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ABSTRACT

The DJI Phantom Il drone has already been used for malicious activities (to drop bombs, remote sur-
veillance and plane watching) in 2016 and 2017. At the time of writing, DJI was the drone manufacturer
with the largest market share. Our work presents the primary thorough forensic analysis of the DJI
Phantom III drone, and the primary account for proprietary file structures stored by the examined drone.
It also presents the forensically sound open source tool DRone Open source Parser (DROP) that parses
proprietary DAT files extracted from the drone's nonvolatile internal storage. These DAT files are
encrypted and encoded. The work also shares preliminary findings on TXT files, which are also pro-
prietary, encrypted, encoded, files found on the mobile device controlling the drone. These files provided
a slew of data such as GPS locations, battery, flight time, etc. By extracting data from the controlling
mobile device, and the drone, we were able to correlate data and link the user to a specific device based
on extracted metadata. Furthermore, results showed that the best mechanism to forensically acquire data
from the tested drone is to manually extract the SD card by disassembling the drone. Our findings
illustrated that the drone should not be turned on as turning it on changes data on the drone by creating
a new DAT file, but may also delete stored data if the drone's internal storage is full.

© 2017 The Author(s). Published by Elsevier Ltd. on behalf of DFRWS. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Unmanned Aerial Vehicles (UAV)s, also known as drones, have
become increasingly popular in recent years, largely due to the
rapid increase in affordability for the average consumer. They are
no longer expensive machines (less than $1000) and can often be
controlled with ease, e.g., utilizing a smart phone application for
direct control or feedback.

Da-Jiang Innovations Science and Technology (DJI), a Chinese
company, acquired success in the consumer drone market. DJI is
one of the most prominent drone manufacturers today. A droneli-
fe.com article reports a revenue jump from $4.2 million in 2011 to
$130 million in 2013. An estimated 533,400 drones have been sold
between their initial launch and the end of 2014 (Amato, 2015). DJI
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produces two primary aircraft models, the Phantom series and
Inspire series. This work focused on the forensic analysis of the
Phantom III Standard, launched in April of 2015.

With this increase in popularity, the need for laws regarding
the use of drones has also increased. The Federal Aviation
Administration (FAA) has reported 583 drone incidents from
August 2015 to January 2016. These incidents usually involved
curious or mischievous pilots flying their drones into restricted
airspace. The Federal Bureau of Investigation (FBI) has been asked
to investigate rogue drones, with the most challenging task being
the tracking of pilot fault, according to Brandom (2016). To keep
up with technology, the FAA has been working to develop laws to
constrain the use of recreational UAVs. These laws mostly limit the
maximum altitude and impose no-fly zones for airports and other
areas such as recreational sporting events with more than 30,000
people.

Drones have also had an impact on terrorism activities. For
example, the Islamic State of Iraq and the Levant (ISIL) has been
using drones for surveillance purposes for some time now as
Schmidt (2016) points out. Furthermore, there have been three
recorded incidents (one fatal) of ISIL rigging the drones with
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explosives. The terrorist group is not using military grade aircrafts,
but rather they are resorting to commercially available drones
which include the DJI Phantom series, the very same series
investigated in this work. Due to the growth in popularity of
commercial UAVs along with the spike in criminal activity
involving them, there is a dire need for the development of sound
UAV forensic techniques. We posit that this need will continue to
increase as UAVs become more accessible and employed in other
criminal activities.

To the best of our knowledge, we present the first comprehen-
sive work on the forensic analysis of the DJI Phantom III Standard
drone. Our contribution in this work is as follows:

e We present a set of procedures that examiners may learn from
during the process of investigating a case that involves the DJI
Phantom III Standard drone.

e We present the first openly accessible account for the binary
(FLYXXX.dat) file structure — the flight recording file created by
the drone and stored on its SD card.

e We compile our findings into the only available open source

python tool called DRone Open source Parser (DROP) capable of

parsing the proprietary DAT file format in a forensically sound
manner. This tool is available for download at https://github.
com/unhcfreg/DROP.

We provide the first account, tool, and method for being able to

correlate data extracted from the drone's nonvolatile internal

storage and the mobile device used to control it.

We first start the paper by stating the scope of our research
(Section Research scope). We then review previous work related to
UAV forensics in Section Related work. This is followed by the
methodology and process used to conduct the forensic analysis of
the Phantom III in Section Methodology. In Section Data analysis,
we present the analysis of data acquired from our methodology and
illustrate the drone's proprietary file structures, and a tool used to
parse one of them in Section Tool creation: DRone Open source
Parser (DROP). Next, we discuss the results obtained from our
analysis in Section Testing and findings. Section Limitations dis-
cusses the limitations associated with our work and DROP. Finally,
our concluding thoughts are shared in Section Conclusions & future
work. We assert that one limitation of our work in this paper is that
it encompasses just the DJI Phantom III Standard model. Further
efforts to extend the research to additional DJI models and other
manufacturers may be addressed in future work.

Research scope

It is important to note that the scope of this work is limited to
the DJI Phantom III standard drone. While it would be ideal to test a
multitude of drones, the work is rather tedious and requires plenty
of reverse engineering. It is also of note that the idea of imple-
menting a generalized solution that would be capable the forensic
analysis of all the drones available on the consumer market is a
strenuous exercise. Each drone is different in terms of its operating
system, proprietary data storage, and control protocols making the
task for forensic examiners difficult. While we dive deep into the DJI
Phantom III, we argue that this is a good start given that DJI
currently holds the highest market share in the Drone market, and
the fact that their Drones have already been used by terrorism
groups such as ISIL.

Related work

The following sections review several developing areas in digital
forensics relevant to drone forensics.

Drone forensics/security

In the process of researching this topic, modest peer reviewed
related literature was identified. Much of the literature at the time
of writing focused on the security of drones.

