Digital Investigation 29 (2019) S13—S21

Contents lists available at ScienceDirect

Digital Investigation

journal homepage: www.elsevier.com/locate/diin

DFRWS 2019 USA — Proceedings of the Nineteenth Annual DFRWS USA

Inception: Virtual Space in Memory Space in Real Space — Memory)
Forensics of Immersive Virtual Reality with the HTC Vive S

Peter Casey’, Rebecca Lindsay-Decusati, Ibrahim Baggili, Frank Breitinger

University of New Haven, 300 Boston Post Rd, West Haven, CT, 06516, USA

ARTICLE INFO ABSTRACT

Article history: Virtual Reality (VR) has become a reality. With the technology's increased use cases, comes its misuse.
Malware affecting the Virtual Environment (VE) may prevent an investigator from ascertaining virtual
information from a physical scene, or from traditional “dead” analysis. Following the trend of anti-
forensics, evidence of an attack may only be found in memory, along with many other volatile data
points. Our work provides the primary account for the memory forensics of Immersive VR systems, and
in specific the HTC Vive. Our approach is capable of reconstituting artifacts from memory that are
relevant to the VE, and is also capable of reconstructing a visualization of the room setup a VR player was
immersed into. In specific, we demonstrate that the VE, location, state and class of VR devices can be
extracted from memory. Our work resulted in the first open source VR memory forensics plugin for the
Volatility Framework. We discuss our findings, and our replicable approach that may be used in future
memory forensics research.

© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under

Keywords:

Memory forensics
Data recovery
Virtual reality
Reverse engineering

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the rise in popularity of Virtual Reality (VR) devices, and
their new found residence in the consumer marketplace, these
complex systems will soon become an important source of digital
evidence. Hardware improvements, price reductions and a boom of
content has led to over 1 million VR headsets being sold in 2017
(Lamkin, 2017). As end users have readily adopted Augmented Reality
(AR), VR, and Mixed Reality (MR) alike, the forensics community has
lagged in preparing for a new environment, where crimes and evi-
dence are a coalescence of virtual and physical realities.

Virtual Environments (VEs), hosting new types of social inter-
action, may also be the locale for misconduct. Reports of sexual
harassment in VR, where women have been groped have caught
both digital investigators and lawmakers off guard (Wong, 2016).
Fully immersive systems, which envelope the entirety of a user's
vision, force the user to impart their trust to the VR system's safety
mechanisms. Users may injure themselves using the systems, or
defraud each other in the VEs. Moreover, social features of online
gaming have recently become a haven for money laundering

* Corresponding author.

E-mail addresses: pgroml@unh.newhaven.edu (P. Casey),
newhaven.edu (R. Lindsay-Decusati), [Baggili@newhaven.edu (I
Fbreitinger@newhaven.edu (F. Breitinger).

URL: http://[www.unhcfreg.com, http://www.unhcfreg.com, http://www.Bag-
gili.com/, http://www.fbreitinger.de

rlind2@unh.
Baggili),

https://doi.org/10.1016/j.diin.2019.04.007

(Editor, 2015). Ethical and legal controversy have kept a legal pre-
cedence at bay, however, these concerns should not preclude a
thorough forensic evaluation (Lemley and Volokh, 2017).

Preliminary work has been conducted on disk and network ar-
tifacts of VR systems, however, volatile memory is a source yet to be
considered (Yarramreddy et al., 2018). Large amounts of informa-
tion, that may not be available in traditional storage can be recov-
ered from volatile memory. This may include running processes,
network connections, chat messages and encryption keys (Case and
Richard, 2017). VR systems are no exception; the complex tracking
system and device events are largely handled in memory. Tradi-
tional “dead” analysis will not recover such evidentiary data.

As forensic techniques continue to improve and adversary tac-
tics evolve, memory forensics has become increasingly important.
Malware and exploitation tools are progressively reducing their
non-volatile footprint and thus evidence collection must keep pace.
As the field was once primarily focused on operating system level
forensics (Case and Richard, 2017), application and device specific
data collection is too finding relevance (Anglano et al., 2017; Sylve
et al., 2012). Today, our homes have been filled with an ecology of
devices. We have seen the epic rise of smart phones, eReaders,
smart watches, fitness and health trackers, gaming devices, smart
TVs, Internet of Things devices, etc. Virtual Reality devices are now
moving into this complex playing field and require a forensic
evaluation of volatile memory.

With MR systems blending together virtual and physical expe-
riences, malware targeting these devices may have a slew of

1742-2876/© 2019 The Author(s). Published by Elsevier Ltd on behalf of DFRWS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pgrom1@unh.newhaven.edu
mailto:rlind2@unh.newhaven.edu
mailto:rlind2@unh.newhaven.edu
mailto:IBaggili@newhaven.edu
mailto:Fbreitinger@newhaven.edu
http://www.unhcfreg.com
http://www.unhcfreg.com
http://www.Baggili.com/
http://www.Baggili.com/
http://www.fbreitinger.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2019.04.007&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
https://doi.org/10.1016/j.diin.2019.04.007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.diin.2019.04.007
https://doi.org/10.1016/j.diin.2019.04.007

S14 P. Casey et al. / Digital Investigation 29 (2019) S13—S21

additional capabilities. An immersed user, who trusts both their
vision and hearing to the VR device, is a perfect target for an attack
that could even bring about physical harm (Casey et al., 2019;
UNHCFREG, 2018). Should the VE be maliciously modified to disrupt
or deceive an immersed user, the calibration between the physical
and virtual space will inevitably be compromised. Thus, an
onlooker cannot reliably ascertain the user's virtual orientation
from their physical. This discrepancy would only be found in the live
copy of the system's configuration, residing only in memory.

The HTC Vive, which provides a fully immersive VR experience
and utilizes the most popular gaming platform, Steam, is a fitting
candidate for study (Bailey, 2018). In this work, we conduct an
analysis of the runtime of the HTC Vive to identify potential sources
of digital evidence unique to volatile memory. We develop a
methodology to locate, and extract these data structures from a
memory dump. Finally, we automate the process and form a 3-
dimensional reconstruction of the VE via a plugin for the Vola-
tility Framework. Our work provides the following contributions:

1. To the best of our knowledge this is the primary account for
specifically examining the memory forensics of VR systems.

