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Abstract—This paper presents the fusion of two subdo-
mains of digital forensics: (1) raw memory analysis and (2)
approximate matching. Specifically, this paper describes a
prototype implementation named MRSH-MEM that allows to
compare hard drive images as well as memory dumps and
therefore can answer the question if a particular program
(installed on a hard drive) is currently running / loaded
in memory. To answer this question, we only require both
dumps or access to a public repository which provides the
binaries to be tested. For our prototype, we modified an
existing approximate matching algorithm named MRSH-NET
and combined it with approxis, an approximate disassembler.
Recent literature claims that approximate matching techniques
are slow and hardly applicable to the field of memory forensics.
Especially legitimate changes to executables in memory caused
by the loader itself prevent the application of current bytewise
approximate matching techniques. Our approach lowers the
impact of modified code in memory and shows a good compu-
tational performance. During our experiments, we show how
an investigator can leverage meaningful insights by combining
data gained from a hard disk image and raw memory dumps
with a practicability runtime performance. Lastly, our current
implementation will be integrable into the Volatility memory
forensics framework and we introduce new possibilities for
providing data driven cross validation functions. Our current
proof of concept implementation supports Linux based raw
memory dumps.

Keywords-Memory analysis, Forensic analysis, Approximate
matching, Fuzzy hashing

I. INTRODUCTION

Over the past years memory became very affordable and

most machines currently have 8 GB, 16 GB or even 32 GB of

memory. As a consequence, software (benign and malicious)

often operates in memory only, e.g., non persistent malware

only exists in memory. Understanding and being able to

analyze memory can give forensic investigators valuable and

meaningful insights into a running system. The community

and industry came up with different solutions for the analysis

of acquired memory dumps which fall into one of two major

categories:

• Interpretation of structures: Most tools and frame-

works utilize structured analysis, i.e., the software

interprets the complex system related structures, where

two well known memory forensic suites are Rekall1 and

Volatility2. In detail, the frameworks deal with different

formats of acquisition, the concepts of virtual memory

management, the present architecture and the operating

system (OS) related structures. Memory profiles are

used to close the semantic gap and enable to perform

such a structural examination. The examination with

structured analysis techniques also yields new ways

of evasion, which are encountered by examining and

correlating different sources of OS related structures.

• Memory carving: There are also tools for unstructured

analysis to extract information out of memory dumps.

Those tools are important for different tasks like string

or key extraction [7]. Carving memory has the major

advantages of being more robust against malicious

evasion or domain specific deallocations of important

structures. In addition, those tasks can achieve a high

IO throughput, are good parallelizable and offer a fast

access to valuable insights. With the increasing size of

memory, methods of data reduction (similar to those

for hard drive forensics) are needed [31].

A core task of memory forensics is the enumeration of

running or already terminated processes. The task of iden-

tifying processes in memory dumps is well discussed and

different solutions have been proposed. Memory forensic

frameworks and commercial software products interpret the

structures of the operating system, which are responsible

for process management, execution and allocations. The

correlation of different characteristics during memory anal-

ysis is also denoted as cross validation, which empowers

to detect malicious activities, e.g., a process with partially

implemented evasion features. Infection vectors based on

injection, process possession or the simple reuse of benign

process names require additional steps of investigation.

Beside malicious manipulations, legitimate alterations or

deallocations by the operating system itself could also hinder

a structural examination. This fact motivates to explore data-

driven analysis techniques, i.e., memory based carving.

1https://github.com/google/rekall (last accessed 2018-02-10).
2https://github.com/volatilityfoundation/volatility (last accessed 2018-02-

10).
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In the course of binary (malware) analysis, different

techniques have been proposed to identify and compare

code related structures. As those two steps barely de-

scribe the process of memory carving, we mention them

in their respective fields of application. The interpretation

of statistical structures showed promising results to classify

malware [1] or to identify code [33]. Additional steps of

processing and feature extraction can encounter obfuscation

or variances [19, 29]. The application of feature hashing

[16, 17] or the compression based comparison [25, 26] also

showed promising results for clustering and classification.

Cohen and Havrilla [8] proposed the reduction of shared

code by normalizing and hashing disassembled code on a

function level. Jin et al. [18] extended the approach by

the utilization of locality sensitive hashing and semantic

hashes. Assembly code clone search detection systems have

been proposed to detect similarities between malicious code

samples [11, 12, 27].

Most of the mentioned approaches utilize statistical prop-

erties of the instruction sequences itself. They are discussed

within the scope of processing executable code in a file

context and not in the scope of carving file fragments con-

tained within a raw memory dump, which bares additional

pitfalls and considerations. As some of those techniques

showed promising results in related fields of application, we

leave the question unanswered if all of those approaches are

adoptable for memory forensics. We further describe our

field of application and its restrictions in Section III-A.

In the field of memory forensics signature-based analysis

has been recently adopted [9]. The research underlines

the idiosyncrasies, pitfalls and needed adaptations to apply

signatures to this domain. On the other hand, Walters

et al. [30] and White et al. [31] proposed the utilization

of cryptographic hash functions to perform code integrity

checks, tamper detection, and do white- or blacklisting.

The authors discuss the process of whitelisting normalized

executables on a page level with the help of a golden

image baseline. The work emphasize the obstacle changes

caused even by the loader itself. Garfinkel and McCarrin [14]

presented an approach that covers the main considerations

and pitfalls of our work in general terms. In contrary to a

whole-file hashing, a concept called hash-based carving was

introduced, which can identify files that are fragmented, files

that are incomplete, or files that have been partially modified.

The publication covers similar aspects of our work within a

general scope. We propose the usage approximate matching

techniques for solving this task in the domain of process-

related memory forensics and outline our choice in Section

V.

In this work we present a novel approach that allows

detecting similarities between software stored on hard drives

and loaded as modules into memory (Linux only). For

processing the physical memory dumps and for damp-

ing possible loading-traces, we rely on approxis [21]

an approximate disassembler performing carving of code-

related structures. To compare the content of the dumps with

the content of hard drives, we borrowed concepts from a

subdomain of digital forensics called approximate matching.

In a nutshell, these algorithms can be used to find similarities

between different digital objects (e.g., compare the similarity

between two text documents; details see Sec. II-B). We

consider our approach as robust for memory based carving of

code related fragments, as our implementation relies on the

possibly scattered code structures itself. Thus, our approach

does not depend on critical system related structures, the

manual adaptation of signatures or the specification of

any alignment properties. Using approximate matching for

memory forensics is not new and was already discussed

where most researchers questioned the applicability and

runtime efficiency of those algorithms [9, 31, 23]. We

discuss the application of approximate matching in the scope

of memory carving and release a prototype implementation

which shows good computational performance. To the best

of our knowledge, this is the first usable implementation

of an approximate matching technique, which integrates an

additional step of disassembling.

In detail, we introduce a derivative of a particular ap-

proximate matching algorithm (MRSH-NET3) and present

MRSH-MEM which allows to detect fragments of code in the

course of white- or blacklisting. Our paper has the following

contributions:

• We interface approximate matching with an additional

layer of approximate disassembling to process phys-

ical memory which is accomplished by integrating

a recently published disassembler approxis into

MRSH-NET.

• We demonstrate the capabilities of our approach to

identify code structures in large amounts of raw data by

the extraction of allocable code sections from different

resources (e.g., online repositories or hard disk images).

• We demonstrate an acceptable runtime performance

for processing memory dumps with a reasonable and

realistic size.

• Besides our prototype implementation, we demonstrate

a first application to identify kernel structures in mem-

ory, i.e., we profile the current running Kernel version

inside a previously acquired raw memory dump.

• Lastly, we show the detection of code fragments of a

running process in User Memory Space and show the

capabilities to identify the currently running version.

• We publish our current proof of concept implementa-

tion4 and will outline steps of further improvements.

