.

Block, F, Dewald, A., 2017. Linux memory forensics: dissecting the user space
process heap. Digit. Invest. 22, S66—S75. https://doi.org/10.1016/
j.diin.2017.06.002. URL:, 10.1016/j.diin.2017.06.002.

Block, F., Dewald, A., 2019. Windows memory forensics: detecting (Un)Intentionally
hidden injected code by examining page table entries. Digital investigation, 29,
S3-S12. URL: https://doi.org/10.1016/j.diin.2019.04.008, 10.1016/
j.diin.2019.04.008.

Breitinger, F.,, Baggili, 1., 2014. File detection on network traffic using approximate
matching. Digital Forensics, Security and Law (JDFSL) 9, 23—36.

Breitinger, F.,, Baier, H., White, D., 2014. On the database lookup problem of
approximate matching. In: Proceedings of the Digital Forensic Research Con-
ference, DFRWS 2014 EU, vol. 11, pp. S1-S9. https://doi.org/10.1016/
j.diin.2014.03.001. URL, 10.1016/j.diin.2014.03.001.

Britt, ., Sprague, A., Warner, G., 2015. Phishing intelligence using the Simple set
comparison tool. In: Annual Conference on Digital Forensics. Security and Law.

Bull, J., Arnott, W., Christou, C., Duquette, T., Ertekin, E., Lundberg, M., McAlister, M.,
Starkey, G., 2016. Sdn Forensics Challenge, 2016. URL: https://www.cmand.org/
sdn/sdnf.html. Online; accessed 28-September-2019.

Carrier, B., 2002. Open Source Digital Forensics Tools: the Legal Argument. Technical
Report stake.

Carrier, B., 2003. Defining digital forensic examination and analysis tool using
abstraction layers. Int.]. Data Eng. 1.

Carrier, B., Spafford, E.H., 2003. Getting physical with the digital investigation
process. Int.]. Digital Evidence 2 (2).

Carvey, H., 2011. Regripper. URL: https://www.dfir.training/dfirtools/tools/by-
developer/harlan-carvey/25-harlan-carvey-regripper.

Case, A., Jalalzai, M.M,, Firoz-Ul-Amin, M., Maggio, R.D., Ali-Gombe, A., Sun, M.,

https://doi.org/10.1109/BADGERS.2014.11
https://doi.org/10.1016/j.diin.2016.04.002
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref3
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref3
http://www.cs.uno.edu/%7Egolden/Materials/gpumalware/dfrws-challenge-cquates.zip
http://www.cs.uno.edu/%7Egolden/Materials/gpumalware/dfrws-challenge-cquates.zip
https://doi.org/10.1016/j.diin.2015.05.003
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref6
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref7
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref7
https://doi.org/10.1016/j.diin.2014.05.007
https://doi.org/10.1016/j.diin.2017.06.002
https://doi.org/10.1016/j.diin.2017.06.002
https://doi.org/10.1016/j.diin.2019.04.008
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref11
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref11
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref11
https://doi.org/10.1016/j.diin.2014.03.001
https://doi.org/10.1016/j.diin.2014.03.001
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref13
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref13
https://www.cmand.org/sdn/sdnf.html
https://www.cmand.org/sdn/sdnf.html
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref15
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref15
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref16
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref16
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref17
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref17
https://www.dfir.training/dfirtools/tools/by-developer/harlan-carvey/25-harlan-carvey-regripper
https://www.dfir.training/dfirtools/tools/by-developer/harlan-carvey/25-harlan-carvey-regripper

Richard, G.G., 2019. HookTracer: a system for automated and accessible API
hooks analysis. Digit. Invest. 29, S104—-S112. https://doi.org/10.1016/
j.diin.2019.04.011. URL:, 10.1016/j.diin.2019.04.011.

Casey, P, Lindsay-Decusati, R., Baggili, L., Breitinger, F., 2019. Inception: virtual space
in memory space in real space — memory forensics of immersive virtual reality
with the HTC vive. Digit. Invest. 29, S13—S21. https://doi.org/10.1016/
j.diin.2019.04.007. URL:, 10.1016/j.diin.2019.04.007.

