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AndroParse - An Android Feature Extraction
Framework & Dataset

Robert Schmicker, Frank Breitinger and Ibrahim Baggili
    The University of New Haven

Abstract. Android malware has become a major challenge. As a conse-
quence, practitioners and researchers spend a significant time analyzing
Android applications (APK). A common procedure (especially for data
scientists) is to extract features such as permissions, APIs or strings
which can then be analyzed. Current state of the art tools have three
major issues: (1) a single tool cannot extract all the significant features
used by scientists and practitioners (2) Current tools are not designed
to be extensible and (3) Existing parsers do not have runtime efficiency.
Therefore, this work presents AndroParse which is an open-source An-
droid parser written in Golang that currently extracts the four most
common features: Permissions, APIs, Strings and Intents. AndroParse
outputs JSON files as they can easily be used by most major program-
ming languages. Constructing the parser allowed us to create an extensive
feature dataset which can be accessed by our independent REST API.
Our dataset currently has 67,703 benign and 46,683 malicious APK sam-
ples.

Key words: AndroParse, Android, Malware, Dataset, Features, Frame-
work

1 Introduction

Without a doubt, smartphone malware is on the rise. As a consequence, re-
searchers and industry spend significant resources to improve malware detection
techniques, e.g., by manually analyzing applications during forensic investiga-
tions or applying machine learning techniques.

Regardless of how a practitioner analyzes applications, there are usually two
essential steps. First, one acquires a single malware sample / a sample dataset;
when it comes to machine learning datasets are essential. Second, one will have
to parse information to gain insight into the application(s). An overarching step
by step workflow for machine learning approaches is depicted in Fig. 1 which
coincides with the process observed in other works [9].

Malicious APK acquisition is often kept private due to ethical restrictions of
freely sharing malware on the Internet; Table 2 shows some available
datasets. For those that are private, users can often request access through
a review process.

Benign APK acquisition involves downloading samples through public websites
[4, 5] such as Google Play (Google’s application store).
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Fig. 1. Current work flow for machine learning approaches.

Feature extraction defines the step of extracting relevant information from the
APKs. This may include a separate library for each sought after feature.
Since these libraries are often written in varying languages (e.g., C++, Java,
or Python) this requires the user to be well versed in many languages, adding
another layer of complexity.

Features to vector conversion transforms the raw feature data into vectors for a
machine learning algorithm. One will typically write a script to massage the
data into the format required for their algorithm.

Processing vectors is the final stage and allows a data scientist to test the de-
tection rate of their algorithm.

From a forensic practitioner’s perspective, the bulk of the work is related
to reverse engineering the applications where one usually starts by extracting
features to understand the application’s code (e.g., looking for strings in the
APK like IPs, hashes or URLs).

While these procedures are well established, there are some drawbacks.
Downloading benign applications / requesting access to malicious applications
can be time consuming, e.g., one may be tasked with writing a crawler or con-
tacting website administrators for access to a bulk download. Sharing malware
directly has downsides as well [11] and even though a review process exists, there
is no guarantee that samples will only be used for research.

In this paper we present AndroParse, as well as, a freely accessible Android
feature dataset which can be easily used by practitioners; it allows to download
features of over 100,000 applications (benign and malicious). Specifically, this
paper has two major contributions :

1. AndroParse is the first open source and extensible Android APK parser that
allows users to quickly access features/artifacts of interest. As it is expand-
able, AndroParse provides a framework for plugins that can accommodate
for new features/artifacts in various programing languages.

2. We provide a centralized, online dataset of Android APK features for exam-
iners and data scientists1 that can be accessed and downloaded through our
web interface. Currently AndroParse’s open dataset holds a total of 114,386

1 A prominent example that these services are valuable for the community is the UCI
Machine Learning Repository [25] which includes a multitude of data and reposito-
ries and is frequently referenced in literature.
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unique APKs - 67,703 benign and 46,683 malicious. This count is tenta-
tive as the dataset grows in size every day through the use of automated
webcrawlers.

In our initial version, AndroParse supports four major features; we chose
these features after analyzing state-of-the-art research: as they were the most
common ones in scientific literature. To extract the features, we constructed a
multi-threaded Golang plugin framework that utilizes existing applications (e.g.,
Android Asset Packaging Tool). This modular design allows anyone to add new
feature extraction plugins if needed. Data scientists and forensic practitioners
can access our platform to download the extracted features by querying a REST
API to download them in a JSON format. Note, feature extraction is performed
on our server thus it consumes minimal computational resources from the user.

The rest of the paper is structured as follows: Sec. 2 summarizes existing
tools for extracting information from an APK file, as well as, Android datasets
and services. The extraction process is explained in granular detail in Sec. 3
which includes the implementation, tools used, features used, extending to new
features, and extraction process. Statistics and an overview of the open dataset
provided is presented in Sec. 4, in addition to, querying the parsed APKs con-
tained in the open dataset in Sec. 4.3. This leads to an evaluation of AndroParse
in Sec. 5. Lastly, we provide limitations, as well as, future work.