Samland et al. (2012) outlined a detailed analysis using the
Computer Emergency Response Team (CERT) taxonomy. The CERT
taxonomy is a common language by which security related in-
cidents are discussed by experts (Kiltz et al., 2007). By leveraging
this taxonomy, Samland et al. (2012) were able to identify potential
vulnerabilities. They conducted studies based on three different
scenarios: high-jacking the drone; malicious code delivery to the
drone; and using the drone's GPS system to track the end user. In
each scenario, they shared the particular systems and level of
compromise to those systems needed to execute each scenario.
Furthermore, they identified protection requirements to help pre-
vent their discovered attacks.

In other work, a presentation by Kovar (2015) discussed the
forensic analysis of the DJI Phantom II, the precursor to the Phan-
tom III. He noted the new wave of illegal activity involving drones
which included drug and weapon delivery, invasion of privacy,
flight in controlled airspace, and flight into bystanders. In his
analysis, he was able to recover a plethora of data to trace the
aircraft back to the owner. This included GPS and other EXIF data
from pictures, launch point, DJI account information, and the
owner's name. The work also showed that practitioners can
establish a Secure Shell (SSH) connection to the drone and dump
the root file system and hijack it in real-time using a tool called
Skyjack by Kamkar (2013). Although the work was similar to ours 1)
The work did not focus on the Phantom IIl and 2) A validated
forensic methodology and tool was not the focus of the work.

Another presentation by Luo (2016) was shared at DEFCON. This
presentation portrayed a detailed security analysis of the DJI
Phantom III — the drone used in our work. In the work, Aaron Lou
broke down the security analysis into several parts which included:
breaking the Software Development Kit (SDK) authentication,
firmware analysis, radio signal analysis, and GPS analysis. In each of
these, he briefly identified possible compromises as well as solu-
tions. This work focused on the security analysis of the DJI Phantom
III and did not focus on the forensics of the drone.

In other recent work, Horsman (2016) discussed a preliminary
analysis of forensic challenges for UAVs. The paper presented a
forensic analysis of the Parrot Bebop UAV, another popular drone
consumer model. The results demonstrated the ability to recover
flight data from both the drone and the controller handset. Prob-
lems still existed however for establishing ownership of the drone.
Similar to David Kovar's analysis of the Phantom II, the researcher
was able to connect remotely via Telnet and acquire an image of the
root file system.

Thiobane (2015) recognizes that the increased use of drones by
private citizens escalates the challenges faced by digital forensic
investigators. Among other findings, they identified that drones are
targeted by criminals for their payload value, data breach, and cyber-
attack capabilities. Several recommendations were made which
include creating an academic course to keep Information Technol-
ogy (IT) and forensic examiners up-to-date on developments in UAV
usage. They also proposed that drone manufacturers develop built-
in technology to locate hijacked, stolen, and flyaway drones.

As shown from the literature review on drone forensics, peer
reviewed work on the forensic analysis of the DJI Phantom Drone III
had not been published at the time of writing. Our work improves
the state of the art by filling that research gap by both presenting
our findings, as well as enabling investigators to forensically
analyze proprietary files to recover a slew of digital evidence from
the tested drone.
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Legal challenges of drones

A major challenge that follows civilian drone usage is privacy. The
concerns of the public are a result of cases in which the drone is used
to take photo or video of a person unaware of the drone. The case for
regulating law enforcement drone usage will not be nearly as much
of a challenge as the use of drones by civilians. There is a need to
strike a balance between what is acceptable for private use and what
is not. Currently, there are laws being created both by state and
federal agencies. Many of these laws revolve around the first and
fourth amendments. In particular, the need to know the location of
the drone when it is recording is critical for privacy (Kaminski, 2013).

Work conducted by Carver (2014) dives into the details of laws
against drones at the state level. Some states are simply banning
them outright while others are more focused on what is allowed and
what is not. One example being laws against drones carrying
weapons. The state of Connecticut has proposed a law to restrict/
prohibit putting guns on drones after a man posted a video of his
drone flying with a gun and shooting according to (Rondinone, 2015).

Ravich (2015) built a detailed analysis of the challenges faced by
the courts in relation to drones. Drones are not simply flying ma-
chines, but contain information. With so much data capable of
being collected with these devices it becomes critical to identify
what can or cannot be used in a court of law. A case is made that
data acquired via a drone should be as valid as data collected via
any other aerial observation tool, as well as any digital item (mobile
phones, smart watches, etc).

Clarke and Moses (2014) pointed out that in both the United
States and Australia, there are no recorded collisions with civilian
drones and air transportation. There has, however, been cases of
pilots identifying these types of drones in airspace that makes up
airports such as the Perth airport. As of April 17 2016 there has been
a recorded incident of a drone striking a British Airways aircraft
landing in Heathrow airport (Wild et al., 2016).

In terms of military drones, in 2005 there were two collisions
involving drones and aircrafts while in Iraq. According to Zenko
(2012), there has been 79 crashes of drones as of 2010 in the
United States Air Force.

Phantom III related files and software tools

Previous research found that the DJI Phantom III has two pro-
prietary file formats: binary files (located on the drone's nonvolatile
internal storage with the “.dat” file extension) and additional binary
files (located on the Android device with the “.txt” file extension
used to control the drones). From this point forward, we will refer
to the binary “.dat” files as “DAT files” and “.txt" files are referred to
as “TXT files.” Both of these files are encoded and encrypted
(therefore the TXT file is not in the standard ASCII format). At the
time of writing, some tools were available for parsing these files.
We would like to point out that these tools were not forensic tools,
but were created by hackers and hobbyists.

DatCon,' which is written in Java was the only tool found capable
of parsing DAT files. It is unclear who the inventors/authors are as
they remained anonymous. Three tools were identified for TXT
files. First, dji-log-parser by Franklin (2016), is an open source tool
that operates locally in a browser. It was only able to parse data
from an older TXT file format, however, it failed with the newer
format. Secondly, CsvView” was found which is closed source and
had the same problem. Lastly, there was Healthy Drones> which is a

1 https://datfile.net/ (last seen 2016-10-03).
2 https://datfile.net/csvDownloads.html (last seen 2016-10-03).
3 https://healthydrones.com (last seen 2016-10-03).

free online service to convert TXT files to CSV files. Unfortunately,
the authors did not release any information on how they were able
to extract the data. Additionally, an examiner would have to up-
load/share evidence with an unknown service provider which is
clearly a drawback. — On p. 3, the paper states — It is also worth
noting that our research focused on the analysis of the mobile
device connecting to the drone with the hope that data between
the drone and the controller may be correlated. This sentence gave
the impression that the research did not focus on the analysis of
data onboard the Drone, which seems to not be the case. This
sentence should be removed or clarified.