Cho, J., Kim, S., Kang, S., Kim, G., Kim, J., 2017. dfrws2017-challenge. https://github.
com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/kookmin.
university/Tools.

Clark, D.R.,, Meffert, C., Baggili, 1., Breitinger, F., 2017. DROP (DRone open source
parser) your drone: forensic analysis of the DJI Phantom III. Digital investiga-
tion. URL: https://dfrws.org/conferences/dfrws-usa-2017/sessions/drop-drone-
open-source-parser-your-drone-forensic-analysis-dji, 10.1016/
j.diin.2017.06.013, 22, s3-s14.

Cohen, M., Garfinkel, S., Schatz, B., 2009. Extending the advanced forensic format to
accommodate multiple data sources, logical evidence, arbitrary information
and forensic workflow. Digit. Invest. 6, S57—S68. https://doi.org/10.1016/
j.diin.2009.06.010.

Debinski, M., Breitinger, F, Mohan, P., 2019. Timeline2GUI: a Log2Timeline CSV
parser and training scenarios. Digit. Invest. 28, 34—43. URL: https://linkinghub.
elsevier.com/retrieve/pii/S1742287618303232, 10.1016/j.diin.2018.12.004.

Denton, G., Karpisek, F., Breitinger, F., Baggili, I, 2017. Leveraging the SRTP protocol
for over-the-network memory acquisition of a GE Fanuc Series 90-30. Digit.
Invest. 22, S26-—S38. URL: https://dfrws.org/conferences/dfrws-usa-2017/
sessions/leveraging-srtp-protocol-over-network-memory-acquisition-ge,
10.1016/j.diin.2017.06.005.

Dewald, A., Seufert, S., 2017. Afeic: Advanced Forensic Ext4 Inode Carving. Digital
Investigation, vol. 20, pp. S83—S91. URL: http://www.sciencedirect.com/
science/article/pii/S1742287617300270. https://doi.org/10.1016/
j.diin.2017.01.003. DFRWS 2017 Europe.

DFIR, 2020. Digital forensics and incicent response review. Online. URL: https://
dfrws.org/dfir-review/.

Dorai, G., Baggili, I., Haven, W., 2018. | know what you did last summer : your smart
home Internet of things and your iPhone forensically ratting you out. In: Pro-
ceedings of the 13th International Conference on Availability, Reliability and
Security - ARES 2018 August, pp. 1-10. URL: http://dl.acm.org/citation.cfm?
doid=3230833.3232814, 10.1145/3230833.3232814.

Gannon, M., Warner, G., 2017. An accidental discovery of IoT botnets and a method
for investigating them with a custom lua dissector BOTNETS and A : method for.
J. Digital Forensics, Security and Law. https://commons.erau.edu/adfsl/2017/
papers/3.

Garfinkel, S., 2012. Bulk extractor. URL: https://github.com/simsong/bulk_extractor.

Garfinkel, S., Farrell, P,, Roussev, V., Dinolt, G., 2009. Bringing science to digital fo-
rensics with standardized forensic corpora. Digit. Invest. 6, S2—S11. https://
doi.org/10.1016/j.diin.2009.06.016.

Github, 2019. Licensing a repository. Online. URL: https://help.github.com/en/
articles/licensing-a-repository.

Gladyshev, P, James,].I, 2017. Decision-theoretic file carving. Digit. Invest. 22,
46—61. https://doi.org/10.1016/j.diin.2017.08.001. URL:, 10.1016/
j.diin.2017.08.001.

Gloe, T., Fischer, A., Kirchner, M., 2014. Forensic analysis of video file formats. Digit.
Invest. 11, S68—S76. https://doi.org/10.1016/j.diin.2014.03.009. URL:, 10.1016/
j.diin.2014.03.009.

Good, R.A., 2017. AutoProv: an Automated File Provenance Collection Tool. Master’s
thesis Air Force Institute of Technology United States.

Grajeda, C., Breitinger, F, Baggili, I, 2017. Availability of datasets for digital
forensics—and what is missing. Digit. Invest. 22, S94—S105.

Gramajo, M., Lewis, J., Sharo, R., Zwach, S., 2017. dfrws2017-challenge. https://
github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/
ssclant_dfrws_2018_challenge_submission.