2. We share our analysis and findings that may impact future in-
vestigations involving VR systems.

3. We employ and share a reusable methodology that may be
adopted by others to create similar plugins.

4. We construct an open source tool Vivedump, that may be used in
the analysis of memory dumps of HTC Vive VR systems and
share related datasets. The tool is a plug-in for the widely
adopted Volatility framework.

The remainder of this paper is organized as follows. We famil-
iarize the reader with VR related components and discuss related
work in Section 2. We present the details of our apparatus and
applications used in Section 3. In Section 4, we present our meth-
odology from scenario creation through plugin development. Our
findings are presented and discussed in Sections 5 and 6 respec-
tively. Finally, we identify areas of future work (Section 7) and make
concluding remarks (Section 8).

2. Background information and related work

VR has been the subject of research in many different academic
disciplines for a very long time. There is much research on what
technology would be required for such a system, and on potential
future uses for this technology. Only recently have consumer grade
VR devices become available. State-of-the art work has only
scratched the surface on the forensics and security of VR. de Guzman
et al. (2018) provided a survey of privacy and security research and
approaches in MR. Most relevant to our work is the work by
Yarramreddy et al. (2018) which considered disk and network arti-
facts of social VR applications, while Casey et al. (2019) evaluated the
security of these systems and implemented proof-of-concept attacks.

Currently there are three types of consumer VR systems avail-
able. Firstly, systems that operate through a small scale device,
typically a smart phone with a peripheral such as Google Cardboard
or the Samsung Gear VR. Secondly, standalone systems that do not
require additional hardware, such as the Oculus Go and Google
Daydream. Finally, systems driven by a desktop or laptop computer,
which allow for a more robust experience. These systems are
typically fully immersive and allow room-scale play, requiring a
tracking system. One such system is the HTC Vive and is the focus of
our work. Readers familiar with this system, may want to skip the
next two paragraphs, but we chose to describe the details of the
HTC Vive system, and it's Application Programming Interface (API)
below.

The HTC Vive base configuration consists of a headset or Head
Mounted Display (HMD) which is tethered to a computer, two
wireless handheld controllers, and two wall mounted base stations
that are responsible for tracking the other devices. The base stations
employ Valve Corporation's lighthouse technology to sweep the
room with infrared light and triangulate the tracked devices. The final
computed location in virtual space is referred to as a pose. Aside from
HDMI image processing on the HMD, the computer driving the sys-
tem handles the bulk of the workload, allowing for convenient
memory collection and analysis. Applications are typically launched
through Steam, a digital distribution platform developed by Valve,
with SteamVR responsible for the VR runtime. To promote third-
party application development, Valve established a framework that
can be expanded to suit any VR system known as OpenVR.

OpenVR is an API designed to free developers from relying on
hardware specific Software Development Kits (SDKs). Simply a
collection of virtual functions matched to the appropriate VR
interface, OpenVR allows applications to maintain compatibility
among several systems and SDKs (Valve Software, 2018). Although
OpenVR can power a variety of systems, OpenVR's developer Valve
partnered with the development of the HTC Vive. Utilizing the API,
we can access hardware and tracking information otherwise un-
available to the user.

One such component of the VE is the Chaperone. Because the
system is fully immersive and encapsulates the entirety of the
user's vision, there must be some protection from physical obsta-
cles. When in close proximity to the user defined boundaries, a
virtual wall (Chaperone) will appear and notify the user.

2.1. Memory forensics

Formal memory forensics arrived on the scene as early as 2001,
with the first structured analysis tools surfacing in 2004 (Case and
Richard, 2017), and a wave of work in 2005 and 2006 with the
Digital Forensics Research Workshop (DFRWS) Forensics Chal-
lenges from those years that spurred several analysis tools such as
the Volatility Framework (DFRWS, 20063, b; Volatility Foundation,
2018).

Factors such as disk encryption and the rise of memory resident
malware have contributed to the need for memory forensics tools.
Initially, memory forensics focused on malware analysis, until the
benefits to other types of investigations were realized. Much work
has subsequently been conducted in the areas of memory acquisi-
tion, and memory analysis. Gruhn and Freiling (2016) provided an
evaluation of methods of acquisition and analysis, comparing the
correctness, atomicity and integrity of each. Work focusing on
acquisition includes Petroni et al. (2006) with the introduction of
FATKit, acquisition of persistent systems (Huebner et al., 2007), and
the use of rootkits to limit acquisition (Bilby, 2006).

A presentation on the subversion of memory forensic acquisi-
tion, the work by Schatz (2007) suggests a minimal operating
system injected into a host system to acquire memory dumps
without the need to be concerned with the problems of trust where
a rootkit may be present in the host operating system. Balogh
(2014) demonstrated the use of a network interface controller to
use direct memory access for memory acquisition. Memory foren-
sics has changed the traditional digital paradigm such that modus
operandi of digital forensics has changed: One can no longer simply
pull the plug immediately. Memory forensics seems to add
complexity, but it is an approach needed to deal with an increas-
ingly complex digital world.

Analyzing a memory dump can be as equally complex, as vola-
tile memory is transient, with each component or application
having its own address space. In addition, paging and redundancy
can complicate the availability of information. A great deal of work

P. Casey et al. / Digital Investigation 29 (2019) S13—S21 S15

Table 1
Workstation details.

System Details

Application Details

Device Details Application Name Version
Processor Intel Core i7-6700 CPU Cheat Engine 6.7
System Type: 64-bit OS, x64 processor Dumplt 3.0.20170909.1
Graphics Card NVDIA GeForce GTx 1070 Microsoft Visual Studio 10.0.16299.0
Manufacturer iBUYPOWER OpenVR v1.0.13
Installed Memory (RAM) 8.00 GB SteamVR 1523310137
Volatility 2.6
has been conducted on the forensics of operating systems. Dolan- Table 2 '
Gavitt (2008) demonstrated analysis of the registry in main HTC Vive details.
memory, and van Baar et al. (2008) targeted files mapped in Device Device ID Firmware Hardware
memory. Zl}ang et al. (2009.) showed Windows kernel processor Headset LHR-941D5CC1 1462663157 0x80020100
control region based analysis and the work by Maartmann-Moe Basestation LHB-BD6F4BB6 436 0x09000009
et al. (2009) demonstrate the use of memory forensics to recover Basestation LHB-016BDC7A 436 0x09000009
cryptographic keys. Hejazi et al. (2009) provided further analysis of Vive Controller LHR-FDDA1B43 1465809478 0x81010500
Vive Controller LHR-FFEGDB47 1465809478 0x81010500

main memory in Windows through work with security specific
calls and the call stack. The technique allowed for data recovered
with previous string search methods. Data structures used by
DOSKEY were examined by Stevens and Casey (2010), which
allowed the command line history to be discovered in memory.