It is also worth noting that our research included the analysis of
the mobile device connecting to the drone with the hope that data
between the drone and the controller may be correlated.

Methodology

The apparatus used throughout this research is presented in
Table 1. Our work embodied the methodology described in the
following step-wise procedure:

Factory reset: To ensure no external variables affected our re-
sults, a factory reset and formatting of all devices and cards was first
employed (Section Factory reset).

Scenerio creation: The drone was powered on, flown in two
separate geographical locations, and then powered off (Section
Scenario creation).

Data acquisition: The process of acquiring data was broken into
three parts: drone, controller, and phone/tablet (Section Data
acquisition).

Data analysis: The acquired data was analyzed. Particularly, two
files of interest containing flight data were acquired. An in-depth
analysis of these files and their structures was attempted (Section
Data analysis).

Tool creation: Once the data was analyzed, and the proprietary
file structures were understood, a tool was created to enable ex-
aminers to parse evidentiary files (Section Tool creation: DRone
Open source Parser (DROP)).

Testing: Finally, a number of tests were conducted to validate our
constructed tool and findings. Tests were also carried out with regards
to the internal SD card in the drone (Section Testing and findings).

Factory reset

The first step in the process was to factory reset both the drone
and the Nexus 7 tablet. The tablet was factory reset by booting into
the device recovery menu and selecting Factory Reset. The tablet
was then updated to the latest operating system — Android 6.0.1.
Next, the drone was factory reset using a secondary Android device
with DJI GO installed. DJI GO is the Android application developed
by DJI which serves as a command and control dashboard for the
Phantom III. This application allowed the user to control the drone,
in part, from a mobile device or tablet. It also allowed the user to
clear both the flight route data and the video cache from the
nonvolatile internal storage device on the drone. As an extra pre-
caution, the 64 GB external SD card located on the camera rig was
deleted and formatted to a FAT32 file system.

Scenario creation

Next, the DJI GO application was installed on the Android tablet,
and two test flights were conducted. These flights were made on
our campus grounds. The flights were documented; keeping track
of date and time of flight and flight patterns. Data was recorded
using the drone and manually by the researchers to account for all
flight events.
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Table 1
Apparatus.

Tool Description

Utilization

Flight system
DJI Phantom III Standard
DJI remote control
Mobile device (Nexus 7 (2013) Tablet
Android 0OS V6.0.)
DJI GO App V3.0.0
Forensic analysis tools
Forensic workstation
Memory Card Reader
DROP Tool V0.1

Quadcopter

Remote control

GPS/Heads up display

Real time video connection

Mac 0SX/MS Windows 10

DAT/Text file tool

NMAP V7.3 Network scanner
Hex editor version 1.7.7.0 Hex editor
IDA Pro V6.8 Dis-assembler

FTK Imager Lite V3.1.1
Autopsy 4.1.1

Forensic Imager
Forensic analysis tool

7Zip 16.03 Compression/decompression
Android Backup Extractor Decompression tool
JD-GUI V1.0.0 Java source code viewer

adb (Adroid Debug Bridge)
SQLite Manager V0.8.3.1
Tools used for disassembly
Metric Allen Key set
General Tools 63518 Eighteen-Piece
Precision Screwdriver Set
Dremel rotary tool
Knife

Firefox plugin

Size 2 mm

Electric drill
Utility knife

Celebrite—UFED S/N 1004922

communication with android system

Micro Phillips Flathead, and Torx bits

Serial# CL03021337
Flight control
Navigation

Live video feed

Test bench

Hardware write blocker/Memory card reader
Decode DAT files/file correlation

Identify open ports on flight system network
Reverse engineering

Reverse engineering

Imaging/Hashing

Cross validation of results

Extract select files

Extract backup files

View Java source code of .class files
Communicate mobile device

SQL Lite DB viewer

Separate drone body
Circuit board removal, shell separation, and motor removal

Removing plastic tabs that hold the flight lights in
Cutting away the glue from the SD card holder

Data acquisition

Imaging external SD card

Once the test flights were completed, the acquisition of data
commenced. We began by taking a physical image of the 64 GB
external SD card used by the Gimbal camera system to store images
and video. With the drone and remote turned off, we extracted the
micro SD card from the Gimbal rig and inserted it into a Cellebrite
write blocker. The MD5 hash was generated and stored. Then, using
the disk dump (dd) utility, the entire disk was dumped to an image
file and hashes were compared and verified.

Subsequently, the image file was opened in FTKImager 3.1.1
where the content of the image was examined and extracted to
another folder (Autopsy 4.1.1 was used to cross-validate findings).
The extracted files included images and videos taken throughout
the flights as well as some files with metadata about the videos.
Results are shared in more detail in Section Testing and findings.

Android backup

Attention was then turned to the Nexus 7 tablet which acted as a
control station and dashboard for the drone. It displayed the live
camera feed, battery information, GPS, and allowed the user to
issue commands such as automated take off and landing. Android
backups consist of primarily application related artifacts and typi-
cally provide data pertaining to the ownership and usage of the DJI
GO application. A logical backup was executed using adb backup
-all and Android Backup Extractor by Elenkov (2014) was used to
extract the resulting backup . ab file to a . tar file. 7zip was then
used to decompress the file to a directory containing the files
pertaining to each application installed on the tablet, which
included files for the DJI GO application located in apps/dji.pilot.
One may also want to create a physical image of the Android device,
but it was unnecessary as we were attempting to locate logical data
on the device.

Android storage

While the Android backup was useful in acquiring application
data, the user data must be obtained through the mobile device's
nonvolatile internal storage. To do this, the device was connected to

the forensic workstation and all of the files located on the internal
storage were selected and copied to the computer. The internal
storage contained several directories pertaining to DJI and these
were analyzed for relevant artifacts.

