
The impact of excluding common blocks for approximate matching

Vitor Hugo Galhardo Moia

a , Frank Breitinger b , ∗, Marco Aurélio Amaral Henriques a

a Department of Computer Engineering and Industrial Automation (DCA), School of Electrical and Computer Engineering (FEEC), University of Campinas, Av

Albert Einstein 400, Campinas, SP 13083-852 Brazil
b Cyber Forensics Research and Education Group (UNHcFREG), Tagliatela College of Engineering, ECECS, University of New Haven, 300 Boston Post Rd., West

Haven, CT 06516, United States

1

2

(

i

o

f

b

g

o

p

a

t

C

b

a

t

i

c

@

b

s

g

t

a

. Introduction

In digital forensics, approximate matching (AM, Breitinger et al.,

014a) complements traditional hashing for known-file filtering

i.e., whitelisting or blacklisting). These algorithms gained popular-

ty over the past decade with ssdeep by Kornblum (2006) being

ne of the first implementations. Compared to cryptographic hash

unctions that treat the input as a whole, AM extracts features (i.e.,

yte sequences), compresses them and returns a final similarity di-

est (equivalent to a hash value). Consequently, we consider two

bjects similar if they share identical/common features. While this

rocedure is well-established, it comes with one drawback – not

ll features have the same value (from a practitioner’s perspec-

ive). This was discussed by Foster (2012) and Garfinkel and Mc-

arrin (2015) who showed that many identical blocks happened to

e present in many different objects. They referred to these blocks

s ‘common blocks’ or ‘non-probative blocks’. For the remainder of

his paper we use common feature and common block as synonyms.

Common blocks To differentiate between the importance of sim-

larity from an investigator perspective, it is important to find a
∗ Corresponding author. new affiliation: Hilti Chair for Data and Application Se-

urity at the University of Liechtenstein.

E-mail addresses: vhgmoia@dca.fee.unicamp.br (V.H.G. Moia), Frank.Breitinger

uni.li (F. Breitinger), marco@dca.fee.unicamp.br (M.A .A . Henriques).

URL: https://www.FBreitinger.de (F. Breitinger), http://www.dca.fee.unicamp.

r/~marco (M.A .A . Henriques)

p

t

a

a

v

t

(

s

trategy to separate the content generated by users from content

enerated by applications. Consequently, we define the following

erms for this article (based on a discussion by Foster, 2012):

• User-generated content: Refers to data created by users (e.g., the

text of a Word document) and can be seen as the most relevant

similarity between two objects.

• Template content: A weaker form of data content is template

similarity which is inserted by a user but repeats over many

(different) files. An exam ple is a com pany’s Word template con-

taining a header and footer. While this is still relevant informa-

tion from a practitioner’s perspective, it may lead to irrelevant

matches.

• Application-generated content: Data created by the application.

An example is a file-header information needed to access the

file which is shared among (almost) all files of the same file

type. We claim that this similarity is the least relevant.

Problem definition According to Gutierrez-Villarreal (2015) , many

pplication-generated common blocks contain patterns such as re-

eating n -grams or low entropy data (e.g., NULL block). However,

here are others that are difficult to find, since they do not have

ny obvious pattern. All these blocks are created by applications as

 result of their inner structure and are less relevant from an in-

estigator perspective. To counteract, practitioners are encouraged

o ignore low similarity matches, e.g., in case of sdhash , Roussev

2011) suggested to only consider matches that have a similarity

core of 21 or more. On the other hand, Garfinkel et al. (2010) and

mailto:vhgmoia@dca.fee.unicamp.br
mailto:Frank.Breitinger@uni.li
mailto:marco@dca.fee.unicamp.br
https://www.FBreitinger.de
http://www.dca.fee.unicamp.br/~marco

2

2

e

c

s

m

f

t

t

f

p

T

t

l

e

T

l

t

d

f

i

o

i

d

c

i

u

e

p

fi

a

o

J

b

a

(

w

s

i

S

f

c

h

i

g

b

p

a

(

Foster (2012) recommended focusing on distinctive blocks. How-

ever, there have been no studies discussing how AM tools can be

used to remove common blocks (without interpreting the data)

and how their removal will impact the similarity score / matches.

Contribution This article analyzes common blocks (i.e., what is

a common block) and shows how to use AM to identify and fil-

ter out these blocks for a given dataset. Therefore, the first contri-

bution is an open-source application named NCF_sdhash (based

on sdhash). Secondly, we discuss how common blocks are spread

across various files (same and different file types), their frequency,

and show that removing them can improve the quality of matches.

Lastly, we present a threshold to assess if a block should be con-

sidered common and measured the effects.

Overview The structure of this paper is as follows: The next sec-

tion provides the background and related work. In Section 3 we

outline the research questions, our workflow and details about the

implementation (modification of existing algorithms). Experimen-

tal results on common features are presented in Section 4 , fol-

lowed by a discussion on the impact of the similarity detection in

Section 5 . Our results are discussed in Section 6 . The last section

concludes the paper and outlines next steps.

2. Background and related work

This section focuses on the closely related work of bytewise ap-

proximate matching (AM), but will not provide a detailed descrip-

tion of all its concepts. Readers who need additional information

are encouraged to read the NIST SP 800-168 which states that it as

a “promising technology designed to identify similarities between

two digital artifacts” (Breitinger et al., 2014a).

2.1. Bytewise approximate matching algorithms

Over the past years, numerous AM algorithms have been pub-

lished with different strengths and weaknesses. Some of the

more prominent algorithms include: ssdeep by Kornblum (2006) ,

sdhash by Roussev (2010) , mrsh-v2 by Breitinger and Baier

(2013) , TLSH by Oliver et al. (2013) or LZJD by Raff and Nicholas

(2018) .

For this study, we decided to focus on sdhash and mrsh-v2
due to familiarity, their popularity and their differences in fea-

ture size (fixed-size vs. variable-size). Additionally, literature shows

that both have good detection capabilities (Breitinger and Roussev,

2014; Breitinger et al., 2014b; Roussev, 2011).

sdhash Roussev (2010) proposed sdhash which identifies sta-

tistically improbable features in objects (i.e., unique features) and

uses them to create similarity digests. Specifically, sdhash tries

to find features (64-byte sequences) “that have the lowest empiri-

cal probability of being encountered by chance.” Next, each feature

is compressed using SHA-1 and stored into a bloom filter (Bloom,

1970). In case a filter reaches its capacity of 160 feature hashes, a

new one is created. The final digest is a concatenation of all bloom

filters. In order to measure the similarity of two digests, bloom fil-

ters are compared against each other using the Hamming distance,

and a normalized similarity score (scale: 0 to 100) is returned.

mrsh-v2 Based on the ssdeep ’s feature extraction process,

mrsh-v2 , proposed by Breitinger and Baier (2013) , divides an in-

put into variable-size blocks (features) and stores all features in a

list of bloom filters (adopted from sdhash). In detail, the feature

extraction process uses a sliding window (a.k.a. rolling hash) of 7

bytes and moves through the object byte-by-byte. Whenever the

rolling hash matches a particular value, the end of a feature is

found. Next, all extracted features are hashed using an FNV hash

function (Noll, 2012), and inserted in a bloom filter. Creating and

comparing the digest are identical to sdhash .
.2. Common blocks

The concept of common blocks was first discussed by Garfinkel

t al. (2010) where the authors presented hash-based carving for

ontent identification: The idea is to hash hard drive sectors (fixed-

ize pieces of data between 512 bytes and 4,096 bytes) and try to

atch a block to a given file. The authors utilized the term distinct

or the first time referring to blocks that occur only once in their

est-corpus. Foster (2012) and Garfinkel and McCarrin (2015) con-

inued the study of hash-based carving and during their tests, they

ound many common blocks across files which made it difficult to

rove the existence of a given file on a media under investigation.

he solution adopted by the authors was using distinct blocks only.