2 Background & related work

Given our two major contributions, we separated this section into Feature extrac-
tion & decompilation tools where we summarize existing frameworks and tools
and Malware samples and services which summarizes the existing datasets we
found. For a more comprehensive list of Android security resources, one may
visit Ashish Bhatia’s Github [12].

2.1 Feature extraction & decompilation tools

The following tools have been developed to ease the process of extracting desired
features from Android applications.

Android Asset Packaging Tool (AAPT, [14]) is part of Google’s Android SDK
and has been utilized by several researchers. This command-line tool decodes and
parses the AndroidManifest.xml and allows users to query certain information
about an APK. AAPT has been used “[...]to extract and decrypt the data from
the AndroidManifest.xml file[...]” to access the APKs’ permissions [31]. Written
in C++, it is a fast tool as it provides the AndroidManifest.xml without having
to decode the entire APK file.

apk_parse [36] is a Python library written to parse information from the An-
droidManifest.xml. Unfortunately, it limits itself to the manifest and meta data
of an APK for feature extraction. A more comprehensive tool is Androguard
[13] which is an open source Python tool for extracting features from an APK’s
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AndroidManifest.xml and DEX files. For instance, it has been used to test An-
droid APK code obfuscation techniques [15]. Although Androguard is extensive
and capable, it is time consuming to process an APK. In addition, it does not
parse intents from an APK used by several works (see Table 4). Rapid Android
Parser for Investigating DEX files is an open source Java based library for pars-
ing DEX files [42]. It minimizes the time it takes to parse an APK by having an
in-memory representation of the data that allows queries. The problem is that it
is limited to strings and APIs and scientists still need to understand the struc-
ture / APIs in order to query it. Besides the actual malware dataset (mentioned
in the previous section), Drebin provides “all features extracted from each of the
123,453 benign applications and 5,560 malicious applications” [38, 7]. However,
the Drebin feature extraction tool seems to be closed source. This hinders open
performance reviews and comparison to open source tools.

While the previous tools focused on feature extraction, APKTool [40] dis-
assembles the APK file into smali form as well as decompresses the Android-
Manifest.xml. Smali files are text files (one per java class) which are simpler to
understand than DEX files. However, these files then need to be parsed again in
order to be used by data scientists [29].

2.2 Malware samples and services

While searching for malware samples, we identified that there were two kinds of
sets which we will refer to as services and sample sets.

Malware services are online applications that possess or allow the uploading of
samples but only share secondary information. For instance, these services ex-
amine an APK file and detect if it is malicious or provide other information such
as extracted strings or permissions. VirusTotal.com is one popular example
[37]. Although convenient, VirusTotal has a major limitation of being signature
based and therefore it cannot be fully aware of the intents of an application.
Payload Security [27] does offer an online searchable dataset of malware. Al-
though highly informative, it is limited to metadata, permissions, and extracted
strings for a given malware sample but does not include APIs and other strings.
Other sources such as AndroTotal [21] and NVISO APK Scan [23] exist but the
user must first have the APK samples to analyze. To sum it up, these third
party services are convenient for small applications in small quantities and are
not suitable for large-scale detailed APK file analysis. Secondly, AndroTotal and
NVISO APK Scan offer some features to be viewed online but they do not offer
a download option of the features. Payload Security offers an API except the
user must sign up for access and is given a quota per API key.

Malware sample sets are repositories which are available for download; an
overview is shown in Table 2. Most datasets are kept password protected and
only through a review process can a researcher gain access.

One frequently utilized dataset is Drebin [7]. This dataset consists of 5,560
samples from 179 different malware families collected from 08/2010 to 10/2012

VirusTotal.com
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Fig. 2. Extraction & querying workflow

and is available for researchers in academia as well as industry after ‘registra-
tion’ (sending an email). Another example dataset was the Malware Genome
Project2 [43]. However, according to the website this dataset is no longer being
maintained. Contagio Mobile [26] contains a smaller amount of APKs, but are
referenced extensively in research articles. Works have used the repository to
analyze the effectiveness of permissions as the sole feature for malware detection
[32]. Das Malwerk [35] and theZoo [24] are examples of datasets that are open to
the public. They not only contain Android malware, but Windows and OS X ex-
ecutables as well. The malware samples vary from cryptolockers to ransomeware,
and trojans.

3 AndroParse

AndroParse is a feature extraction framework that is developed for digital foren-
sic practitioners and data scientists. It allows users to parse features out of
Android applications which can then be manually analyzed (e.g., using elastic-
search) or used as input for machine learning approaches. A complete overview
is depicted in Fig. 2.