The remainder of this paper is organized as follows: In

3Note, MRSH-NET originated from the MRSH-family which has other
derivations like MRSH-v2. The overall procedure of all approaches is very
similar and therefore will will only talk about MRSH-NET for simplicity
reasons.

4https://github.com/dasec/approximate-memory
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Section II we formally introduce the Linux memory manage-

ment system, the properties of approximate matching and the

recently published approximate disassembler approxis.

In Section III we introduce our approach, its functionality

and its basic layers of processing. Section IV discusses

some practical applications and the possible integration into

structured analysis. In Section V we introduce existing

research, which focuses on physical memory examination.

In Section VI we conclude our findings and finally introduce

some further extensions to our current proof of concept

implementation in Section VII.

II. BACKGROUND

In this section we will introduce some memory man-

agement techniques of the Linux operating system, core

functionalities of approximate matching algorithms and a

recently introduced technique of approximate disassembling.

The introduced foundations have to be considered in the fol-

lowing sections and play an important role in the remainder

of this work.

A. Linux Virtual Memory Management

The next few paragraphs outline the Linux memory

management from a high level few; this is by far not a

complete description which would be beyond of scope for

this paper. We will summarize some core primitives of

the virtual memory management (VMM) as well as some

important peculiarities of the Linux memory management.

The knowledge of some fundamentals are indispensable for

understanding further parameter settings and demonstrated

use cases.

Linux implements the concept of VMM, which introduces

a layer of indirection and maps one Virtual to one or more

Physical addresses in RAM. This has two major benefits:

First, each process can have its own address space, which

improves process separation and security (the memory of

other processes stays hidden). The second advantage is

the possibility to swap out memory to hard disk and to

store it independent of its underlying physical scheme. A

process can share fragments with other processes to reduce

the occupied physical memory. The concept called shared

memory therefore maps physical memory, which could be

used by different processes at the same time, into each of

those processes. Thus, the physical memory gets mapped

into multiple processes at once, as long as the fragments

are not changed by a process. As soon as a process changes

the shared memory area, the changed version gets copied

into a independent memory area for the process itself (copy

on write). The memory mappings could be additionally

equipped with access permissions, which controls the access

for reading, writing or executing memory. The mapping is

performed with the help of the Memory Management Unit

(MMU), which links the Central Processing Unit (CPU) with

the memory itself. The Translation Lookaside Buffer (TLB)

implements a system for fast buffering.

The virtual address space is split into an upper part

and lower part also named Kernel Space and User

Space, respectively. The border of this split is denoted as

CONFIG_PAGE_OFFSET and differs for different archi-

tectures and systems. For instance, on a 32-bit system the

offset is normally at address 0xC0000000. Given that the

Kernel address space is above CONFIG_PAGE_OFFSET
it would be 1 GB of a 4 GB system. On 64-bit sys-

tems this offsets varies by architecture, e.g., com-

mon boundaries are ARM=0x8000000000000000 and

x86_64=0xffff880000000000. Focusing on the upper

part (the Kernel space), there is usually another separation

as shown in Figure 1.

We could roughly differ the Kernel Address Space in

three different areas: Kernel Logical Address Space, Kernel

Virtual Address Space and the User Virtual Address Space.

Note, the definitions and wordings slightly differ across

sources and literature. The User Space is located below the

defined PAGE_OFFSET and stores the user space programs,

where each process manages its own mappings. Not all

portions of the process need to be loaded and mapped to

memory until they are actually needed. The memory is

mapped to Physical Address Space in a non-contiguous

fashion. In case of high memory usage, the fragments of

memory can be additionally swapped to hard disk and moved

inside the Physical Address Space. It should be clear, that the

User Space is unsuitable for Direct Memory Access (DMA).

The Kernel Logical Addresses (Low Memory) are stored

about the PAGE_OFFSET and are contiguously mapped

with a fixed offset to the Physical Address Space. The area

itself can never be swapped on hard disk and thus could be

used for DMA. The address space above the Kernel Logical

Addresses contain the so called Kernel Virtual Addresses
(High Memory). This address space is mapped with non-

contiguous memory mappings and unsuitable for DMA

transfers.

The Kernel Address Space starts with the mappings of

the Linux Kernel and its allocated segments. Above, the

loaded vmlinux image, the Loadable Kernel Modules are

located. A Loadable Kernel Module (LKM) is defined in

the Executable and Linking Format (ELF) format and can

be invoked to a running system. In the file system a LKM is

normally denoted with the .ko extension and those modules

provide a broad variety of extensions to a running system.

They are also to be known as often attacked by malicious

kernel-level rootkits.

The mapping between the virtual and the physical space

is handled by the Memory Management Unit which operates

on memory pages (i.e., it maps one or multiple virtual pages

to one physical page). Thus, a page is a fixed size allocation

of virtual memory, which is aligned to this size in memory.

The size of a page can vary for different architectures as
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Virtual Address Space Physical Address Space

Kernel Virtual Space

Kernel Logical Space

User Space

Offset Virtual

Kernel Virtual Space
No Direct Mapping

Kernel Logical Space
With Direct Mapping

Offset Physical

LKM 1
..
LKM N

Kernel (vmlinux)
.bss .data .text

PAGE
OFFSET

0x00

VIRTUAL
MAXIMUM

Figure 1. Simplified Linux Memory Address Layout

shown in Table I and is set during the kernel build time.

Architecture Page Size
ARM 4 KB

ARM64 4 KB or 64 KB

MIPS Configurable

x86 4 KB

Table I
OVERVIEW OF COMMON PAGE SIZES.

We will not describe the concept of page tables, the

functionality of TLB and the translation process itself, as

this would be out of the scope of this work. Additionally

the concept of Shared Memory, Lazy Allocation and Kernel

Address Space Layout Randomization (KASLR) will not be

described in this paper. However, we need to consider several

implications caused by the above mentioned concepts as

those concepts strongly differ from normally processed data

of approximate matching techniques. We summarized the

concepts and formalized general implications, which should

be respected in our approach. After the introduction of some

core primitives of approximate matching and approximate

disassembling, we will give a comprehensive overview of

our considerations in Subsection III-A.

B. Approximate Matching

Approximate matching (a.k.a. Fuzzy hashing or similarity

digest hashing) is a rather new area of digital forensics and

can be seen as the counterpart to traditional (cryptographic)

hash functions, i.e., approximate matching algorithms return

similar fingerprints for similar inputs. In the following we

summarized the most important aspects; more comprehen-

sive overviews are provided by [3] and [15]. From a high

level perspective, approximate matching algorithms work as

follow. First, the algorithm identifies features where a feature

is usually a substring of the complete input (e.g., chunks of

a particular length). These chunks are then shortened which

is often done using (cryptographic) hash functions. Lastly,

these shorter strings are then used to build a fingerprint /

similarity digest.

For instance, let us have a closer look at algorithms for

the MRSH family which form the basis for this work. These

algorithms (e.g., MRSH-V2 [5]) consider only the underlying

byte sequence of a given input (no interpretation of the byte

sequence). The given sequence is divided into chunks of

size b (common values are 64 ≤ b ≤ 320 bytes) . To do

so, the algorithm uses a sliding window that rolls through

the sequence byte-by-byte and considers 7 consecutive bytes

at a time. This window is then hashed using a pseudo
random function (PRF) which returns a value between 0

and b. If b == 0, the end of a chunk is identified. As a
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consequence, if PRF behaves pseudo random, each chunk

has approximately the size b bytes. Once the end of a chunk

is identified, a Chunk Hash Function (CHF) is used to

compress the sequence (common CHFs are MD5, SHA or

FNV-1a). Lastly, all chunk hashes are translated into a final

fingerprint where different algorithms use different concepts.