Besides using a database to filter blocks that appeared several

imes, Foster (2012) also proposed rules to identify the common /

ess relevant blocks. The first rule was to ignore blocks with low

ntropy (i.e., repetition of the same character, NULL blocks, etc.).

he second rule addressed blocks with repeating n -grams. In a fol-

ow up work, Garfinkel and McCarrin (2015) recommended addi-

ional rules as the entropy calculus was insufficient:

• Ramp test: Deals with blocks belonging of Microsoft Office Sec-

tor Allocation Tables (SAT);

• White space test: Searches and removes blank lines of 100

spaces, each terminated by a newline character (mostly found

in JPEG files);

• The 4-byte histogram test: 4-byte values, either repeating or al-

ternating 4-byte values, are searched and eliminated. This pat-

tern was found in Apple QuickTime and Microsoft Office file

formats.

According to Gutierrez-Villarreal (2015) , the rules were redun-

ant, and they proposed replacing them by a single one. Also, by

ocusing their research on JPEG files only, they found out that us-

ng blocks (4,096-byte segment of a file) with an entropy of 10.9

r higher removes many of the common blocks.

Garcia (2018) also explored how common blocks affect the sim-

larity assessment by showing mismatches between fragments of

ata due to the common structure found among objects. They

ompared two approaches to extract the common blocks, one us-

ng the usual block-based hashing (disk sector level) and another

sing a rolling hash algorithm (similar to ssdeep/mrsh-v2) to

xplore the fragment hash uniqueness on JPEG images and com-

ressed file archives. They report a successful detection of JPEG

les inside compressed archives, arguing that many compression

lgorithms do not compress high entropy data (a previous test

n the data segment being compressed is done beforehand). Since

PEG files encompass this category, most content of such files will

e stored without significant compression. Later, one can correlate

 JPEG file with a compressed archive and yet find some similarity

in case the same image is inside the archive).

However, the aforementioned references have some constraints

hen it comes to similarity detection. First, some authors re-

tricted their applications to finding exact duplicates while we are

nterested in finding similar data and small / minimum changes.

econd, previous research often focused on relatively large blocks

or analysis; however, the larger the block, the more likely to en-

ompasses changes in the object content, resulting in a different

ash which prevents finding similar blocks. Lastly, previous work

gnores the block alignment problem, i.e., adding / removing a sin-

le byte at the beginning of an object will shift the subsequent

ytes and change the representing hash. For this reason, we ex-

lore the use of Approximate Matching tools (which deal with the

forementioned issues efficiently) to perform object identification

of similar content).

 3

3

m

d

t

f

3

e

a

t

(

a

t

a

f

o

i

t

m

t

i

L

s
m

d

c

f

t

N

Fig. 1. SQLite database tables used to store all features (distinct and common) and

related metadata.

i

F

p

l

R

i

e

l

t

h

o

g

s

t

t

o

c

c

a

3

t

t

i

i

2

s

F

t

i

m

t

d

e

S

c

i

3

q

. Research direction, design decisions and implementation

The impact of common features on the behavior of approximate

atching algorithms is not well explored. Therefore, this paper ad-

resses the following research questions:

RQ 1 What are the common features? How frequently do they

appear? How do they spread across various file types?

RQ 2 How does ignoring common features impact the similarity

detection (i.e., number of matches)?

RQ 3 Is there a clear threshold N for which common features are

ignored in the dataset at hand?

RQ 4 How does removing common features affect the runtime

efficiency of the algorithm?

It is important to note that we are not interested in measuring

he accuracy or detection capabilities of the algorithms but strictly

ocus on the impact of common features on the similarity matches.

.1. Procedure overview / workflow

To analyze the impact of common blocks, we performed several

xperiments. While for RQ1 we compared the behavior of sdhash
nd mrsh-v2 , the remaining tests concentrated on sdhash for

hree reasons: (a) It appears to be the most widespread approach;

b) it uses a constant and shorter feature size than its competitor;

nd (c) it produces more features as shown in Section 4.1 . Addi-

ionally, sdhash utilizes the Shannon entropy to exclude undesir-

ble features, eliminating some of the most common blocks by de-

ault, e.g., the ones composed by only values of 0s or 1s. Regardless

f this choice, we expect similar outcomes for mrsh-v2 although

t has to be validated in future work.

Definition For a better and common understanding, we define

he following:

S denotes a dataset of files s and | S | denotes the cardinality.

f denotes a feature where each f belongs to one or more files.

s is a k -tuple of features, e.g., s = (f 0 , f 1 , . . . , f k −1) . Note, fea-

tures are not unique and may repeat in s .

T denotes a tuple containing all features for all s ∈ S (order not

important). Note, features are not unique and may repeat.

F denotes the set containing all features from T . Recall: sets

only contain unique elements.

t f (f, T) denotes the feature frequency 1 and is the raw count of

f in T .
itf (f, S) denotes the inverse term frequency 1 and is the raw

count of s ∈ S that contain f , i.e., the number of files con-

taining f one or more times.

Common feature f is a feature where itf (f, S) > N where N de-

notes a threshold.

Procedure for RQ1 In order to understand the spreading of com-

on features, we modified sdhash and mrsh-v2 to store the ex-

racted features in a database. Next, we executed both modified

mplementations on S and counted the frequencies of each feature.

astly, we analyzed the frequencies which allowed us to compare

dhash and mrsh-v2 as well as provided an overview of how

any common features / unique features exist in S . Results are

iscussed in Section 4.1 . Additionally, we manually analyzed some

ommon features which are highlighted in Section 4.2 .

Procedure for RQ2 To measure the impact of ignoring common

eatures on similarity matches (number of matches), we compared

he matching behavior of sdhash and NCF_sdhash for various
 .

1 Terms are borrowed from information retrieval field as they are similar.

I

(

If a feature is common according to our definition, it will be

gnored during processing.

All ignored features are not represented in the similarity digest.

indings are summarized in Section 5.1 .

Procedure for RQ3 To identify a valid threshold, we used some

re-defined N -values and manually inspected the matches. This al-

owed us to assess the best N for S as well as various file types.

esults are presented in Section 5.1 .

Procedure for RQ4 Our modified version is compared to the orig-

nal version with respect to runtime efficiency, i.e., the time to gen-

rate and compare digests. Results are outlined in Section 5.6 .

Differentiation of similarity To assess whether a match was re-

ated to user-generated content, application-generated content, or

emplate similarity, we manually investigated matches. When files

ad no visual similarity, i.e., no common text, picture, table, or

ther user-generated elements, we classified it as application-

enerated content similarity. A match was considered template

imilarity when the same layout repeated over several files, but

heir content was different. For instance, two html pages, ‘con-

act us’ and ‘our organization’, where both files had identical col-

rs, elements disposition, menu bar, headlines, logo, etc., but their

ontent was different. In this work, we focus on user-generated

ontent which will be considered true positives; template and

pplication-generated content are considered false positives.

.2. Database implementation

We chose SQLite as the relational database management sys-

em for its simplicity and being open source 2 In our experiment,

hree tables were created to store all the extracted feature hashes

ncluding related metadata such as offsets. An overview is depicted

n Fig. 1 . The field highlight with an asterisk (∗) is indexed (SQLite,

019a).

The Objects -table contains information about the processed file

uch as its name (path), size (bytes), and extension (file type). The

eatures -table stores data about the features themselves, e.g., fea-

ure hash, its offset (position where the feature content is stored

n the file), and the size of the feature. Note, a file consists of

any features and each one has a distinct entry in the features

able (even if the same feature occurs multiple times, they all have

ifferent offsets).

The final table, Common features , acts as counter storage for

ach feature f and contains t f (f i , T) for 0 < i ≤ |T | as well as itf (f,

) for all f ∈ F . For instance, for a set S = { A, B } , if feature f 1 oc-

urs 10 times in file A and twice in file B , then t f (f 1 , T) = 12 and

t f (f 1 , S) = 2 .

