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1. Introduction

Mobile vault applications facilitate secure storage of per-
sonal data, preventing data leakage when a user’s device is
borrowed or lost. Some applications disguise themselves by
mimicking widely used programs such as a calculator. Only
when a user types in the correct passcode (like a password),
hidden data will be displayed. By searching “vault app”
in the Google Play Store, many vault applications can be
found. At the time of writing, the most downloaded vault
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application — AppLock had been downloaded over a hundred
million times.

From a privacy perspective, vault applications can be used
to hide benign personal data (typically media files such as pic-
tures and videos). They have also been misused with criminal
intent for hiding photos/videos of victims. This means that they
are also considered as anti-digital forensic tools and fall under
the data hiding category since they hinder the forensic process
(Conlan et al., 2016). Furthermore, vault applications have been
used by minors to hide photos from their peers and parents.
The increased use of vault applications has brought challenges
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for school systems as well as security and digital forensic
practitioners.

For example, in a 2015 case, high school students in Colo-
rado exchanged hundreds of nude photos of themselves (Colorado
sexting scandal: High school faces felony investigation, 2016). Nearly
half of the students in the incident hid their photos from their
parents in a calculator-like vault application. In another crimi-
nal case in December 2015, the Connecticut Glastonbury Police
Department (PD) investigated a report that a man had been ob-
served secretly taking pictures with his phone up the skirt of
a woman in an office building parking lot while he assisted her
with her vehicle. During the investigation, the suspect’s phone
was received at the Connecticut Center for Digital Investiga-
tions (CDI) for examination. The phone was a Samsung Galaxy
6 Edge running Android. A logical and physical extraction were
completed using what most law enforcement regard as the
golden standard tool for mobile forensics: Cellebrite UFED 4PC.
The data was analyzed using Cellebrite’s Physical Analyzer.
During the analysis, it was noted that the suspect had been using
several programs on the phone that were designed to hide files.
One of the programs in particular was titled GalleryVault. With
traditional forensic tools, the police were only able to recover
a few photos that were located on the device, none of which
were guarded by the vault applications.

It is of note that work presented in this paper was used on
the data hidden by the GalleryVault application. The research-
ers collaborated with CDI and reconstructed 66 new files that
were previously irrecoverable. These files included 18 addi-
tional videos that would be prosecutable in the Connecticut
jurisdiction, as well as 38 videos that may be prosecutable in
other jurisdictions. All together, 42 new victims were revealed
in these recovered videos allowing the police to demonstrate
the full scope of the suspect’s actions, having a direct impact
on the outcome of the case. This showcased the importance of
our research findings to the law enforcement community.

Our work had two complementary goals. The first was to
test security implementations in vault applications to examine
their impact on privacy. The second was to explore the digital
forensic implications of our findings. We therefore conducted
an investigation based on the logical acquisition of artifacts
from vault applications complimented by (in most instances)
reverse engineering the 18 most popular free vault applica-
tions which at the time of writing amounted in total for over
219,500,000 downloads from Google Play Store.

This work presents the following contributions:

e Methods for breaking into 18 vault applications are pre-
sented in detail allowing the reconstruction of original files
hidden by most of the applications.

The location and type of relevant forensic artifacts for the
18 vault applications such as passwords (cleartext and
hashed), database files and encrypted and unencrypted
media files.

In '¥%s cases, we present ways to reconstruct or retrieve
hidden files without the need to log into the applications.
Software tools for reconstructing/decrypting data from some
of the vault applications.

The rest of the paper presents related work in Section 2 fol-
lowed by the apparatus used in Section 3. We share our
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four-phase overarching methodology in Section 4. The core of
our work is presented in Section 5 with our case study and find-
ings for the 18 vault applications are portrayed. We then follow
up with Section 6 which summarizes our results and find-
ings. The discussion and limitation sections are then presented
in Section 8 and Section 9 respectively. We conclude and set
directions for future work in Section 10.

2. Background information and related work

We review related work in four major areas: methods for
Android data acquisition (Sec. 2.1), artifact analysis of popular
messaging and social networking applications (Sec. 2.2), Android
application privacy (Sec. 2.3) and approaches for reverse en-
gineering Android applications (Sec. 2.4).

2.1.  Android acquisition methods

Readers familiar with mobile phone acquisition may want to
skip this section. Data acquisition can be achieved both logi-
cally and physically. Logical acquisition extracts user data
recognized by the filesystem whereby deleted files are ex-
cluded. Physical acquisition achieves a bit stream copy of flash
memory and all the data physically stored. One approach for
achieving logical acquisition is utilizing adb - an official Android
versatile command line tool (Android Debug Bridge — Android
Studio, n.d.). With this, user data can be transferred from the
Android device to a forensic workstation. However, establish-
ing an adb connection requires the target device to have
Universal Serial Bus (USB) debugging mode enabled. Addition-
ally, whether the data can be extracted relies on the established
user privilege.

Early research used adb to support physical acquisition (Hoog,
2011; Lessard and Kessler, 2010). In these articles, achieving
physical acquisition required root privilege on the device to le-
verage an adb connection. Even though Lessard and Kessler
(2010) presented an approach for gaining root access, it is no
longer wildly applicable for the new generation of Android
devices. In situations where root privilege, an unlocked screen
or enabled adb is unavailable, researchers achieved physical ac-
quisition by flashing a custom image to a recovery partition
of an Android device (Son et al., 2013; Vidas et al., 2011). This
was executed by rebooting the device to recovery mode to
acquire user data with minimal loss of integrity.

In recent work, Yang et al. (2015) discovered in the firm-
ware update protocol for different brands of Android devices
a flash memory read command. By reverse engineering the pro-
tocol in the bootloader, the researchers were able to physically
acquire the entire flash memory of the device without gaining
root privilege and unlocking the screen.

While most acquisition typically happens using software,
acquisition may also be achieved at the hardware level and is
usually substantially more intrusive to a device’s hardware. Joint
Test Action Group (JTAG) and Chip-off are the most popular
approaches (Breeuwsma et al., 2007). JTAG leverages a testing
port on a mobile device and can be utilized by examiners to
physically connect to a Printed Circuit Board (PCB), which is
available for variety Android devices (Kim et al., 2008). In
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Chip-off, investigators detach the flash memory chip from the
PCB and acquire the data using specialized equipment (Hoog,
2011).

2.2.  Application artifact analysis

Other Android research focused on recovering and exploring
application artifacts. Much of the work has focused on Instant
Messenger (IM) applications that provide evidence of inter-
personal communications. IMs such as Wickr and ChatON on
Android have been subjected to artifact analysis (Igbal et al.,
2013; Mehrotra and Mehtre, 2013). Other work also focused on
extracting GPS geodata from all applications on an experi-
mental Android device (Maus et al., 2011) or target specific
mobile navigation applications like Google maps or Waze (Moore
et al., 2016). Earlier work on mobile phones by Husain and
Sridhar (2009) also forensically examined the iPhone messag-
ing applications: AIM, Yahoo! Messenger and Google Talk. They
were able to recover potential evidence such as usernames and
passwords. Similar work was conducted on multiple Android
devices where WhatsApp and Viber were examined (Mahajan
et al.,, 2013).

Past research also examined the security of nine VoIP and
messaging applications on both iOS and Android (Schrittwieser
et al.,, 2012). Results indicated that in most tested applica-
tions, vulnerabilities could be exploited to hijack accounts,
enumerate subscribers and more. Anglano (2014) fully ana-
lyzed artifacts acquired from WhatsApp Messenger, which
included several database files (e.g. contacts database, chat da-
tabase etc.) and sent or received media files. Unclear data was
decoded and interpreted. Sahu (2013) applied data acquisi-
tion and analysis on both non-volatile and volatile memory
for WhatsApp. They were able to retrieve artifacts such as con-
tacts, location, media files and messages.

In other recent work, Karpisek et al. (2015) were able to
decrypt WhatsApp’s network traffic and examined the new
voice call signaling protocol. They were able to identify and vi-
sualize the messages exchanged between the client and server
as well as the audio codec used.