In case of MRSH-NET [4], a single large Bloom filter is used

which is explained in the following paragraph

A Bloom filter is a space-efficient, probabilistic data

structured invented by Burton Howard Bloom in 1970 [2]

that consists of an array of m bits all set to zero. In order to

insert an element s ∈ S into a Bloom filter, s is hashed using

a hash function that returns values |h(s)| ≥ k ·log2(m) bits5.

Then, the first log2(m) bits are used to set the corresponding

bit in the Bloom filter; the second log2(m) bits are used

to set the corresponding bit in the Bloom filter; this is

repeated k times. For instance, assuming Bloom filter size

m = 64 = 26 and k = 2, h(s) should return a hash value of

at least (2 · log2(64) =) 12 bits, e.g., 011011 101101. Given

that 011011bin = 27dec and 101101bin = 45dec, bits 27

and 45 of the Bloom filter are set to one. To verify whether

an element s′ is in a given Bloom filter, it is hashed with

the same hash function h. If all corresponding bits in the

Bloom filter are set to one, the element was inserted into

the Bloom filter with a certain probability (there is a chance

for a false positive). If one of the bits is zero, the element

was never inserted into the Bloom filter (there are not false

negatives). Specifically, the false positive rate of a Bloom

filter is influenced by three parameters: the size of the filter

m, the amount of elements which are inserted into the filter

n and the number of set bits per element k. The probability

for a false positive can then be estimated with the formulas

illustrated in Equation 1.

PFP =

(
1−

[
1− 1

m

]kn)k

≈
(
1− e−kn/m

)k
= (1− p)k,with

p = 1−
(
1− 1

m

)kn

,

(1)

where p is the probability of a bit being 0, after all n
elements have been inserted.

In order to create the final fingerprint, the first k · log2(m)
bits of the chunk hashes are utilized to set the corresponding

bits in the Bloom filter. In other words, for each chunk k
bits are set in the Bloom filter. A summary of the parameters

is provided in Table II.

The created fingerprints can be used to estimate the sim-
ilarity score between two given files. Different approximate

5Note, the original work suggests to use k different hash functions each
returning a value between 0 and m − 1. However, we use a single hash
functions and therefore our explanation differs slightly.

b Denotes the approximated chunk size

m Denotes the Bloom filter size in bits

n Number of elements inserted into a Bloom filter

k Number of used sub-hashes; each sub-hash defines

a bit in the corresponding Bloom filter

Table II
PARAMETERS OF MRSH-NET AND THEIR DESCRIPTION.

matching approaches create different fingerprints and thus

utilize different techniques for similarity calculation. In the

course of MRSH derivatives which utilize Bloom filters as

similarity digest, the Hamming distance as metric is used.

In the course of this work, we adopt approximate matching

to identify chunks within an acquired memory dump. Similar

to MRSH-NET, we can not expect a present file context

when comparing extracted chunks against a database of

files. We leave the question of better lookup strategies and

chunk identification techniques open for further research.

We discuss the details of our provisional solution to identify

chunks in Section IV.

C. Approximate Disassembling

approxis is a fast approximate disassembler for un-

known instruction sequences that was presented by Liebler

and Baier [21] in 2017. In contrast to traditional linear sweep

or recursive traversal approaches, approxis does not pro-

vide a full instruction decoding but focuses on computational

efficiency which is accomplished using a pre-generated

prefix tree. Note, we will use the terms of disassembling and

decoding interchangeably in this paper. This was inspired by

existing applications, like the distorm6 stream disassembler.

However, in contrast to distorm, approxis is less granular

and does not operate on a bit level during disassembling an

instruction.

Specifically, Liebler and Baier [21] use a large ground-

truth dataset of ELF files to generate a prefix tree [10]

(a.k.a. trie) as simplified in Figure 2. All files in the corpus

are parsed (e.g., the input byte sequence) and put into a

trie structure where the focus lies on the mnemonics. For

instance, 0x41 indicates a push and given that it is the

ground truth it is known that the next byte (0x55) also

belongs to the current instruction. Focusing on the next offset

starting with 0x48, it is known that 0x48 can be lea,

sub or mov and therefore the next byte (0x89) needs to

be considered as well which then indicates a mov. Since the

authors are only interested in approximate disassembling,

approxis does not store the nodes and leaves colored

in whited. Instead, the black colored decision node stores

the representative mnemonic and the remaining length of

the current instruction (length not shown in Figure 2). For

6https://github.com/gdabah/distorm/wiki/diStormInternals (last accessed
2018-02-10).
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instance, the black 0x64 would have stored a remaining

instruction length of ‘2’. In the original trie implementation

a lot of additional information is saved within each node:

Frequency counts, most common instruction lengths, most

common mnemonics and several other information about

the currently processed instructions. Those additional counts

will be helpful for further statistical analysis described in the

upcoming paragraphs. In order to disassemble an unknown

ELF file, approxis parses the file and performs look ups

in the trie. For instance, let us assume the byte sequence

in Figure 2 is unknown. The opcode 0x4155 will be

translated into the mnemonic push 2 (as the approach is

interested in the mnemonic and the length only). Given the

same trie, the opcode 0x4187 would end up in the identical

mnemonic.

Obviously, not all byte sequences are decodable by the

trie structure. For example, a sequence 0x48ffe0488d
will stop at the undecidable intermediate node 0x48 as

its successor 0xff is not present in the trie. To continue,

the additional information (stored in the node) is utilized,

e.g., frequency analysis of common instruction sequences

and subsequent mnemonics. For the example in Figure 2

(right side), subsequent mnemonics would be [push,mov],

[mov,sub], [sub,lea] and [lea,mov].

Based on these frequencies that are calculated over the

complete ground truth corpus, the authors generate a con-

fidence score λ which describes if two disassembled and

subsequent instructions are plausible or not. In detail, the

instructions are extracted as bigrams from the ELF ground

truth and for each of those the probability p is saved

as absolute logarithmic odds (logit). Coming back to the

problem of the unknown byte (see Figure 3), the confidence

score allows to predict the length of the instruction (i.e.,

where to continue the approximate disassembling). Precisely,

0xff is unknown and hence approxis does not know the

length of the instruction. The algorithm depicts successively

a candidate from the previously saved and most frequently

occurred lengths. If the disassembler has success at a cor-

responding offset, the value of confidence counterchecks

if the sequence of instructions is meaningful or not. In

our example, the high confidence score (i.e., λi+3 = 17)

indicates that 0xe0 is most likely not a valid offset and

therefore the algorithm jumps to 0x488d which can be

found in the tree. Applying approxis on byte sequences

that do not contain code fragments, the values of confidence

will indicate that this snippet is nonsense. This behavior

empowers to distinguish between fragments of code and

data. Large blocks of continually similar byte sequences

could lead to a wrong interpretation. An example could be

long sequences of zero (0x00) padding bytes, which would

be misleadingly decoded to an add instruction. To avoid this

behavior the current implementation makes use of a running

length counter, which penalizes and ignores such repeating

sequences.

In the current implementation of approxis, the decoded

instructions, the decoded instruction lengths and the de-

termined values of confidence (λ) are stored in separated

buffers. During the decoding of the input bytes the buffers

store at the same offsets the corresponding informations

of a specific sequence. The integrated buffers are listed

in Table III. The raw image buffer buf_by with size

INPUT_SIZE contains the raw byte sequence of an input

stream (e.g. file, memory dump). The processing buffers

can be adjusted manually by setting the corresponding

parameter BUFFER_SIZE. The buffers contain the decoded

relative offsets of the instructions (buf_ro), the decoded

(integerized) mnemonics of the instructions (buf_mn) and

the values of local code confidence (buf_lo).