Acquiring the drone's storage

The last stage of the data acquisition was to obtain the flight
records from the drone's nonvolatile internal storage. This was
conducted using three different methods:

1. Mounted the drone's internal storage to the forensic worksta-
tion via the DJI GO application and manually copied the files to
the forensic workstation. We note that the internal storage was
mounted as read only. Our tests showed that this method may
not be forensically sound as the drone has to be turned on
(Section Acquisition testing).

2. This step is identical to the first except that now we acquire a
physical image of the internal storage using dd. Note, the same
limitations apply.

3. For this method, the actual nonvolatile internal storage medium
was pulled from the drone and forensically acquired. This
involved disassembling the drone, disconnecting several wires,
and cutting away the glue that was intended to permanently
hold the internal SD card in place. The socket for the SD card on
the drone is shown in Fig. 1. Our tests showed that this was the
most forensically sound acquisition method.

Data analysis

There were two primary sources for flight data from the DJI
Phantom III. These include TXT files created by the DJI GO mobile
application and stored on the mobile device and DAT files created
by the drone itself and located on the drone's nonvolatile internal
storage. Both files are encrypted and encoded using two different
proprietary formats. After decrypting and decoding these files, data
regarding the GPS, motors, remote control, flight status, and other
information can be extracted. These files essentially serve as the
electronic flight recorder for the drone.
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Fig. 1. Extracting the Phantom III internal SD card from the bottom of the drone's main internal PC board.

DJI GO flight record TXT files

While analyzing the files from the Android device's nonvolatile
internal storage, several TXT files containing flight data were
discovered. These files were found in InternalStorage/DJI/
dji.pilot/FlightRecord/. The files were named using a
standard naming convention of DJIFlightRecord_
YYYY-MM-DD_ [HH-MM-SS] . txt. The date and time within the file
name corresponds to the date and time that the drone flight began.
This file contains data regarding location, flight status, battery
levels, and more in the form of packets. These packets must be
decrypted and decoded.

DJI GO TXT file structure

Knowing that these text files are created by the DJI GO applica-
tion we focused on trying to reverse engineer the android applica-
tion to ascertain the file structure. The official DJI GO application was
downloaded” and decompiled using JD-GUL> With this program, all
the java class files became visible. Although many variables, func-
tions, and class names were obfuscated, key words could be
searched for. A search for “FlightRecord” (the name of the directory
where the TXT files are stored) pointed us to k.class inside the
dji.pilot.fpv.model package of classes2.jar. k.class handled
the flight record file writing process. Through manual inspection of
the file writing process within the Android application and the TXT
file itself using a hex editor, we concluded that the file follows a
structure. The high level file structure is shown in Fig. 2. It is
important to note that data in this file was in little Endian.

The last 190 bytes of the file contain general information about
the aircraft and flight. The first piece of information is an optional
geotag in plain text for where the flight took place. For example,
many of our files read “New Haven, Connecticut.” The next bit of

4 https://apkpure.com/dji-go/dji.pilot (last seen 2016-10-03).
5 http://jd.benow.ca/ (last seen 2016-10-03).

recognizable data comes several bytes later and states the drone's
name in plain text as seen here:

Yuhe's Phantom3

0320600080

CL03021337

05LD102XHR

1153516293

This is the name assigned by the user during the set up process
along with the model name, where “Yuhe” is the name of the owner
of the drone. This is followed by what appears to be four identifi-
cation numbers. The same four numbers were also found in the
dji_pilot_publics_model_DJIDeviceInfoStatModel table
of dji.db. We discovered that these are actually serial numbers
and through inspection of the application in JD-GUI, we were able
to correlate the serial numbers to hardware devices.

The first number can be traced to the Inertial Measurement Unit
(IMU) located inside the drone. Serial number CL03021337 rep-
resents the camera. The third number can be traced back to the
primary circuit board inside the remote control that was used to
control the drone. This board is actually responsible for trans-
mitting the on-screen data to the mobile device. The last number,
1153516293 belonged to the battery.

TXT packet structure

Flight record data is written to TXT files in the form of packets,
the general structure of which is specified in Fig. 3.

The payload of the packet is encrypted and encoded. At the time
of writing there was no published method of decrypting this
payload, but during the process of reverse engineering the DJI GO
Android application, we were able to locate a library DJT
GO_v2.9.1_apkpure.com 2/lib/armeabi-v7a/libFREncry
pt.so, which is a proprietary library used to encrypt and decrypt
the flight record data for the TXT files. So far, not much has been
published on this library, however, some work has been done trying
to reverse engineer it. We have been able to isolate the encryption
and decryption functions using IDA-Pro and are currently in the
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Flight Data — Includes GPS, Battery, Flight Status,
and more. Data is in the form of packets and the
payloads are encrypted. Cached images can

also be found here.

File Version — The current
version is 0x90 0x01 0x08

File Length (N)

[ 5ytes | 4Bytes [3Bytes | 74Bytes [ N-100Byies | 1s0Bytes

Padding — All 0x0 Zero fill - All 0x0

General information about drone name,
location, various serial/model numbers

Fig. 2. Breakdown of TXT file structure.

Payload — Encrypted, contains GPS, Battery,

Packet Type
\

Flight Status, etc.

T T S T

Payload Length (L)

End byte — Always OxFF

Fig. 3. Breakdown of TXT packet structure.

process of tracing the program stack to understand the input pa-
rameters of the function.

DJI drone DAT files

During the work on the drone several proprietary DAT files were
discovered on the 4 GB nonvolatile internal storage of the drone.
These files followed a common naming convention of FLY###. -
DAT, where the “###” is a successive number. This type of file
contains a large chunk of flight data related to the drone's location,
flight status, and various sensor readings.

DJI DAT file structure

After extracting the files from the drone's internal SD card
(FAT32 file system), some preliminary work was conducted in an
attempt to read the file. It was quickly determined that the file was
encoded and would require decoding. Little official documentation
was found related to DJI's DAT files. However, there is a large
amount of conversation about these files, as well as several tools
created by hobbyists that attempt to decode the files. In particular a
tool called DatCon® yields the most comprehensive output from the
files. However, not all fields are decoded. DatCon provided a means
to parse the information from the binary DAT file and export it to a
human readable CSV file. DatCon was downloaded as a jar execut-
able and by decompiling the jar file, we were able to gain a more
comprehensive understanding of the DAT file structure. The high-
level DJI DAT file structure is depicted in Fig. 4.