Gugelmann, D., Gasser, F., Ager, B., Lenders, V., 2015. Hviz: HTTP(S) traffic aggre-
gation and visualization for network forensics. Digit. Invest. 12, S1—S11. https://
doi.org/10.1016/j.diin.2015.01.005. URL:, 10.1016/j.diin.2015.01.005.

Gupta, V., Breitinger, F.,, 2015. How cuckoo filter can improve existing approximate
matching techniques. In: Lecture Notes of the Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering, LNICST, vol. 157,
pp. 39-52. URL: http://link.springer.com/10.1007/978-3-319-25512-5{_}4,
10.1007/978-3-319-25512-5_4.

Hansen, R., Gino, L., Savio, D., 2016. Covert6: a tool to corroborate the existence of
IPv6 covert channels. In: Annual Conference on Digital Forensics, Security and
Law. URL: http://commons.erau.edu/adfsl/2016/tuesday/13.

Hargreaves, C., Marshall, A., 2019. SyncTriage: using synchronisation artefacts to
optimise acquisition order. Digit. Invest. 28, S134—S140. https://doi.org/10.1016/
j.diin.2019.01.022. URL:, 10.1016/j.diin.2019.01.022.

Hines, K., Lewis, J., Phillpott, N., Sharo, R., Zwach, S., 2018. dfrws2018-challenge.
https://github.com/dfrws/dfrws2018-challenge/tree/master/challenge-sub-
missions/spawar-niwclant.

Horsman, G., 2019. Tool testing and reliability issues in the field of digital forensics.
Digit. Invest. 28, 163—175. https://doi.org/10.1016/.diin.2019.01.009.

Horsman, G., 2019b. Raiders of the lost artefacts: championing the need for digital
forensics research. Forensic Sci. Int.: Rep. 1, 100003. https://doi.org/10.1016/
j.f5ir.2019.100003, 2019.

Jo, W,, Shin, Y., Kim, H., Yoo, D., Kim, D., Kang, C,, Jin, J., Oh, J., Na, B., Shon, T,, 2019.
Digital forensic practices and methodologies for Al speaker ecosystems. Digit.

13

Invest. 29, S80—S93. https://doi.org/10.1016/j.diin.2019.04.013. URL:, 10.1016/
j.diin.2019.04.013.

Karabiyik, U., Aggarwal, S., 2016. Advanced automated disk investigation toolkit. In:
Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics XII. Springer In-
ternational Publishing, Cham, pp. 379—396.

Karpisek, F., Baggili, L., Breitinger, F., 2015. WhatsApp network forensics: decrypting
and understanding the WhatsApp call signaling messages. Digit. Invest. 15,
110-118. https://doi.org/10.1016/j.diin.2015.09.002. URL:, 10.1016/
j.diin.2015.09.002.

Kim, J., Park, A., Lee, S., 2016. Recovery method of deleted records and tables from
ESE database. Digit. Invest. 18, S118—S124. https://doi.org/10.1016/
j.diin.2016.04.003. URL:, 10.1016/j.diin.2016.04.003.

Kost, D., Kouril, D., Kral, B., Nutar, L., 2017. dfrws2017-challenge. https://github.com/
dfrws/dfrws2017-challenge/tree/master/challenge-submissions/masaryk.
university.

Koven, J., Bertini, E., Dubois, L., Memon, N., 2016. InVEST: intelligent visual email
search and triage. Digit. Invest. 18, S138-S148. https://doi.org/10.1016/
j.diin.2016.04.008. URL:, 10.1016/j.diin.2016.04.008.

Lee, G., Choi, H., Kim, N, Jin, P, Park, S., Kim, S., Lee, S., Kim, S., Jin, S., 2018.
dfrws2018-challenge. https://github.com/dfrws/dfrws2018-challenge/blob/
master/challenge-submissions/tapioca.pearlo/TapiocaPearlo_Tools.zip.

Lexico, 2019. Tool | definition of tool by Lexico. URL: https://www.lexico.com/en/
definition/tool.

Manson, D., Carlin, A., Ramos, S., Gyger, A., Kaufman, M., Treichelt,]J., 2007. Is the
open way a better way? digital forensics using open source tools. In: 2007 40th
Annual Hawaii International Conference on System Sciences (HICSS'07). IEEE,
266b—266b.