Data extraction, being an important goal of memory analysis can
be heavily reliant on reverse engineering in the absence of source
code and further complicated by the diversity of applications and
their frequent updates. Huebner et al. (2007) presented a method of
creating profiles from C source code to automate this process.
Manual searches can be time consuming and lag behind the most
current operating system version, yet several tools benefit from
this (Betz, 2005; Jr. and Mora, 2005). With YARA, a useful pattern
matching tool for malware detection, textual and binary patterns
can be quickly identified (Alvarex, 2018). Cohen (2017) showed how
YARA can be applied to memory to maintain context between
Virtual Address Descriptors (VADs). Our work employs YARA
scanning across a process's virtual address space, however, signa-
tures do not span multiple VADs. At the time of writing, there was
no literature addressing the memory forensics of VR systems, and
as such, literature in that domain is lacking.

3. Apparatus

In this section, we describe the devices and software used in our
methodology. A desktop workstation was used to drive the VR
system, the details of which can be found in Table 1. Post-collection
memory analysis was conducted using Volatility and the resulting
plugin was designed to function within the Volatility Framework.
Because the Windows profiles necessary for memory analysis were
not included in the latest release (at the time of writing), namely,
Windows 10 x 64 Build 16299, the most up-to-date profiles were
obtained directly from the source code.! The VR system used in this
study was an HTC Vive with the standard components. Details of
the Vive and individual devices are presented in Table 2.

4. Methodology

This section describes the process used to identify memory lo-
cations associated with our targeted data structure and the means
of reliable access. A high level overview of the methodology is
presented in Fig. 1. Creating a scenario with predictable values, we
conduct memory analysis to locate potential data containing

T https://github.com/volatilityfoundation/volatility (last accessed 2018-10-25).

memory regions. Pointer scans are conducted to identify routes to
the data and the machine instructions are inspected to ensure static
references. Using the machine instructions as a YARA signature and
the aforementioned routes, we constructed a Volatility plugin to
automatically extract the data from a memory dump.

4.1. Documentation analysis

We began our study with an analysis of the OpenVR API. The API
documentation was surveyed to identify data structures found to
contain information that may be of interest to a forensic investi-
gator or hold Sensitive Personal Information (SPI). Table 3 shows
the data structures of interest for this study, some of which are
tracked device pose information, device class, device state/activity,
hardware and firmware versions. The objective of this portion of
the study was to determine the extent to which information is
readily available in memory and understand the layout and data
type of the structures we aim to extract. It should be noted that data
structures found in the OpenVR documentation may not perfectly
translate to the underlying VR runtime. Both SteamVR and OpenVR
are authored by Valve Corporation, thus we find many similarities.

We will not present the details of each data structure we
investigated, rather, we will use a single example to trace our
methodology. Listing 1 shows the OpenVR header declaration of
TrackedDevicePose_t. Not depicted, each component of the HMD
matrices or vectors are float values and ETrackingResult is an
enumerator. With this in mind, while conducting our memory
analysis we can expect the structure to be laid out as follows:
B+ floatymamarrinza_c + 3*ﬂoatuVelocity + 3*ﬂoatuAnguIarVelocity +
iNterrackingresulr + 2+bool. The C++- standard states that the complier
cannot reorder struct members, thus we can also expect to find the
data in the order shown in Listing 1 (International Organization for
Standardization, 2017, 12.2.17).

1 struct TrackedDevicePose_t

2 {

3 HmdMatrix34_t mDeviceToAbsoluteTracking;
4 HmdVector3_t vVelocity;

5 HmdVector3_t vAngularVelocity;

6 ETrackingResult eTrackingResult;

7 bool bPoselsValid;

8 bool bDevicelsConnected ;

9

https://github.com/volatilityfoundation/volatility

S16 P. Casey et al. / Digital Investigation 29 (2019) S13—S21

1. Scenario creation
with known values

Qo

Q
VolyiLly

6. Develop Volatility / Rekall

2. Memory Scan ‘
(o)
D,

3. Identify
memory locations

VIVE

plugins

o

(Q') \-Ac data access

7. Tool to extract forensically
valuable information

points and routes

4. Reverse Engineer

Live analysis

Post-collection

Fig. 1. Methodology.

Table 3
OpenVR data structures and enumerators.

Data Contents

Pose and status of tracked device
Tracked device tranformation matrix
Type of Device

Static device properties

Status of the overall system

Event types

Level of Hmd activity

Notification related events

Overlay Events

Ipd change

TrackedDevicePose_t
HmdMatrix34_t
ETrackedDeviceClass
ETrackedDeviceProperty
EVRState

EVREventType
EDeviceActivityLevel
VREvent_Notification_t
VREvent_Overlay_t
VREvent_Ipd_t

4.2. Scenario creation

In order to search for the targeted data in memory, we must be
able to either manipulate the variable to a known value or acquire
the value directly from the VR runtime. We can control and record
the state of the VR system as it is in physical space, yet much of the
underlying tracking and hardware information is transparent to the
user. Leveraging OpenVR, we developped a minimal helper pro-
gram to output each of the components of TrackedDevicePose_t to
the console. We then manipulated the physical position of the HMD
and observed the changes to the data structure. In doing so we
verified our observed output, but also establish known location in
physical space. However, the helper program's interaction with the
VR runtime would not be typical of a normal user experience and
would thus taint future memory collection. For our post-collection
analysis, we must be able to verify the correctness of our location
without the aid of our helper program. Thankfully, the VE and pose
units are in meters, allowing a measurable conversion from phys-
ical location to virtual pose location.