.3. Implementation changes to existing tools

To perform our assessment, both sdhash and mrsh-v2 re-

uired some modification to cope with a database. The database
2 SQLite is slower than other databases which impairs runtime efficiency tests.

f the focus is efficiency, a custom build storage solution as pointed out by Foster

2012) should be preferred.

4

Table 1

t5-corpus file type statistics.

html text pdf doc ppt xls jpg gif

of files 1093 711 1073 533 368 250 362 67

Avg. size (kb) 66 345 590 433 1003 1164 156 218

Table 2

Feature statistics across S .

Parameter sdhash mrsh-v2

|T | 31,387,592 8,842,032

|F| 27,203,732 8,049,461

max (t f (f, T)) 153,037 8141

max (itf (f, S)) 843 790

Table 3

Feature frequencies across S .

Condition sdhash mrsh-v2

count (f | t f (f, T) = X)

X = 1 25,861,720 7,751,709

X = 2 942,182 225,740

X = 3 145,236 28,392

count (f | t f (f, T) > X)

X > 3 254,594 43,620

X > 5 124,413 22,100

X > 10 39,069 8044

X > 20 16,840 3318

X > 50 5986 1232

X > 100 2663 526

X > 200 1124 231

X > 400 471 81

X > 800 185 32

X > 2, 000 63 11

X > 10, 000 6 0

count (f | f ∈ F ∧ it f (f, S) = N)

N = 1 26,467,390 7,886,026

N = 2 567,267 140,064

N = 3 68,719 12,251

count (f | f ∈ F ∧ it f (f, S) > N)

N > 3 100,356 11,120

N > 5 43,845 5419

N > 10 5386 1356

N > 20 1676 488

N > 50 579 200

N > 100 287 115

N > 200 115 55

N > 400 17 10

b

m

2

T

l

m

t

c

l

w

r

m

t

t

i

4

e

t

T

c

F

n

f

t

t

f

t

w

and applications can be downloaded from github (programing lan-

guage C++): https://github.com/regras/cbamf . Specifically, the fol-

lowing changes were made:

DB creation: The feature extraction process of each tool was

modified to insert the features and required metadata into

the database. Modifications were tested manually to verify

the correctness of the new version.

No common feature (NCF): The second modification was

slightly more complex as it performs queries in the database

(db). In other words, before proceeding with an identified

feature, the db is queried to check if it is a common fea-

ture, where ‘common’ depends on the user setting N . If a

feature is common, it is discarded; otherwise, it will be fur-

ther processed and added to the similarity digest. The new

versions are named NCF_sdhash (based on sdhash 3.4)

and NCF_mrsh-v2 .

Lastly, we also decided to use FNV-1a (64 bits) for the feature

hashing algorithm as suggested by Kameyama et al. (2018) to im-

prove the runtime efficiency without affecting the tool’s precision.

4. Experimental results on common features

The dataset S used for the experiments is the t5-corpus

(Roussev, 2011) which established itself as a default set in this do-

main. The corpus is a collection of real-world files containing vari-

ous file types having a total of 4457 objects (1.78 GiB) as summa-

rized in Table 1 .

For validation, we performed a manual comparison of several

matches to classify them according to their similarity type (user-

generated content, application-generated content, or template con-

tent). Since the number of matches is too large, we only analyzed

a sample of the them using either the appropriate software (e.g.,

MS office, browser etc.) or Bless 3 editor for binary. These results

can be found on our github page (see Section 3.3).

4.1. Common blocks overview in t5-corpus

Table 2 shows the statistics for the extracted features in S sepa-

rated by tool. Note, max (t f (f, T)) returns the number of the most

frequently counted feature while max (itf (f, S)) for all f ∈ F looks

for the most common (wide spread) feature and returns the num-

ber of files sharing it (e.g., the last row in Table 2 indicates that

there is one feature that was found in 843 different files).

As shown, sdhash extracted more features than mrsh-v2
(about 3.5 times), which was expected since mrsh-v2 comes with

a higher compression rate: sdhash uses fixed-size features of 64
3 https://github.com/bwrsandman/Bless (last accessed 2019-10-21).

T

t

f

ytes while mrsh-v2 has variable-size features. In our experi-

ent, we verified that the average feature size for mrsh-v2 was

15.3 bytes.

The frequencies of the extracted features are presented in

able 3 , where the left column shows the analyzed condition fol-

owed by the two algorithms on the right. For instance, row X > 10

eans that sdhash found 39,069 features that occurred more

han ten times in T . In contrast, the second part of the table fo-

uses on the number of files containing particular features, e.g.,

ast row indicates that for mrsh-v2 we found ten features that

ere in more than 400 files.

The results also showed that a significant number of features

epeats frequently, e.g., sdhash found 2663 features that repeated

ore than 100 times (this also means many features repeat within

he same file). As indicated by the last part of the table, some fea-

ures were widely spread among files, e.g., 579 features appeared

n more than 50 files.

.2. Most common features for each file type

Table 4 shows the features that repeated the most across differ-

nt files of the same type and includes the feature’s FNV-1a hash,

he number of files, and a brief description of the feature’s content.

he doc feature was related to necessary structural information

ommon in Microsoft Office Word documents and is illustrated in

ig. 2 (highlighted area). It corresponds to the final part of a stream

ame followed by some setting and padding information. The doc
eature was found in 442 files which is 83% of all doc ’s (533) in

5-corpus . Although not all doc ’s had this particular feature, varia-

ions of it were found in other files (see Fig. 3). While a different

eature was selected, it belongs to the same file structure informa-

ion. We believe the same happened in the remaining 91 doc files,

here some specific changes affected the feature selection process.

he most common feature of pdf , jpg and gif files were related

o color space information. In the case of html files, the common

eature was associated with a well-known piece of java script code.

https://github.com/regras/cbamf
https://github.com/bwrsandman/Bless

 5

Table 4

Most repeated features per file type and their content.

File type FNV-1a hash itf (f, S) for all s of the same type Feature content

doc c5e7aeb2482c56c0 442 / 533 Necessary stream of compound files, specific of Microsoft Office Word documents.

ppt ef9a5a76d0df0c16 357 / 368 Part of a document summary information stream with application defined properties.

pdf d5fb4ee41392d833 347 / 1073 Piece of an indirect object of a pdf stream, belonging to RGB color space.

xls b3310ce89e000aa4 226 / 250 Font specification.

jpeg f0a05cdcac5796d4 108 / 362 RGB color palette.

html cbac5aaf609ccf54 61 / 1093 Sample of a well-known piece of java script code to make web pages have rollover images.

text 69c06bea6c3a3f10 18 / 711 Part of a template content.

gif c91811dfd69ce32b 5 / 67 Related to a global color table, which is a sequence of bytes representing RGB color triplets.

Table 5

Samples of common features that appeared on different file types.

f t f (f, T) itf (f, S) itf (f, S) separated by file types

5d60dae303171ac8 1014 843 doc (404), ppt (265), xls (174)

eee894cd42564cc9 634 582 doc (286), ppt (295), xls (1)

c02fde95428198dc 540 531 doc (186), ppt (267), xls (78)

ef9a5a76d0df0c16 691 484 doc (92), ppt (357), xls (35)

c5e7aeb2482c56c0 468 467 doc (443), ppt (2), xls (22)

d5fb4ee41392d833 615 457 doc (14), jpg (49), pdf (347), ppt (47)

536857624aa47c38 451 437 doc (122), ppt (243), xls (72)

ce5c0a5b70cca619 3608 402 doc (31), jpg (108), pdf (185), ppt (76), xls (2)

3c0dc7d9b4044951 224 220 doc (6), xls (214)

1a5918d3d2ad6ffe 228 203 doc (3), ppt (200)

87b92f4dc954a121 193 116 doc (14), jpg (49), pdf (6), ppt (47)

Fig. 2. Excerpt of the 000260.doc file corresponding to the most common feature

over this kind of format. The Bless hexadecimal editor is used to show the binary

structure of the file. The highlighted area represents the feature.