Social networking applications have also been studied by
forensic/security researchers. For instance, the widely used
social networking applications: Facebook, Twitter and MySpace
were forensically analyzed (Al Mutawa et al., 2012). Walnycky
et al. (2015) conducted forensic analysis on 20 popular Android
social messaging applications by capturing the applications’
network traffic as well as examining the data they stored. Lastly,
Saltaformaggio et al. (2016) were also able to recover multiple
previous screens of a terminated application on an Android
device from a memory image.

In summary, mobile application analysis has attracted at-
tention. However, past scientific work was limited to application
artifacts or network traffic of messaging applications. At the
time of writing, there were minimal exploratory attempts aimed
at examining the security of some vault applications pre-
sented in blog entries (Auerbach, 2015; E2e, 2016; Hawkins, 2012).
Some of these early results are outdated. More importantly, the
blog entries only scratched the surface in exploring the strength
of data protection in vault applications and the practitioners
did not reverse engineer the applications at the source code
level - thus our findings are more comprehensive and rigor-
ous. For example, the authors were unable to retrieve encrypted
data from Private Photo Vault (Table 1), whereas our work was
unable to recover the data protected by that application. It is
also of note that at the time of writing, no scientific papers have
paid attention to vault applications. Given their wide adop-
tion, our work fills that literature gap. Since our study focused
on specific types of Privacy Enhancing Technologies (PET) — vault
applications - literature pertaining to Android application
privacy is of relevance to our inquiry.

2.3. Andproid application privacy

Other than forensic related literature, the privacy leakage/
security issues of Android applications have inspired an active
body of research. Past work in this area focused on potential
attacks for leaking private user data. Work by Jana and
Shmatikov (2012) illustrated a side-channel attack by tracking
changes in an application’s memory footprint. They showed

Table 1 - Most downloaded Android vault applications.

Application Name on device package name Version Downloads

1 AppLock AppLock com.domobile.applock 2.16.3 100,000,000+
2 LEO Privacy-Applock,Hide,Safe LEO Privacy com.leo.appmaster 3.7.7 50,000,000+
3 Vault-Hide SMS, Pics & Videos Vault com.netgin.ps 6.4.22.22 10,000,000+
4 Keeper®: Free Password Manager Keeper com.callpod.android_apps.keeper 10.1.2 10,000,000+
5 Hide Pictures Keep Safe Vault Keepsafe com.kii.safe 7.3.1 10,000,000+
6 Hide Pictures &Videos - Vaulty Vaulty com. theronrogers.vaultyfree 433 5,000,000+
7 Gallery Vault — Hide Pictures GalleryVault com. thinkyeah.galleryvault 2.9.1 5,000,000+
8 Hide Photos, Video-Hide it Pro Audio Manager com.hideitpro 5.4 5,000,000+
9 Hide Photos in Photo Locker Photo Locker com. handyapps . photoLocker 1.2.1 5,000,000+
10 Video Locker — Hide Videos Video Locker com.handyapps .videolocker 1.2.1 5,000,000+
11 LOCX Applock Lock Apps & Photo LOCX com.cyou.privacysecurity 2.3.1.013 5,000,000+
12 Secret AppLock for Android Secret AppLock com.amazing.secreateapplock 6.9 5,000,000+
13 Pic Lock- Hide Photos & Videos Pic Lock com.xcs.piclock 1.9 1,000,000+
14 HidePhoto HidePhoto com.domobile.hidephoto 1.9 1,000,000+
15 Hide Pictures PhotoSafe Vault PhotoSafe com.slickdroid.vaultypro 2.0.1 1,000,000+
16 Private Photo Vault Private Photo Vault com.enchantedcloud.photovault 1.8.3 500,000+
17 Calculator Vault- Gallery Lock Calculator com.calculator.vault 8.5 500,000+
18 Private Text Messaging & Calls Coverme ws.coverme.im 2.6.4 500,000+




that using a concurrent process belonging to a different user
can grab an application’s secrets. They used web browsers as
an application target and illustrated how an unprivileged, local
attack process e.g., a malicious Android application can infer
the page the user is browsing as well as finer-grained infor-
mation like if the user is a paid customer, interests, etc. This
motivated studies on the automatic detection of privacy leakage
from Android applications. For example, AppAudit merged static
and dynamic analysis to provide effective real-time Android
application auditing by simulating the execution of part of the
program and performing customized checks at each program
state (Xia et al., 2015).

Tools such as AndroidLeaks and AppIntent focused on de-
tecting a user’s information privacy leakage. Even though
Android applications are sandboxed, vulnerabilities were iden-
tified that allowed applications to gain the capabilities of other
applications, and DroidChecker was the tool created to detect
those vulnerable applications (Chan et al., 2012; Gibler et al,,
2012; Yang et al., 2013). Taming Information-Stealing Smart-
phone Applications (on Android) or TISSA extended a new
privacy mode on Android to prevent information stealing from
applications (Zhou et al., 2011). By tracking the information
transferred in the control flow, Static Analyzer for Detecting
Privacy Leaks in Android Applications (SCANDAL) was also de-
signed for privacy leak detection (Kim et al., 2012). Secure
Password Tracking for Android SpanDex, however, was created
to ensure that passwords do not leak from Android applica-
tions by creating a set of extensions to Android’s Dalvik virtual
machine (Cox et al., 2014).

There exists abundant literature on the detection of privacy
leakage from Android applications, and although this body of
knowledge is relevant to our work, it is not fully applicable.
Since our work focused on reversing vault applications to un-
derstand their security implementations, and since every
security implementation is different, we had to revert to manual
analysis and reverse engineering techniques. This is why tools
and techniques for Android application analysis and reverse
engineering are of strong relevance our work.

2.4.  Android application analysis

The purpose for statically analyzing the source code of or
reverse engineering an Android application is to provide a com-
prehensive understanding of its inner workings. As Android
applications are programmed in JAVA, different methods can
decompile the compiled JAVA code (Dalvik bytecode) into a
human-readable representation. The human readable code is
typically in the form of JAVA source code or smali code.

Enck et al. (2011) presented a step-by-step tutorial for con-
verting the Dalvik bytecode to JAVA source code, where the tool
ded (ded Homepage, n.d.) converts the Dalvik bytecode into JAVA
bytecode (.jar, .class) and the tool Soot (A framework for
analyzing and transforming Java and Android Applications, n.d.)
decompiled JAVA bytecode to JAVA source code. Gibler et al.
(2012) utilized other tools with similar functions - dex2jar
(dex2jar, 2016) similar to ded and - JD-GUI (JD-GUI A Java
Decompiler, n.d.) — similar to Soot but with a Graphical User In-
terface (GUI). Another possibility is to convert Dalvik bytecode
to smali code which is an assembly-like representation based
on Jasmin syntax (Jasmin User Guide, n.d.). The tools to achieve
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this are Apktool (Apktool — A tool for reverse engineering Android
apk files, n.d.) and smali/baksamli (smali/baksamli, 2016). If the
analysis encompasses a large sample of Android applica-
tions, an open source parser called Rapid Android Parser for
Investigating DEX files (RAPID) can effectively reduce the pro-
cessing time (Zhang et al., 2016).

As Android applications can call native libraries,' the well-
known commercial tool Interactive Disassembler (IDA) Pro (IDA
pro, n.d.) may be used for their analysis. The benefits of using
IDA Pro are the disassemble and debug functions for both APK
files and native libraries followed by the function of convert-
ing assembly code to C-like pseudocode. Note that IDA Pro is
not limited to low level Android application analysis and may
be used for disassembling Windows and other types of
executables. Acar et al. (2016) also pointed out, due to the fact
that most Android developers are likely to use existing open
source code/libraries, insecure implementations and vulner-
abilities may be inherited. Other work by Bldsing et al. (2010)
proposed a sandbox for conducting dynamic analysis of Android
applications. However, dynamic analysis was not employed in
our work. To go over all the tools and techniques that foster
Android application analysis is beyond this paper’s scope. One
may explore work by Faruki et al. (2015) to survey the various
tools.