Mendoza, A., Kumar, A., Midcap, D., Cho, H., Varol, C., 2015. BrowStEx: a tool to
aggregate browser storage artifacts for forensic analysis. Digit. Invest. 14,
63-75. https://doi.org/10.1016/j.diin.2015.08.001. URL:, 10.1016/
j.diin.2015.08.001.

Meng, C., Baier, H., 2019. bring2lite: a structural concept and tool for forensic data
analysis and recovery of deleted SQLite records. Digit. Invest. 29, S31—-S41.
https://doi.org/10.1016/j.diin.2019.04.017. URL:, 10.1016/j.diin.2019.04.017.

Murtuza, S., Verma, R., Govindaraj, J., Gupta, G., 2015. A tool for extracting static and
volatile forensic artifacts of windows 8.x apps. In: Peterson, G., Shenoi, S. (Eds.),
Advances in Digital Forensics XI. Springer International Publishing, Cham,
pp. 305—320.

Nelson, AJ., Steggall, E.Q., Long, D.D., 2014. Cooperative mode: comparative storage
metadata verification applied to the Xbox 360. Digit. Invest. 11, S46—S56.
https://doi.org/10.1016/j.diin.2014.05.004. URL:, 10.1016/j.diin.2014.05.004.

Netherlands Register of Court Experts NRGD, 2016. Standards 008.0 Digital Foren-
sics. Technical Report Netherlands Register of Court Experts. https://www.nrgd.
nl/binaries/Standards\%20Digital\%20Forensics_tcm39-82994.pdf.

NIST, 2015. Nist policy on hash functions. Online. URL: https://csrc.nist.gov/Projects/
Hash-Functions/NIST-Policy-on-Hash-Functions.

Nordvik, R., Toolan, F.,, Axelsson, S., 2019. Using the object ID index as an investi-
gative approach for NTFS file systems. Digit. Invest. 28, S30—S39. https://
doi.org/10.1016/j.diin.2019.01.013. URL:, 10.1016/j.diin.2019.01.013.

Quates, C., 2015. nullfinder. https://github.com/candicenonsense/nullfinder.

Quinn, C,, Scanlon, M., Farina, J., Kechadi, M.T., 2015. Forensic analysis and remote
evidence recovery from syncthing: an open source decentralised file synchro-
nisation utility. Lecture Notes of the Ins. Comput. Sci. Social-Informatics and
Telecommun. Eng, LNICST 157, 85—99. https://doi.org/10.1007/978-3-319-
25512-5_7.

Rahimian, A., Shirani, P, Alrbaee, S., Wang, L., Debbabi, M., 2015. BinComp: a
stratified approach to compiler provenance Attribution. Digit. Invest. 14,
S$146—S155. https://doi.org/10.1016/j.diin.2015.05.015. URL:, 10.1016/
j.diin.2015.05.015.

Renduchintala, A, Jahan, F, Khanna, R,, Javaid, A.Y., 2019. A comprehensive micro
unmanned aerial vehicle (UAV/Drone) forensic framework. Digit. Invest. 30,
52-72. https://doi.org/10.1016/j.diin.2019.07.002. URL:, 10.1016/
j.diin.2019.07.002.

Richard, G.G., Case, A., 2014. In lieu of swap: analyzing compressed RAM in Mac OS
X and Linux. Digit. Invest. 11, S3—S12. https://doi.org/10.1016/j.diin.2014.05.011.
URL:, 10.1016/j.diin.2014.05.011.

Roussev, V., Golden, R.G., Lodovico, M., 2007. Multi-resolution similarity hashing.
Digit. Invest. 4, 105—113. https://doi.org/10.1016/j.diin.2007.06.011.

Roussev, V., Ahmed, I, Sires, T., 2014. Image-based kernel fingerprinting. Digit.
Invest. 11 https://doi.org/10.1016/j.diin.2014.05.013.

Roussev, V., Barreto, A., Ahmed, 1., 2016. API-based forensic acquisition of cloud
drives. In: IFIP Advances in Information and Communication Technology, vol.
484, pp. 213—235. URL: https://arxiv.org/pdf/1603.06542.pdfQhttp://arxiv.org/
abs/1603.06542, 10.1007/978-3-319-46279-0_11. arXiv:arXiv:1011.1669vol. 3.