Observing the values of each component of Track-
edDevicePose_t under device manipulation, we find mDevice-
ToAbsoluteTracking to be suitable for memory searching.
Representing the 3-dimensional transformation, we can expect the
value to be unique and relatively constant. The most intuitive and
verifiable data point to search for in this structure is the x, y, and z
positional coordinates of the tracked device, found in mpevice-
ToAbsoluteTracking [0]1[31, [11[31, [2][3] respectively.
Both velocity data vectors are not practical because of the difficulty
associated with maintaining a constant value. Furthermore,
eTrackingResult and the boolean values may not be distinct enough
to narrow memory search results.

4.3. Memory scanning

Once the pose coordinate information is readily available via our
helper program, we can conduct a memory search to locate the
data. We elected to use Cheat Engine to locate and identify pointers
to the data (Byte, 2018). Targeting the VR runtime, we limit our
search to memory allocated to the processes child to SteamVR.
Future work may expand our search to specific user VR applica-
tions. As we might expect, the VR tracking system will constantly be
updating the location, however, Cheat Engine allows for rounded
float searching, providing the necessary tolerances for the data to
be found. Filtering results for memory regions that are rapidly
updating, we were able to identify a single range of addresses
aligned with the expected size of the structure.

Manual inspection of the address and the following values
adhered to what would be expected. To eliminate false positives
and directly correlate memory location to purpose, we manipulated
the physical location of the HMD while continuing to monitor the
candidate memory region. If the changes to the physical system
were synchronous with the values in memory and values corre-
sponded to that of the helper program, we were certain the
candidate memory region was representative of the targeted data
structure.

4.4. Working backwards to a static reference

Over multiple collections, data was found to be dynamically
stored, therefore, to reliably locate in the absence of scenario in-
formation we must tie the address to a static location. By con-
ducting a pointer scan in Cheat Engine we worked our way
backwards to a static reference in the execution block. The VR
runtime includes several cooperative processes, however, most
information regarding the hardware was found to originate from
vrmonitor. exe, thus, we selectively filtered for these base addresses
and routes. In doing so, we ensured that the data was locatable
regardless of its placement in memory.

Sorting the results of the pointer scan by number of hops, we
found the shortest path to the data block:

Base: “vrmonitor.exe"+00206950 Offset: 68

The pointer simply originating from the executable as opposed
to the Thread Stack or a Dynamically Linked Library (DLL) does not
alone indicate that base address will be reliable. Cheat Engine in-
dicates if an address is located in the DATA portion of the execut-
able, and thus “hard coded”. We can further strengthen our ability

P. Casey et al. / Digital Investigation 29 (2019) S13—S21 S17

to locate the base address of our route, which will in turn aid in
plugin development by identifying the machine instructions which
assess our base address. This was achieved by attaching a debugger
to the process vrmonitor. exe, and observing accesses and writes to
the base address. It should be noted that we observed the frequency
of accesses to correlate to the frequency of tracking pose updates.

4.5. YARA signatures and memory collection

We can then use accessing or writing instructions as a signature
to locate our base address. A disassembly of this portion of memory
yielded is shown in Listing 2. Line 1 being the location at which the
pointer to the data structure is accessed. Because the pointer is
accessed using an offset from the instruction pointing register, we
confirm this will be a reliable point of access.

Listing 2 : Disassembly of Base Address Access
1 48 8b 05 25 d6 10 00
MOV RAX, [RIP+0x10d625]
2 48 85 c0 TEST RAX, RAX
3 75 2a IJNZ + 2a
4 snip

Memory was then collected using the tool Dumpit. Information
regarding the state of the system and location of each device was
recorded at the time of collection. The helper program, Cheat En-
gine and the debugger would not be typical of a normal user
experience, thus, prior to collection the system is restarted.
Therefore, we cannot use the VR tracking system to record the
device location, however, as previously discussed, known virtual
locations and their coordinates have been established.

Conducting a YARA scan on a memory dump for the machine
instructions is shown in Listing 2, Line 1 we can ensure that the
signature is unique, and will not produce a false positive for the
base address. Additionally this provided us with the physical
address of our signature in the memory dump. Volatility's inter-
active memory image explorer, volshell, allowed us to manually
trace the path to the data block, and validate its contents. Der-
eferencing the contents of RIP+0x10d625 and applying the offset
0x68, we observed an array of float values. These were confirmed,
over multiple memory collections, to accurately represent the
location of the HMD.

4.6. Plugin development

The Volatility plugin Vivedump, automates the process of
locating the base address and dereferencing the chain of pointers.
Pseudo-code for the general process of locating the data is pre-
sented in Algorithm 1. The example used to trace the methodology
is blunt, requiring only a single dereference, however, other data
structures may require several steps. Enumerating Python lists al-
lows for easy handling of variable length routes to the data
(Lines 2, 7).

Considering only the process space for vrmonitor has its benefits
(Line 4), being limited signature collisions and reduced computing
time. This is particularly favorable as VR capable machines typically
have a large amount of Random-access Memory (RAM). We inte-
grated command line options to allow the search space to be
expanded, as we anticipate evidence will originate from other
Steam processes or third party applications.

Enumerating the VAD tree for the process, we conduct a YARA
scan for the signatures determined in Section 4.5 (Lines 4-5).
Finally, the pointer is dereferenced and the offset applied in

accordance with the specified route r (Lines 7—8). The result is the
address of the targeted data structure. Still the plugin's output can
be improved by handling data interpretation as well.

Algorithm 1 Vivedump: Locate target data

1: y < yara.compile(rule) > Base address signature
2: 1< [of [setl,of fset2, .. > Route
3: for task € processList do

4: if task = vrmonitor.exe then

5: for vad € get ProcessVad do

6: m « y.match(vad) > Address of YARA

match

7 for of fset € r do > Traverse route
8: m < dereference(m) + of fset

9: end for
10: return m > Address of target data
11: end for
12: end if
13: end for

4.6.1. Reconstruction and interpretation

Remembering that the first location coordinates we searched for
was located at HmdMatrix34_t[0][3], the base of the data structure
must be 3xsizeof (Float) prior. We can then proceed to process 12
consecutive 32 bit values as type float, into our reconstructed
mDeviceToAbsoluteTracking matrix. Following the structure
described in Listing 1, the succeeding group of three floats are
assigned to vVelocity and vAngularVelocity.