Fig. 3. Excerpt of the 004964.doc file corresponding to a feature similar to the

one presented in Fig. 2 . The Bless hexadecimal editor is used to show the binary

structure of the file. The highlighted area represents the feature.

F

t

4

d

f

p
h

b

Fig. 4. Snippet of the 001025.ppt showing the first occurrence of

f = 5d60dae303171ac8 at offset 0xF2E0B .

w

l

(

fi

W

f

s

i

0

r

E

(

a

i

1

p
o

t

a

r

b

s

or text , we found that all 18 files shared the same template, but

hey differed in content.

.3. Common features across different file types

This section presents common features that were found across

ifferent file types; results are summarized in Table 5 . Many

eatures appeared across different files, especially among doc ,
pt , and xls , which are all compound files. For instance,

ash (f) = 536857624aa47c38 was part of a sector allocation ta-

le (SAT) data structure of compound files (Rentz, 2007). However,
e also found features shared by compound, jpg , and pdf files

ike d5fb4ee41392d833 , which was part of a color space object

RGB). This was due to embedding objects like images into other

le types (in our example all identified objects contained pictures).

e also found features related to font specifications shared by dif-

erent file types, too.

We also analyzed instances where features repeated within the

ame file. For instance, 5d60dae303171ac8 occurred 1014 times

n S (in 843 different files). One of the files containing it was

01025.ppt . The feature was part of a compound file data structure

elated to a root directory entry of a stream, where the string Root

ntry had to be present. The ppt contained four similar snippets

see Fig. 4) at different offsets: 0xF2E0B , 0xF360B , 0xF6E0B ,
nd F720B . Besides the feature, the majority of the bytes shown

n the figure are identical among all four offsets.

The feature that repeated the most in S (max (f req (F)) =
53,037) is shown in Fig. 5 and belongs to template similarity in

df s. For instance, it repeats 16,092 times in 001958.pdf ; an-

ther 144 files shared this feature one or more times. It is part of

he cross-reference table (xref), which contains the references to

ll the objects in a pdf document. An object, in this case, is rep-

esented by one entry of 20 bytes, consisting of an offset (first 10

ytes), a space separator, the object generation number, another

pace separator, and a letter ‘f’ or ‘n’ indicating whether the ob-

6

Fig. 5. Feature aecec3a6185401f1 from 001958.pdf that was found most fre-

quently (153,037 times) in pdf s.

Table 6

Number of file matches by score range using sdhash and NCF_sdhash for ALL

file types, discarding common features with occurrences > N.

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 2992 65 93 152 195 253 311

≥ 1 9220 409 622 1188 1541 2123 2371

≥ 10 1795 241 356 745 963 1249 1262

≥ 21 1038 181 267 563 799 925 ∗ 925 ∗

≥ 50 459 79 114 237 414 475 472

≥ 90 86 20 21 55 58 85 85

= 100 18 6 6 15 15 30 30

∗Note, same numbers in two columns do not mean that the sets of matches are

identical.

Table 7

Number of file matches by score range using sdhash and NCF_sdhash for

doc files, discarding common features with occurrences > N .

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 1082 7 6 10 9 19 44

≥ 1 4095 49 81 97 100 135 194

≥ 10 607 33 62 62 61 69 72

≥ 21 166 25 48 47 49 50 50

≥ 50 15 6 13 12 15 14 14

≥ 90 0 0 0 0 0 0 0

Table 8

Number of file matches by score range using sdhash and NCF_sdhash for

xls files, discarding common features with occurrences > N .

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 42 9 13 35 26 21 25

≥ 1 133 27 54 98 95 106 108

≥ 10 36 7 16 36 36 37 37

≥ 21 16 4 9 16 16 16 16

≥ 50 2 0 0 1 2 2 2

≥ 90 0 0 0 0 0 0 0

Table 9

Number of file matches by score range using sdhash and NCF_sdhash for

ppt files, discarding common features with occurrences > N .

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 1252 10 23 29 32 44 44

≥ 1 1952 70 90 112 115 169 171

≥ 10 55 36 36 37 36 37 39

≥ 21 23 22 23 24 24 23 23

≥ 50 8 9 8 8 7 7 8

≥ 90 2 2 2 2 2 2 2

= 100 1 1 1 1 1 1 1

b

s
m

w

w

n

A

t

a

i

n

f

fi

u

m

1

c

i

m

d

n

t

2

g

ject was free or in use. The final two bytes are the characters CRLF

(0x0D0A) (Adobe-Systems, 2008).

5. Impact on similarity detection

This section highlights the impact of removing the common fea-

tures from the similarity digests. Thus, when comparing two di-

gests, common features will not impact the similarity score.

5.1. Summary of number of matches in the dataset

Table 6 shows the number of file matches performing

an all-against-all comparison (excluding self-comparisons) on

S (t5-corpus) using sdhash and NCF_sdhash which equals

(4457 ∗ 4456 / 2 =) 9 , 930 , 196 comparisons.

Column one is the range of the similarity score; column two

the number of file matches for sdhash followed by the number

of file matches for NCF_sdhash for various N .

Note, the implementations return scores ranging from 0 to 100.

However, we omit 0 scores as we are only interested in compar-

isons with some level of similarity.

There was a significant reduction in the number of matches

when excluding common features: sdhash returned a total of

9220 matches (score ≥ 1), while dropping common features re-

duced it to 409 (-95%), 1188 (-87%), and 2371 (-74%) for N equal to

3, 10, and 100, respectively. As expected, the more restrictive we

were (smaller N), the lower the number of matches.

To better understand the results, the upcoming sections focus

on each file type. Specifically, we compare all files to a given type

against S .

5.2. Compound file type (doc, ppt, xls)

Compound files are known for storing numerous files and

streams within a single file, in a hierarchical way, similar to a file

system. The content streams are further divided into small blocks

of data (called sectors) used to store both user and internal con-

trol data. The entire file consists of a header and a list of all sec-

tors. Each sector has a fixed-size (usually 512 bytes) defined in the

header (Rentz, 2007).
Tables 7–9 summarize the findings. Our results show a similar

ehavior among all three types: lots of matches for the original

dhash for low score ranges and a significant reduction when re-

oving the common features. For the upcoming detailed analysis,

e focused on doc ’s but expect a similar behavior for the others.

Roussev (2011) mentioned that for compound types, matches

ith scores below 21 contain many false positives and should be

eglected. Thus, we focused on the 166 matches with a score ≥ 21.

fter performing a manual comparison of all matches, we conclude

hat 120 cases were not similar regarding user-generated content

nd 28 matches were classified as template similarity. The remain-

ng 18 matches were similar in terms of user-generated content.

When considering the results of NCF_sdhash , we see a sig-

ificant reduction; for N = 3 we only had 25 matches, in which

our were classified as application-generated content similarity and

ve as template similarity. The remaining 16 comparisons were

ser-generated content similarity (compared to sdhash two were

issed). Increasing N = 5 resulted in 48 matches and also included

6 user-generated content matches plus four application-generated

ontent ones; the other matches were related to template similar-

ty. For N ∈ {10, 20, 50, 100} we had similar results as N = 5 ; all

issed two matches.

Focusing on matches with scores < 21 for sdhash , we ran-

omly sampled 20 out of the 3929 (4,095-166) total. 18 had

o user-generated content similarity, and the remaining two had

emplate similarity. On the other hand, NCF_sdhash returned

4 (49-25) matches: Seven template similarity, eight application-

enerated, and nine user-generated content matches. Out of the

 7

Table 10

Number of file matches by score range using sdhash and NCF_sdhash for

pdf files, discarding common features with occurrences > N.