In the following paragraph we will summarize some

major considerations. It should be clear that the field of

application is not related to extended binary analysis and

thus, the disassembler is not and should not be capable to

proceed a full decoding of a present complex instruction

set. The process should interface the steps of processing

provided by MRSH-NET. The motivation and application of

approximate disassembling is described in [21]. To summa-

rize the characteristics of an approximate disassembler, we

don’t actually need a full decoding and only focus on the

correct determination of instruction offsets and a mnemonic

represent. We apply the disassembler on large amounts of

raw data and do not expect a well formed executable with

reasonable header information as input. The disassembler

is applied in the field of memory analysis and not able

to actually resolve virtual addresses. With the values of

confidence the disassembler is able to discriminate between

code and data. Additionally, approxis could differentiate

the architecture of the code instructions [21].

III. APPROACH

As previously mentioned, this article presents MRSH-MEM
which is a combination of approxis and an approxi-

mate matching algorithm MRSH-NET. The main goal is

the possible comparison of memory images and hard-drive

content, e.g., applications installed on the system and cur-

rently executed in memory. This will allow investigators to

profile parts of the memory dump (whitelisting) or detect

suspicious code patterns inside the memory dump (black-

listing). The proposed approach therefore enables to perform

robust unstructured analysis of a memory dump. A strongly

generalized overview of our use case is shown in Figure 4.

The left-hand side outlines the already existing approximate

matching techniques. The opposite side is the content of this

article, i.e., how to modify / normalize a memory image so

that we can generate a fingerprint / memory digest which

then can be compared against a traditional approximate

matching fingerprint.
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Input byte sequences:

41 55 48 89 f3

48 81 ec 48 8d

64 48 8b

→

root

64
mov

48
mov

8b
mov

48
lea sub

mov

89
mov

f3
mov

81
sub

ec
sub

8d
lea

41
push

55
push

→

Output instructions:

push 41 55

mov 48 89 f3

sub 48 81 ec

l e a 48 8d

mov 64 48 8b

Figure 2. Oversimplified disassembling process with the help of a byte-trie structure.

Buffer Size Type Description
buf_by INPUT_SIZE uint8 t Stores the input file or stream, so it contains the raw bytes.

buf_lo BUFFER_SIZE uint8 t Stores the value of confidence for two subsequent instructions.

buf_wi BUFFER_SIZE uint8 t Stores the averaged confidence for WINDOW_SIZE instructions.

buf_ro BUFFER_SIZE uint8 t Stores the relative offset of a instruction at the current offset.

buf_pe BUFFER_SIZE uint8 t Stores the penalty value at a current offset.

buf_mn BUFFER_SIZE uint32 t Stores the decoded mnemonic for a specific instruction.

Table III
USED BUFFERS OF THE CURRENT APPROXIS INTEGRATION.

41 55 48 89 f3 48 ff e0 48 8d

λi = 7 λi+2 = 5

λi+3 = 17

λi+3 = 4

Figure 3. If the process of disassembling struggles, reasonable offsets
could be selected by the examination of the saved values of confidence for
different bigrams.

A. Considerations

Before discussing our approach, we highlight some con-

siderations which impacted our design decisions. In Sec-

tion II we gave a brief introduction into the concepts of

Virtual Memory Management, approximate matching and

approximate disassembling. In the following listing we con-

clude some considerations, which have to be respected for

processing raw physical memory:

I. Mappings of virtually contiguous regions do not
have to be physically contiguous.
The fact that pages of a specific context do not have to

be allocated contiguously in memory, is an important

issue for the overall concept of transferring approximate

matching to the field of memory forensics. Found

features should be considered in a page-sized scope.

This should lead to future research and concepts of

composing separated page sizes.

II. The page size can vary for different architectures
and pages are aligned to its page size in memory.
We expect the page size to be at least 4 KB which is

the most common page size. This is important when

selecting the block size b as it should be smaller

than the page size. Explanation: a large b will reduce

the amount of chunks within a page boundary of a

physical memory dump. Considering non-contiguous

physical pages, this could lead to producing features,

that frequently overlap with neighboring pages (all

details about b are discussed in Section III-D).

III. Pages could be shared between processes, thus a
physical could refer to multiple virtual pages but
not the other way round. The concept is also called
Shared Memory.
This concept outlines, that virtual to physical mapping

is actually not a one to one mapping. Especially in the

case of shared libraries, it should be clear that those

matches could not actually resolve a specific sample.

Even if this is yet out of the scope of this work, we

should consider it in further proceedings.

IV. Each process context uses its own virtual mapping.
We are not able to actually resolve the physical
offset of a virtual address without translation or
the analysis of system related structures.
Our overall approach of processing is context unaware.

Thus, we are not able to actually resolve a virtual

reference. It should be clear, that examination on a

higher level, e.g. the usage of recursive traversal or

control flow graph analysis, are not applicable in a

context unaware scenario.

V. Not all requested pages of a process are allocated
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Figure 4. Overview of the overall approach and application of MRSH-MEM

immediately. The concept is also called Lazy Alloca-
tion.
In contrary to traditional hard drive forensics, the

looked up data sample has not to be present in RAM

completely during acquisition. We should consider this

fact during examination of found chunks inside a target

image.

VI. In case of high memory usage, the kernel is able
to swap content to hard disk, which is denoted as
Swapping.
Similar to Lazy Allocations, this concept should raise

our awareness, that we should not expect a sample (i.e.

in the case of loaded executables) which is fully loaded

to memory at the time of acquisition.

VII. We expect systems with 8 GB RAM to represent a
reasonable upper bound for current consumer PC
systems.
Similar to previous publications, which have deter-

mined the required Bloom filter size for their field

of application, we should determine the maximum

required size for storing memory dumps. Even if it is

common, that most of the acquired memory should be

initialized with zero byte paddings anyways, we assume

this value as possible upper bound, in case the acquired

memory is well populated.

VIII. Executables are changed during the process of
loading to memory.
Code on a hard disk should differ from its represen-

tation in memory. Legitimate changes to code would

obviously cause the original fuzzy hashing techniques

to fail. The PRF and CHF would possibly interpret

even legitimate updates to the code structures. The

possible pitfalls of applying traditional fuzzy hashes are

twofold. First, the process of chunk extraction could

be disturbed, as the PRF could trigger at different

offsets. Second, the hash value of a extracted chunk

could differ, as the CHF works on a byte-level of

unnormalized code fragments.

B. Data Processing

In the following we will describe how we combined

approxis with approximate matching. The workflow of

data decoding and examination is depicted in Figure 5 and

can be described as a multi-layered process. Note, even

though the figure shows a clear separation between different

steps, most of them are strongly interleaved and therefore it

is hard to visualize the exact flow. A description of the steps

depicted in the figure is given in the following (step one and

two are nearly unmodified steps presented by Liebler and

Baier [21]):

� The raw bytes from the memory are disassembled using

approxis as discussed in Sec. II-C which will return

the mnemonic as well as the length of the instruction.

Especially the decoded mnemonic is important for

further proceedings as the process of chunk extraction

and chunk hashing.

� Using the confidence score λ and the concept of a

simple running length counter allows to differentiate

between code and data. The running lenght counter

counts repeating mnemonics, e.g., a nop-slide, which

should not be considered. Note, for our approach we

will focus on code and neglect data.

� Having the approximate disassembled code, we now

identify the chunk boundaries based on the mnemonics.

Therefore, we utilize a sliding window approach on

the mnemonics (precisely, the rolling hash runs over a

C-buffer that contains the byte representations of the

mnemonics). All details are provided in Sec. III-C.

� After identifying all chunks, an additional filter is ap-

plied to remove irrelevant chunks. To identify relevant

chunks, we utilize the confidence score. For instance,

the first three entries form chunk one (indicated by C1)

have a high confidence score (64, 64, 63), therefore we

consider this chunk as not relevant (indicated by ’[0]’).

� Lastly, the relevant chunks (indicated by ’[1]’) will be

hashed and stored into a database. While this exam-

ple focused on creating a chunk-hash based on the

mnemonic buffer, we can utilize other buffers as well

for further comparisons, e.g., the raw byte buffer.