Although popular tools for Android APK reverse engineering have been pre-
viously written in Python [13] and Java [1], AndroParse is written in Golang.
We chose Golang as it provides authentic multi-threading, unlike Python3, and
a runtime plugin interface, unlike Java. Both of these programming language
features are heavily relied upon in the framework.

3.1 Installation and usage

AndroParse is a command-line driven tool that parses four different features
from APK files and outputs results in a commonly accepted JSON format. Before
running it, it requires some preparation:
2 http://www.malgenomeproject.org (last accessed 13-April-2018)
3 https://wiki.python.org/moin/GlobalInterpreterLock (last accessed 13-April-
2018)

http://www.malgenomeproject.org
https://wiki.python.org/moin/GlobalInterpreterLock
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Table 1. Reverse engineering tool comparison.

Tool AndroParse php_apk_parser[34] Androguard[13] Apktool[1]

Open Source
License GPL-3.0 None Apache-2.0 Apache-2.0
Expansion
Language Golang PHP Python Java
Manifest
Dex
Export Format JSON XML Python XML/Smali

Dependencies. While some dependencies are included in the repository, others
must be downloaded and installed manually. Particularly, our implementation
requires the RAPID JAR [42] (included), Glide package manager, and Google’s
AAPT [14].

The Glide package manager provides an easy to use interface for installing
Golang dependencies. Installation instructions for Glide can be found on their
GitHub repository4. Once Glide has been installed, users can download the
AndroParse source code and put it in any directory. Next, the user must run
the command make update && make configure to download, install, and pre-
pare all Golang related dependencies AndroParse requires to compile. The sec-
ond manual dependency, AAPT, can be installed as a system wide package
in Debian, CentOS, and Mac OSX based distributions of UNIX/BSD. Once
dependencies are installed, AndroParse can be compiled and executed using
make && androparse.

Command-line options. Before running the application, the user is required
to create a YAML configuration file:

apkDir: "/home/myuser/apks"
codeDir: "/home/myuser/src/github.com/AndroParse/androparse"
outputDir: "/home/myuser/output"
vtapikey: "My VirusTotal API Key"

The field apkDir contains the directory of the user’s APK dataset. codeDir
provides the source code directory to access the RAPID JAR file, as well as,
feature extraction plugins at runtime. outputDir specifies the directory the user
would like to store the resulting JSON for parsed APKs. Lastly, vtapikey is
optional, however, is required under the condition that the user requests each
sample to be validated with VirusTotal using the vt flag. Then our implemen-
tation can be executed by

androparse -config ~/myconfig.yaml -vt -clean -append -parser Permissions

4 https://github.com/Masterminds/glide (last accessed 13-April-2018)

https://github.com/Masterminds/glide


AndroParse - An Android Feature Extraction Framework & Dataset 7

The config flag is the only required command line option as it provides a
relative or absolute path to a user’s configuration file. vt specifies that the user
wants to validate the APK samples with VirusTotal (this requires an API key
in the configuration file). In the absence of this flag and should the user execute
the IsMalicious plugin, the user must separate their APKs into benign/ and
malicious/ directories. The flag, clean, renames all files stored in the targeted
APK directory to their SHA256 values. This removes any duplicates from the
dataset and reduces disk usage (note, the original file name is not captured as
often APKs were renamed beforehand, e.g., most of the malicious datasets).
append allows users to add a new feature into existing JSON output files from
a previous extraction run, or skip over already parsed APKs. Lastly, parser
permits the user to specify which feature extraction plugin(s) to run explicitly.
In the absence of this flag, all feature extraction plugins are ran.

3.2 Extracting and adding new features

The following paragraphs highlight how AndroParse extracts the features from
every APK file:

Deduplication (a.k.a. clean). As a first step, AndroParse will rename ev-
ery APK to its corresponding SHA256 hash value. This mitigates any duplicate
APKs in the dataset and decreases the necessary runtime of the extraction pro-
cess.

Feature Extraction. To extract various features, we utilize existing tools:

MD5, SHA1, SHA256, Date, File Size are generated using Golang’s standard
libraries. The file size of an APK is stored in bytes. Furthermore, we capture the
timestamp (format "yyyy-mm-dd HH:MM:SS") when the APK is processed which
allows to have standardized sets, e.g., the detection rates can be compared by
the standardized corpus before ‘date’.

Permissions, Intents, Package Name and Version are extracted using Google’s
Android Asset Packaging Tool (AAPT, [14]). AAPT can extract an APK’s An-
droidManifest.xml without having to decompress an entire APK’s content. The
feature extraction plugins Permissions, Intents, PackageName, and PackageV-
ersion each call AAPT to decompress the AndroidManifest.xml file to parse a
given feature.

APIs, Strings are analyzed by the RAPID library [42]. Therefore, we invoke
RAPID’s Java jar library through an operating system exec call5.