We are fortunate that the enumerator declaration is provided in
the OpenVR documentation. We can then reiterate the enumerator
as a Python dictionary to aid in interpretation. The ETrackingResult
was observed to be a 32-bit unsigned integer and read accordingly.
Finally the remaining boolean values occupy the upper and lower
bytes of the concluding DWORD. A bit mask was applied to isolate
each value.

5. Findings
5.1. Data availability

Repeating the methodology for items in Table 3, we are able to
find routes to access many of the data structures. A summary of our
findings and extractable evidentiary data by our plugin is presented
in Table 4. Again, with enumerated type data such as tracked device
state, activity and class we are able to use the OpenVR documen-
tation to ease our interpretation of the data.

Our focus was directed towards acquiring information that
would allow for the reconstruction of the VE and have every reason
to believe that with a thorough investigation all desired data could
be obtained from memory. Elements of Table 4 are complementary
in painting a picture of the VR system at the time of memory
collection. Utilizing the information given from the tracked device
state, we can detect the number of devices present, while the ac-
tivity level allows us to determine which tracked devices were
recently moved.

Most VR applications, aside from particular utility type OpenVR
applications, require an HMD to be present. By default, the HMD
will always occupy the first position of the TrackedDevicePose
array, however, we did not observe a trend in array position for
other devices, namely the controllers and base stations. There is

S18 P. Casey et al. / Digital Investigation 29 (2019) S13—S21

Table 4
Summary of routes to data structures.
Data Structure YARA Signature Route
TrackedDevicePose Array 48 8b 05 25 D6 10 00 0x10D62C
HmdMatrix34_t +0 x 5C
ETrackingResult +0xA4
bPoselsValid +0xA8
bDevicelsConnected +0xAA
HMD State 48 8b 05 55 A4 13 00 0x13A45C, 0X1EQ, 0 x 0B8, 0x68
HMD Activity +0x10
TrackedDevice Class 48 8b 05 55 A4 13 00 0x13A45C, 0x190, 0x8, 0x510, 0x3E0, 0x120

likely a race condition at startup during the initialization of these
Bluetooth devices. For this reason we must be able to detect the
type of device in the latter pose array positions. Generally, the base
stations can be identified from their location, as they are typically
wide spread, elevated and at the outskirts of the room. Nonetheless,
we can definitively determine the device class using the described
route.

The methodology could repeated for the controllers and base
stations, however for most data structures this is not necessary.
Often the structures are allocated in an array, meaning following
the corresponding HMD data we can process each subsequent de-
vice. For this reason we only include routes for the HMD in Table 4.

5.2. The chaperone

The data structure containing the Chaperone information was
easily found in memory, yet no path from the VR runtime execut-
able was identified. This is likely due to the Chaperone being
immediately loaded on start-up, preventing the debugger in our
analysis from tracing the access of this information. Other appli-
cations accessing the Chaperone do so through the vrclient_x64
DLL. Utilizing the application specific routes we can extract the
data, however anticipating the specific application is not practical
nor necessary. Rather, this information is stored to the disk in json
format (chaperone_info.vrchap) and often remains in memory. The
persistence of the file particularly holds true should the play area
configuration be modified at any point during the session. Because
this information is available both on disk and regularly in memory
we did not deem it necessary to further pursue extraction. The
plugin will conduct a file scan for the json in memory and if not
found the file can be manually provided to the visualizer.

Akin to the Chaperone, several elements of Table 3, such as
device hardware properties and Interpupillary Distance (IPD) are
generally static or infrequently changed. This increases the diffi-
culty associated with identifying routes and signatures, should the
data even be present. Often these properties did not appear in
memory searches unless called upon by a user VR application. Be

that as it may, this information is not unique to volatile memory
and can be easily obtained from the disk. For this reason we do not
consider this information as a worthwhile endeavor and if required
handled on a case by case basis.

5.3. Vivedump: usage

The plugin, utilizing the Volatility Framework, requires the
memory dump, operating system profile, and the plugin directory
as input. Command line options allow for the user to specify the
number of tracked device poses to extract, expand the breadth of
search, and manually provide the Chaperone file. The plugin will
output a textual representation of all evidentiary data, a wavefront
obj formatted mesh of the VE, and pass the 3-dimensional co-
ordinates to a Python OpenGL instance. Sample textual output is
presented in Fig. 2 and source code can be found at https://github.
com/unhcfreg/VR4Sec.

5.4. Vivedump: visualization

We cannot expect a forensic examiner to easily interpret the
data as found in memory, therefore it is appropriate to present the
VE in an intuitive format. The pose matrix represents the devices
rotation and translation with respect to the center of the tracked
area. We can then transpose the matrix from its 3x4 arrangement to
the standard OpenGL 4x4 transformation matrix and present the
user with a 3-dimensional representation of the room. The tracked
device class can then be used to apply an appropriate mesh to the
device for visualization. If acquired, the Chaperone will be added to
the resulting visualization. This provides context to the tracked
device locations in the physical room, as the Chaperone boundaries
typically outline physical walls. An example of the visualization
produced is provided in Fig. 3.

6. Discussion

The data structures that were acquired in this study were all

python vol.py --plugin=vive-dump -f mem_dump.dmp --profile Winlex64_16299 vivedump
Volatility Foundation Vvolatility Framework 2.6

HMD

-0.988565862179, -0.0586262568831, -0.138926059008, ©.323732972145
-0.0173488464206, ©.959426701069, -0.281423956156, 1.71743369102
0.149788171053, -0.275795906782, -0.949473559856, 0.0478134155273

ETrackingResult: TrackingResult Running_OK

Bool values: ©x344e0101
bPoseIsvalid: True
bDeviceIsConnected: True

HMD activity: k_EDeviceActivitylLevel UserInteraction

HMD state: VRState_ Ready

Fig. 2. Sample output of HMD data extracted from memory using Vivedump. Additional tracked devices can be extracted using command line options (-N).

https://github.com/unhcfreg/VR4Sec
https://github.com/unhcfreg/VR4Sec

P. Casey et al. / Digital Investigation 29 (2019) S13—S21 S19

1]

T

B oo [comoter [l Bese station

Fig. 3. Sample output of the visualization provided by Vivedump.

similar in that the underlying information could be easily manip-
ulated. This played an important role in locating the proper
memory region. Because many enumerators were used to describe
device states and events and several processes are storing identical
information, determining the nature of the data is impossible
without some feedback. For instance, a search for a byte containing
the value corresponding to a active controller state would yield an
enormous amount of potential memory regions. Although, allow-
ing the controller to enter an idle state eliminates all regions that do
not respond to the change.