C. Implementation Details

The previous section outlined a high level perspective of

the procedure where this section details about our concept.
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Figure 5. Overview of the data processing steps. The process outlines the interleaved characteristics of the overall approach. We highlighted integrated
components of approxis and MRSH.

As mentioned, we are using a multi-layered process which

is reflected by the usage of multiple buffers (buffers are

summarized in Table III). Most of the working buffers are

limited in its size and thus, have to be swapped during

processing (i.e. buf_lo, buf_ro, buf_pe, buf_mn).

We skip the details of the buffer swapping for simplicity,

but recommend to consider the implementation as multiple

circular buffers. For the prototype (and hence for the runtime

performance evaluation) we expect that the input stream (i.e.

buf_by) can be stored in memory completely. For a better

understanding of the overall processing and the usage of

the mentioned buffers, we explain the procedure based on a

comprehensive example in the following section.

Figure 6 gives an example of how the different buffers are

utilized. The example shows 10 steps of processing, where

in each step a instruction is decoded from the byte buffer

by (buf_by) at the highlighted offset (�). The decoded

instruction length and a corresponding mnemonic are saved

into separate buffers after each offset in ro (buf_ro)

and mn (buf_mn), respectively. Thus, the current buffers

steadily increase with each decoded offset. For instance,

in step 1 the first seven bytes in the byte buffer are

0xe800000000832d. The disassembler decodes the

first six bytes to the mnemonic 114, which represents a

call instruction. The pointer moves to the next offset and

repeats the decoding process similar to the first row. Thus,

in step 2, the next byte sequence 0x832d0000000001
gets decoded to the mnemonic 91. Beside the mnemonic,

we again store the corresponding length of the instruction

7 in the buffer ro. In the third row, we could see that the

previous pointer was increased by 7 and the process repeats

with the decoded instruction bytes 0x7402.
Once the mnemonics are decoded, they are ‘added’ to our

sliding window, e.g., in step one the mnemonic 114 is the

first entry of the rolling hash. Given that the rolling hash has

a length of seven, the last seven mnemonics serve as input

for the PRF. As the amount of mnemonic representatives is

larger than 28, the hash value is calculated over a sequence

of integers, which stores the mnemonic represents decoded

by approxis. As soon as the PRF determines a chunk

boundary (see the output of the PRF in step 5 and step 8

of Figure 6), the decoded instructions (buf_mn) are hashed

using the chunk hash function (CHF, FNV-1a algorithm

[13]). The hash value is then stored into the Bloom filter,

where the hash value is separated into k = 6 sub-hashes and

each sets a bit of the Bloom filter. The procedure is identical

to the original MRSH approach. In Figure 6, we represent the

hash values by a shortened representation in the last column

denoted as BF. The buffers by and ro are cleared out after

each chunk extraction (see step 6 and 9 in Figure 6), where

the sliding window of the applied PRF keeps the buffer of

the last 7 mnemonics for the next decoding pass.
To filter code related chunks and to reduce the overall

amount of Bloom filter inserts, we utilizes the introduced

value of confidence for consecutive instructions (see Sec-

tion II-C). Therefore, chunks are inserted into a Bloom filter

as soon as they fulfill two properties. First, the chunk size

has to contain at least 10 consecutive instructions. Second,

the overall amount of considerable meaningful mnemonic

bigrams has to be at least 30 % for a current chunk.
Hashing the decoded byte sequences (buf_mn) will for
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Step buf_by
BF (Hash)buf_ro buf_mn PRF(buf_mn[-7:])

1.
by: ... 00 00 00 00 � e8 00 00 00 00 83 2d 00 00 00 00 01 74 02 f3 c3 ...

[]

ro: 5 mn: 114 PRF(114) → �

2.
by: ... 00 00 00 00 � 83 2d 00 00 00 00 01 74 02 f3 c3 e8 00 00 00 00 ...

[]

ro: 5 7 mn: 114 91 PRF(114 91) → �

3.
by: ... 00 00 00 01 � 74 02 f3 c3 e8 00 00 00 00 e9 00 00 00 00 66 0f ...

[]

ro: 5 7 2 mn: 114 91 44 PRF(114 91 44) → �

4.
by: ... 00 01 74 02 � f3 c3 e8 00 00 00 00 e9 00 00 00 00 66 0f 1f 44 ...

[]

ro: 5 7 2 2 mn: 114 91 44 330 PRF(114 91 44 330) → �

5.
by: ... 74 02 f3 c3 � e8 00 00 00 00 e9 00 00 00 00 66 0f 1f 44 00 00 ...

[’c42’]

ro: 5 7 2 2 5 mn: 114 91 44 330 114 PRF(114 91 44 330 114) → �

6.
by: ... 00 00 00 00 � e9 00 00 00 00 66 0f 1f 44 00 00 e8 00 00 00 00 ...

[’c42’]

ro: 5 mn: 115 PRF(114 91 44 330 114 115) → �

7.
by: ... 00 00 00 00 � 66 0f 1f 44 00 00 e8 00 00 00 00 48 83 ec 70 48 ...

[’c42’]

ro: 5 6 mn: 115 14 PRF(114 91 44 330 114 115 14) → �

8.
by: ... 1f 44 00 00 � e8 00 00 00 00 48 83 ec 70 48 89 e7 e8 00 00 00 ...

[’c42’, ’2b4’]

ro: 5 6 5 mn: 115 14 114 PRF(91 44 330 114 115 14 114) → �

9.
by: ... 00 00 00 00 � 48 83 ec 70 48 89 e7 e8 00 00 00 00 48 8b 54 24 ...

[’c42’, ’2b4’]

ro: 4 mn: 91 PRF(44 330 114 115 14 114 91) → �

10.
by: ... 48 83 ec 70 � 48 89 e7 e8 00 00 00 00 48 8b 54 24 20 48 2b 54 ...

[’c42’, ’2b4’]

ro: 4 3 mn: 91 95 PRF(330 114 115 14 114 91 95) → �

Figure 6. Example of the overall processing pass with different buffers of the raw buffer (by), the buffer of decoded offsets (ro) and the decoded
mnemonics (mn). The current decoded offset is denoted with � and shifted by the amount ro after each step.

example neglect all byte sequences which represent operand

information within an instruction. More importantly, dif-

ferent opcodes on a byte level can been mapped to the

same mnemonic representative. Besides hashing the decoded

instructions, one could also hash the other buffers. In this

prototype, we actually propose the hashing of two buffers,

the decoded buffer of representatives (buf_mn) and the

original input buffer (buf_by). This empowers an inves-

tigator to detect similar instruction sequences and inspect

possible deviations on a byte level.

We summarize two central adaptations to the original

MRSH and approxis implementation. In contrary to previ-

ous bytewise approximate matching approaches, the chunk

boundaries are defined with the help of the decoded byte
sequences, not the byte sequences itself. Additionally, the

code detection is not performed within a fixed-sized sliding

window as proposed by Liebler and Baier [21], but rather

on a chunk level.

D. Configurable Parameters

An overview of the important configurable parameters is

given in the following subsection. We additionally give a

short explanation and reasoning of the parameters and the

selected default values. We will first describe the impor-

tant parameters which define the overall chunk extraction

process. An overview of the parameters could be seen in

Table IV.

Selecting the feature (chunk) size (b): As already intro-

duced, the PRF approximately defines the extracted chunk

sizes. Considering the minimum respected page size of 4KiB

and the presence of non-contiguous memory mappings, we

depict a default value of b = 64 with the defined parameter

name BLOCK_SIZE.