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 492 33 39 62 104 128 163

≥ 1 1684 91 125 286 393 488 674

≥ 10 191 20 33 109 117 161 171

≥ 21 92 12 21 76 76 88 88

≥ 50 45 4 7 37 37 47 45

≥ 90 31 3 3 27 17 29 29

= 100 0 0 0 0 0 0 0

u

c

d
a

i

s

b

h

(

9

t

≥
s

h

s

m

c

f

C

b

i

a

a

5

3

g

w

t

l

f

p
d

fi

t

n

g

t

t

s

b

t

/

Table 11

Number of file matches by score range using sdhash and NCF_sdhash for

text files, discarding common features with occurrences > N.

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 14 6 8 13 7 9 8

≥ 1 57 35 39 45 41 42 41

≥ 5 27 26 27 26 26 26 26

≥ 10 25 23 25 25 25 25 25

≥ 21 20 18 19 19 19 19 19

≥ 50 5 6 6 6 6 6 6

≥ 90 0 0 0 0 0 0 0

Table 12

Number of file matches by score range using sdhash and NCF_sdhash for

html files, discarding common features with occurrences > N.

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 43 16 23 24 33 53 55

≥ 1 1215 185 281 617 857 1275 1278

≥ 5 1052 152 227 568 787 1099 1099

≥ 10 936 139 202 510 721 976 976

≥ 21 759 111 158 409 643 765 765

≥ 50 394 57 83 175 349 409 407

≥ 90 56 15 16 26 39 57 57

= 100 17 5 5 14 14 29 29

5

a

t

c

≥

2

m

n

w

N

t

o

p
c

v

2

o

t

i

I

b

a

e

3

a

u

o

ser-generated content case, three matches were cross file type

omparisons which were matches between different file types (e.g.,

oc vs. html); the other six combined similar content as well

s template similarity. The 24 matches for NCF_sdhash did not

nclude the two matches identified through random sampling for

dhash .
In other words, removing common features reduced the num-

er of matches significantly . For instance, for scores ≥ 1, sdhash
ad 4095 cases while NCF_sdhash returned between 49 matches

 N = 3 ; best case) and 194 (N = 100 ; worst case), a reduction of

9% and 95%, respectively. The reduction dropped to values be-

ween 85% and 70% when considering only matches with scores

21 (the recommended value for sdhash). However, 70% is still a

ignificant reduction considering the digital forensic examiner may

ave to compare matches manually.

For the compound file type, using N = 3 revealed the best re-

ults. We argue that a significant reduction in the number of

atches outweighs the two additional matches (user-generated

ontent) identified by sdhash .
Remark Compound files usually also have a minimum size;

or the types discussed here it is three sectors / 1536 bytes).

onsequently, an empty document will have at least 1536

ytes of structural information which impacts the final similar-

ty score especially for small files: Since small files have more

pplication-generated than user-generated content, many (undesir-

ble) matches may occur.

.3. PDFs

Out of the 92 matches for sdhash ≥ 21 in Table 10 , only

8 pairs could be manually evaluated; 11 matches included user-

enerated content. In the remaining pairs at least one of the files

as corrupted

4 . A closer look at the application-generated con-

ent matches (27) revealed that the majority of features were re-

ated to color information (e.g., d9e1c063e9c0ba1c); we also

ound some features (ca80692484c3235c) corresponding to a

df object containing Adobe’s Extensible Metadata Platform (XMP)

ata, a package to add metadata to images (but also other media

les). Another feature (4c815162434ce18d) contained bytes of

he XMP data object and lots of black spaces.

The impact of removing the common features was again sig-

ificant. NCF_sdhash with N = 3 returned exactly the 11 user-

enerated content matches found by sdhash plus one extra pair

hat sdhash scored with 20. Raising N = 5 resulted in 21 matches;

he additional nine matches were related to application-generated

imilarity. Thus, for pdf s, N = 3 worked perfectly.
4 We found that despite the .pdf extension, these objects are not pdf files

ut edited html files with a few line feed (hex: 0A) and space (hex: 20) charac-

ers inserted into their beginning. The list of these objects can be found: (https:

/github.com/regras/cbamf).

a

c

t

p

m

.4. TEXT and HTML

Text and html are flat file types that do not contain

pplication-generated information. However, html files may con-

ain markup elements or scripting languages (e.g., java script). As a

onsequence, Roussev (2011) suggested using matches with a score

5 (compared to ≥ 21).

An overview of the text results is given in Table 11 . The

7 matches found by sdhash consisted of 25 user-generated

atches, one related to template similarity and the last one was

ot actually a text file (although file extension was text , the file

as a doc and matched another doc). Running NCF_sdhash and

 = 3 returned 26 matches, where 23 fell into user-generated con-

ent similarity, two were related to template similarity, and the last

ne was a cross file type comparison with one of the corrupted

df files. Two matches were missed: in one case there were many

hanges throughout the file; in the other the text file was con-

erted into html . Setting N = 5 or higher solved this problem; all

5 user-generated matches were found. In summary: the exclusion

f the common features for text was less effective than other file

ypes but did harm for N ≥ 5.

With respect to html , results were different and are shown

n Table 12 . sdhash returned 1052 matches with scores ≥ 5.

n comparison, NCF_sdhash reduced this number for small N ’s

ut found more matches for higher N ’s (discussed later). Due to

 large number of matches, we randomly sampled 30 cases in

ach analysis. sdhash had no user-generated content match in all

0 samples; 28 were template similarity cases, and two showed

pplication-generated content. NCF_sdhash with N = 3 had six

ser-generated content cases and 24 template similarity (for an-

ther 30 samples - all different from the first 30). For N = 5

nd 30 new samples, 25 cases showed template similarity, four

ases application-generated content and one user-generated con-

ent similarity (an embedded object with minor changes).

The tool sdhash found all user-generated content matches

resent in the 90 samples, while NCF_sdhash (for N = { 3 , 5 })
issed one match.

https://github.com/regras/cbamf

8

Table 13

Number of file matches by score range using sdhash and NCF_sdhash for

jpeg files, discarding common features with occurrences > N.

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 547 3 2 3 2 8 10

≥ 1 907 4 3 5 4 63 69

≥ 10 24 0 0 0 0 0 0

≥ 21 0 0 0 0 0 0 0

Table 14

Number of file matches by score range using sdhash and NCF_sdhash for gif
files, discarding common features with occurrences > N.

Score sdhash

NCF_sdhash for N

3 5 10 20 50 100

= 1 1 0 0 1 1 1 0

≥ 1 1 0 0 1 1 1 0

≥ 10 0 0 0 0 0 0 0

f

r

T

g

u

t

t

r

a

w

a

k

s

i

c

5

t

w

s
m

t

c

s

w

t

t

a

8

a

6

w

n

+

s

q

t

m

i

s
b

n

r

T

H

f

l

p

i

c

c

t

q

m

2

P

To conclude: N = 3 had the best cost/benefit scenario for html
files.

More NCF_sdhash matches than sdhash Table 12 suggests

that the number of results increased for NCF_sdhash for some

N ’s (e.g., compare column sdhash vs. N = { 50 , 100 }). This behav-

ior was the opposite to other file types which is due to hash

collision (sdhash uses SHA-1 for hashing the features while

NCF_sdhash uses FNV-1a). We confirmed this by looking into

our database: The most frequent feature has 61 different occur-

rences (ω = 61). Consequently, NCF_sdhash for N = 100 should

have identical results to sdhash since no feature was removed.

For instance, the last row (= 100) shows 17 matches for

sdhash but 29 for NCF_sdhash with N = { 50 , 100 } . The 12

new matching pairs involved two files (001326.html and

003467.html) and received sdhash scores between 92 and 98.