Sammons, J., 2015. Chapter 3 - Labs and tools. In: Sammons, J. (Ed.), The Basics of
Digital Forensics, second ed. Syngress, Boston, pp. 31—46. URL:, second ed.
http://www.sciencedirect.com/science/article/pii/B9780128016350000036.
10.1016/B978-0-12-801635-0.00003-6.

Schatz, B.L.,, 2019. AFF4-L: a scalable open logical evidence container. Digit. Invest.
29, S143—-S149. https://doi.org/10.1016/j.diin.2019.04.016.

Schmicker, R., Breitinger, F., Baggili, I., 2019. Androparse - an android feature
extraction framework and dataset. In: Breitinger, F., Baggili, I. (Eds.), Digital
Forensics and Cyber Crime. Springer International Publishing, Cham, pp. 66—88.

Senthivel, S., Ahmed, 1., Roussev, V., 2017. SCADA network forensics of the PCCC
protocol. Digit. Invest. 22, S57—S65. URL: https://dfrws.org/conferences/dfrws-

https://doi.org/10.1016/j.diin.2019.04.011
https://doi.org/10.1016/j.diin.2019.04.011
https://doi.org/10.1016/j.diin.2019.04.007
https://doi.org/10.1016/j.diin.2019.04.007
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/kookmin.university/Tools
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/kookmin.university/Tools
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/kookmin.university/Tools
https://dfrws.org/conferences/dfrws-usa-2017/sessions/drop-drone-open-source-parser-your-drone-forensic-analysis-dji
https://dfrws.org/conferences/dfrws-usa-2017/sessions/drop-drone-open-source-parser-your-drone-forensic-analysis-dji
https://doi.org/10.1016/j.diin.2009.06.010
https://doi.org/10.1016/j.diin.2009.06.010
https://linkinghub.elsevier.com/retrieve/pii/S1742287618303232
https://linkinghub.elsevier.com/retrieve/pii/S1742287618303232
https://dfrws.org/conferences/dfrws-usa-2017/sessions/leveraging-srtp-protocol-over-network-memory-acquisition-ge
https://dfrws.org/conferences/dfrws-usa-2017/sessions/leveraging-srtp-protocol-over-network-memory-acquisition-ge
http://www.sciencedirect.com/science/article/pii/S1742287617300270
http://www.sciencedirect.com/science/article/pii/S1742287617300270
https://dfrws.org/dfir-review/
https://dfrws.org/dfir-review/
http://dl.acm.org/citation.cfm?doid=3230833.3232814
http://dl.acm.org/citation.cfm?doid=3230833.3232814
http://dl.acm.org/citation.cfm?doid=3230833.3232814
https://commons.erau.edu/adfsl/2017/papers/3
https://commons.erau.edu/adfsl/2017/papers/3
https://github.com/simsong/bulk_extractor
https://doi.org/10.1016/j.diin.2009.06.016
https://doi.org/10.1016/j.diin.2009.06.016
https://help.github.com/en/articles/licensing-a-repository
https://help.github.com/en/articles/licensing-a-repository
https://doi.org/10.1016/j.diin.2017.08.001
https://doi.org/10.1016/j.diin.2014.03.009
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref35
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref35
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref36
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref36
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref36
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref36
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/ssclant_dfrws_2018_challenge_submission
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/ssclant_dfrws_2018_challenge_submission
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/ssclant_dfrws_2018_challenge_submission
https://doi.org/10.1016/j.diin.2015.01.005
https://doi.org/10.1016/j.diin.2015.01.005
http://link.springer.com/10.1007/978-3-319-25512-5%7b%5c_%7d4
http://link.springer.com/10.1007/978-3-319-25512-5%7b%5c_%7d4
http://commons.erau.edu/adfsl/2016/tuesday/13
https://doi.org/10.1016/j.diin.2019.01.022
https://doi.org/10.1016/j.diin.2019.01.022
https://github.com/dfrws/dfrws2018-challenge/tree/master/challenge-submissions/spawar-niwclant
https://github.com/dfrws/dfrws2018-challenge/tree/master/challenge-submissions/spawar-niwclant
https://doi.org/10.1016/j.diin.2019.01.009
https://doi.org/10.1016/j.fsir.2019.100003
https://doi.org/10.1016/j.fsir.2019.100003
https://doi.org/10.1016/j.diin.2019.04.013