The overall file layout is fairly simple. The first 128 bytes of the
file represent the header. Bytes 16—20 contain the word “BUILD”
followed by the date and time of the build. We are uncertain of
what this build date actually refers to, but it is suspected that it
refers to the date of the last revision made to the file structure. The
parsing tool we discuss later actually uses the word “BUILD” as an
indicator to make sure that the file being read is in fact a DJI DAT
file. Byte 128 is the beginning of the data packets. Data packets are
written to the file as packed binary structures which are pro-
prietary to DJI. These packets make up the bulk of the file and then
the file ends with a varying number of bytes containing all O's.

DAT packet structure

The data packets are structures of varying length depending on
the type of data being written. Although they are different lengths,

6 https://datfile.net/index.html (last seen 2016-10-03).

they do follow a common structure. Fig. 5 shows the basic structure
of the data packet.

It is important to note that the packet length refers to the entire
length of the packet, which includes the start byte to the last byte in
the payload. The tick number is four bytes representing the internal
bus clock tick number and comes after the message byte. The
payload can be anywhere from 14 to 245 bytes in length. This is
where the major variance is between each packet. The packet type
and sub-type correspond to the format of the payload.

Packet payload structure

The packet payload is the part of the packet that contains the
actual sensor and telemetry data. The payload can be anywhere from
14 to 245 bytes long and the type of payload is determined by the
packet type and sub-type. As this is beyond the paper's scope, a full
breakdown of the individual payloads can be downloaded.” In Fig. 5
there are nine different packet types they are GPS, motor, home point,
remote control, tablet location, battery, attitude, flight status, and
advanced battery. The GPS payload is the one we know the most
about at this point. It contains the GPS location of the drone as it
moves through the flight, altitude, 3-axis acceleration, gyro, velocity,
magnetometer, and more. There are four bytes at the end of this
payload that appear to contain data, but it has not been determined
what that data is. The motor and tablet location packet types are two
that have not been seen up to this point. Based on the DatCon code,
the motor payload contains both the speed and the load of all four
motors on the drone. The Phantom Il Standard, however, does not
report these values, and thus we have not seen these types of packets.
The tablet location reports the latitude and longitude of the tablet
only during a “Follow Me” mission. This is an auto pilot mode which
can be enabled in the DJI GO application where the drone follows you.

The home point of the drone is usually automatically set by the
DJI GO application, but the user is also able to manually set this if
they wish. Home point coordinates are reported in the home point
payload. Remote control status such as throttle, rudder and elevator
are recorded by the remote control payloads. There are two types of
packets that carry battery information (battery and advanced bat-
tery), where one appears to contain information about just the
overall battery level and the other reports much more detailed
information about the battery capacity, temperature, current, and
voltage for the individual cells.

7 https://github.com/unhcfreg/DROP/blob/master/MesssageStructure.xlsx  (last
seen 2016-10-03).
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File header — Fixed 128 Bytes long. Contains the Build number for the DAT file format being used

Packets of varying length as defined by each packet header

| t2s5yes | Xyies [vBytes [zmytes Iwoyies |

Start of file End of file
Fig. 4. Basic structure of DJI DAT files.
Will always be:
Header 0,,)8,5
msg_start
1 byte
Packet Length
1 byte GPS
0xCF
Padding X
Motor
GPS Always 0x00 0xDA
1 byte X
0x01 Home Point
Motor Packet Type 0xC6
OxF1 _ 1 byte Remote Control
Home Point 0x98
Lt Sub Type Tablet Location
Remote Control
0xC1
0x00 ‘ Battery
Tablet Location Ox1E
0x2B Message -
1 byte Attitude
Battery 0x2C
0x12 Flight Status
Attitude Tick Number 0x2A
0x34 1 byte
Flight Status 0x00
0x0C
Payload
14 - 245 bytes

Fig. 5. Breakdown of DAT file structure.

The last two payload types contain data about the Gimbal
camera mount and overall flight status. The Gimbal payload con-
tains the positioning of the camera itself. The flight status yields
information regarding the state of the flight (autopilot, assisted
take off, go home, hover, etc.), and GPS related errors. This
packet also contains the flight time in milliseconds since the start of
the flight. We demonstrate in the following section that this flight
time, along with other metrics, can be used to correlate DAT files to
TXT files. This is particularly useful in determining the UNIX time at
which events occurred in the DAT file.

Tool creation: DRone Open source Parser (DROP)

DROP, or DRone Open source Parser is a command line forensic
tool we constructed in Python 3.4 to parse data from the DJI DAT
files. This tool works with Python 3.4 and is largely based on
reverse engineering DatCon. It has only been tested on DAT files
from the DJI Phantom III Standard, but is expected to also work for
the Phantom IIl Advanced, Professional, and the Inspire 1.

Tool usage
DROP provides two primary functions:

1. Parse data from DJI DAT files
2. Correlate DAT files to TXT files

DROP can be used to process either single DAT files or run a
batch of DAT files. This is dictated by the input parameters given at
execution. DROP's usage is as follows:

python DROP.py input [-h] [-o OUTPUT] [-t T] [-f]

The input parameter must be specified as either a directory
containing DAT files or a single DAT file. The output parameter
-o is used to specify the output destination. The -t is for
specifying a path to a directory containing DJI flight record CSV
or a single flight record CSV file. The - £ flag can be set to indicate
that DROP should process the file(s) even if they are not of the
standard DJI DAT file type. Lastly, there is a -h flag which can be
used to print the list of input parameters for quick reference.
Mo%e information on DROP can be found in the DROP readme
file.