Code confidence: The process of filtering chunks, which

store code fragments, could be controlled by two parame-

ters. The parameter CODE_THRESH describes the maximum

value of λ which defines two consecutive instructions to

be meaningful or not. The values of λ are stored within

the buffer buf_lo during a decoding pass. If less than

10 consecutive instructions are detected within a chunk, the

chunk will not be inserted into the Bloom filter. Additionally,

considering large chunks, we measure the total amount of

instructions within a chunk. We require at least 30 % of the

decoded instructions inside a chunk, before the chunk will

be inserted into the Bloom filter. We denote this threshold

of code coverage as parameter CODE_COV.
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Parameter Range Default Description
BLOCK_SIZE [0,1] 64 Defined modulus and approximated size of a chunk (b).

CODE_THRESH [0-100] 30 The value defines the threshold of code confidence. A sequence of

instructions should be considered as code fragments, as soon as the

value of confidence is lower than the defined CODE_THRESH.

CODE_COV [0-1] 0.3 Defines the minimum required percentage of code coverage within

a chunk, before it gets hashed and inserted into the Bloom filter.

Table IV
PARAMETERS OF THE MRSH-MEM IMPLEMENTATION.

Penalties: The original implementation of approxis
considers large amount of repeating decoded mnemonics as

less meaningful. An example could be misleadingly decoded

sequences of non-allocated zero bytes or other padding

instructions (e.g., NOP instructions). The running length

counter of approxis counts subsequent similar decoded

mnemonics. As soon as the running length counter instruc-

tion exceeds RLE_THRESH, a penalty is written into the

buffer buf_pe. The saved penalty is added to the value of

confidence stored in the buffer buf_lo afterwards. Beside

the threshold we additionally configure a factorial, which de-

creases the current running length after a sequence of similar

mnemonics was interrupted. We increase the RLE_DRAIN
to respect the non-contiguous properties of physical memory

dumps. The both parameters are summarized in Table V.

Determining the Bloom filter size (m): In the former

section we described the idiosyncrasies and properties of

memory management. In this paragraph we explain the

parameter adaptations and the following impacts to the

needed Bloom filter size. For further details to the following

formulas we refer to Breitinger et al. [6]. We consider 8 GiB

as reasonable RAM size and select the expected input size

(s) to be s = 8 GiB.

With the expectation that a modulus b defines a trigger

point and thus the probability of a hit is reciprocally pro-

portional to the average chunk size, we estimate the number

of extracted chunks n for a given input image with size s.

The calculation could be seen in equation 2.

n =
s · 220

b
=

8 · 1024 · 220
64

= 134, 217, 728 (2)

In Breitinger et al. [6] the authors mention that the choice

of k is limited by the used FNV-1a hash function. Thus, the

value of k is limited to 5 ≤ k ≤ 7. Similar to MRSH-NET
we choose the value of k to be k = 6. A single Bloom

filter of size 32 MiB could be used to monitor approximately

2 GiB of data, whereas as Bloom filter of size 2 GiB could

approximately monitor 100 GiB of data [4]. Obviously, the

filter has to be stored in memory during examination. Similar

to Breitinger and Baggili [4] we consider this size as still

manageable even on casual or mobile systems. To determine

the maximum needed size of the Bloom filter in dependency

to the expected input size, we depict the corresponding

formula from [6]. In addition, we set the parameter r, which

defines the minimum amount of correctly to be identified

consecutive features to r = 6. Considering equation 3 and

the above mentioned parameters, we propose a Bloom filter

size of m ≈ 7.0426 ·108 bits ≈ 84MiB. An overview of the

configurable parameters could be seen in Table VI.

m = − k · n
ln(1− k·r√p)

, where p = (1− e−kn/m)k. (3)

IV. APPLICATION

The implementation of MRSH-NET uses a single, large

Bloom filter which bares two notable disadvantages: mem-

ory consumption and the lack of file identification, i.e., the

approach can only answer the question if a file is contained

in a given Bloom filter, but we cannot say to which file a

similarity exists. However, we decided to use the identical

approach for realizing the prototype; we will evaluate pos-

sible strategies in future research to match chunks with a

given file base.

The adaptation and integration of a single Bloom filter

(BF) gives us a good computational performance for initial

white- or blacklisting of extracted chunks. However, to per-

form the capabilities of better identification, we additionally

create a database of extracted chunk hash values (CHV).

The current chunk hash database (CHDB) consists of single

large lookup tree, which stores all chunk hash values with a

corresponding file name inside each leaf node. As we focus

on computational speed and expect better solutions for a fast

file identification, we do not consider the database in the case

of runtime performance analysis or memory consumption

(see Section VII for further discussions). Figure 7 provides

an overview of the general application. First, an investigator

has to acquire the dumps (memory and hard disk). Addition-

ally, the acquisition of files from different repositories can

be considered. All input files are processed with MRSH-MEM
and stored in the Bloom filter as well as in a database of

known code fragments (CHDB). Applying MRSH-MEM on

the acquired memory dump will then answer the question
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Parameter Range Default Description
RLE_THRESH [0-100] 10 Sets the threshold when the repeating sequences of instructions

should be considered as not valid.

RLE_DRAIN [0.1-1.0] 0.9 The value defines a factorial, which lowers the running length

counter significantly faster. If the value is lower than the defined

threshold, we switch to stepwise decrementing the counter.

Table V
PARAMETERS OF THE MRSH-MEM IMPLEMENTATION FOR CONTROLLING THE RUNNING LENGTH PENALTY.

Parameter Range Default Description
BF_SIZE_IN_BYTES [0,X] 128 MiB Size of the Bloom filter (b, must be a power of two).

SUBHASHES [5,7] 6 Number of used subhashes (k).

MIN_RUN [0,X] 6 Minimum amount of correctly to be identified consecutive

features (r).

Table VI
PARAMETERS OF THE MRSH-MEM BLOOM FILTER IMPLEMENTATION.

if a particular memory fragment is found in the BF. The

comparison against the database will allow to answer the

question which file was matched.

Note: Different versions of the same executable can share

the same code base. Thus, similar chunk hash values can

occur, which will be inserted into the Bloom filter digest.

Leaf nodes in our CHDB, which are occupied by chunks of

multiple versions of an executable (e.g., the same chunks

have been extracted for multiple versions of a file) are

denoted in the following plot as multiple hits. Chunk hash

values, which only appeared for a single version, are marked

as single hits.

Test environment: For testing purposes, we acquired

memory and hard disk fragments from an existing Debian 8

installation, which was originally setup inside a virtualized

environment for common network analysis tasks. In detail,

we inspected a Debian 8 installation (Debian 3.16.7 x86 64

GNU/Linux) running with the help of Virtual Box (Version

5.2.6 r120293). The system contains several real world ap-

plications and was used for several weeks without a reboot.

To acquire the memory we used LiME7 (Linux Memory

Extractor) which is a Loadable Kernel Module for memory

acquisition. We inserted the module into the running Kernel

and acquired 2 GiB of the memory in raw format.

A. Identify present Linux Kernel Version

In our first application we identify the presence of Kernel

fragments and the Kernel version of the target system by

analyzing the acquired raw memory dump with MRSH-MEM.

This process can support further structured analysis and pos-

sibly enhance the task of profile determination. In our appli-

7https://github.com/504ensicsLabs/LiME (last accessed 2018-02-10).

cation we utilize a set of available Linux images of a public

Debian repository8. The Kernel files (i.e., vmlinux/vmlinuz)

have been obtained by the corresponding deb-Packages, the

.text sections have been extracted and the images have

been processed with MRSH-MEM. We additionally store the

extracted Linux Kernels and its corresponding chunk hash

values in our introduced CHDB. Subsequently, we query the

CHDB with 12 different Kernel images (see Table VII for

an overview of all inserted Linux Kernels).

While we expect that most of the Linux Kernels from the

repository share a reasonable amount of similar code chunks,

this can obviously vary for different versions. To determine

the actual Kernel version of our target system, we analyzed

the detected chunks in two ways. First, we determined the

total amount of detected chunks for each processed Kernel

version. Second, we examined those chunks, which are only

mapped to a single Kernel version by the CHDB and do not

share multiple of those chunks with other Kernel versions.