Adding new features / extending AndroParse. One of the key strengths
of AndroParse is extensibility (adding new feature extraction methods) which
is implemented using Golang’s runtime plugin interface6. The interface provides
5 This portion of code must be performed sequentially as there is a low-level JVM
memory error when multiple threads access the library at once.

6 https://golang.org/pkg/plugin/ (last accessed 13-April-2018)

https://golang.org/pkg/plugin/
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three main benefits to a developer creating new plugins for feature extraction.
(1) The developer does not need have a working knowledge of the framework
and can purely focus on extracting desired features, (2) It does not require
recompilation of the entire framework, and (3) It allows plugins to be written in
other programing languages such as C and C++7. More details can be found in
the documentation8. The remainder of this section details the development of a
plugin.

The sample structure for plugins is highlighted in Listing 1. Each plugin is
considered as its own package and therefore must label itself as main (line 1).
Furthermore, the plugin must import AndroParse utils (line 4) package as it
contains a necessary configuration data structure so that the plugin can access
information from the included YAML file on execution. The actual functionality
is implemented in three functions:

1. NeedLock() returns true or false depending on if the parser needs to be
locked from other threads accessing the same parser at the same time. For
instance, the RADIP JAR library currently cannot run in multiple threads
and therefore this function should return true (See Sec. 6 for more details).

2. GetKey() only returns a key (string) that indexes the given plugin’s value
in the resulting JSON output for a given APK. A user may choose this to
be the plugin’s name for example.

3. GetValue(string, utils.ConfigData) accepts a path to an APK (the
framework iterates over each APK) and a struct containing configuration
data from the user created YAML file (See Sec. 3.1). Note the first return
type of interface{}9, this means that the plugin can return any type and
the AndroParse framework will correctly handle its type to be displayed in
the resulting JSON file. In addition, the plugin must also return an error
value should an error occur or nil when all has processed correctly.

Once completed, the parser needs to be stored in the folder
./androparse/plugins/MyPluginName/. Following this, the plugin’s .go file
needs to be added in the Makefile (./androparse/plugins/Makefile):
PLUGINS := Apis/Apis.go Intents/Intents.go [...] MyPluginName/MyPluginName.go

Following this, the developer can compile their plugin using the make com-
mand, and finally, invoke their plugin by executing where myPluginName is the
file name:
androparse -config ~/myconfig.yaml -parser MyPluginName

1 package main
2

7 One can use any language as long as the code can be compiled into a shared object
file

8 blinded for review
9 https://golang.org/doc/effective_go.html#interfaces (last accessed 13-April-
2018)

https://golang.org/doc/effective_go.html#interfaces
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3 import (
4 "AndroParse/ androparse / u t i l s "
5 " os "
6 )
7

8 func NeedLock ( ) bool { re turn f a l s e }
9

10 func GetKey ( ) s t r i n g { return " F i l e S i z e " }
11

12 func GetValue ( path s t r i ng , c on f i g u t i l s . ConfigData )
13 ( i n t e r f a c e {} , e r r o r ) {
14 f i l e , e r r := os . Open( path )
15 i f e r r != n i l {
16 re turn n i l , e r r
17 }
18 f i , e r r := f i l e . Stat ( )
19 i f e r r != n i l {
20 re turn n i l , e r r
21 }
22 re turn f i . S i z e ( ) , n i l
23 }

Listing 1. Example AndroParse Plugin.

3.3 Storage schematic / accessing features

The features of each APK are stored in a JSON file. An example of this output is
shown in Appendix A Listing 3. We decided for JSON due to the widespread sup-
port across most programming languages and its compatibility with may tools,
e.g., Elasticsearch (details below). An example use case of using AndroParse’s
JSON output can be seen in our repository under analysis/train_oa.py. The
script showcases several machine learning algorithms compared against each
other using the permissions of an APK as a feature vector.

Elasticsearch is a textual indexing engine used for searching for the features by
our backend which can be used for JSON files. Elasticsearch requires a mapping
to be used which “defines how a [JSON] document, and the fields it contains,
are stored and indexed”10. The mapping used by AndroParse can be seen in
Appendix A Listing 5. As shown, this JSON structure identifies which data type
should be used for each field (it can be updated to accommodate a new feature).
Once the mapping of the dataset is updated, a new feature can be appended onto
existing documents. Using Elasticsearch in our backend provides AndroParse a
scalable solution not only as the number of APKs grows, but also as the number
of new features increases.
10 https://www.elastic.co/guide/en/elasticsearch/reference/current/mappin

g.html (last accessed 13-April-2018)

https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html
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Verification of Elasticsearch Sec. 5.1 verifies the process of extracting the fea-
tures from an APK, however, we still found it necessary to verify that the JSON
documents Elasticsearch indexes are not modified in any way when queried. To
verify Elasticsearch’s output, a query is performed on a given APK download-
ing all of its key value pairs. Then for every value contained in the given APK’s
JSON file produced by AndroParse, it is searched and matched to Elasticsearch’s
output. After 100 successful trials, it was concluded that the data is valid.