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref46
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref46
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref46
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref46
https://doi.org/10.1016/j.diin.2015.09.002
https://doi.org/10.1016/j.diin.2016.04.003
https://doi.org/10.1016/j.diin.2016.04.003
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/masaryk.university
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/masaryk.university
https://github.com/dfrws/dfrws2017-challenge/tree/master/challenge-submissions/masaryk.university
https://doi.org/10.1016/j.diin.2016.04.008
https://doi.org/10.1016/j.diin.2016.04.008
https://github.com/dfrws/dfrws2018-challenge/blob/master/challenge-submissions/tapioca.pearlo/TapiocaPearlo_Tools.zip
https://github.com/dfrws/dfrws2018-challenge/blob/master/challenge-submissions/tapioca.pearlo/TapiocaPearlo_Tools.zip
https://www.lexico.com/en/definition/tool
https://www.lexico.com/en/definition/tool
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref53
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref53
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref53
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref53
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref53
https://doi.org/10.1016/j.diin.2015.08.001
https://doi.org/10.1016/j.diin.2019.04.017
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref56
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref56
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref56
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref56
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref56
https://doi.org/10.1016/j.diin.2014.05.004
https://www.nrgd.nl/binaries/Standards%5c%20Digital%5c%20Forensics_tcm39-82994.pdf
https://www.nrgd.nl/binaries/Standards%5c%20Digital%5c%20Forensics_tcm39-82994.pdf
https://www.nrgd.nl/binaries/Standards%5c%20Digital%5c%20Forensics_tcm39-82994.pdf
https://www.nrgd.nl/binaries/Standards%5c%20Digital%5c%20Forensics_tcm39-82994.pdf
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://doi.org/10.1016/j.diin.2019.01.013
https://doi.org/10.1016/j.diin.2019.01.013
https://github.com/candicenonsense/nullfinder
https://doi.org/10.1007/978-3-319-25512-5_7
https://doi.org/10.1007/978-3-319-25512-5_7
https://doi.org/10.1016/j.diin.2015.05.015
https://doi.org/10.1016/j.diin.2019.07.002
https://doi.org/10.1016/j.diin.2014.05.011
https://doi.org/10.1016/j.diin.2007.06.011
https://doi.org/10.1016/j.diin.2014.05.013
https://arxiv.org/pdf/1603.06542.pdf&tnqh_x03A9;http://arxiv.org/abs/1603.06542
https://arxiv.org/pdf/1603.06542.pdf&tnqh_x03A9;http://arxiv.org/abs/1603.06542
http://www.sciencedirect.com/science/article/pii/B9780128016350000036
https://doi.org/10.1016/j.diin.2019.04.016
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref71
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref71
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref71
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref71
https://dfrws.org/conferences/dfrws-usa-2017/sessions/scada-network-forensics-pccc-protocol

14

usa-2017/sessions/scada-network-forensics-pccc-protocol, 10.1016/
j.diin.2017.06.012.

Servida, F.,, Casey, E., 2019. IoT forensic challenges and opportunities for digital
traces. Digit. Invest. 28, 22—29. https://doi.org/10.1016/j.diin.2019.01.012.
https://www.sciencedirect.com/science/article/pii/S1742287619300222.

Singh, M., Singh, M., Kaur, S., 2019. Detecting bot-infected machines using DNS
fingerprinting. Digit. Invest. 28, 14-33. https://doi.org/10.1016/
j.diin.2018.12.005.

Sleuthkit-Autopsy, 2019. Sleuthkit Autopsy Tookit Plugin Repository. https://github.
com/sleuthkit/autopsy_addon_modules.

Socata, A., Cohen, M., 2016. Automatic profile generation for live Linux Memory
analysis. Digit. Invest. 16, S11—S24. https://doi.org/10.1016/j.diin.2016.01.004.

Society, S.T., 2014. SeoulTech/manal. Online. URL: https://github.com/SeoulTech/
Manal.