The number of features extracted was 661 by sdhash and 660 by

NCF_sdhash (for N > 50). The difference on both was related to a

single feature that had a collision with other feature when inserted

into the digest (bloom filter) of the file. Since this feature was dif-

ferent from the ones of the other files under comparison, remov-

ing it made the similarity score increase to 100. It is important to

mention that changing a single file may impact several compar-

isons, as shown by these two files that affected 12 matches. For

NCF_sdhash with N = 50 we had the same situation, but some

other comparisons were affected since in this case two html fea-

tures were removed as they repeat 55 and 61 times each.

5.5. JPEG and GIF

Bytewise approximate matching algorithms work less well on

images (but are good for detecting embedded images in compound

files). Consequently, no matches were revealed for scores above 21,

as shown in Tables 13 and 14 . We investigated the 24 jpg pairs

having a sdhash score > = 10 where two matches showed some

similarity: a similar jpg image was found inside a ppt file. How-

ever, the pictures were not identical, and thus we categorized it

as application-generated content similarity. The other 22 cases had

no visual similarity.

Selecting 30 random samples from the 883 (907-24) matches

(with score < 10), we found one case (score 3) where one pic-

ture was a scaled version of the other. These two jpg s had,

555 and 1497 features, respectively. The overlap was 129 fea-

tures, where 16 were exclusive to these two jpg s (ω = 2 for

these 16 f) and related to header / EXIF information. Specifically,

97e7cd722414356e was part of the JFIF header of both files, and
eatures 54fbfe2c46f4bed8 and 581f94d602fd9ac6 were

elated to EXIF data, such as date time and camera information.

his match was hard to classify: on the one hand it is application-

enerated content; on the other hand it ties it to a particular

ser. More details are discussed in Section 6 : Differentiating be-

ween user-generated and other types of content . When looking at

he scores < 10 and 3 ≤ N ≤ 20, only one match had similarity

elated to template (pictures shared the same background, fonts,

nd colors). We did not analyze the matches for N = { 50 , 100 } .
gif s had a similar behavior and only one match (gif to text)

as found by sdhash which was a false positive. NCF_sdhash
lso had a false positive (with an html file) for some N -values.

For both file types, sdhash worked suboptimal which is a

nown challenge for bytewise approximate matching. However, as

hown by our results, NCF_sdhash reduced the matches without

mpacting the quality of the results. N = 3 worked reliably in both

ases.

.6. Performance test

Besides evaluating how the similarity was affected by removing

he common features, we also measured the runtime efficiency as

ell as the compression rate for NCF_sdhash and compared to

dhash . The results are shown in Table 15 . Here we present tests

easuring the time taken for creating digests for each file in S and

hen performing an all-against-all comparison (excluding the self-

omparison) using both tools. We also measured the final digest

ize of all files of the set to examine how the compression rate

as affected. In our tests, we did not include the offline steps (i.e.,

ime to extract all features and insert them into the db). Although

his task requires a long time, it does not impact the investigation

s it can be done offline / at any time. It is also done only once.

The test environment is an i7-5500U CPU @2.40 GHz processor,

 GB of memory, 1 TB SATA 3 Gb/s hard disk drive (5,400 rpm),

nd NVIDIA GeForce 920M, running an Elementary OS 0.4.1 Loki

4-bit (built on Ubuntu 16.04.2 LTS).

Each experiment ran 20 times; results were averaged. The cache

as cleared every run to prevent falsification of the results.

We also turned off all unneeded system services and stop un-

ecessary applications (Kim et al., 2012).

The measurement was done using Linux time command (sys
 user times).

As shown by our results, NCF_sdhash is about 24% to 26%

lower with respect to digest generation time which is related to

uery the db (verifying if a feature is common or not). As expected,

he runtime is independent of N as shown in the Table 15 . We also

easured the time to perform an all-against-all comparison utiliz-

ng the existing db. NCF_sdhash (N = 3) was slightly faster than

dhash which is due to the removed features resulting in fewer

loom filters (note the code related to the comparison function did

ot change). On the other hand, higher N -values for NCF_sdhash
emoved fewer features and thus have similar times than sdhash .
he last parameter measured is the digest size generated for S .

ere, NCF_sdhash was superior since it removed the common

eatures, resulting in smaller digests. The lower the N -value, the

arger the reduction achieved.

Remark It is important to highlight that the only optimization

erformed in the NCF_sdhash code was the creation of database

ndexes for the common feature table. As mentioned before, the

reation of the common feature database is required only once and

an be done offline; afterwards it can be used for all investiga-

ions. NCF_sdhash ’s bottleneck (when creating digests) are SQLite

ueries. The complexity for verifying whether a feature is com-

on or not is O (log(|T |)) (when using database indexes, SQLite,

019b). Other optimizations focus on SQLite itself as discussed by

urohith et al. (2017) . On the other hand, one could move to a cus-

 9

Table 15

Runtime and digest size of sdhash and NCF_sdhash for t5-corpus ; includes the measurement and standard devia-

tion (±).

sdhash

NCF_sdhash for N

3 10 100

Digest generation (sec) 87 s ± 0.92 108 s ± 0.42 110 s ± 0.41 110 s ± 0.41

All-against-all comparison (sec) 433 s ± 11.62 413 s ± 11.52 452 s ± 12.53 458 s ± 15.82

Digest size (bytes) 64,321,035 62,594,719 63,786,954 64,138,018

t

m

t

i

6

w

t

R

a

b

S

3

t

i

fi

F

g

w

t

e

(

i

k

f

s

i

i

p

c

e

b

Table 16

Number of true positive matches (user-generated content) found by sdhash
and NCF_sdhash for the most significant file types.

File Known user-generated

sdhash
NCF_sdhash for N

type content matches 3 5

doc 18 18 (100%) 16 (89%) 16 (89%)

pdf 12 11 (92%) 12 (100%) 12 (100%)

text 25 25 (100%) 23 (92%) 25 (100%)

html 7 7 (100%) 6 (86%) 1 (86%)

c

W

t

a

m

R

d

i

t

w

a

t

(

u

m

t

i

m

t

s

t

g

a

m

d

s

i

t

l

i

t

N
t

omized storage solution, which should improve the query perfor-

ance (Foster, 2012). With respect to a database update: The fea-

ures of the new objects are extracted (using the tool) and inserted

nto the database which is not time critical.

. Discussion

Based on the experiments described in the previous section, we

ill discuss here the lessons learned and the impacts of removing

he common features, starting with the research questions.

Q1. What are the common features? How frequently do they

ppear? How do they spread across file types?

Foster (2012) stated that most files are made up of distinct

locks/features that identify a specific file which also holds for our

 : given the 31 million features, only 0.8% were common (for N =
). However, as pointed out by Garfinkel and McCarrin (2015) , fea-

ures that appear to be unique could be uncommon if the dataset

s expanded.

The common blocks spread widely among the same or different

le types although different file types showed different behavior.

or instance, compound file types (doc , ppt , xls) have a high de-

ree of ‘default similarity’ as they share a similar internal structure

hich is in contrast to flat types (text , html) and compressed

ypes (jpg , gif). For

compound types the proposed NCF_sdhash tool can reduce

the number of false positives significantly (similar results

were obtained for pdf s and jpg s). NCF_sdhash worked

particularly well for small N s. However, more research is

needed to see if this holds for larger sets, too.

flat types the removal of common features had almost no im-

pact as most of their contents are user-generated data by de-

sign. However, NCF_sdhash may be superficial when pro-

cessing flat types that contain layout information such as

html to reduce the impact of template similarity.

compressed types (images) bytewise approximate matching is

not the most efficient tool to detect similarities. Thus, re-

moving features had only little effect on the results.

Further tests are required to see if these statements hold, e.g.,

xpanding the test data by zip, rtf, bmp, mp3 , and so on.

Common features were also found across different file types

see Section 4.2 and 4.3). Often these features belong to structure

nformation, color space, font specifications, or even some well-

nown code used to accomplish a particular task. For our test, we

ound an overlap among compound files, pdf , and jpg , where all

hared color information related to the embedded images/image.