Main function — data parsing

Pseudo code for the main function of DrOP is depicted in Al-
gorithm LABEL:packetDecode. This method begins by checking the
system for file metadata. This is used to obtain the file size. This
data and more are logged in a separate text file (not shown) for
record keeping purposes. After the metadata is recorded, the input
file is opened to determine if it is a DJI DAT file format. It does this

8 https://github.com/unhcfreg/DROP (last seen 2016-10-03).
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by first extracting the 128 byte file header and then checking bytes
16—20 for the word “BUILD”. If it finds the word “BUILD” the pro-
gram continues; otherwise it exits.

If the file is determined to be a DJI DAT file, the program con-
tinues by reading the next byte (byte 128) from the file and creates
a new Message instance. If the file is determined to be of some
other type, a counter for non-DAT files is incremented. message is
an object that represents the current state of the drone by taking in
packets and storing the most recent values. The program then en-
ters a loop which terminates at the end of the file. This loop cycles
through the remaining bytes in the file, extracting the packet
length, header, and payload for each packet and updating message
with the latest data.

Algorithm 1 DAT packet parsing algorithm

1: procedure DROP(inputFile, outputFile)

2: meta « inputFile metadata

3 in_file < open inputFile in read binary mode
4: file_header « read bytes 0 to 127 of in_file
S: build « unpack file_header[16:21] to string
6: if build '= “BUILD” then

7 exit()

8: out_file < open outputFile in write mode
9:

10: byte « read next byte from in_file

11: message — new Message()

12: while byze length != 0 do

13: if byte != 0x55 then

14: byte « read next byte from in_file

15: else

16: packetLength < read next byte from in_file

17: padding « read next byte from in_file

18: if padding == 0x00 & packetLength >0 then

19: header « read next 7 bytes from in_file

20: payload « read packetLength - 10 bytes from in_file
21: thisPacketTickNo < unpack header[3:7] to integer
22: if message.tickNo == NULL then

23: message.tickNo « thisPacketTickNo

24: if thisPacketTickNo = message.tickNo then

25: if message.addedData == TRUE then

26: out_file < message.getRow()

27: message.addedData < FALSE

28: message.addPacket(packetLength, header, payload)
29: byte « read next byte from in_file

30: else

31: byte «— padding

32: out_file < message.getRow()

33: in_file.close()

34: out_file.close()

35: return

It was discussed earlier that packets can come in many forms,
with the primary difference being the payload. Multiple packets
may have the same tick number, meaning they were written to
the file at the same time. However, all of the packet types are
updated at different intervals, and so it is highly unlikely to see
one of every type of packet for a single tick number. The mes-
sage object is updated with the latest data rather than reset so
that the output to outputFile contains the most up-to-date
information for all of the fields for each tick number. This is
done using the addpacket () method of message which han-
dles decoding and parsing the data from the payload. This is
further discussed in 6.2.1. In our algorithm, we write a row to
outputFile each time we see the tick number change, so long

as there was data added for that tick number. It is possible (and
likely) to see tick numbers skipped all together because packets
were read in, but none of them contained data that we know
how to parse. If at any point a packet is determined to be
fundamentally corrupt (not following the established DJI packet
format), a corrupt packet counter is incremented. If a packet is of
the correct DJI packet format but contains data we do not know
how to parse (unrecognized packet type), then an unknown
packet counter is incremented. After the end of the file is
reached, the last row is written to outputFile and the input
and output files are closed. After the processing has completed,
various statistics about each file processed are written to
processlog. txt. This includes statistics such as date and time
processed, total number of records, number of corrupt/unrecog-
nized records encountered, and more.

Decrypting and parsing payload data

When data from a new payload is added to message, the
payload must first be decrypted using the scheme in Algorithm
LABEL:payloadDecrypt. The decryption algorithm was observed
through reverse engineering of DatCon. This method takes the
payload and tick number as input parameters and attempts to
decrypt the payload. First, the key must be generated by taking the
modulo of the tick number and 256. An empty list is then created
which will hold the decrypted version of the payload once finished.
Next, each byte in the payload is iterated through. Each byte is
XORed with the key that was generated previously, and the result is
appended to the decrypted payload list. Once each byte in the
payload has been processed, the decrypted version of the payload is
returned. It may be observed that the encryption algorithm is a very
easy scheme to reverse engineer. At this time, we do not know why
DJI chose such a simple algorithm.

Algorithm 2 DAT payload decrypt algorithm

1: procedure peEcrYPT(payload, tickNo)
2: xorKey « tickNo MOD 256

3: decryptPld « []

4: for byte in payload do

5

append (byte XOR xorKey) to decryptPld
return decryptPld

Once the payload is decrypted, the data can be decoded ac-
cording to the structures. All of the necessary information is pub-
lished online in the DROP GitHub repository https://github.com/
unhcfreg/DROP. This was done by unpacking the bytes from the
payload into their intended data types which may include short,
double, float, bytes, and more. Several courtesy calculations are
performed at this stage as well. These are calculations that produce
values which are not directly available from the payload itself, but
are helpful for reference. Examples of this include calculating the
watts using the voltage and current, or the total acceleration from
the three axis acceleration values.

File correlation

An additional function built in the tool is the ability to correlate
the generated TXT files found on the Android mobile device to their
corresponding DAT files. This correlation is conducted in two steps
accomplished with the algorithm shown in Algorithm 3.
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Algorithm 3 DAT to TXT file correlation

1: procedure corrReLATION(dat_data, csv_data)

2 ft-matches « 0

3: gps_matches « 0

4: for ftin dat_data do

5 if ftin csv_data then

6: ft_matches « ft_matches + 1

7: if dat_data[ft][lat] matches csv_data[ft][lat] then

8: if dat_data[ft][lon] matches csv_data[ft][lon] then
9 gps-matches «— gps_matches + 1

10: if fr_matches > 0O then return (gps_matches/ft_matches) * 100
return 0

We first identify common flight times that exist in both the TXT
file and the DAT file. The flight time is just a measurement of the
number of milliseconds that have passed since the drone took flight.
Next, for each matching flight time, we compared the GPS coordinates
from the same row. If the latitude and longitude values from the DAT
file and the TXT file were the same out to 5 decimal places, a counter
was incremented. We chose to match out to 5 decimal places because
we ran a test using a known correlating DAT and TXT file pair. In this
test we calculated the average number of decimal places that the co-
ordinates match on and found that on average they match out to 5.51
decimal places. The standard deviation of these two data sets of GPS
coordinates was approximately + 1.5. Once all of the GPS coordinates
have been processed, a final confidence level (as a percentage) is
calculated by dividing the number of GPS matches by the total number
of flight time matches. This method has been effective for correlating
DAT files with TXT files and has been tested for several flights.