After performing the step of chunk identification with

MRSH-MEM, we additionally identified the related Kernel

version(s) for each chunk. The amount and distribution of

detected chunks by its corresponding kernel version(s) can

be seen in Figure 8. The statically linked Kernel images

share a reasonable amount of similar code fragments (bar

multiple). However, the actual Kernel version clearly oc-

cupies most of the extracted chunks and thus, we could

distinguish the present Kernel from the other images (see

column (9) in Figure 8). Next, we only considered chunks

which are mapped to a single Linux Kernel and do not count

shared code fragments between different versions, i.e., we

8http://ftp.us.debian.org/debian/pool/main/l/linux/ (last accessed 2018-
02-10).
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Figure 7. Overview of the application of MRSH-MEM.

filter out identified chunks which are related to multiple

Kernels. The examination of distinct mapped chunks in

Figure 8 (bar single) underline the presence of our expected

Kernel version (vmlinuz-3.16.0-4-amd64).

Considerations: Discussing the examination of the Ker-

nel .text section in memory leads to the question if

MRSH-MEM can be used for detecting advanced Kernel

infection techniques. Different hijacking techniques should

lead to the presences of modifications in the memory located

version of the original Kernel. However, the process of

Kernel loading is quiet complex and the Linux Kernel bina-

ries could additional contain modification instructions, i.e.,

alternative instructions (.altinstructions9). Those in-

structions patch the original code during loading. At this

point we leave the question if MRSH-MEM is usable for ad-

vanced code integrity checks of Linux Kernels unanswered

for further research.

B. Identify Application in User Memory

As already introduced in Section II, the Kernel memory

mappings should be considered contiguous in most of the

cases. To determine the capabilities of our approach in

user space memory, we performed a task of process and

application identification. We inspected the raw memory

dump on the presences of application related code frag-

ments. In detail, we acquired three different versions of the

Wireshark Protocol Analyzer10 from a Debian repository11

(see Table VIII). The acquired ELFs were dynamically

linked and stripped. We extracted the allocable .text
sections of the different executables and processed them with

9https://lwn.net/Articles/531148/ (last accessed 2018-02-10).
10https://www.wireshark.org/ (last accessed 2018-02-10).
11http://ftp.us.debian.org/debian/pool/main/w/wireshark/ (last accessed

2018-02-10).

MRSH-MEM, where each executable approximately contained

4130 chunks. Again, the chunks were also inserted into the

CHDB for the evaluation of single and multiple hits.

We ensured that an instance of Wireshark 1.12.1 was run-

ning at the time of memory acquisition. Figure 9 illustrates

the capabilities of detecting and discriminating a running (or

formerly running) application in memory, where the amount

of single occupied chunks (1766) clearly identifies the actual

running Wireshark version (1.12.1).

To investigate possible false positives and to examine the

discrimination between a running and not running process

we repeated the procedure after rebooting the system. Thus,

we were not expecting to find presence of Wireshark. The

results are shown in Figure 10 and the plot indicates very

low numbers / matches. Precisely, the bars show some hits

in the case of multiple occupied chunks. To lower the values

of false positives, we propose the adaptation and increase of

the MIN_RUN parameter. We additional suggest a minimum

required chunk size, as most of the false positives were

smaller than 40 bytes.

C. Runtime performance

In the following paragraph we examine the runtime effi-

ciency of MRSH-MEM. In detail, we measured the runtime for

disassembling, chunk extraction, chunk hashing and Bloom

filter handling. Note, we differentiate between Bloom filter

creation and Bloom filter lookup. As mentioned in the

original paper of approxis [21], the processed byte se-

quences can significantly influence the overall disassembling

performance. Therefore, similar to Liebler and Baier [21] we

study the runtime performance for three different images: a

concatenated set of 64 bit ELF binaries, a raw memory dump

acquired with LiME and a random sequence of bytes. Lastly,

we removed all unnecessary functionalities (e.g., printout
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Figure 8. The detected chunk sequences and the overall counts for each Kernel version. As could be seen, the present Kernel version of our target system,
i.e. vmlinux-3.2.0-4-amd64 (9), shows a significant amount of detected chunks.

ID Kernel ID Kernel ID Kernel
(1) 3.2.0-4-amd64 (2) 4.13.0-0.bpo.1-amd64 (3) 4.14.0-0.bpo.2-rt-amd64

(4) 4.14.0-0.bpo.3-amd64 (5) 3.2.0-4-rt-amd64 (6) 4.14.0-3-amd64

(7) 4.15.0-rc8-amd64 (8) 4.14.0-0.bpo.2-amd64 (9) 3.16.0-4-amd64
(10) 4.14.0-3-rt-amd64 (11) 3.16.0-0.bpo.4-amd64 (12) 4.14.0-0.bpo.3-rt-amd64

Table VII
EXTRACTED LINUX KERNEL IMAGES FROM THE DEBIAN REPOSITORY (MARKED WITH AN IDENTIFIER). THE ACTUAL PRESENT KERNEL IN THE

EXTRACTED MEMORY IMAGE IS HIGHLIGHTED (9).
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Figure 9. Examination of a memory dump of our target system
meanwhile Wireshark was running (ELF executable amd64; version
1.12.1).
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Figure 10. Memory dump of our target system after rebooting the
virtual machine and thus, without a running Wireshark instance.

mechanisms) and compiled our binary with an optimization

set to O212.

The efficiency test was performed on a Lenovo Thinkpad

x250 with a Intel Core i5 2x 2,2 GHz and 8 GB RAM.

The performance of the built in Solid State Drive was also

determined, where the read performance was 508 MB/s and

the write performance was 513 MB/s. The overall results

are shown in Table IX. The column of chunks defines the

12https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html (last
accessed 2018-02-10).

amount of triggered chunk boundaries for each image and

for one pass.

Considerations: The current implementation shows fur-

ther potential for improving the overall runtime performance.

So far, our current implementation does not consider any

additional steps of previous data filtration steps (e.g. the

usage of entropy analysis). In addition, it should be men-

tioned that the current processing does not consider any

parallelization and the introduced approach empowers to

concurrently process the input memory images.
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ID Version
(1) 2.4.4-1 amd64

(2) 2.2.6+g32dac6a-2+deb9u2 amd64

(3) 1.12.1+g01b65bf-4+deb8u13 amd64
Table VIII

LIST OF EXTRACTED WIRESHARK VERSIONS. THE ACTUAL RUNNING VERSION IS HIGHLIGHTED (3).

Execution time Chunks Description
insert lookup

46.0s 48.0s 6,887,955 Concatenated set of 64bit binaries from /usr/bin
50.0s 50.0s 1,608,674 Raw memory dump acquired with LiME

197.0s 192.0s 10,537,710 Random sequences of bytes generated with /dev/urandom

Table IX
INSERT AND LOOKUP RUNTIME PERFORMANCE OF MRSH-MEM FOR DIFFERENT INPUT IMAGES.

V. RELATED WORK

The application of a YARA13 rules for the examination of

memory was recently discussed by Cohen [9]. The author

described a context-aware scanning scheme on the physical

address space using the Windows PFN database, which

could be used to map each physical page to a corresponding

process. By the examination of physical memory dumps,

the approach still gains a reasonable performance, which is

caused by an optimized IO throughput. In contrary to the

application on hard disk, the authors discuss the applicabil-

ity, expandability and the adaptations of pattern matching

rules in the course of memory analysis.

White et al. [31] and Walters et al. [30] discussed identify-

ing known code sequences by applying cryptographic hash

functions. Therefore, memory pages containing code frag-

ments are first normalized, before they are further processed.