4 Dataset and parsed features

We will summarize the dataset we collected, as well as, motivate the features
that are currently available.

4.1 Dataset contents

In order to provide a comprehensive feature dataset for researchers, we collected
available malware datasets and downloaded benign samples as listed in Table 2
(note, a few malware datasets contained duplicates). While collecting the sam-
ples, we found that the average size per application differs; malicious applications
seem to be smaller than benign (See Table 3).

Table 2. Malicious APKs in AndroParse’s Dataset.

Source # of APKs Private Reference

AMD 24,553 [39]
PRAGuard 10,479 [22]
Third Party Stores 9,587
Drebin 5,560 [7]
Contagio Mobile 818 [26]
theZoo 100 [24]
GitHub 73 [12]
Das Malwerk 55 [35]
Total Before Dedup 51,270
Total After Dedup 46,683

The count of benign APKs is rapidly changing due to routine web-scrappers
that continuously crawl third party websites such as apk-downloaders.com, ap-
kapps.com, apkfiles.com, apkleecher.com, apkmirror.com, fdroid.org, slideme.org
and the Google Play App store. These web-scrappers are public and open to the
community to use in our source code repository under ./webscrappers/. Note,
third party sites constantly change their HTML structure and one may have
to adjust them. Furthermore, we would like to ask the community to consider
contributing their samples our repository.
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Table 3. AndroParse dataset statistics.

APK APK APK
count total size avg. size

Benign 67,703 583.67 GB 8.28 MB
Malicious 46,683 70.26 GB 1.54 MB

Total 114,386 653.93 GB 5.85 MB

4.2 Identifying relevant features

To gain insight into commonly used features for Android malware detection,
we analyzed state-of-the-art literature by searching databases for key terms like
‘Android, Malware, and / or Machine Learning’. We then selected the 15 arti-
cles listed in Appendix A Table 7 because they were the most recent (2012 or
newer) and are frequently cited. A summary of the utilized features is provided
in Table 4.

Table 4. Number of features used across papers.

Feature # of occurrences

Permissions 13
APIs 11
Strings 7
Intents 6
Components 3
Graphs 1
Signatures 1
Meta Data 1
Opcodes 1

Note, the total number of features exceeds the total number of analyzed
articles as most references use several features. For example, a single article could
use hardware/application components, permissions, intents, APIs, and network
addresses (strings) [7]. Each of these are counted individually leading to a sum
of features larger than the amount of papers.

Our findings are similar to [16] who analyzed 100 papers in the Android
malware domain and permissions were also the most referenced static feature
followed by APIs as the second most used feature (e.g., APIs are used to dis-
cover any use of network connectivity, encryption, or obfuscation [41]). Our third
feature is strings which can include label names, text shown in the application
but also contain URLs, phone numbers, and IP addresses. Lastly, intents pro-
vide an effective method for understanding how an APK may operate. They
are often times combined with permissions for accurate malware detection [10].
Each feature is expressed broadly. For example, APIs includes the use of APIs
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in general as well as special API’s, network API’s, encryption API’s, etc. Since
all APIs in a given APK are extracted, any of these sub-features can be utilized.
The same applies to Strings, i.e., network addresses, native system commands,
phone numbers, etc.

Based on these findings, AndroParse currently supports parsing the top four
features: (1) Permissions, (2) APIs, (3) Strings, and (4) Intents. As discussed
earlier, the framework can easily be extended (Sec. 3.2).

4.3 Front end for accessing AndroParse sample feature dataset

To access the dataset, we developed a REST API which can be queried using
three GET parameters and allows users to download needed features:

fields= returns only the features specified. If left empty or missing, all features
of each APK are returned.

to= returns APKs up until the provided timestamp in the form:
yyyy-mm-ddTHH:MM:SS.

from= return APKs starting from the provided timestamp onward in the form:
yyyy-mm-ddTHH:MM:SS.

/all returns the entire dataset AndroParse has to offer at the time of querying.

Once queried, a ZIP file is created and stored into a directory shared by an
anonymous read-only FTP server. Due to the potential for a large query, using
an FTP server is more flexible (e.g., the end user can resume a download in
case of connectivity problems; no additional query is needed). To free space,
the server will delete queries after a certain time. Once the desired information
is downloaded and extracted (JSON file), a user can manipulate the format to
be used in a wide range of applications and languages such as WEKA [19] or
Python.

Remark: Since the dataset is constantly growing, it is important to use
the to and from GET parameters. Thus, future researchers can compare the
their malware detection technique with previous approaches. For example, data
scientist A uses the dataset prior to (to=)2018-03-03 . This allows data scientist
B to download the same set later even though the entire dataset may haven
grown.

5 Evaluation

In this section, we evaluate the forensic soundness, performance of the An-
droParse framework, and the front end.