3. Apparatus

This section outlines the apparatus used in our testing. The
Android device used when installing the vault applications was
a GalaxyS4 mobile phone, model number SAMSUNG-SGH-
1537, system version 5.0.1 and kernel version 3.4.0-4554112.
An acquisition workstation connected to the phone via USB
running Microsoft Windows 8.1 was employed. Even though
root access may not always be a prerequisite for acquisition
of potential artifacts (see Sec. €), user privilege on the device
was maximized in order to locate necessary files and arti-
facts; the GalaxyS4 was rooted and USB debugging mode was
enabled. Other tools were configured on the acquisition work-
station. adb was used to connect the forensic workstation to
the Android device for acquiring relevant vault application ar-
tifacts. ApkTool and IDA Pro were used in reverse engineering
the Android applications and a SQLite Browser (DB Browser for
SQLite, n.d.) was used for exploring SQLite database files (SQLite
Home Page, n.d.).

4. Methodology

To verify if an Android vault application was able to protect a
user’s personal files, the testing was divided into four phases:
scenario creation, data acquisition, case analysis and tool
development.

! A native library for an Android application is also known as a
.s0 (Shared Object) file which is usually compiled by C/C++ code
and only executed on the structure of Central Processing Unit (CPU)
of mobile devices.
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4.1. Scenario creation

The purpose of this phase was to simulate real user data on
the Android device. Therefore, the 18 most popular free vault
applications were downloaded from the Android official ap-
plication market — Google Play Store. Table 1 shows the official
name, name on the device and package name of the down-
loaded applications.

As soon as the vault applications were installed, we took
photos (. jpg) and videos (.mp4) with clearly numbered iden-
tifiers (in each image/video) for each application and stored
them in each “vault”. We had to also initially set up passwords/
passcodes on the vault applications. For the application Keeper
(No. 4 in Table 1), we set the password “951234” since it re-
quired a minimum 6 character password. All other vault
applications were configured with the same four digit pass-
word — 9512. This was chosen because it was a forced
requirement to have a maximum of four digits for some of the
applications - so we opted to standardize the password (as
much as possible) across all of our testing. We also config-
ured the same 9 pointer pattern lock — 0124678 (if that option
was available) which represented the gesture of the letter “Z”.
Finally, when applicable, we set up the recovery e-mail
“vaultapptest@gmail.com”, and the security answer “3” with
the security question “What is your favorite number?” to ap-
plications that implemented a password recovery feature.

4.2. Data acquisition

To explore potential artifacts that may be utilized for break-
ing into the vault applications, two key items (listed in the
following paragraphs) for each application were pulled from
the Android device to the acquisition workstation (more on how
this was accomplished over the adb is discussed later in this
section).

App-generated folders which are folders created by the ap-
plication on the Android filesystem. We hypothesized that
some files may contain hidden photos and videos, user pass-
words or other forensically relevant application artifacts that
may help us break into the vaults.

APK files which are Android Application Packages. These files
contain installer files for each of the vault applications and
are an important resource for reverse engineering the ex-
ecutable code.

Precisely, for each vault application, three folders on the
Android system were generally targeted during our data
acquisition:

/data/app/package _name which is a root user accessible
folder that stores the APK file of each application.
“package_name” refers to the package name of each appli-
cation (see Table 1 for the package names).
/data/data/package_name is another folder accessible for
root users that stores the private data/artifacts for each
application.

/sdcard which is the folder for the mounted Secure Digital
(SD) card physically located in the Android device. In our
tests, we found different paths that pointed to the same

folder such as: /storage/emulated/0, /storage/emulated/
legacy and /mnt/sdcard.

It is important to note that in our work, acquisition was ac-
complished logically. We did not focus on deleted data as we
were looking for low hanging fruit artifacts allowing us to break
into each of the vault applications and reconstruct hidden files.?
For each vault application, we employed the pull command
in the adb tool to extract the following folders: /data/app/
package_name, /data/data/package_name and /sdcard. To
replicate our work, one may use the commands presented in
the following steps:

Step 1: The command chmod [OPTION]<MODE><FILE> Was
used to modify the assigned folders to a normal user ac-
cessible under a root user’s access.

Step 2: The command adb pull [-p]
[<local>] was used to acquire the folders mentioned above.

[-al<remote>

The resultant data from the acquisition process for each
vault application is referenced in the case study in Section 5.
Note that although data acquisition was achieved via adb, other
methods to pull data from the aforementioned folders may be
employed as well.

4.3.  Analysis

Once the artifacts were extracted from the Android device, we
sequentially analyzed each vault application through artifact
analysis and executable code reverse engineering. Execut-
able code analysis was primarily employed when the security
implementation was needed in order to gain access to en-
crypted material stored in the vault application.

Artifact analysis was carried out manually by exploring the
acquired data. During exploration, meaningful artifacts such
as labels in Extensible Markup Language (XML) files (e.g.
<string name="password”>), column names in SQLite files
(e.g. aeskey) or obvious folder/file names (e.g. /sdcard/
.EncryptedFolder) were noted. Some findings became 1)
Direct artifacts e.g. unencrypted photos/videos or pass-
words found in cleartext and 2) Indirect artifacts such as
hashed passwords or files suspected to be the encrypted
photos and videos.

Executable code analysis was employed mainly if all arti-
facts retrieved through our analysis were deemed indirect.
We focused on reverse engineering the APK files. Pre-
cisely, we disassembled APK files into smali code. By
employing manual code analysis, we were able to retrieve
1) Artifacts missed by our primary artifact analysis, where
access to information or hidden media files were stored and
2) The security implementations for authentication/
authorization or data hiding. This allowed us to understand

2 It is of note that more research needs to be conducted to analyze
how the media (images and videos) are stored by the vault appli-
cations in case data is copied and then deleted from the device,
thus, there may be potential evidence residing on the device’s
storage when physical acquisition is employed.



how to reconstruct hidden data and explore methods of de-
crypting encrypted data.

4.4. Tool development

Based on our findings, we constructed software tools if break-
ing into the vault application required such implementations
to aid in the reconstruction and decryption of vault-stored data.
We posit that developing these tools is necessary to assist in-
vestigators in the recovery of potential evidence they might
have missed. We note that these tools are not shared publicly and
are provided on need basis, after the identity of the requesting party
is vetted.

5. Case study and findings

In this section, we present a comprehensive case study and
findings that entail each of the 18 vault applications shown
in Table 1. The subsections follow the ordering of the table start-
ing with the most prominent application. Each case details the
results from our analysis augmented by an approach for re-
covering hidden photos/videos. It is of note that we attempted
two major methods to gain access to data stored by the vault
applications. The first focused on finding ways of recovering
media files from data acquired directly from the phone - which
is usually more relevant to forensic investigations. The second
focused on gaining unauthorized access to the vault applica-
tions through various attack vectors. To ensure the reader’s
comprehension of the 18 vault application examinations, we
wanted to reinforce the following terms used throughout the
case study:

Folder “shared_prefs” represents the folder that is located
in /data/data/package_name for the vault applications.
Swap attack is a method in which an examiner can swap
an assigned value in a certain file with a self-created one
in order to reset the password, gesture for login or the status
of an application (e.g. switch on/off the pattern lock).

Password attacks which represents a variety of attacks
against application passwords and gestures. In some in-
stances, a rainbow table attack was used. In other instances,
a brute force attack was used. Generally, these password
attacks helped us in identifying the passwords used to access
the application. In many of the applications, the password
space was low (4-6 characters), and sometimes limited to
digits, making a brute force attack a practical option.