Given that our test set was small, more comprehensive exper-

ments are needed on larger sets. However, given that N is flex-

ble, a user can define what a common block is. A more com-

rehensive dataset also has the advantage that it will contain all

ommon features and that it can be used across multiple differ-

nt scenarios / forensic cases. On the other hand, examiners could

uild case specific databases to filter out common blocks, e.g., the
rime scene consisting of many devices belonging to one company.

hile it requires additional processing time, it could exclude fea-

ures not found in a general set, e.g., metadata information, such

s the owner, application version, or proprietary file types. Further-

ore, template similarity may be reduced.

Q2. How does ignoring common features impact the similarity

etection (i.e., number of matches)?

For most tests removing the common features had a positive

mpact on the number of matches, e.g., reducing them from 9220

o 409 (N = 3 and score ≥ 1, see Table 6). It did not work equally

ell for the different file types but effectively for compound types

nd pdf s. Having less matches will be time saving from an inves-

igator perspective. On the other hand, the quality of our results

true positives) remained similar: Having low N s usually found

ser-content generated matches although some few matches were

issed.

Table 16 presents the number (and percentage) of true posi-

ives found by sdhash and NCF_sdhash (for the most promis-

ng values of N = { 3 , 5 }) in relation to the total number of known

atches (a.k.a. recall rate Davis and Goadrich, 2006). As men-

ioned, due to the high number of matches, a complete analy-

is is impossible. The values reported in the table correspond to

he manually identified matches (as discussed in Section 3.2 , para-

raph one) which were restricted to: (1) doc / pdf where we an-

lyzed all matches with score ≥ 21, (2) text / html where all

atches with scores ≥ 5 were considered and (3) html where,

ue to the high number, we sampled 90 matches. While one may

ay that NCF_sdhash is missing matches, we argue that

• reducing manual labor significantly is most important, and

• that not all evidence has to be found during an initial run (i.e.,

finding one piece of evidence in 409 has a similar impact than

finding three pieces in 9220.

To conclude, our results indicate that the internal file structure

nterferes (negatively) in the similarity identification process when

he focus is user-generated content.

Another evaluation is provided by Moia et al. (2019) who ana-

yzed how the score and recommended threshold value of sdhash
s impacted by the removal of common features for a subset of the

5-corpus . By evaluating precision and recall rates of sdhash and

CF_sdhash , the authors recommend using any score > 0 given

he low rates of false positives compared to sdhash .

10

s

a

l

6

i

t

p

t

p

I

w

b

3

v

l

7

t

w

o

i

d

s

c

s

n

l

i

t

t

n

c

w

g

D

c

i

A

(

g

R

A

A

B

B

B

RQ3. Is there a clear threshold N for which common features are

ignored in the dataset at hand?

For our experiments, an N -value between 3 and 5 worked best

in most classes. It significantly reduced the number of matches

and still identified relevant matches. Unfortunately, NCF_sdhash
missed a few matches which we considered difficult (e.g., a lot

of changes performed over the whole document). This is similar

to Foster (2012) who referred to blocks that repeat three or more

times as common blocks.

Comparing N = 3 and N = 5 : in the latter case, NCF_sdhash
found more true positive cases but at the cost of some extra false

positives. For N -values of 10 or more, we noticed an increase in the

false positives where many related to template similarity.

RQ4. How does removing common features affect the runtime

efficiency?

NCF_sdhash negatively impacts the runtime efficiency (pro-

cessing time) as shown in Section 5.6 due to the db lookups. How-

ever, this difference is insignificant (for our sample set) and may

be even less if using a more performant db. Furthermore, we argue

that processing time is ‘cheap’ and it is more important to reduce

the needed manual labor as discussed in the last section.

6.1. Differentiating between user-generated and other types of

content

One challenge we faced in Section 5.5 was how to treat EXIF

information as it can be seen as user-generated, template or

application-generated content. Regardless of the category, “EXIF

headers [...] can help the investigator to verify the authenticity

of a picture” and is valuable evidence (Alvarez, 2004). In other

words, in the case of blacklisting it should not be ignored. Ev-

ery camera, user, etc. is unique, and thus there should not be too

many images having the same EXIF information. Depending on N /

the size of the db, they may not be considered ‘common’. On the

other hand, future work may consider manually modifying the db

to cover these special scenarios.

More generally: before starting to remove the common fea-

tures, the forensics investigator needs to define the objective of

the search, finding (i) user-generated content; (ii) application-

generated content; or (iii) template content. While we focused on

the first (i), there may be cases where the desired matches are

related to application-generated content (ii) or template content

(iii). Another example is looking for template similarity, where an

examiner has to find documents created by a particular company

without considering their content. In such a case, every document

sharing features related to the template of that company will mat-

ter.

6.2. Other applications

Apart from using the common feature database to remove un-

desirable features, one may use the database for other use cases.

Future work is necessary to assess the significance of such ap-

proaches.

Assessing random samples quality

The database could be used for identifying objects on a de-

vice by looking for fragments of it, e.g., parsing unallocated space

(Foster, 2012; Garfinkel et al., 2010; Moia and Henriques, 2016).

If found, the quality of the fragment can now be assessed. In

other words, the probability a certain file was on the system is

high if a distinct feature is found.

File type discovery Common features may also be used for file

type identification. Given an unknown byte sequence (e.g., disk
ector, object fragment), sdhash can be used to extract features

nd compare them to the db. If there are matches, we can corre-

ate them to the file types.

.3. Limitations

This work comes with three limitations. First, bytewise approx-

mate matching algorithms come with some limitations, e.g., that

hey do not work equally well for all file types. Concerning our ap-

roach, our experiments showed that common features depend on

he file type and thus do also file type dependent. Second, our ex-

eriments included a lot of manual testing and random sampling.

t is possible that we misclassified matches or that we ended up

ith poor samples. Lastly, our results are not of general nature

ut only valid for our test set. For instance, for the t5-corpus, a

 ≤ N ≤ 5 works well; however other sets may require a different

alue. Future work is necessary to confirm if these values work for

arger datasets.

. Conclusions and future work

In this article, we analyzed the impact of common blocks (and

heir exclusion) for approximate matching algorithms. Therefore,

e first explained what common blocks are and found that they

ften related to application-generated content or template similar-

ty. Our results showed that some file types are more prone to pro-

uce common features than others and that common blocks were

hared across various file types. As a second step, we removed the

ommon blocks to see their impact on the amount and quality of

imilarity matches. By excluding the less important features, the

umber of matches was significantly reduced with an acceptable

oss in the similarity detection; in some cases we obtained approx-

mately 87% less matches compared to traditional tools.

As next steps, we want to explore different data database solu-

ions or create a customized structure to store the common fea-

ures in order to improve efficiency. Additionally, other datasets

eed to be analyzed to see if we can find a perfect N -value which

an be universally and more file types (e.g., zip , bmp , mp3). Lastly,

e like to study if it is possible to identify template or application-

enerated content similarity.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

cknowledgment

This work is partially supported by CAPES FORTE project

 23038.007604/2014-69) and Santander International Mobility Pro-

ram for Graduate Students.

eferences

dobe-Systems, 20 08. ISO 320 0 0 - Document management - Portable Document

493 Format. Part 1: PDF 1.7. ISO (1st ed.).
lvarez, P. , 2004. Using extended file information (exif) file headers in digital evi-

dence analysis. Int. J. Digital Evidence 2 (3), 1–5 .
Bloom, B.H., 1970. Space/time trade-offs in hash coding with allowable errors. Com-

mun. ACM 13 (7), 422–426. doi: 10.1145/362686.362692 .
reitinger, F. , Baier, H. , 2013. Similarity Preserving Hashing: Eligible Properties

and a New Algorithm MRSH-v2. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 167–182 .