5.1 Verification of the feature extraction process

As mentioned in Sec. 3.2 we rely on existing tools / implementations to extract
features. These tools are well documented, have been previously tested by other
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works and are found to be accurate in their extraction process. AndroParse does
however place some overhead on the tools used to structure the data properly
for JSON.

To verify the integrity of the feature extraction process, Golang’s built in
command go test was used to perform unit tests on each of the feature extraction
plugins. Using the APK Facebook Lite version 70.0.0.9.116 as a test APK file,
each unit test was constructed to test for its given feature. go test successfully
showed that each of the plugins created extracted its given feature and matched
the expected value. For further description of how we constructed and executed
our unit tests, please review our documentation on our wiki11.

5.2 Application (APK) validation

When receiving APKs from other researchers/sources, an APK is only treated
as malicious or benign by word of mouth. To further verify a given APK as
malicious or benign we compared the hash of each APK to the VirusTotal [37]
API. Using the VirusTotal service, we were able to more accurately identify
APKs that are malicious or benign.

Interestingly we discovered that 761 previously labeled malicious samples
were found to be benign. On the other hand, 9,587 benign samples were found to
be malicious. This finding of mislabeled benign APKs parallels a previous study
[44] that discovered it is commonplace for third party Android APK stores to
host malware.

5.3 Runtime efficiency of tool kit & API

To measure and compare the runtime efficiency of AndroParse, we used an
Ubuntu Server 16.04 VM using 8x Intel Xeon CPUs E5-2640 v3 @ 2.6GHz
with 64GB of memory. To time the extraction, UNIX’s built in time command
was used.

For testing, we randomly selected 1000 APKs and compared it against mul-
tiple other tools which were chosen due to their popularity in the community
(e.g., highly cited or featured on GitHub). The results are shown in Table 5. It
is important to mention that we only extracted permissions as none of the tools
can parse the same features as AndroParse’s framework. The exact methodology
was as follows:

1. Randomly select 500 benign APK files
2. Randomly select 500 malicious APK files
3. Execute each tool extracting permissions from each APK

– Note in the case of Apktool, only the AndroidManifest.xml is parsed as
this tool does not provide permissions directly.

4. Log the time taken for the process to execute

11 blinded for review
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Table 5. Extraction runtime efficiency of permissions.

Tool Time (s)

AndroParse 6.291
php_apk_parser 13.173
Androguard 88.738
Apktool 733.928

5.4 Usability based on previous works

In the following we highlight how existing work could have benefited from An-
droParse. Therefore, we will briefly summarize what researchers did to extract
the features, and then we will show how the identical feature vector can be
created using our framework.

Permission based approach by [30]. In their work, the authors cross compare
the standard permissions found in the AndroidManifest.xml (i.e., any permis-
sion starting with android.permission) with all standard permissions offered in
Android12. If the APK requests a standard permission, it generates a 1 in the
vector and 0 otherwise. To do so, the users extracted permissions of an APK
using Androguard which is a timely process when scaled to thousands of APKs
(Compare Table 5). On the other hand, AndroParse can provide this information
(used permissions of an APK) by running the following query

https://hostname/api/?fields=Malicious,Permissions

which returns the (list of all) permissions and a true/false malicious indicator
for each APK formatted in a list of key value pairs as described in Appendix A
Listing 4. Following this, the output of AndroParse’s REST API conversion
into feature vectors can be done with a short Python script and does not re-
quire sophisticated programming skills (See Listing 2 or in our repository under
./analysis/perms.py). Lines 3-7 loads in the downloaded JSON file into a dic-
tionary, following which, line 9 creates a list of all standard Android permissions
to compare against. Continuing along, lines 11-16 create a permission’s binary
vector. Lastly, lines 22-25 then loop through the Android APKs and generates
a permission’s binary vector for each, as well as, determines if the given APK
is benign or malicious. After which, a data scientist if free to train/test their
machine learning approach however they choose.

1 import j son
2

3 de f get_apk_json ( f i l e p a t h ) :
4 d = {}
5 with open ( f i l e p a t h ) as json_data :
6 d = json . load ( json_data )

12 https://developer.android.com/reference/android/Manifest.permission.ht
ml (last accessed 13-April-2018)

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
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7 re turn d
8

9 PERMISSIONS = [<standard Android permiss ions >]
10

11 de f get_permiss ions ( apk ) :
12 perms = [ ]
13 f o r permis s ion in PERMISSIONS:
14 s t a tu s = 1 i f permis s ion in apk [ ' Permiss ions ' ] e l s e 0
15 perms . append ( s t a tu s )
16 re turn perms
17

18 f ea ture_vector = [ ]
19 target_vector = [ ]
20 apks = get_apk_json ( "perms . j son " )
21 apks = apks [ ' data ' ]
22 f o r apk in apks :
23 f ea ture_vector . append ( get_permiss ions ( apk ) )
24 target_type = 1 i f apk [ ' Mal i c ious ' ] == ' t rue ' e l s e 0
25 target_vector . append ( target_type )

Listing 2. Excerpt from perms.py.