5.1. ApplLock 2.16.3

Our artifact analysis showed that AppLock stored unencrypted
pictures and videos in separate folders under /sdcard/
.MySecurityData/dont_remove. The folders were named with
different random strings/hash value. In each folder, the photos/
videos were stored in the subfolder .video/. image respectively.
Also, the application stored the Base64 encoded Secure Hash
Algorithm 1 (SHA1) hash value of the gesture for the pattern
lock in the XML file com.domobile.applock_preferences.xml
in the application’s shared_prefs folder. Even though this
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approach was available only if the pattern lock of the
application was activated, the pattern lock can be activated
either by a previous user or an examiner can swap the value
of the tag is_image_lock_pattern to true by modifying
file com.domobile.applock preferences.xml. As long as
the pattern lock was activated, examiners can swap the origi-
nal value in tag image_lock_pattern in the same XML file
with a new one that was created by encoding the SHA1 hash
value of a new gesture to Base64 format. For example, the
value agYrmzRS42ZAcYGhv5Lgc+ntTEg= is the hash value for
a 7 byte hex value 0x00, 0x01, 0x02, 0x04, 0x06, 0x07, 0x08
which represents gesture “Z” (every byte maps to O - 8 points
of the pattern lock). This will allow an examiner to log into
the application using the newly created gesture. If the gesture
was set previously, another option was to decode the
Based64 value in the tag image_lock pattern in the file
com.domobile.applock_preferences.xml. For instance, in
our case, the value was agYrmzRS42ZAcYGhv5Lgc+ntTEg=.
When decoded with Base64, it became a 20 byte SHA1 hash
value - 6a062b9b3452e366407181lalbf92ea73e9ed4c48. This
hash was easily broken using a rainbow table attack and
revealed the original byte sequence/pattern representing the
gesture “Z”.

5.2. LEO Private 3.7.7

The first weakness we found in LEO Private is the storage of
the password which was found in cleartext in shared
_settings.xml in the shared_prefs folder tagged with pass-
word. Thus, if the phone is active, an examiner can log into
the application using the mobile phone directly. If the phone
is unavailable, we observed that the photo and video were stored
and treated differently. The video was still stored in the origi-
nal folder /sdcard/DCIM/Camera without any encryption. In
order to hide video files, LEO Private only changed the file ex-
tension to “. leotmi”. Photos were actually encrypted and stored
in /sdcard/.DefaultGallery/DCIM/Camera with the exten-
sion “.leotmi” as well. Having a closer look showed that the
encryption/decryption is packed in the native library /1ib/
armeabi-v7a/libLeoImage.so. The library runs the eXtended
Tiny Encryption Algorithm (XTEA) to encrypt the first 1024 bytes
of the photo where the Key is hard coded into the library.
To decode, one can either call the function leo_decrypt
_vl(const char *al) or copy the encrypted files to /sdcard/
.DefaultGallery/DCIM/Camera on another device that has
LEO Private installed (regardless of the actual user password).

5.3. Vault 6.4.22.22

Vault stored the encrypted content in the directory /sdcard/
SystemAndroid/Data/MTc1MDU40Q== which contained two
subfolders named .video and . image. Inside these subfolders,
we found our target files with .bin extensions. Note, the
Data folder contained several Base64 encoded folders. The
only one of relevance in our testing was the MTc1MDU40Q==
folder. While analyzing the application source code, we found
that Vault only encrypts the first 80 bytes of each media file
by using a repeating single byte which will be referred to as
B. In order to retrieve B, we utilized the file header information,
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e.g. in case of JPEG it is 0xFFD8, which revealed that B = 0x3D.
In other words, to decrypt the videos and images, one simply
has to XOR 0x3D against the first 80 bytes. An interesting
side note is that Vault takes and stores a picture every time
someone enters an incorrect password. These pictures are
stored in /sdcard/SystemAndroid/Data/LTIxXMDY40Dk50TA
= and uses the identical encryption mechanism (XOR) but
with B = 0xFA.

5.4. Keeper 10.1.2

Out of all 18 applications, we deemed Keeper as the most
secure. We were not able to reconstruct the original content
except by employing a brute force attack on the password
hash. Although we could not gain unauthorized login into
the application, we will explain our findings as well as how
to retrieve the hash value of the password. In contrast to
many other applications, Keeper organizes its metadata in a
SQLite database instead of XML which can be found in /data/
data/com.callpod.android_apps.keeper/databases/
vaultapptest@gmail.com.sgl where the e-mail address
became the username during installation. The most impor-
tant table in the database was setting (shown in Fig. 1). On
the other hand, the encrypted content can be found in /data/
data/com.callpod.android_apps.keeper/cache/
record_files.

The actual encryption scheme is best explained in Fig. 1
where we will focus on the right side first. Keeper uses Key-1
in order to encrypt all images/videos which is created by
SecureRandom () when the application is initialized. This Key-1
is encrypted using Key-2 which is generated from the user pass-
word, a Salt-1 and IterationCount. Salt-1, IterationCount and
encrypted Key-1 can be found in the “setting_str” column
when the column “name” = “encryption_params” and is stored
in a BLOB data type. The BLOB is separated into 1 byte for Mode,
3 bytes for IterationCount, 16 bytes for Salt-1 and 80 bytes for
Key-1.

The left side of Fig. 1 shows the login process which is
handled in a similar manner. Again, the data is stored in the
setting table where column “name” = “enc_pass”. The content
of the cell (marked in red) consists of a 22 bytes randomly gen-
erated Salt-2, and the 31 bytes Base64 encoded password hash.

ﬂ : AES encryption.
setting : table in SQLite dabase file "vaultapptest@gmail.com.sgl".
setting_str, name : column name in table "setting".

enc_pass, encrption_params : values in name of column "name".

Hash and Salt-2 are both encoded with berypt — an open source
library (Provos and Mazieres, 1999). Note, while Fig. 1 shows
the actual names of the encrypting/decrypting functions, Keeper
used obfuscation techniques and hence the function names
were different. Names in the figure are based on the open
source berypt.java (BCrypt source code, n.d.). Also note that berypt
uses its own encoding and decoding implementation for Base64.

In order to attack this algorithm, a brute force attack can
be implemented as follows:

Step 1: Decode the Salt that was encoded as the second part
of the highlighted string in Fig. 1 with the function
decode_base64 (..) of berypt.java.

Step 2: Hash the attempted password with the function
crypt_raw(..) and compare the result with the third part
of the highlighted string. The correct password can be ac-
quired if the values match.

Given that there is no limitation on the password length
or complexity, the success rate depends on the chosen
password.

5.5. Keepsafe 7.3.1

This application stored the cleartext password in the value
of tag master-password of XML file com.kii.safe
_preferences.xml in the application’s shared_prefs folder.
Thus, investigators can simply read the file and then log in.
Having a closer look revealed that the photos and videos were
renamed with a hash value (we did not investigate this further
as it is not relevant for decrypting the files) and stored en-
crypted data in subfolders of /sdcard/.keepsafe/manifests/
primary. Each subfolder was named using the first 2 letters
of the file, e.g., subfolder 2e stored the encrypted media file
2e3clf4aal0da568c5a26251457 79ad0l163acc8. The en/
decryption functions were found in a native library in /1ib/
armeabi-v7a/libcrypt_user.so of the APK file of the
application. An overview of the encryption mechanism is pro-
vided in Fig. 2 employing the following three major steps:

Step 1: The media file is divided into blocks of 16,384 bytes
of data (the last block was equal to or smaller than 16384).

E% ﬁEﬂ}setting
' setting
. T T setting_str where
setting_str where name='enc_pass name='encryption_params'
[ $2a$08$ | PoK/IRJaRShaX/pyC/usae[wF61U/ybt4CML2ST7GI75pNI6Cz t5Pu Mode —
1 2 1 1 A
____________________________________________________ E— - ------4-{lterationCount [ }* "vte
% encode base64(..) berypt.java encode base64(..) . p -7 Salt-1 X,N oyt
- LS ' P - 3 = 116 bytes
H decode_base64 (. .) crypt_raw(..) ! o0 __---"" :
. R
Frmmmmmmmmmm ey fotttTTTTTTTTT é"t-;-“"n"L """ I 180 bytes )
rute-force attac i
Create_ @=> Decrypt [+ = Decrypt
SecureRandom () ——soalt-2 Password---------------------=
v L Key-2 Key-1 i L =\
v Encrypted Decrypted
media file media file

SecureRandom () ——————J

Fig. 1 — The decryption procedure for media files in Keepsafe.
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Key : 32 character string stored in XML file "com.kii.safe.secmanager.xml".

processBlock : the function of the native library "libcrypt user.so".