Stadlinger, J., Dewald, A., 2017. A forensic email analysis tool using dynamic visu-
alization.]. Digital Forensics, Security and Law 12. URL: http://commons.erau.
edu/jdfsl/vol12/iss1/6/, 10.15394/jdfs1.2017.1413.

Stiittgen, J., Vomel, S., Denzel, M., 2015. Acquisition and analysis of compromised
firmware using memory forensics. Digit. Invest. 12, S50—S60. https://doi.org/
10.1016/j.diin.2015.01.010.

Sylve,].T., Marziale, V., Richard, G.G., 2016. Pool tag quick scanning for windows
memory analysis. Digit. Invest. 16, S25-S32. https://doi.org/10.1016/
j.diin.2016.01.005. URL:, 10.1016/j.diin.2016.01.005.

Taubmann, B., Fradrich, C., Dusold, D., Reiser, H.P., 2016. TLSkex: harnessing virtual
machine introspection for decrypting TLS communication. Digit. Invest. 16,
S$114—S123. https://doi.org/10.1016/j.diin.2016.01.014.

Tips4PC, 2014. 5 Dangers of Free Software. https://techtalk.pcmatic.com/2014/08/
26/dangers-free-software/.

Uroz, D., Rodriguez, RJ., 2019. Characteristics and detectability of Windows auto-
start extensibility points in memory forensics. Digit. Invest. 28, S95—S104.
https://doi.org/10.1016/j.diin.2019.01.026. URL:, 10.1016/j.diin.2019.01.026.

Vadalasetty, S.R., 2003. Security Concerns in Using Open Source Software for En-
terprise Requirements. SANS Institute.

Vidas, T, Kaplan, B., Geiger, M., 2014. OpenLV: empowering investigators and first-

responders in the digital forensics process. Digit. Invest. 11, S45—S53. URL:
https://www.sciencedirect.com/science/article/pii/S1742287614000115,
10.1016/J.DIIN.2014.03.006.

Vondracek, M., Pluskal, J., Rysavy, O., 2018. Automated man-in-the-middle attack
against wi-fi networks. J. Digital Forensics, Security and Law: JDFSL 13, 59—80.

vs Merrell, Daubert, 1993. Daubert v. merrell dow pharmaceuticals, inc. URL:
https://supreme.justia.com/cases/federal/us/509/579/.

Wagner, J., Rasin, A.,, Grier, ., 2016. Database image content explorer: carving data
that does not officially exist. Digit. Invest. 18, S97—S107. https://doi.org/10.1016/
j.diin.2016.04.015. URL:, 10.1016/j.diin.2016.04.015.

Wagner, J., Rasin, A., Heart, K., Jacob, R., Grier, J., 2019. DB3F & DF-toolkit: the
database forensic file format and the database forensic toolkit. Digit. Invest. 29,
S$42-S50. https://doi.org/10.1016/j.diin.2019.04.010. URL:, 10.1016/
j-diin.2019.04.010.

Wei, F, Lin, X., Yang, K., Zhu, T., Chen, T, 2018. Automated forensic analysis of
mobile applications on Android devices. Digit. Invest. 26, S59—S66. https://
doi.org/10.1016/j.diin.2018.04.012. URL:, 10.1016/j.diin.2018.04.012.

Yang, H., Zhuge, J., Liu, H., Liu, W., 2016. A tool for volatile memory acquisition from
android devices. In: Peterson, G., Shenoi, S. (Eds.), Advances in Digital Forensics
XII. Springer International Publishing, Cham, pp. 365—378.

Yau, K., 2015. PLC forensics based on Control program logic change detection. JDFSL
10, 59—68. URL: http://ojs.jdfsl.org/index.php/jdfsl/article/view/349.

Yoon,], Lee, S., 2018. A method and tool to recover data deleted from a MongoDB.
Digit. Invest. 24, 106—120. URL: https://www.sciencedirect.com/science/article/
pii/S1742287617302347, 10.1016/j.diin.2017.11.001.

Zawoad, S., Hasan, R., Grimes, J., 2015. LINCS: towards building a trustworthy liti-
gation hold enabled cloud storage system. Digit. Invest. 14, S55—S67. https://
doi.org/10.1016/1.diin.2015.05.014. URL:, 10.1016/j.diin.2015.05.014.