The offsets which have to be normalized have been saved

into a database of hash templates; consisting of hash values

and the corresponding offsets. After identifying a process in

the Virtual Memory Space, the hash templates are selected

by extracted process informations from the memory dump

itself. White et al. [31] improved the costly lookup process,

which was first introduced by Walters et al. [30], where the

comparison between each template and each page in the

Physical Address Space leads to a complexity of O(n ∗m)
for a comparison of n templates against m memory pages.

A virtual PE Loader was created to perform the process

of binary lifting and to extract the variable memory offsets

in the executable. A public available Volatility plugin14

provides a whitelisting similar to White et al. [31]. The

approach performs a lookup on a page level of executables.

Therefore, the memory is processed and sent to a hash server.

In contrary to [31], the lifting of the code is performed on

13https://github.com/VirusTotal/yara (last accessed 2018-02-10).
14https://github.com/K2/Scripting/blob/master/inVteroJitHash.py (last

accessed 2018-02-10).

the server, which creates integrity hashes with the help of

the virtual address of the process on the client.

Ligh et al. [22] introduced a script (ssdeep_procs),

which enumerates running processes on a system, dumps

them to hard disk and compares the extracted executables

with the help of ssdeep [20]. The Volatility plugin called

impfuzzy15 applies Fuzzy Hashing on the Import API

of PE files to detect malicious changes. However, most of

the mentioned approaches are context-aware and fall into

the category of structured analysis where we have already

mentioned the advantages, disadvantages and conceptional

differences. In contrary to the introduced approaches, our

approach aims to extend current techniques of unstructured

analysis and the creation of new forms of data driven cross

validation.

Different authors mentioned or questioned the application

of approximate matching in the course of memory forensics

[31, 23]. In the specific case of matching executables in

memory to its counterpart loaded in memory, most of

the authors doubt the usefulness of applying approximate

matching on the raw sequences in memory. One major

reason are legitimate changes to the code sequences caused

by the loading process itself. Similar to White et al. [31]

and Walters et al. [30] we propose an additional step of

normalization by previously disassembling detected code

sequences. This is accomplished with the utilization of an

approximate disassembler [21].

The term approximate disassembling describes the rough

disassembling of unknown code sequences and was, to the

best of our knowledge, first mentioned by Shah [28]. The

authors focused on a fast and rough disassembling of a

code base as preceding step of machine learning based

classification tasks. Therefore, they first analyzed the most

frequent occurred (MFO) instructions of executable files

15https://github.com/JPCERTCC/aa-tools/tree/master/impfuzzy (last ac-
cessed 2018-02-10).
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similar to Bilar [1]. By disassembling a large set of PE

executables with the help of IDA Pro, a frequency analysis

of subsequent MFO instruction pairs was performed. The

statistical examination was used for creating a solution tree,

which could be used to select the most plausible next

offsets inside a byte stream. The approach resolves multiple

possible paths by examining the statistical probability of

different byte offsets inside a byte stream. The approach

was called to be 20 % faster than IDA Pro. However, no

computational performance was made against a linear sweep

disassembler, as those are known to be faster than a recursive

traversal based disassembler like IDA Pro. Additionally,

comparing the computational performance could be mislead-

ing, as IDA Pro outreaches the capabilities of approximate

disassembling. The approach was only tested for small files

with a size from one to five megabytes.

Considering the field of memory forensics and its intro-

duced conditions, we inspected approaches that are related to

our task of identifying fragmented code structures. Garfinkel

and McCarrin [14] introduced an approach called hash-
based carving which aims at identifying fragmented files,

files that are incomplete, or files that have been partially

modified. The approach is mainly considered in the field

of sector-based volumes and the sliding window based

extraction is sized to 4 KiB. The overall process is com-

putational demanding but highly parallelizable. The authors

make use of a previously introduced hashdb [32] and outline

their real-world experience by the utilization of hash-based

carving. A major contribution of the work is the discussion

of classifying blocks and the negative impact of common

blocks, which are shared between documents. Their work

shows the problem of a high false identification rate caused

by large amounts of shared blocks within the processed

document classes. As our work focuses on the adaption of

approximate matching into the field of memory forensics

and as we propose a more context-related extraction of

chunks by adopting fundamentals of an implementation

called MRSH-NET [4, 5], we address the process of a

better chunk identification and resolving a corresponding

executables as a future task.

VI. CONCLUSION

Approximate matching techniques are known among the

digital forensics community and have been utilized in differ-

ent fields of application. Current implementations empower

to whitelist or identify fragments of data in the field of

classical disk or network forensics. The application of ap-

proximate matching on memory bares several pitfalls. Simi-

lar to other unstructured analysis techniques, our introduced

approach has to consider several idiosyncrasies of inspecting

the physical memory space. Therefore, we first discussed

those considerations and limitations.

We introduced a new specimen of approximate match-

ing (MRSH-MEM), by interfacing approximate matching

(MRSH-NET) with an additional step of approximate dis-

assembling (approxis). We described the implementation

details of merging both techniques as well as the needed

adaptations and changed parameter settings. The integration

of an additional step of disassembling stabilizes the original

bytewise application, as our approach works on disassem-

bled and thus, normalized instruction sequences. To the best

of our knowledge, this is the first implementation, which

interfaces approximate matching with an additional step of

approximate disassembling.

We showed the feasibility of our approach by comparing a

memory dump against code fragments gained from different

resources, i.e., code extracted from a hard disk as well

as a repository. Our introduced approach detects allocable

code fragments without the need of manual inspecting an

executable or the manual definition of any matching rules.

Our first prototype empowers to easily create a database of

different applications and perform the examination of raw

memory dumps. As former publications claimed approxi-

mate matching to be slow, we showed that our current pro-

totype achieves a good computational performance, without

the usage of any parallelization.

Our current implementation, which is written in C, could

be shipped as a Python Extension for easy use and inte-

gration. We consider our implementation in different fields

of application and see further potential of extending exist-

ing Memory Forensics Frameworks, which are also mostly

written in Python.

VII. FUTURE WORK

There are four major aspects we will address. First, the

process of saving and identifying files will be improved.

The current implementation of the chunk hash database

(CHDB) and the usage of a single Bloom filter shows

promising results. However, an advanced database should be

considered, which empowers to actually identify and name

a specific fragment found in memory. A general discussion

of this task was already started by Garfinkel and McCarrin

[14] and the authors showed major challenges caused by

shared blocks across different samples of a specific file type,

e.g., office documents. As we process executable sections of

code, different results should be expected which requires

the reassessment of a chunk based file identification in

our specific field of application. A promising candidate for

further developments could be the adaptation and integration

of Hierarchical Bloom Filter Trees (HBFT) [24] or the

utilization of already introduced hash databases [32].

Second, the process of chunk hashing should be further

investigated. The extraction of chunks based on mnemonic

representatives or the original byte sequences itself, could be

further extended by other types of intermediate representa-

tions. This should allow to perform additional steps of inves-

tigation, as the current approximated state of disassembling
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is useful for the fast detection of similarities but gives less

insights into the performed instructions and their meaning.

Third, the core of MRSH-MEM is written in C to gain

the best runtime performance. However, an integration into

one of the public available memory forensics frameworks is

possible, as we propose an integration as Python Extension.

Further applications and the creation of new extensions will

be considered, e.g., the development of advanced integrity

checks. Our approach may also be used to extend current

frameworks and the process of structural analysis. A first

application could be the integration of data driven cross

validation functionalities, e.g., by enumerating an identified

process by its original and disk-placed disassembled code-

base. As already outlined, the task of code integrity checks is

an interesting application, e.g., for advanced Kernel integrity

checks. However, this application needs additional research

and engineering effort.

Finally, as our current approach only focuses on code in

memory, we will investigate the capabilities of identifying

non-code related structures. As we perform a single pass

over the complete image, this should not lead to a significant

runtime overhead.
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