*: other information hard coded in the source code and needed for processBlock(..).

Encryption
16384 bytes cryptio

Initialization block

Decrypted block 1

processBlocki(. .)

<16384 bytes Decrypted block n

<16384 bytes

~—— — —

Original media file

Encrypted block n

! '
PNG file 3711 bytes |
H
----------- 4:- - - Initialization Vector (IV) | 16 bytes '
! .
H
: Ox1 1 byte | boxESF
Y [ R ! | 0xE90
T Encrypted block 1 16384 bytes H
Decryption | H
Decryption H
L 1
| .

Encrypted media file
Encrypted blocks

Fig. 2 - The decryption procedure for media files in Keeper.

Step 2: Every block was then encrypted using the same en-
cryption method, Initialization Vector (IV) and password. The
size remained identical.

Step 3: Once all the blocks were encrypted, an Initializa-
tion Block (block zero) is added to the beginning of the media
file which has a constant size of 3728 bytes. This block starts
with Keepsafe’s logo (3711 bytes), 16 byte IV and a one byte
terminator. If a user clicks on any of the encrypted files,
Keepsafe’s logo would appear faking an average user to think
that it is a PNG logo file.

The decryption is performed with the processBlock (. .)
function in the native library which needs the Key and the IV.
While the Key is stored in the Initialization Block (block zero),
the 32 byte Key can be found in tag aec5a0aa33e25e4c91089
39f6d6292c4507b045eAe of the com.kii.safe.secmanager
.xml file in shared_prefs. Once all encrypted blocks were de-
crypted using the processBlock (. .) function, the Initialization
Block was finally removed from the encrypted media file to
recover the file to its original state.

5.6. Vaulty 4.3.3

Vaulty’s media files were found in /sdcard/Documents/
vaulty/data but with a new file extension “.vdata”. The
videos were unencrypted. Vaulty additionally prepends the
word “obscured” (0x6F, 0x62, 0x73, 0x63, 0x75, 0x72,
0x65, 0x64) to the photos’ header. Thus, removing the “ob-
scured” string and changing the file extension allows swift
recovery of the pictures. The password of the application was
stored as a Message Digest 5 (MD5) hash value in tag
password_hash of the XML file com. theronrogers.vaultyfree
_preferences.xml in share_prefs. Similar to case 1 in Section
5.1, examiners can either adopt a swap attack or a rainbow
attack on the hash value.

5.7. GalleryVault 2.9.1

In order to hide photos and videos, GalleryVault decons-
tructed them under /sdcard/.galleryvault_DoNotDelete
_1466617307/file/ where the first 10 bytes were overwritten
with 0x00 and placed the original 10 bytes in a database. To
reconstruct the files, one may simply query the database,

identify the correct file and replace the header with the fol-
lowing steps:

Step 1: Query the database file /sdcard/galleryvault
_DoNotDelete_ 146610307 /backup/galleryvault.db using
“Select name, path, org file header_blob FROM file”
to retrieve the original header string. This returns the origi-
nal name of the media file, the path of the deconstructed
media files and the 10 bytes of wiped data for each file.
Step 2: After identifying the correct file by using the name
and path, the first 10 bytes of the file were replaced with
its original header.

If the phone is active, one may also perform a swap attack
on the MD5 or SHA1 values which can be found in Kidd.xml
in shared_prefs tagged LockPin. It remained unclear why the
developers decided to store a 72 hex string value in this field
which consists of the MD5 hash (32 hex characters) followed
by the SHA1 hash (40 hex characters).

5.8.  Audio Manager 5.4

This vault application disguised itself as an audio manager on
the device. Once a user holds a tap on the logo at the top of
the screen, the real application is activated. Audio manager
stored unencrypted photos and videos separately in the
subfolder New Album of folder Pictures and Videos under
/sdcard/ProgramData/Android/Language/ . fr/. Also, the
cleartext password was found in tag password of XML file
com.hideitpro_preferences.xml in shared_prefs. Note that
New Album is the default name of the album storing the hidden
files, which may be customized by users.

5.9. Photo Locker 1.2.1 & Video Locker 1.2.1

Photo Locker and Video Locker were released by the same de-
veloper. These two applications adopted the Advanced Encryption
Standard (AES) algorithm to store the password. For the media
files, they utilized AES to encrypt th e first 16384 bytes. As shown
in Fig. 3, a hard-coded string “HANDY_APPShandyapps@
gmail.com” was found which was utilized to generate the secret
Key object — Key-1 (object javax.crypto.spec.SecretKeySpec
in JAVA SDK) for an AES algorithm. Key-1 can then be used for
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a :AES encryption.
:XML file "com.handyapps.photoLocker preferences.xml".
<SECRET_KEY> :the value of tag <SECRET_KEY> in the [l file.

Hard coding :

&’ <SECRET_KEY>;E
Cm oot |, gt

{3

>

Key-1

Create

.

Encrypted Email address Key-2

email

A
16384
bytes

v

A
d Encrypted data 16384y

Ei ted dat
ptes ncrypted data

Encrypted media file Decrypted media file

Decrypt 01 Encrypted

password | ————————> Password

02

/sdcard/.PL/.config
(/sdcard/.VL/.config)

Fig. 3 - Media file and password decryption in Photo Locker and Video Locker.

decrypting the AES-encrypted system e-mail address which
was stored in label SECRET_KEY of XML file com.handyapps
.photoLocker_preferences.xml for Photo Locker or
com.handyapps.videolocker_preferences.xml for Video
Locker in the shared_prefs folder. The e-mail is the input for
generating the second Key object Key-2 which is utilized for
protecting the password and media files. The encrypted pass-
word was found as the first line in file /sdcard/.PL/.config
for Photo Locker and file /sdcard/ .VL/ . config for Video Locker.
The media files were stored for these two applications in folder
/sdcard/ .PL/Private Photo and /sdcard/.VL/Private Video
respectively. Reusing Key-2 while adopting AES allowed us to
decrypt and recover the media files.

5.10. LOCX 2.3.1.013

LOCX stored the media files in the hidden folder /sdcard/
.EncryptedFolder. The image file .enc_14668978236175365
.9pg and the video file .2683375985d8b519e43alfcf5e8
6c95c.mp4 were stored in that folder. Our code analysis re-
vealed that 2683375985d8b519e43alfcf5e86c95c is the MD5
hash value for the path of the original video. For example, in
this case, the path was /storage/emulated/0/DCIM/Camera/
20160627_102536.mp4. To protect the images, LOCX prepends
the original path as hex to the image header followed by 4 0x0s.
The actual image is then XORed with the constant 0x7B for
every single byte. To recover a photo, one simply removes the
prepended information and XORs again.

On the other hand, the video file was handled differently.
Specifically, the first 524,288 bytes (0x80000) of the video were
moved to the end of another created file by the vault appli-
cation. Once the 524,288 bytes were moved, they were simply
replaced with 0x0s. We note that each of the 524,288 bytes
inside the created file was XORed with the constant value 0x6E.
The content of the created video file included the file path of
the deconstructed video file with a thumbnail of the video. From
our testing, we located .enc_14670617949374302.mp4. Since
inside .enc_14670617949374302.mp4 wWe can observe the path
of the deconstructed video file, we were able to hash the path
of the deconstructed file, and locate the file name with same
hash value (similar to the example shared above). This process
allowed us to match the deconstructed video file with the vault
application created file necessary for the reconstruction of the
video. Therefore, the video can be reconstructed by adding the

last 524,288 bytes of .enc_14670617949374302 .mp4 to the be-
ginning of the deconstructed video and then XORing each of
the 524,288 bytes with 0x6E. Lastly, we found the MD5 hash
value of the password in the tag pinp of file com.cyou
.privacysecurity preferences.xml under the applica-
tion’s shared_prefs folder.