This correlation method does pose challenges when the flight
pattern and general GPS locations of two separate flights are very
similar to each other. One way we can get around this is to add
more metrics to correlate on. This involves comparing things like
altitude, battery voltage, and number of satellites. We have been
able to show that extracted data match nearly one to one for a DAT
file and corresponding TXT file. See Appendix B for a graphical
representation of data extracted from DAT versus TXT files.

Testing and findings

In this section different tests are performed to explore the
forensic soundness of acquisition methods and verify that DROP is
forensically sound, and will behave as expected. File hashing was
conducted as a basic means to verify files are not modified. Sample
corrupt files were sent through the tool as well to examine the
tool's robustness. We also tested the effects of a full or missing SD
card for the drone's nonvolatile internal storage.

Acquisition testing

The differences in the three acquisition methods in section Data
acquisition are subtle, but comparing the results from each pro-
vided us with valuable insight about how the drone's nonvolatile
internal storage was managed as well as the forensic soundness of
each method.

Overall, our results indicated that turning on the drone affect's
the integrity of the evidence on the drone's internal storage. Basi-
cally, every time the drone is turned on, a new DAT file is created.
Therefore, using any acquisition method that required the drone to
be on was deemed unsound. Furthermore, we note that other tests
were conducted that affect the acquisition of the drone's internal
storage. We noticed that if the drone's SD card was at or near full,
turning the drone on immediately wiped data (in an irrecoverable
manner), thus, affecting the integrity of potentially relevant evi-
dence. The threshold for maximum allowable used space before
wiping was not determined during the course of our tests.

File integrity tests

Given that brOP was designed to be used in a potential forensics
case it was necessary to verify that the tool did not alter the DAT
files in any way. This was accomplished by hashing the files to be
parsed before and after they were parsed by DROP.

File under test: FLY037.DAT

File hashes:

Library copy: 1804a65d9d97833c6f06adf2e9bd8dbe

After DatCon: 1804a65d9d97833c6f06adf2e9bd8dbe

After DROP: 1804a65d9d97833c6£06adf2e9bd8dbe

By observation, it is apparent that the hashes of DAT file
FLY037.DAT before and after tool usage match. Both DatCon and
DROP were tested for this. Unlike DatCon, DROP automatically
calculates and displays the MD5, SHA-1, and SHA-256 hash digests
before the file under test is opened and after it is closed. It will also
automatically perform the comparison of the hashes and alert the
user as to whether or not the hashes matched.

DAT file testing

To test the robustness of DROP and DatCon, we created a set of
corrupt DAT files which were all derivatives of one known good DAT
file. Thirteen files in total were created, each with unique issues.
Tests included removing bytes from the header, changing a packet's
start byte value, removing bytes from a payload, and more. Details
and results for all of the tests that were performed are shown in
Appendix A. This set of tests is comprehensive, but not necessarily
complete. More tests could potentially be executed to examine how
the software reacts to for example running these tests on every
packet in a file, but we deemed this as outside the scope of our
testing. Overall, both DatCon and DroOP performed equally, with the
two exceptions. First, DROP, provided valuable feedback to the user
on parsing challenges faced, whereas DatCon did not.

Second, further testing indicated that DatCon was missing data
when parsing DAT files. DatCon will only parse data at a given tick
offset time sample frequency. The tick offset time is the number of
seconds passed since the beginning of the recording and is calcu-
lated using the Central Processing Unit (CPU) tick number. Being
that DAT files usually contain an overwhelming amount of data
packets, DatCon incorporated a feature to allow the user to set the
packet sample frequency (packets per second). This effectively
adjusts the output resolution of the DAT file. Currently, the fastest
sample rate the user can select is 200 Hz. However, even with the
frequency set at the maximum possible rate, DatCon still fails to
output one in five records from the DAT file. Conversely, DrROP
outputs every packet that is found and does not have a method of
setting the sample frequency. This is to say that for every five re-
cords outputted by prop, DatCon will only output four of them.

Drone internal SD card tests

While working with the DAT files we became curious about the
limitations of the drone's internal SD card which was formatted as
FAT32. Specifically we wanted to explore the effects of filling the SD
card to capacity. We began with an inspection of the SD card
extracted from the drone. The card had 39 DAT files numbered from
145 to 181. The card had approximately 1182.13 MB of free space. A
python script was constructed to analyze the free space left on the
card and then create a file of exactly that size in order to fill the card
to capacity. With the card at capacity, it was inserted back into the
drone and the drone was turned on. After several seconds, it was
turned off and the SD card was extracted for analysis. Inspection
showed that 12 files were deleted. These were files 145 to 157
which were the oldest DAT files on the card. Moreover, the file
pointers were not just deleted, the drive space previously occupied
by these files was zeroed out, eliminating all chances of recovery.
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Fig. 6. DJI Phantom III data acquisition process.

Our last test involved flying the drone without the SD card. It
was discovered that the drone would in fact fly without an SD card.
This may be used as an anti forensics mechanism by adversaries. In
an effort to simply and succinctly convey the data acquisition
process that should be followed by investigators, we propose the
flow diagram in Fig. 6 be used.

DAT and TXT file correlation tests

To externally validate our data parsing method using DrROP, we
chose to use the TXT file parser by healthydrones.com. The idea was
to explore if data extracted by our parser on the DAT file (extracted
from the actual drone's SD card) matched closely to the data parsed
from the TXT file located on the Android device used to control the
drone. Our findings indicated that DROP produced results that were
almost a one-to-one match as shown in Appendix A. As shown in
the graphs, the data from both the TXT files as well as the DAT file
follow similar trends. The standard deviation for these three cor-
relations were found to be near zero and can be seen in Table 2. The
cause of the differences between DAT and TXT files has yet to be
determined.

