Forensic State Acquisition from Internet of Things (FSAloT): A
general framework and practical approach for loT forensics
through loT device state acquisition

Christopher Meffert
University of New Haven, UNHcFREG
West Haven, Connecticut
cmeff1@unh.newhaven.edu

Ibrahim Baggili
University of New Haven, UNHcFREG
West Haven, Connecticut

ibaggili@newhaven.edu
ABSTRACT

IoT device forensics is a difficult problem given that manufactured
IoT devices are not standardized, many store little to no historical
data, and are always connected; making them extremely volatile.
The goal of this paper was to address these challenges by present-
ing a primary account for a general framework and practical ap-
proach we term Forensic State Acquisition from Internet of Things
(FSAIOT). We argue that by leveraging the acquisition of the state
of IoT devices (e.g. if an IoT lock is open or locked), it becomes
possible to paint a clear picture of events that have occurred. To
this end, FSAIoT consists of a centralized Forensic State Acquisition
Controller (FSAC) employed in three state collection modes: con-
troller to IoT device, controller to cloud, and controller to controller.
We present a proof of concept implementation using openHAB - a
device agnostic open source IoT device controller — and self-created
scripts, to resemble a FSAC implementation. Our proof of concept
employed an Insteon IP Camera as a controller to device test, an
Insteon Hub as a controller to controller test, and a nest thermostat
for a a controller to cloud test. Our findings show that it is possible
to practically pull forensically relevant state data from IoT devices.
Future work and open research problems are shared.

KEYWORDS

Internet of Things, IoT State acquisition, IoT forensics framework,
IoT research, IoT controllers, IoT forensic challenges

ACM Reference format:

Christopher Meffert, Devon Clark, Ibrahim Baggili, and Frank Breitinger.
2017. Forensic State Acquisition from Internet of Things (FSAIoT): A general
framework and practical approach for IoT forensics through IoT device state
acquisition. In Proceedings of ARES ’17, Reggio Calabria, Italy, August 29-
September 01, 2017, 11 pages.

This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy
© 2017 Association for Computing Machinery.

https://doi.org/10.1145/3098954.3104053

Devon Clark
University of New Haven, UNHcFREG
West Haven, Connecticut
dclar4@unh.newhaven.edu

Frank Breitinger
University of New Haven, UNHcFREG
West Haven, Connecticut
fbreitinger@newhaven.edu

https://doi.org/10.1145/3098954.3104053

1 INTRODUCTION

The Internet of Things (IoT) has enabled the creation of numer-
ous always Internet-connected smart gadgets for end users, e.g.,
toasters, refrigerators, thermostats, locks, washing machines, car
garage doors or motion detectors that connect to online services and
platforms. Having devices always connected produces new types
of cyber-physical evidentiary data. Nevertheless, how to acquire
forensically relevant data and how to analyze it from different IoT
devices without a common interface, internal storage or standard
protocols is a challenge. While these are current major challenges,
the shift towards everything connected also bring new avenues for
digital evidence and may pinpoint the exact date and time a door
was opened / locked, the temperature change, or when a car was
parked, which in turn could help find digital evidence of forensic
value in a potential case.

In this article, we propose a primary account for a generalized
framework, FSAIOT, for data collection from a variety of different
IoT devices. More precisely, our objective was to construct a gen-
eral, encompassing, practical, methodology to facilitate forensic
collection of state data from a multitude of IoT devices. As the
related work (Section 2) illustrates, there are technical limitations
related to obtaining this data. While some IoT devices keep his-
torical records, many do not or are limited in the amount they do
keep. Notwithstanding, a number of IoT devices rely on some sort
of feedback loop to provide a current device state or to monitor a
state change. We contend that by monitoring these states and or
state changes we can acquire forensically valuable data.

Our work provides the following primary contributions:

e We present a definition of a Forensic State Acquisition Con-
troller (FSAC).

e We present an account for a state acquisition framework for
IoT devices.

e We illustrate through experimental work the feasibility of
this framework using openHAB!, a vendor and technology
agnostic open source automation software for one’s home.

Uhttp://www.openhab.org/


https://doi.org/10.1145/3098954.3104053
https://doi.org/10.1145/3098954.3104053
http://www.openhab.org/

We begin this paper by stating the forensic challenges related to IoT
forensics in Section 3. We follow that by describing our proposed
FSAIoT framework in Section 4, followed by a proof of concept
implementation of the framework in Section 5. We then discuss our
findings in Section 6 and limitations in Section 7. Finally, we wrap
up with our conclusions in Section 8 and discuss areas that need
future work in Section 9.

2 RELATED WORK

The next subsections present research on wearable IoT forensics
(Section 2.1), mobile forensics (Section 2.2) and IoT forensics (Sec-
tion 2.4). Section 2.3 reviews logs and how they are used in digital
forensics, and Section 4.1 discusses IoT controllers. It is of note that
at the time of writing, literature on IoT forensics was sparse.