5.11.  Secret AppLock 6.9

Secret AppLock stored unencrypted photos and videos in folder
/sdcard/.PixnArtl1l2/.Photos and /sdcard/.PixnArtl2/
.Videos. It also stored the cleartext of the password in tag pin
of XML file ApplockPreferences.xml in the shared_prefs
folder. Note that once the user typed in an incorrect pass-
word, photos would be taken from the front and back cameras
and stored in folder /sdcard/.hackImages. This is forensi-
cally important because investigators may note who was trying
to break into the vault application, but may also be useful for
reasons to validate the integrity of the collected digital evidence.

5.12. PicLock 1.9

Identical to the previous application, all information is simply
hidden but not encrypted. The photos and videos were found
in the subfolder of Photos and vVideos in the folder /sdcard/
.AndroidLibs/33e75f£09dd601bbe69£351039152189/
.SafeBox 1. Note, the random string/hash value might change
for different devices/new installations. Additionally, we found
the password in tag pass of XML file Password.xml in the
shared_prefs folder.

5.13. HidePhoto 1.9

HidePhoto stored the unencrypted photos and videos in folder
/sdcard/.MySecurityData2/dont_remove/68d30a9594728
bc39aa24be94b319d21/.image and /sdcard/.MySecurityData2/
dont_remove/d82c8d1619ad8176d665453cfb2e55f0/.video,
respectively. The subfolders in folder dont_remove were gen-
erated for different media files, which were labeled with random
strings/hash values. Moreover, this application stored the MD5
hash value of the password in tag password of XML file
com.domobile.hidephoto_preferences.xml in the shared_prefs
folder. Thus, examiners can achieve unauthorized access by
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pin, enc_keys_pin: tags in the same XML file "com.enchantedcloud.photovault_preferences.xml".

attack

Rainbow table m
<string name="pin">

<string name="enc_keys_pin">
uvnUn+GOY90bkZF4q2gvZm98pMVr tDbvIXdHgINBVEcK
YI89vIuo2yrcuQOIp4V2mkP383WSkixHZLRK30D3FQ=="|
</string>

= 640171d7e214018feb3a46182dbcb465b5416b85  —1—— 9512—a DESKeySpec
</string> (Password)

Baseb64.decode ()

E Crypto \] E =
‘::>E .getCipherInputStream(..) :I::>{ /\<\
: i

Encrypted Conceal Decrypted
media file (Facebook open source library) media file

Fig. 4 - Media file decryption in Private Photo Vault.

swapping the hash value in tag password or utilizing a pass-
word attack (see Sec. 5.1).

5.14. PhotoSafe 2.0.1

PhotoSafe stored the cleartext of the password in tag pass-
word of file vaultypro.xml in the shared_prefs folder.
On the other hand, the application protected photos and
videos using a similar approach discussed in Section 5.3. In
subfolders images and videos under /sdcard/.photosafe
_DoNotDelete/camera, the first 10 bytes of the photos and
videos were XORed with the constant value 0xE7.

5.15. Private Photo Vault 1.8.3

Private Photo Vault stored the SHA1 hash of the password in
com.enchantedcloud.photovault_preferences.xml in the
application’s shared_prefs folder with the tag pin. Since the
password is limited to four digits, it can be easily brute forced.
On the other hand, a swap attack is not possible as the appli-
cation employs the password for encryption.

As shown in Fig. 4, the application utilized the Facebook open
source library Conceal to perform the encryption and decryp-
tion of the files. Employing the decryption function
Crypto.getCipherInputStream(..) in the library required
a secret Key object — Key-1 (object javax.crypto.SecretKey
in JAVA SDK) that is highlighted in red in Fig. 4. Based on our
code analysis, Key-1 can be acquired by decrypting the Base64
decoded value of tag enc_keys_pin in file com. enchantedcloud
.photovault_preferences.xml. The password used to log
into the application is used to create the Key object

ﬂ : AES encryption.
kexinuser, localAesKey : tables in SQLite database file "kexin.db".
password, aeskey, keyByte : column names of the table.

i;, kexinuser = kexinuser
o password

HASH @w  __| Decrypt |
Key-1

: )

javax.crypto.spec.DESKeySpec. This Key can be used for de-
crypting the value of tag enc_keys_pin.

Therefore, in order to bypass the login and recover en-
crypted photos and videos stored in folder /data/data/
com.enchantedcloud.photovault/files/media/orig, some
data was needed which included (a) The correct password (ac-
quired using a password attack) and (b) The value of tag
enc_keys_pin. After obtaining these two pieces, examiners can
reuse the function Crypto.getCipherInputStream(..) to
acquire the data stream of the decrypted media file.

5.16. Calculator 8.5

This application disguised itself as a calculator on the system.
Only when as user typed in the correct password the vault func-
tion is activated. The application stored the unencrypted photos
and videos in Pictures and Videos in folder /data/data/
com.calculator.vault/files/locker1762. Therefore, the only
protection for the photos and videos was storing them in the
folder that only root user can open. Additionally, the cleartext
password was stored in tag mpass of XML file com.calculator
.vault_preferences.xml in the shared_prefs folder.

5.17. Coverme 2.6.4

For Coverme artifact analysis did not yield any results and there-
fore all our findings are based on analysis of the source code.
Fig. 5 illustrates the encryption method adopted by the appli-
cation from a high level perspective. Coverme applied triple-
encryption for achieving the security of the media files and the
password, where three different Keys were created.

[ localAesKey

Decrypt
yp!

] Decrypt D ::>

Encrypted Decrypted
media file media file

Set 9512 9512 & Random bytes 9512 & Random bytes

[ »Password (9512) Create J

Fig. 5 - Secret files and password encryption in Coverme.
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Key-1 was created using the password when the user first
signed up. The application stored the hash value of Key-1
in column password of table kexinuser in the SQLite da-
tabase kexin.db which is stored in /data/data/ws
.coverme.im/databases/.

Key-2 was created based on both the password and random
bytes which were influenced by the current system time.
Key 2 was encrypted using Key-1 and resultant ciphertext
was stored in column aeskey of table kexinuser in the
same database.

Key-3 was the Key utilized for the encryption of the media
files. It was created using the password and random bytes.
The application stored the ciphertext of Key 3 which was
encrypted using Key 2. The ciphertext was stored in column
keyByte of table localAesKey in database file kexin.db.

Coverme’s encryption implementation(Fig. 5), is relatively
secure when compared to most of other applications. Without
foreknowing the password, we were not able to create or recover
the three Keys. However, we can still apply a brute force attack
for retrieving the password. The password space for the ap-
plication was 1-16 digits, but we anticipate that it is highly
unlikely that users would choose a 16 digit password.

Since column password stored the hash value of the pass-
word (hashed twice using MD5 and SHA1 respectively), we

reused the same function in the application for creating a Key-1
to the exhaustive passwords and then matched the hash value
of Key-1 with the record found in column password. As soon
as the hash values matched, Key-1 was used for decrypting Key-
2; thus Key-2 can decrypt Key-3; and finally Key-3 can decrypt
the media files that were stored with extension “.dat” in folder
/sdcard/coverme/images/hidden and /sdcard/coverme/
video/hidden respectively.

Even though a brute force attack was a possible solution,
to crack a large password may be time consuming. We also note
that because this application implemented encryption and de-
cryption in a native library — 1ibNative-aes. so, it can only
be used on an ARM-based Central Processing Unit (CPU). In order
to reuse the library, we implemented our decryption code in
a separate Android project that we created.

6. Summary of findings

From the case studies, we see that most application developers
protected their code using obfuscation and by implementing
native libraries as shown in Table 2 in columns O and N under
Code protection. This hindered the process of reverse engineer-
ing the applications. Notwithstanding, we observed that
applications generally adopted similar security implementations

Table 2 - Case study summary of results.