Forensically relevant findings

Forensic analysis of the DJI Phantom Ill yielded valuable forensic
data such as GPS locations, WiFi connections, user information,

Table 2
DAT and TXT file correlation standard deviations.

Metric Standard deviation
Latitude & Longitude 0.00000499
Number of satellites 0.555

Battery voltage 0.0849

Table 3
Summary of forensically relevant findings.

dates and times etc., each extracted from a variety of data sources.
Table 3 summarizes forensically relevant artifacts.

Limitations

As discussed at the beginning of this paper in Section Research
scope, our research focused on just the DJI Phantom IIl. We realize
that this work does not encompass a complete understanding of
forensics for all consumer drones, but it does provide a good starting
point. DJI currently holds the largest market share in the US for
drone sales, thus validating our focus. Furthermore, based on the
amount of research and time involved with performing a thorough
forensic analysis, it is currently unrealistic to try and cover all or even
a majority of consumer drones. All we can do at this point is to
continue research in the area of drone forensics as well as push
manufacturers to agree on a standard for recording flight data.

In regards to our tool, DROP, the biggest limitation is that both
DAT files and TXT files are proprietary. We have not captured the
full spectrum of potential data that may be extracted from DAT files,
and as such, is a limitation of this work.

Conclusions & future work

While much work has been conducted with regards to security
of drones, little work has been published with regards to the
forensic analysis of drones. As these devices continue to grow in
capabilities it will become necessary to have a forensic method for
acquisition and analysis grounded by science and robust testing.
The work accomplished in Section Methodology begins to develop
this process. It shows that it is possible to identify locations and
times of the drone, along with additional forensically relevant data
of value to a potential case. The methods developed in this research
were scrutinized for forensic soundness. Furthermore, our results

Finding Description

Utilization

General findings
External MicroSD card (64 GB)
Internal MicroSD card (4 GB)
Mobile device

External MicroSD
Pictures/

Gimbal memory

|DJI_##4#4#.jpg
Videos/

Internal MicroSD
DAT files/

Nexus Tablet
\apps\dji.pilot\db\dji.db

[FLY##4#.DAT

\apps\dji.pilot\sp\dji.pilot.xml device ID

\InternalStorage\DJI\dji.pilot\FlightRecord
Credentials/SSID

\com.android.providers.settings\f\flattened-data

\Internalstorage\DJI\dji.pilot\CACHE_IMAGE Images/EXIF data

Drone main board removable memory
Flight system feedback

[DJI_####.mA4v, [idx##

Pertinent flight and user information

DJIFlightRecord_YYYY-MM-DD_[HH-MM-SS].txt

Photo & video
Flight stats
Autopilot, pictures, GPS

EXIF data (date/time, pitch, roll and yaw of Gimbal
and aircraft)

Metadata (file headers contained location of drone
and GPS data)

Flight information (GPS, compass, battery, etc)

No-fly zones, user email addresses, last known
home point

device serial numbers, last flight location

Flight information (GPS, compass, battery, etc), user
name, device serial numbers

WiFi credentials, user home address via access point
identification

Cached images from MicroSD on gimbal assembly
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showed that we can link a specific drone based on its serial number showed that potential adversaries are capable of flying the drone
to a mobile device that is controlling it. even after removing its nonvolatile internal storage.
While our work focused on the DJI Phantom III, more work
needs to be conducted across the spectrum of drones available for Acknowledgments
consumers today, including the recently released Phantom IV.
Future work should focus on attempting to demystify the DAT and Cinthya Grajeda Mendez — for her help on the preliminary
TXT file structures. Furthermore, our team did attempt to reverse forensic analysis of the Phantom IIl drone.
engineer the firmware on the drone, but more work needs to be
pursued on that front. This could shed some light on data this work ~ A. Correlation data DAT vs. TXT
was not capable of parsing. Lastly, it would be of relevance to

develop a tool to map location over time given a starting point and * See Fig. 7 for GPS coordinates correlation.
accelerometer data from the DAT files stored on the drone. More e See F¥g. 8 for satellite correlaFlon,
work should also be conducted on other areas that may hold data of o See Fig. 9 for battery correlation.

evidentiary value located on the drone, especially since our work
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e See Table 4 for corrupt data testing information.

Table 4
Corrupt data test results.

File description

DROP results

DatCon results

Original file

Removed 790 bytes starting at byte
128 offset from the beginning of
the file.

Modified “BUILD” in file header —
removed it completely

Short File. Removed from byte
7271872 to the end.

Removed bytes 65—93 from header.

Changed the start byte of message
970326 to 0x66.
Changed message type from CF 01
to CF 32 of message 970326.
Changed packet length from 84 to
67.

Changed packet length from 84 to
92.

Changed padding in packet header
from 0x00 to OXAB

Removed packet header completely

Removed bytes 36—73 of the
payload (1709—1746 overall)
Added 10 random bytes to end of
payload: 59 4F 55 47 4F 54 48
41 4B 44

Added 10 random bytes to start of
payload: 59 4F 55 47 4F 54 48

Runs as expected.
Runs as expected.

still processed if the force flag has been set, but it starts looking
for packets at the beginning of the file. Output matches original.
DROP processed the data up to record 970326 (The last existing
record).

Processed the file but missed the data in the first packet (tick
number 970323).

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Runs as expected.
Runs as expected.

Completely refused to process the file.
Missed one record at the end (due to sample frequency).

Processed the file but missed the data in the first packet (tick
number 970323).

Processed the file but missed data for record 970326 GPS data
and output 0's for this tick number.

Processed the file but missed data for record 970326 GPS data
and output 0's for this tick number.

Processed the file but missed data for record 970326 GPS data
and output 0's for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Seems to have worked fine, but hash of output does not match
that of the original output.

Processed the file but missed data for record 970326 GPS data
and output 0's for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

Processed the file but missed data for record 970326 GPS data
and output 0's for this tick number.

Processed the file but missed data for record 970326 GPS data
and did not output any data for this tick number.

41 4B 44
Created a completely random Processed the file but output bad data for record 970326. Processed the file but output bad data for record 970326.
payload
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