Furthermore, information that is not persistent is equally diffi-
cult to locate. In particular, an event object will occupy a new
location with every event and unprocessed events will form a
queue. This too precludes direct manipulation of the underlying
memory region and drastically complicates the method to locate
the information. During our analysis we did observe candidate re-
gions, seemingly in a sequential log format, but were not able to
observe any correlation to purposefully triggered events. Unfortu-
nately, processed events and retired poses were not maintained in
memory thereby incurring a low probability of recovery.

Much like event objects, the Chaperone could be found in
memory but no obvious path to the data was identified. Data
structures that are not frequently accessed or updated pose another
challenge when searching for a route to the memory region. Our
memory scanning tool can easily identify pointers, but to reliably
extract the data from memory the base address of the route must
also be tied to a static location. This was achieved if a pointer scan
yielded a route from the executable, where if not directly referenced
the pointer could be traced back to a offset from the instruction
pointer. A feature of Cheat Engine, breaking the program when the
target memory region is access, allowed us to quickly identify the
necessary op code signatures. In contrast, the use of DLLs complicate
the route as the base pointers are passed to the DLL functions,
meaning the state of the registers must be further reversed.

This does not entirely prevent this information from being ob-
tained, however the incentive is not always worth the effort. As
Steam frequently is pushing updates to their VR runtime, there is a
significant chance that the new builds will render the current sig-
natures useless. During the course of this study, we encountered
three SteamVR updates that had such an effect. This is of course a
challenge associated with application specific memory forensics.
We will discuss several potential methodologies which may help to
overcome this obstacle in Section 7. Unfortunately, many of the VR

related data structures are better manually retrieved on a case by
case basis.

6.1. Reliability

All data structures of which we identified routes from a static
location to (Table 4) except for TrackedDevice Class were consis-
tently obtainable. This was tested over multiple memory captures,
with varying degrees of VR usage, connected devices, and appli-
cations. Accessing the TrackedDevice Class information was occa-
sionally misleading or fragmented. Either the path would diverge
from the targeted region or simply fail due to a null pointer.
Although the data is persistent, the intermediate pointers may be
dependent on the state of the runtime. A small program was
implemented to frequently request tracked device classes which in
turn improved the likelihood of the pointer route remaining intact.
This suggests that the intermediate steps may be rerouted to point
to other data structures.

One may expect that a valid device class would correlate with
bPoselsValid, bDevicelsConnected, and HMDState, however, dis-
connecting the device does not affect the device class. Meaning, if a
controller is in the fifth position of the pose array and disconnects, a
query to that position will still return the corresponding controller
enumerator. That is until another device fills that pose array posi-
tion. Thankfully, we observed the byte following the device class in
memory to also correlate to the device state. With regards to reli-
ability, we maintain the preferred route to ascertain whether a
device is connected is via the above data structures.

6.2. Version detection

Much like Volatility requires the profile be determined to
properly interpret operating system level information, the appli-
cation version holds great weight. As frequent updates are a sig-
nificant challenge for application specific memory forensics,
detecting and handling a broad history of application versions is
also necessary (Case and Richard, 2017). Often, with each update to
the VR runtime, a new set of signatures were required to access the
data. Throughout this study, three significant updates caused
changes in the opcodes that were used for our YARA scans.

A built in feature of Volatility, verinfo, pulls version information
embedded in portable executable files (Volatility Foundation,
2018). In many cases this will suffice to determine the application

S20 P. Casey et al. / Digital Investigation 29 (2019) S13—S21

release. Unfortunately SteamVR developers do not update this in-
formation to match the current build. Memory dumps spanning
multiple versions were compared, analyzing SteamVR and its de-
pendents. No direct corollary was observed using the output of
verinfo and the SteamVR version obtained directly from the
software.

The signatures used for each SteamVR build that spanned this
study did not produce any conflicts. No false positive YARA matches
were produced, simply reducing in lost computation time. Allowing
searching for all signatures may be practical as our catalog of
SteamVR versions remains small, yet, with continued updates,
conflicts and decreased efficiency may accrue. Following the model
used by Volatility, we intend to remedy this problem with profiles
determined by additional wider signatures tailored for each
SteamVR release. Each profile specifying the routes and signatures
needed to access each data structure.

7. Future work

Our analysis of the HTC Vive runtime likely only encompasses a
small portion of the available data. Further work is needed to
determine the full breadth of information that can be extracted.
Furthermore, 32-bit applications and other VR systems or work-
stations have yet to be considered. Although the OpenVR docu-
mentation serves as a good reference for data structures and
availability, many other sources of data may exist. Our methodology
can be applied for additional structures found in the OpenVR
documentation that are easily manipulated. Small adjustments can
be made to expand our context to non-documented points and
different VR systems.

This study was focused towards the VR runtime and global data,
but did not consider the user application. The user VR application
may inherit much of the same data and provide an additional
source. Furthermore, application specific information may be of
value to an investigator. A potentially worthwhile use case involves
social VR applications, where user interactions and conversations
may be retrievable.

7.1. Scalability and automation

The frequent SteamVR updates dictated our Volatility plugin be
designed to be easily adapted. Although profiles and version
detection too remain part of our future work, the plugin requires
three essential inputs. The YARA signature, route and type or
arrangement of the data structure. Should a particular case require
a new data point, minimal changes to the plugin are needed.
Conveniently, two of these inputs directly originate from our
memory search tool, Cheat Engine. Regardless of the targeted
application, our plugin could be adapted to accept the file output of
Cheat Engines pointer scan. Quite often, there are many routes to
the data structure returned by the scan. Automation of traversing
these routes would strengthen the probability of reliably obtaining
data. A heuristic approach to determining appropriate base ad-
dresses from the pointer scan result will drastically reduce the man
hours and complexity of plugin development.