Permission based approach by [20]. Another work extracted the permission list
from an APK and from that list, a count of the total permissions. This work
could use the identical query to the one in our prior example. Once downloaded,
they would need to iterate through and determine a count of permissions for each
APK. A script demonstrating this parsing of output and counting of permissions
can be found at ./analysis/permscount.py.

Permissions, APIs, and strings approach by [41]. In particular, this approach
was only concerned with strings that contained a system command (e.g., chown
or mount) [41] as well as Permissions and APIs. To collect the necessary data for
this approach, the authors could have queried:
https://hostname/api/?fields=Malicious,Permissions,APIs,Strings

A script is provided under ./analysis/permstringsapis.py which parses
the downloaded JSON data, as well as, build the feature vectors for permissions,
APIs, and system commands.

In summary, AndroParse directly provides the needed information and does
not require a sophisticated APK parser. It is important to note that since the
code for each of these three works were not made publicly available, the scripts
were constructed to match as close as possible to the description in each of the
respective papers. The scripts are located in our public source code repository
and can be taken advantage of in future work.
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5.5 Runtime efficiency assessment

In this section we briefly discuss the runtime efficiency for AndroParse as a stand
alone tool as well as querying our web front end.

AndroParse. To test the feature extraction performance, we selected several
sample sizes (from 250 to 2000 APKs) that were randomly chosen from our
dataset. The results are summarized in Table 6; focus on Extract columns. As
can be seen, the time for extracting features can be time consuming (over 1h
for 2000; not including validation against VirusTotal). The limiting factor here
is the thread lock when extracting strings and APIs using RAPID JAR.

Web front end. For testing the front end, we downloaded all data using an all
query (https://hostname/all) which pulls all fields from each APK. Again, the
results are listed in Table 6 (focus on query columns). Of course, downloading
the required data is much more space and time efficient.

Table 6. Query vs. extraction performance.

APKs Size (MB) Time Performance (MB/s)
Query Extract Query Extract Query Extract

2000 1561 11,888 53.5s 64m16.2s 29.17 3.08
1000 765 6,522 28.4s 36m28.2s 27.98 2.98
750 592 5,017 21.9s 28m9.9s 27.04 2.97
500 407 3,481 16.5s 19m18.1s 24.68 3.01
250 199 1,945 7.7s 9m54.8s 25.90 3.27

6 Limitations

In its current form, AndroParse has two main limitations. First, as discussed
in Sec. 1, the extraction process is only concerned with static analysis of APK
files. This was an initial design choice to focus on the usability of such a plat-
form. Dynamic analysis can expand on features such as but not limited to: file
operations, commands, network traffic, system properties, etc [38]. Second, An-
droParse has been multi-threaded as much as possible to reduce the time taken
to extract features. In its current form, the RAPID JAR file must be ran with
only one instance at a time using the resource. This is due to a low level unsafe
memory access exception thrown from the JVM. Until this bug can be resolved,
the strings and APIs must be ran sequentially, significantly slowing down the
extraction process.
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7 Conclusion

In this paper we presented AndroParse, a feature extraction tool for data scien-
tists and forensic examiners, as well as, a feature dataset that can be accessed
through a REST API.

AndroParse is a general framework that allows users to extract features/forensic
artifacts in a rapid and scalable manner. It is written in Golang and can easily
be extended. In its current version, the tool can extract package name, pack-
age version, MD5, SHA1, SHA256, date extracted, file size, permissions, APIs,
strings and intents. Due to the usage of the JSON format for the output files, the
features can be further processed using any language (e.g., for machine learning
purposes). For instance, a user can utilize Elasticsearch.

Feature dataset was created using AndroParse and is an online dataset that
currently contains the features of approximately 114,386 Android applications
– 67,703 benign and 46,683 malicious. Compared to previous approaches, we do
not share the malware samples directly but only the features which produces two
benefits. First, the malware samples are not shared and thus cannot be misused.
Second, researchers do not have to extract the features on their side which saves
time and processing power.

Acknowledgements. Blinded for review.
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A Identifying Relevant Features Used

1 "Md5" : "66bd8 . . . 3 5 5 7 ea2" ,
2 "Sha1" : "h5k7 . . . f h l 6 5 t " ,
3 "Sha256" : "b277 . . . 2 f443 " ,
4 "Mal i c ious " : true ,
5 "Apis" : [
6 " void android . app . Ac t i v i ty .< i n i t > ( ) " ,
7 . . . ] ,
8 "PackageName" : " bubei . pureman" ,
9 "Vers ion " : " 1 . 0 . 1 " ,

10 " In t en t s " : [
11 " android . i n t en t . a c t i on .MAIN" ,
12 " android . i n t en t . category .LAUNCHER" ,
13 . . . ] ,
14 "Permiss ions " : [
15 " android . permis s ion .WRITE_SMS" ,
16 . . . ] ,
17 "Date" : "2017−12−07 16 : 41 : 51 " ,
18 " F i l e S i z e " :1699930 ,
19 " S t r i ng s " : [
20 "" ,
21 "" ,
22 "\u00d0" ,
23 " " ,
24 " " ,
25 " Build /" ,
26 . . . ]

Listing 3. JSON output of AndroParse of a single malicious application.