Application Code Photo Video Password Without  Complex
protection root recovery
O N U D E U D E © # E
1 AppLock X X X setd 4
2 LEO Privacy X X xH X X 4
3 Vault X X X X v
4  Keeper X X X xB v
5 Keepsafe X X S S X
6 Vaulty X X s 4
7  GalleryVault X X X PR
8 Audio Manager X X X 4
9 Photo Locker X xH xH xH
10  Video Locker X ! ! !
11 LOCX X X X P 4
12 Secret AppLock X X X v
13 Pic Lock X X X 4
14  HidePhoto X X St v
15 PhotoSafe X X X 4
16 Photo Vault X X X xR
17 Calculator X X X
18 Coverme X X X xB v
Count 12/18 5/18 6/18 5/18 7/18 8/18 4/18 6/18 7/18 8/18 2/18 10/18 2/18
O: JAVA source code of the given application was obfuscated.
N: Application implements the critical functions in a native library.
U: Photos or videos were found unencrypted.
D: The photos or videos were found being deconstructed.
E: Password, photos or videos were encrypted using a crypto algorithm.

C: Password was found in cleartext in a file.

*. Password hash was found in a file.

%. Swap attack to reset password/gesture is possible.

:: Rainbow table attack to crack the password/gesture is possible.
®. Brute force was the only approach to crack the password.
*Password consisted of a maximum of 16 digits.

: Info for creating the encryption key found hard-coded in source code.




with that could be exploited by examiners. For example, cor-
responding to column U, D and E, Table 2 shows that the photos
and videos may be unencrypted, deconstructed or encrypted.
As Table 2 shows, %s and %s applications only relocated/
renamed the photos and videos respectively. Since the content
of the media files was not changed, an examiner can easily recover
such files.

On the other hand, %s and %s applications stored
deconstructed photos and videos respectively by wiping data
from the header, conducting a simple computation or storing
partial data in other files. Comparatively, 7s applications ac-
tually encrypted the Photo, which we considered a more secure
implementation. However, in the four cases tagged with x* in
Table 2, the encryption was implemented insecurely because
the information for creating the Key that was used for en-
crypting the photos was hard coded in source code. The same
issue was found in % applications that stored encrypted videos.
We expected to recover the photos and videos for most of the
18 applications from the logical data we acquired. However,
in some cases, if the recovery was more time consuming, or
difficult to accomplish, we took the second best alternative of
retrieving or swapping the password to recover the media files
through unauthorized logins. As Table 2 shows, 7z vault ap-
plications (marked in column C) stored the password in cleartext
on the Android device. The other %s applications stored the
hash value of the password where we were able to adopt a swap
attack (marked as x5), rainbow table attack (marked as xf) or
brute force attack (marked as x5).

There were two applications we were only able to apply a
brute force attack for retrieving the password. Keeper uti-
lized a salted password hashing function. Coverme did not store
the hash value of the password but the hash value of the Key
that was created by the password. We considered these two
applications relatively more secure because they allowed a more
complex password scheme or employed a more secure hashing
function. Comparing these two applications, Coverme offered
a better chance for the brute force attack because its pass-
word was limited to a maximum of 16 digits. Only %s vault
applications, encrypted the password. However, in both cases
the applications generated their secret Keys through hard coded
strings found in the source code. Lastly, in the column “without
root” we also marked if root privilege was necessary for the
recovery as well as applications that needed a brute force attack
were marked in column “complex recovery”. In other words,
except for these two applications, we can retrieve the hidden
photos and videos from the vault applications all the time
without difficulty, under the identified settings.

7. Other vulnerabilities

Beyond retrieving/decrypting the passwords we also found two
other vulnerabilities that can be used for achieving unauthor-
ized access in some applications.

Security e-mail: If the password is forgotten, a user can
submit a request for sending the password or a temporary
password to a preset security e-mail. In the applications we
tested, Applock (Sec. 5.1) and Pic Lock (Sec. 5.12) were found
storing the cleartext of the security e-mail in in application
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related files. Examiners can modify the e-mail in these files
using a self-owned e-mail address. Therefore, the user’s pass-
words may be sent to that e-mail address instead.
Security answer & question: By correctly answering the
preset security question a user can re-own access to a vault
application. In our test applications, both the security answer
and question were found in cleartext in Vaulty (Sec. 5.6) and
Calculator (Sec. 5.16). Submitting the answer at the login
page allows for unauthorized access to the applications.

Full artifact analysis findings, the results for each vault ap-
plication, including the mentioned vulnerabilities is presented
in a single Table in Appendix.

8. Discussion

In this work we had to break the security of the vault appli-
cations to recover digital evidence. In fact, this work has already
been used in a real world investigation as mentioned in the
introduction. Whilst examining the forensic feasibility of re-
trieving data from vault applications, we also found that
although applications were designed as privacy enhancing tech-
nologies, researchers and practitioners with thorough
knowledge in reverse engineering and security may still be able
to recover evidentiary data from them.

We learned that even though developers protected appli-
cations using techniques like obfuscation, encryption and the
use of native libraries, there may be still security holes that
can be exploited by digital forensic examiners. For example,
code obfuscation can only hinder examiners without reverse
engineering knowledge; native libraries can be hijacked and
reused in decryption; encryption may be bypassed using a swap
attack, rainbow table attack or brute force attack etc. Gener-
ally speaking, our findings show that most security issues in
the tested vault applications were due to (1) storing data locally
(on the Android device) without encryption or with simple en-
cryption (2) developers hard-coding constants as encryption
Keys, Salts or other data related to the encryption implemen-
tation and (3) the minimal password space for some
applications.

Regarding applications with relatively secure implementa-
tions, our testing offers ideas for resolving the aforementioned
issues. For example, Keeper stored most of the important in-
formation on a server as opposed to local storage and the
password could be made up of all possible characters (see Sec.
5.4). Additionally, to provide better source code protection,
Keeper implemented code obfuscation® on the source code
before compilation. Coverme for example packed the encryp-
tion method in a native library (see Sec. 5.17). These approaches
used in combination can effectively increase the time and cost
for reverse engineering. More importantly, a common feature
for these relatively secure applications is that they use user
credentials as part of the encryption process. Lastly it is of note
that both secure applications generated Initialization Vectors/
Salts through randomization.

3 Obfuscation changes the function name and variable name to
irregular letters.
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Table A1 - Summary of findings from artifact analysis for vault applications number 1-9.

Application File Found

1 AppLock /sdcard/ .MySecurityData/dont Unencrypted photos
_remove/<HASH>/.image
/sdcard/ .MySecurityData/dont Unencrypted videos
_remove/<HASH>/.video
/data/data/com.domobile.applock/ SHA1-hashed pattern lock: <string name=image
shared_prefs/com.domobile.applock _lock_pattern>agYrmzRS42ZAcYGhv5Lgc+ntTEg
_preferences.xml =</string>

Security e-mail: <string name="mail”>vaultapptest@gmail.com</string>
2 LEO /sdcard/.defaultGallery/DCIM/Camera Encrypted photos
Privacy /sdcard/DCIM/Camera Unencrypted videos

/data/data/com.leo.appmaster/ Password: <string name="password”>9512</string>
shared_prefs/shared_settings.xml

3 Vault /sdcard/SystemAndroid/Data/ Converted photos
MTc1lMDU40Q==/.image
/sdcard/SystemAndroid/Data/ Converted videos
MTc1MDU40Q==/.video

4 Keeper /data/data/ Encryption parameter, berypt-hashed password
com.callpod.android_apps.keeper/
databases/<E-MAIL>.sqgl
/data/data/ Encrypted media files
com.callpod.android_apps.keeper/
cache/record_files

5 Keepsafe /sdcard/ .keepsafe/manifests/primary Encrypted media files
/data/data/com.kii.safe/shared Password: <string name="master-password”>9512</string>
_prefs/com.kii.safe_preferences.xml
/data/data/com.kii.safe/shared 32 byte Key: <string name="aec5a0aa33e25e4c9108939£6d6292c
_prefs/com.kii.safe.secmanager.xml 4507b045eAe”>4a1dd381b63e324a15ddc77e38553ed90136£6102

acab62304b32db356£f5cf206</string>
6 Vaulty /sdcard/Documents/Vaulty/data/ Converted photos and unencrypted videos