Future work should consider building a framework to poten-
tially generate application specific Volatility plugins with the
following compressed methodology:

o Identifies the targeted memory region

e Conduct pointer scan

e Pass pointer scan output to framework

e Framework outputs a fully functional Volatility plugin

Application specific memory forensics will continue to be a

difficult problem to tackle given the sheer volume of application
production. Automation of plugin development, although not as
reliable as manual investigation, may alleviate much of the tedious
labor.

7.2. Stepping through memory

Our ability to extract information relies on a static reference to a
memory location. Which in turn points us to the desired data.
Depending on the state of the application while conducting our
memory searches, varying pointer scan results will be produced.
Should no route originating from the executable be found, identi-
fying a static reference may be difficult. In contrast, we observed a
large selection of routes from the Thread Stack and DLLs. This is
particularly relevant for information sparsely accessed after
initialization, such as device class.

Creating small applications and stepping through them on a live
system, reveal how simple it may be to leverage vrclient_x64. dll to
pull information even from a memory dump. Initializing an
OpenVR instance returns a pointer representing the VR system,
which points to the base of the DLL. When utilizing a virtual
OpenVR function, a call is made to the location of the system
pointer with the offset corresponding to the function. This system
pointer can be extracted in the same manner as all entries of Table 4
from an OpenVR instance, or rather ascertained using the Volatility
plugin dlllist.

Rather than relying on the routes derived from this study, which
intermediate pointers may be subject to reuse, the DLL contains the
instructions and pointers to access the data. We suspect that by
emulating the system from which the memory dump was obtained,
we can call these DLL functions. Preliminary observations have led
us to believe that vrclient_x64. dll does not directly probe the VR
system, rather access the location of where the data is already
stored. Because of this, we expect these functions will continue to
successfully execute in absence of the VR system. This proposed
strategy may be useful in a variety of other applications aside from
VR and may be more resistant to application updates.

8. Conclusion

VR, AR, and MR technologies will continue to improve leading to
additional uses. With increased adoption their forensic importance
will further escalate. In this work, we initiate the forensic analysis
of the volatile memory of VR systems. We demonstrate that the VE,
location, state and class of devices can be extracted from memory.
To aid in a forensic investigation, we have also developed a Vola-
tility plugin to automate the extraction of data. Our plugin and
methodology has been designed with future VR systems and ap-
plications in mind, as we hope to stimulate further research in both
VR and memory forensics.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. 1748950. Any opinions, find-
ings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

References

Alvarex, V.M., 2018. Yara. https://virustotal.github.io/yara/.

Anglano, C., Canonico, M., Guazzone, M., 2017. Forensic analysis of telegram
messenger on android smartphones. Digit. Invest. 23, 31—49.

Bailey, D., 2018. With $4.3 billion in sales, 2017 was steams biggest year yet. https://
www.pcgamesn.com/steam-revenue-2017.

https://virustotal.github.io/yara/
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref2
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref2
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref2
https://www.pcgamesn.com/steam-revenue-2017
https://www.pcgamesn.com/steam-revenue-2017

P. Casey et al. / Digital Investigation 29 (2019) S13—S21 S21

Balogh, S., 2014. Memory acquisition by using network card. J. Cyber Secur. Mobil. 3
(1), 65-76.

Betz, C., 2005. Memparser analysis tool. http://old.dfrws.org/2005/challenge/
memparser.shtml.

Bilby, D., 2006. Low Down and Dirty: Anti-forensic Rootkits. https://www.blackhat.
com/presentations/bh-jp-06/BH-]P-06-Bilby-up.pdf.

Byte, D., 2018. Cheat Engine. http://www.cheatengine.org/.

Case, A., Richard, G.G., 2017. Memory forensics: the path forward. Digit. Invest. 20,
23—33 (Special Issue on Volatile Memory Analysis).

Casey, P, Baggili, L., Yarramreddy, A., 2019. Immersive virtual reality attacks and the
human joystick. IEEE Trans. Dependable Secure Comput. http://doi.acm.org/10.
1109/TDSC.2019.2907942.

Cohen, M., 2017. Scanning memory with yara. Digit. Invest. 20, 34—43 (Special Issue
on Volatile Memory Analysis).

de Guzman, J.A., Thilakarathna, K., Seneviratne, A., 2018. Security and Privacy Ap-
proaches in Mixed Reality: A Literature Survey. CoRR abs/1802.05797. URL:
http://arxiv.org/abs/1802.05797.

DFRWS, 2006a. Digital Forensics Research Workshop: Forensics Challenge 2006.
http://old.dfrws.org/2005/challenge/index.shtml.

DFRWS, 2006b. Digital Forensics Research Workshop: Forensics Challenge 2006.
http://old.dfrws.org/2006/challenge/index.shtml.

Dolan-Gavitt, B., 2008. Forensic analysis of the windows registry in memory. Digit.
Invest. 5, S26—S32 (The Proceedings of the Eighth Annual DFRWS Conference).

Editor, 2015. https://www.welivesecurity.com/2015/12/24/online-gaming-new-
frontier-cybercriminals/.

Gruhn, M., Freiling, F.C., 2016. Evaluating atomicity, and integrity of correct memory
acquisition methods. Digit. Invest. 16, S1-S10. DFRWS 2016 Europe.

Hejazi, S., Talhi, C., Debbabi, M., 2009. Extraction of forensically sensitive infor-
mation from windows physical memory. Digit. Invest. 6, S121—S131 (The Pro-
ceedings of the Ninth Annual DFRWS Conference).

Huebner, E., Bem, D., Henskens, F.,, Wallis, M., 2007. Persistent systems techniques in
forensic acquisition of memory. Digit. Invest. 4 (3), 129—-137.

International Organization for Standardization, 2017. Working Draft, Standard for
Programming Language C+-+. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2017/n4659.pdf.

Jr, GM.G.,, Mora, R.-J, 2005. Kntlist analysis tool. http://old.dfrws.org/2005/

challenge/kntlist.shtml.