Zoubek, C. Sack, K. 2017. Selective deletion of non-relevant data. In: Digital
Investigation, vol. 20, pp. S92—S98. URL: https://www.sciencedirect.com/
science/article/pii/S1742287617300300, 10.1016/.diin.2017.01.006.

Lyczywek, R., 2018. How to write a good readme for your github project? Online.
URL: https://bulldogjob.com/news/449-how-to-write-a-good-readme-for-
your-github-project.

https://dfrws.org/conferences/dfrws-usa-2017/sessions/scada-network-forensics-pccc-protocol
https://doi.org/10.1016/j.diin.2019.01.012
https://www.sciencedirect.com/science/article/pii/S1742287619300222
https://doi.org/10.1016/j.diin.2018.12.005
https://doi.org/10.1016/j.diin.2018.12.005
https://github.com/sleuthkit/autopsy_addon_modules
https://github.com/sleuthkit/autopsy_addon_modules
https://doi.org/10.1016/j.diin.2016.01.004
https://github.com/SeoulTech/Manal
https://github.com/SeoulTech/Manal
http://commons.erau.edu/jdfsl/vol12/iss1/6/
http://commons.erau.edu/jdfsl/vol12/iss1/6/
https://doi.org/10.1016/j.diin.2015.01.010
https://doi.org/10.1016/j.diin.2015.01.010
https://doi.org/10.1016/j.diin.2016.01.005
https://doi.org/10.1016/j.diin.2016.01.005
https://doi.org/10.1016/j.diin.2016.01.014
https://techtalk.pcmatic.com/2014/08/26/dangers-free-software/
https://techtalk.pcmatic.com/2014/08/26/dangers-free-software/
https://doi.org/10.1016/j.diin.2019.01.026
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref84
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref84
https://www.sciencedirect.com/science/article/pii/S1742287614000115
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref86
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref86
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref86
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref86
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref86
https://supreme.justia.com/cases/federal/us/509/579/
https://doi.org/10.1016/j.diin.2016.04.015
https://doi.org/10.1016/j.diin.2016.04.015
https://doi.org/10.1016/j.diin.2019.04.010
https://doi.org/10.1016/j.diin.2018.04.012
https://doi.org/10.1016/j.diin.2018.04.012
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref91
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref91
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref91
http://refhub.elsevier.com/S2666-2817(20)30186-4/sref91
http://ojs.jdfsl.org/index.php/jdfsl/article/view/349
https://www.sciencedirect.com/science/article/pii/S1742287617302347
https://www.sciencedirect.com/science/article/pii/S1742287617302347
https://doi.org/10.1016/j.diin.2015.05.014
https://doi.org/10.1016/j.diin.2015.05.014
https://www.sciencedirect.com/science/article/pii/S1742287617300300
https://www.sciencedirect.com/science/article/pii/S1742287617300300
https://bulldogjob.com/news/449-how-to-write-a-good-readme-for-your-github-project
https://bulldogjob.com/news/449-how-to-write-a-good-readme-for-your-github-project

	Digital forensic tools: Recent advances and enhancing the status quo
	1. Introduction
	2. Limitations
	3. Related work
	4. Methodology
	4.1. Definition of tool (software)
	4.2. Collecting and analyzing articles
	4.3. Online searches
	4.4. Code review

	5. Results overview and availability of tools
	5.1. Tools from other sources

	6. Types of tools
	6.1. Computer forensics
	6.2. Software forensics including database forensics
	6.3. Multimedia forensics
	6.4. Device/IoT forensics
	6.5. Network forensics
	6.6. Malware forensics
	6.7. Memory forensics

	7. Discussion of challenges and opportunities
	7.1. Reliability of tools
	7.2. Usability of tools in real world settings
	7.3. Centralized forensic tool repository
	7.4. Increasing of reusability/maintainability
	7.5. Development of IoT forensic tools

	8. Conclusion and future work
	Declaration of competing interest
	Acknowledgements
	Appendix C. Supplementary data
	Appendix A. Available tools
	Appendix B. DFRWS Challenges
	References