7  GalleryVault

8 Audio
Manager

9 Photo
Locker

/data/data/

com. theronrogers.vaultyfree/
shared_prefs/

com. theronrogers.vaultyfree

_preferences.xml

/sdcard/.galleryvault
_DoNotDelete_1466617307/file/
/data/data/com. thinkyeah
.galleryvault/shared_prefs/
Kidd.xml

/data/data/com. thinkyeah
.galleryvault/databases/
galleryvault.db
/sdcard/ProgramData/Android/
Language/ . fr/Pictures/NewAlbum
/sdcard/ProgramData/Android/
Language/ . fr/Videos/NewAlbum
/data/data/com.hideitpro/
shared_prefs/
com.hideitpro_preferences.xml
/sdcard/.PL/PrivatePhoto
/sdcard/ .PL/ .config
/data/data/com.handyapps
.photoLocker/shared_prefs/
com.handyapps .photoLocker
_preferences.xml

MD5-hashed password: <string name="password_hash”>C5t
tbRVOmMM40s/Lk73bg6Q==</string>

Security question & answer: <string name="security
_question”>Favorite number</string>

<string name="security_answer”>3</string>
Deconstructed photos and videos

(SHA1+MD5) Hashed password: <string name="LockPin”>640
171D7E214018FEB3A46182DBCB465B5416B850B9B6D6D154E9
8CE34B3F2E4EF76EAE9</string>

Original name of the media files; path of the deconstructed media
files; the wiped 10 bytes for each media file

Unencrypted photos

Unencrypted videos

Password: <string name="password”>9512</string>
Encrypted photos

Encrypted password
Encrypted e-mail address

<HASH>: the folder was named with a random string/hash value that may change in different cases.
<E-MAIL>: The e-mail address previously set up by users.
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Table A2 - Summary of findings from artifact analysis for vault applications number 10-18.

Application File Found
10 Video /sdcard/ .VL/PrivateVideo Encrypted videos
Locker /sdcard/ .VL/ . config Encrypted password
/data/data/com.handyapps Encrypted e-mail address
.videolocker/shared_prefs/
com.handyapps.videolocker
_preferences.xml
11 LOCX /sdcard/ .EncryptedFolder Deconstructed photos and videos
/data/data/com.cyou MD5-hashed password: <string name="pinp”>0b9b6
.privacysecurity/shared d6dl54e98ce34b3f2edef76eae9</string>
_prefs/com.cyou.privacysecurity
_preferences.xml
12 Secret /sdcard/.PixnArtl2/.Photos Unencrypted photos
AppLock /sdcard/.PixnArtl2/.Videos Unencrypted videos
/data/data/com.amazing Password: <string name="pin”>9512</string>
.secreateapplock/shared_prefs/
ApplockPreferences.xml
13 Pic Lock /sdcard/ .AndroidLibs/ Unencrypted photos
33e75££09dd601bbe69£351039152189/
.SafeBox 1/DefaultFolder/Photos
/sdcard/ .AndroidLibs/ Unencrypted videos

14 HidePhoto

15 PhotoSafe

16 Private
Photo Vault

17 Calculator

18 Coverme

33e75££09dd601bbe69£351039152189/
.SafeBox 1/Privatevideos/Videos
/data/data/com.xcs.piclock/
shared_prefs/Password.xml
/data/data/com.xcs.piclock/
shared_prefs/Email.xml

/sdcard/ .MySecurityData2/dont
_remove/<HASH>/.image

/sdcard/ .MySecurityData2/dont
_remove/<HASH>/.video
/data/data/com.domobile.hidephoto/
shared_prefs/com.domobile.hidephoto
_preferences.xml

/sdcard/ .photosafe_DoNotDelete/
camera/images
/sdcard/.photosafe_DoNotDelete/
camera/videos
/data/data/com.slickdroid.vaultypro/
shared_prefs/vaultypro.xml
/data/data/
com.enchantedcloud.photovault/files/
media/orig

/data/data/
com.enchantedcloud.photovault/
shared_prefs/com.enchantedcloud
.photovault_preferences.xml

/data/data/com.calculator.vault/
files/lockerl762/Pictures
/data/data/com.calculator.vault/
files/lockerl762/Videos
/data/data/com.calculator.vault/
shared_prefs/com.calculator.vault

_preferences.xml

/sdcard/coverme/images/hidden
/sdcard/coverme/video/hidden
/data/data/ws.coverme.im/

databases/kexin.db

Password: <string name="pass”>9512</string>

Security e-mail: <string name="mail”>vaultapptest@gmail.com</string>
Unencrypted photos

Unencrypted videos

MD5-hashed password: <string name="password”>0b
9b6d6dl54e98cel34b3f2edef76eae9</string>

Converted photos
Converted videos
Password: <string name="password”>9512</string>

Encrypted media files

SHA1-Hashed password: <string name="pin”>64017
1d7e214018feb3a46182dbcb4d65b5416b85</string>

Encrypted key: <string name="enc_keys_pin”>uvnUn+GOY
90bkZF4g2gvZm98pMVr t DbvIXdHgINBVEcKYI89vIuo2yrcu
QOIP4V2mkP383WSkixHZLRK30D3FQ==</string>
Unencrypted photos

Unencrypted videos

Password: <string name="mpass”>9512</string>

Security question & answer: <string name="seq
_question”>Favorite number</string>

<string name="seq answer”>3</string>

Encrypted photo

Encrypted video

Value of the password column in table kexinuser; value of
the keyByte column in table localAesKey

<HASH>: the folder was named with a random string/hash value that may change in different cases.
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. Limitations

Our work has limitations. Primarily, artifact analysis can be
conducted only if the targeted mobile device is qualified for
data acquisition that usually requires root privilege, switched-
on USB debugging mode or one of the requirements in Section
2.1. Although this is a limitation for a potential adversary, we
argue that in real investigations, forensic examiners usually
have physical access to the devices and the data on them.
Second, our work focused on the logical acquisition of data
from the mobile device. Should experimenters focus on physi-
cal acquisition, which may also include deleted data, we
hypothesize that some applications may leave traces of
unencrypted media files on the phone’s memory. Third, com-
pared to how many applications with “vault” functions exist,
the 18 applications we tested may be considered a rather
small set of samples. We did focus our research however on
the most widely downloaded applications. Fourth, we only
focused on examining if the user’s secret media files could
be reconstructed. Some applications also have features for
hiding applications or sending secure massages. These fea-
tures were not part of our analysis. Fifth, our research was limited
to stored data and did not focus on Random Access Memory,
nor did it target network traffic. Lastly, our work was limited to
only Android vault applications and did not take into account
other mobile operating systems.

10. Conclusion & future work

As shown from our results, vault application developers indeed
code protect their applications, yet through extensive reverse
engineering efforts, we are still able to acquire hidden evi-
dence. While this may not be privacy preserving, the discovered
security implementations aid digital forensic examiners in re-
constructing media files that may be relevant to a case. Future
work should examine vault applications on iOS and also explore
network traffic analysis. Work should also test the viability of
reconstructing media files from media that is physically ac-
quired. Future research should replicate our methods and focus
on other privacy enhancing technologies such as mobile pass-
word vault applications. Lastly, work should explore the
feasibility of designing a tool to automate the discovery of the
security implementations of privacy preserving mobile
applications.

Appendix. Acquisition summary

To provide a fast look up for readers, we summarized our
findings from our artifact analysis which includes important
files with critical data such as a user’s password, the direc-
tory of the hidden photos/videos etc. that may be poten-
tially required by forensic examiners. Ordered similar to
Table 1, Table Al contains data about the first 9 appli-
cations and Table A2 contains data about the rest of the 9
applications.
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