Lamkin, P, 2017. Virtual Reality Headset Sales Hit 1 Million. https://www.forbes.
com/sites/paullamkin/2017/11/30/virtual-reality-headset-sales-hit-1-million/
#2337ed02b617.

Lemley, M.A., Volokh, E., 2017. Law, Virtual Reality, and Augmented Reality.

Maartmann-Moe, C., Thorkildsen, S.E., rnes, A., 2009. The persistence of memory:
forensic identification and extraction of cryptographic keys. Digit. Invest. 6,
S$132—-S140 (The Proceedings of the Ninth Annual DFRWS Conference).

Petroni, N.L., Walters, A., Fraser, T., Arbaugh, W.A., 2006. Fatkit: a framework for the
extraction and analysis of digital forensic data from volatile system memory.
Digit. Invest. 3 (4), 197—-210.

Schatz, B., 2007. Bodysnatcher: towards reliable volatile memory acquisition by
software. Digit. Invest. 4, 126—134.

Stevens, R.M., Casey, E., 2010. Extracting windows command line details from
physical memory. Digit. Invest. 7, S57—S63 (The Proceedings of the Tenth
Annual DFRWS Conference).

Sylve, |., Case, A., Marziale, L., Richard, G.G., 2012. Acquisition and analysis of volatile
memory from android devices. Digit. Invest. 8 (3), 175—184.

UNHCFREG, 2018. Human joystick immersive virtual reality attack. https://www.
youtube.com/watch?v=iyK94jFuniM.

Valve Software, 2018. Openvr Sdk. https://github.com/ValveSoftware/openvr.

van Baar, R, Alink, W., van Ballegooij, A., 2008. Forensic memory analysis: files
mapped in memory. Digit. Invest. 5, S52—S57 (The Proceedings of the Eighth
Annual DFRWS Conference).

Volatility Foundation, 2018. Volatility. https://github.com/volatilityfoundation/
volatility.

Wong,].C., 2016. Sexual harassment in virtual reality feels all too real 'it's creepy
beyond creepy. https://www.theguardian.com/technology/2016/oct/26/virtual-
reality-sexual-harassment-online-groping-quivr.

Yarramreddy, A., Gromkowski, P., Baggili, 1., 2018. Forensic analysis of immersive
virtual reality social applications: a primary account. In: 2018 IEEE Security and
Privacy Workshops. SPW, IEEE, pp. 186—196.

Zhang, R., Wang, L., Zhang, S., 2009. Windows memory analysis based on kpcr. In:
Information Assurance and Security, 2009. IAS’09. Fifth International Confer-
ence on, vol. 2. [EEE, pp. 677—680.

http://refhub.elsevier.com/S1742-2876(19)30156-2/sref4
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref4
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref4
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref4
http://old.dfrws.org/2005/challenge/memparser.shtml
http://old.dfrws.org/2005/challenge/memparser.shtml
https://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf
https://www.blackhat.com/presentations/bh-jp-06/BH-JP-06-Bilby-up.pdf
http://www.cheatengine.org/
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref8
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref8
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref8
http://doi.acm.org/10.1109/TDSC.2019.2907942
http://doi.acm.org/10.1109/TDSC.2019.2907942
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref10
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref10
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref10
http://arxiv.org/abs/1802.05797
http://old.dfrws.org/2005/challenge/index.shtml
http://old.dfrws.org/2006/challenge/index.shtml
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref14
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref14
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref14
https://www.welivesecurity.com/2015/12/24/online-gaming-new-frontier-cybercriminals/
https://www.welivesecurity.com/2015/12/24/online-gaming-new-frontier-cybercriminals/
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref16
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref16
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref16
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref17
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref17
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref17
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref17
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref18
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref18
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref18
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://old.dfrws.org/2005/challenge/kntlist.shtml
http://old.dfrws.org/2005/challenge/kntlist.shtml
https://www.forbes.com/sites/paullamkin/2017/11/30/virtual-reality-headset-sales-hit-1-million/#2337ed02b617
https://www.forbes.com/sites/paullamkin/2017/11/30/virtual-reality-headset-sales-hit-1-million/#2337ed02b617
https://www.forbes.com/sites/paullamkin/2017/11/30/virtual-reality-headset-sales-hit-1-million/#2337ed02b617
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref22
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref23
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref23
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref23
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref23
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref24
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref24
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref24
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref24
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref25
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref25
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref25
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref26
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref26
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref26
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref26
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref27
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref27
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref27
https://www.youtube.com/watch?v=iyK94jFuniM
https://www.youtube.com/watch?v=iyK94jFuniM
https://www.youtube.com/watch?v=iyK94jFuniM
https://github.com/ValveSoftware/openvr
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref30
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref30
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref30
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref30
https://github.com/volatilityfoundation/volatility
https://github.com/volatilityfoundation/volatility
https://www.theguardian.com/technology/2016/oct/26/virtual-reality-sexual-harassment-online-groping-quivr
https://www.theguardian.com/technology/2016/oct/26/virtual-reality-sexual-harassment-online-groping-quivr
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref33
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref33
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref33
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref33
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref34
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref34
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref34
http://refhub.elsevier.com/S1742-2876(19)30156-2/sref34

	Inception: Virtual Space in Memory Space in Real Space – Memory Forensics of Immersive Virtual Reality with the HTC Vive
	1. Introduction
	2. Background information and related work
	2.1. Memory forensics

	3. Apparatus
	4. Methodology
	4.1. Documentation analysis
	4.2. Scenario creation
	4.3. Memory scanning
	4.4. Working backwards to a static reference
	4.5. YARA signatures and memory collection
	4.6. Plugin development
	4.6.1. Reconstruction and interpretation

	5. Findings
	5.1. Data availability
	5.2. The chaperone
	5.3. Vivedump: usage
	5.4. Vivedump: visualization

	6. Discussion
	6.1. Reliability
	6.2. Version detection

	7. Future work
	7.1. Scalability and automation
	7.2. Stepping through memory

	8. Conclusion
	Acknowledgements
	References