1 {
2 [
3 "Mal i c ious " : true ,
4 "Permiss ions " : [
5 " android . permis s ion .WRITE_SMS" ,
6 . . . ]
7 ] ,
8 }

Listing 4. JSON output of AndroParse’s REST API querying for permissions and
malicious status.

1 {
2 "apks" : {
3 "mappings" : {
4 "apk" : {
5 " p r op e r t i e s " : {
6 "Apis" : {
7 " type" : " t ex t "



AndroParse - An Android Feature Extraction Framework & Dataset 21

8 } ,
9 "Date" : {

10 " type" : " date " ,
11 " format " : "YYYY−MM−dd 'T 'HH:mm: s s "
12 } ,
13 " F i l e S i z e " : {
14 " type" : " i n t e g e r "
15 } ,
16 " In t en t s " : {
17 " type" : " t ex t "
18 } ,
19 "Mal i c ious " : {
20 " type" : " t ex t "
21 } ,
22 "Md5" : {
23 " type" : " t ex t "
24 } ,
25 "PackageName" : {
26 " type" : " t ex t "
27 } ,
28 "PackageVersion " : {
29 " type" : " t ex t "
30 } ,
31 "Sha1" : {
32 " type" : " t ex t "
33 } ,
34 "Sha256" : {
35 " type" : " t ex t "
36 } ,
37 " S t r i ng s " : {
38 " type" : " t ex t "
39 } ,
40 "Permiss ions " : {
41 " type" : " t ex t " ,
42 " f i e l d s " : {
43 "keyword" : {
44 " type" : "keyword" ,
45 " ignore_above" : 256
46 }
47 }
48 }
49 }
50 }
51 }
52 }
53 }

Listing 5. JSON mapping used by Elasticsearch.
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Table 7. Overview of articles including their features utilized for our work.

Ref. Features Citation

[30] Permissions, Control
Flow Graphs

“In this article, we present a machine learning based
system for the detection of malware on Android
devices.”

[11] Permissions, APIs,
Strings, Meta Data,
Opcodes, Intents

“This study summarizes the evolution of malware
detection techniques based on machine learning
algorithms focused on the Android OS.”

[38] Signatures,
Permissions,
Application
Components, APIs

“[...]we propose a novel hybrid detection system based
on a new open-source framework CuckooDroid[...]”

[41] APIs, Permissions,
System Commands

“This paper proposes and investigates a parallel
machine learning based classification approach for early
detection of Android malware.”

[16] Permissions, Smali
Code, Intents,
Strings, Components

“In this paper, we studied 100 research works published
between 2010 and 2014 with the perspective of feature
selection in mobile malware detection.”

[33] Permissions, Intents,
Services and
Receivers, SDK
version APIs, Strings

“In this paper, we present Mobile-Sandbox, a system
designed to automatically analyze Android applications
in novel ways[...]”

[10] Permissions, APIs,
URI Calls

“This paper presents an approach which extracts
various features from Android Application Package file
(APK) using static analysis and subsequently classifies
using machine learning techniques.”

[7] Components,
Permissions, Intents
APIs, Strings

“In this paper, we propose DREBIN, a lightweight
method for detection of Android malware that enables
identifying malicious applications directlyon the
smartphone.”

[17] Intents, Permissions,
System Commands,
APIs

“In this chapter, we propose a machine learning based
malware detection and classification methodology,with
the use of static analysis as feature extraction method.”

[6] File Properties,
APIs, System Calls,
JavaScript, Strings

“To discover such new malware, the SherlockDroid
framework filters masses of applications and only keeps
the most likely to be malicious for future inspection by
anti-virus teams.”

[2] APIs, Permissions “In this paper, we aim to mitigate Android malware
installation through providing robust and lightweight
classifiers.”

[18] Permissions, APIs “In this paper, we present a feasibility analysis for
enhancing the detection accuracy on Android malware
for approaches relying on machine learning classifiers
and Android applications’ static features.”

[28] Permissions “In the present study, we analyze two major aspects of
permission-based malware detection in Android
applications: Feature selection methods and
classification algorithms.”

[8] Permissions, URI
Calls, Intents

“In this paper, we perform an analysis of the permission
system of the Android smartphone OS[...]”

[3] APIs, Smali Code Used the decompiled smali code to “[...] link APIs to
their components.”
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