Breitinger, F. , Guttman, B. , McCarrin, M. , Roussev, V. , White, D. , 2014. Approximate

matching: definition and terminology. NIST Special Publication 800, 168 .
reitinger, F. , Roussev, V. , 2014. Automated evaluation of approximate matching al-

gorithms on real data. Digital Investig. 11, S10–S17 .
reitinger, F. , Stivaktakis, G. , Roussev, V. , 2014. Evaluating detection error trade-offs

for bytewise approximate matching algorithms. Digital Investig. 11 (2), 81–89 .

https://doi.org/10.13039/501100002322
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0001
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0001
https://doi.org/10.1145/362686.362692
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0003
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0004
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0005
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0006
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0006

 11

D

F

G

G

G

G

K

K

K

M

M

N

O

P

R

R
R

R

S

S

V
p

a

a
f

D
v

p
a

(

N
i

H
D

c
o

D

a
c

i
c

h

avis, J. , Goadrich, M. , 2006. The relationship between precision-recall and roc
curves. In: Proceedings of the 23rd international conference on Machine learn-

ing. ACM, pp. 233–240 .
oster, K. , 2012. Using distinct sectors in media sampling and full media analysis to

detect presence of documents from a corpus. Technical Report. Naval Postgrad-
uate School Monterey (CA) .

arcia, J. , 2018. Duplications and misattributions of file fragment hashes in image
and compressed files. In: 2018 9th IFIP International Conference on New Tech-

nologies, Mobility and Security (NTMS). IEEE, pp. 1–5 .

arfinkel, S. , Nelson, A. , White, D. , Roussev, V. , 2010. Using purpose-built functions
and block hashes to enable small block and sub-file forensics. Digital Investig.

7, S13–S23 .
arfinkel, S.L. , McCarrin, M. , 2015. Hash-based carving: searching media for com-

plete files and file fragments with sector hashing and hashdb. Digital Investig.
14, S95–S105 .

utierrez-Villarreal, F.J. , 2015. Improving sector hash carving with rule-based and

entropy-based non-probative block filters. Technical Report. Naval Postgraduate
School Monterey (CA) .

ameyama, A.S. , Moia, V.H.G. , Henriques, M.A .A . , 2018. Aperfeioamento da fer-
ramenta sdhash para identificaçõo de artefatos similares em investigações

forenses. In: Extended Anais of XVIII Brazilian Symposium on information and
computational systems security. SBC, Natal-RN, Brasil, pp. 223–232 .

im, H. , Agrawal, N. , Ungureanu, C. , 2012. Revisiting storage for smartphones. ACM

Trans. Storage (TOS) 8 (4), 14 .
ornblum, J. , 2006. Identifying almost identical files using context triggered piece-

wise hashing. Digital Investig. 3, 91–97 .
oia, V.H.G. , Breitinger, F. , Henriques, M.A .A . , 2019. Understanding the effects of

removing common blocks on approximate matching scores under different sce-
narios for digital forensic investigations. In: XIX Brazilian Symposium on infor-

mation and computational systems security. Brazilian Computer Society (SBC),

SÃ£o Paulo-SP, Brazil, pp. 1–14 .
oia, V.H.G. , Henriques, M.A .A . , 2016. Sampling and similarity hashes in digital

forensics: An efficient approach to find needles in a haystack. In: XVI Brazil-
ian Symposium on information and computational systems security. Brazilian

Computer Society (SBC), Niteroi-RJ, Brazil, pp. 693–702 .
oll, L. C., 2012. Fowler/noll/vo (fnv) hash. http://www.isthe.com/chongo/tech/

comp/fnv/index.html , Accessed 2019 Oct 21.

liver, J. , Cheng, C. , Chen, Y. , 2013. TLSH–a locality sensitive hash. In: Cybercrime
and Trustworthy Computing Workshop (CTC), 2013 Fourth. IEEE, pp. 7–13 .

urohith, D. , Mohan, J. , Chidambaram, V. , 2017. The dangers and complexities of
sqlite benchmarking. In: Proceedings of the 8th Asia-Pacific Workshop on Sys-

tems. ACM, p. 3 .
aff, E. , Nicholas, C. , 2018. Lempel-ziv jaccard distance, an effective alternative to
ssdeep and sdhash. Digital Investig. 24, 34–49 .

entz, D., 2007. Microsoft Compound Document File Format. OpenOffice.
oussev, V. , 2010. Data fingerprinting with similarity digests. In: IFIP International

Conf. on Digital Forensics. Springer, pp. 207–226 .
oussev, V. , 2011. An evaluation of forensic similarity hashes. Digital Investig. 8,

34–41 .
QLite, 2019a. Sqlite index. http://www.sqlitetutorial.net/sqlite-index/ . Accessed

2019 Oct 21.

QLite, 2019b. The sqlite query optimizer overview. https://www.sqlite.org/
optoverview.html . Accessed 2019 Oct 21.

itor Hugo Galhardo Moia is a Ph.D student at the School of Electrical and Com-
uter Engineering, University of Campinas, Sao Paulo, Brazil. His research interests

re computer and network security, including issues related to computer forensics

nd applied cryptography. Moia received a master’s degree in computer engineering
rom the same university. Contact him at vhgmoia@dca.fee.unicamp.br.

r. Frank Breitinger received the B.S. degree in computer science from the Uni-
ersity of Applied Sciences in Mannheim (2009, Germany), his M.S. degree in com-

uter science from the University of Applied Sciences Darmstadt (2011, Germany)
nd his Ph.D. degree in computer science from the Technical University Darmstadt

2014). He was self-employed for 5 years as well as a visiting researcher at the

ational Institute of Standards and Technology leading NIST SP 800-168 on Approx-
mate Matching. From 2014 - 2019 he was an Assistant Professor University of New

aven, CT before accepting an Assistant Professor position at the Hilti Chair for
ata and Application Security at the University of Liechtenstein. His research fo-

uses on cybersecurity and digital forensics. Additional information can be found
n https://www.FBreitinger.de .

r. Marco A . A . Henriques is an Associate Professor at the School of Electrical

nd Computer Engineering, University of Campinas, Sao Paulo, Brazil, where he
oordinates a research group on applied security. His main research interests are

n the areas of cryptography, applied security, digital identity management and
ryptographic protocols. More detailed information about him can be found on

ttp://www.dca.fee.unicamp.br/ ∼marco .

http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0007
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0008
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0009
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0010
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0011
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0012
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0013
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0014
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0015
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0016
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0017
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0017
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0018
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0019
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0020
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0021
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0021
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0022
http://refhub.elsevier.com/S0167-4048(19)30215-9/sbref0022
http://www.sqlitetutorial.net/sqlite-index/
https://www.sqlite.org/optoverview.html
https://www.FBreitinger.de
http://www.dca.fee.unicamp.br/~marco

	The impact of excluding common blocks for approximate matching
	1 Introduction
	2 Background and related work
	2.1 Bytewise approximate matching algorithms
	2.2 Common blocks

	3 Research direction, design decisions and implementation
	3.1 Procedure overview / workflow
	3.2 Database implementation
	3.3 Implementation changes to existing tools

	4 Experimental results on common features
	4.1 Common blocks overview in t5-corpus
	4.2 Most common features for each file type
	4.3 Common features across different file types

	5 Impact on similarity detection
	5.1 Summary of number of matches in the dataset
	5.2 Compound file type (doc, ppt, xls)
	5.3 PDFs
	5.4 TEXT and HTML
	5.5 JPEG and GIF
	5.6 Performance test

	6 Discussion
	RQ1. What are the common features? How frequently do they appear? How do they spread across file types?
	RQ2. How does ignoring common features impact the similarity detection (i.e., number of matches)?
	RQ3. Is there a clear threshold N for which common features are ignored in the dataset at hand?
	RQ4. How does removing common features affect the runtime efficiency?
	6.1 Differentiating between user-generated and other types of content
	6.2 Other applications
	6.3 Limitations

	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgment
	References