2.1 Wearable IoT forensics

At the time of writing, smart watches were the most widely adopted
IoT wearable devices. [11] noted projected sales of 100 million smart
watches by 2020. Given that smart watches are employed in ev-
erything from Global Positioning System (GPS) locations to finical
transactions, they are a haven of potential digital evidence. Smart
watches have been shown to have security vulnerabilities. For in-
stance, [2] showcased methods for physically acquiring the Sam-
sung Gear 2 Neo watch and the LG G watch, whilst exemplifying
the forensic implications of the methods used. Many smart watches
still require synchronization with a mobile device, so we argue that
mobile device forensics is strongly relevant to IoT forensics.

2.2 Mobile device forensics

Mobile devices are classified as IoT devices. They started out as
always connected, simple devices, and have now become hand-held
interconnected computers. While nowadays most mobile devices
are either Android or iOS devices, this was not always the case.
[6] highlighted several other mobile operating systems. Some are
outdated and no longer used such as Palm OS, and others remain
obscure and rarely employed such as Samsung’s BADA?. Mobile
devices at some point did not only have different operating systems,
they were also engineered with proprietary hardware and hardware
connectors.

As major mobile players emerged, devices became more stan-
dardized. This made developing and engaging in mobile forensics
less complex as both kernels and filesystems became well known
[3].

We hypothesize that the same trend will appear in IoT devices
as there is presently no standardized operating system for IoT. Cur-
rently, each manufacturer adopts different development platforms
and operating systems and many hardware interfaces are also pro-
prietary in nature. Nevertheless, one common thread that all IoT
devices have in common are their states, which may be logged.

2.3 Logs

Given that most IoT devices have limited long term storage, logs
are of relevance to their forensic acquisition and analysis. If we

Zhttps://www.shoutmeloud.com/top-mobile-0s-overview.html

cannot capture disk-related data, or a device’s internal memory,
perhaps we can capture a device’s state, and log it.

It is no secret that logs contain forensically valuable information.
In [12], logs are defined as a regular or systematic records of events
or state changes that have occurred over a period of time. [12]’s
work suggests that logs are the most common data source used in
digital investigations. In particular, their work uses logs to overcome
the difficulties in cloud forensics.

Another area that logs play a role in is investigative profiling.
[1] suggest that investigative profiling helps reduce noise when
attempting to identify bad actors and the motivations of bad actors.

In work by [5], a finite state machine model is used to recon-
struct an event. A finite state machine is defined as a graph with
nodes serving as possible states. Arrows represent the state changes.
Therefore by back tracing, one can determine all previous states.
These state changes can be obtained from logs.

When constructing time lines from log files, there may be incon-
sistencies and or contradictory information. These inconsistencies
may help in finding what happened on a system given that we know
what should have actually happened, creating an anomaly. Work
by [8] showcased a tool, Computer Activity Timeline Detection
(CAT Detect), which was developed and implemented to assist in
this problem. While logs are applicable to all sub-domains in digital
forensics, they are especially important to IoT forensics.

2.4 IoT forensics

In [9], IoT was broken down into domains such as cloud services,
visualization, mobile devices, fixed computing, sensor and RFID
technologies, and artificial intelligence. This helped highlight differ-
ences between traditional digital forensics and IoT forensics. With
differences known, they developed a model that consists of three
zones. These zones help guide investigators where to begin their
work with regards to an investigation. Zone 1 is made up of the
internal network, Zone 2 consists of all devices and software on the
edges of the network, and Zone 3 consists of any hardware or soft-
ware outside of the internal network. This zone conceptualization
assists practitioners in developing an organized investigative plan.

In [10], the idea of automated forensics is proposed through
a concept they title Forensics Edge Management System (FEMS).
The idea being to develop and implement an autonomous security
and forensic service within a facility that has IoT devices placed
in it. The FEMS architecture consists of three layers; perception,
network, and application. The layers work as follows: the perception
layer collects data from the sensors, the network layer manages
the transmission of data between the perception layer and the
application layer, and the application layer is the interface to the
end user. FEMS will collect data and store it for a designated period
of time. This recording process is defined by an event that crosses
a set of predefined thresholds. Although some of their concepts are
applicable to our work, their work was theoretical in nature as they
didn’t dive deep into the state acquisition of IoT devices.

[13] defined IoT forensics as a branch of digital forensics, where
the identification, collection, organization, and presentation pro-
cesses deal with IoT infrastructures to establish facts about an inci-
dent. The work goes on to break IoT forensics into three different
fields: Cloud, Network, and Device level forensics. They propose


https://www.shoutmeloud.com/top-mobile-os-overview.html

a Forensics-aware 10T (FAIoT) model. Similar to FEMS described
earlier, a centralized evidence collection point is suggested, allow-
ing for ease of access and organization with regards to collected
evidence. A secure evidence repository service is also proposed.
An end user would register their devices to it allowing constant
monitoring. All logs would be collected and separated according to
what is collected in them. To facilitate ease of access to this data
they also described an API service.

3 10T FORENSIC CHALLENGES

With the dawn of the IoT age and advancements made in nearly
every aspect of digital systems, we have reached a critical tipping
point in the world of digital forensics. [4] points out that many of
the tools and techniques that once worked without question are
quickly becoming obsolete. File formats for storing forensically
relevant data are becoming proprietary often requiring complex
reverse engineering efforts. Data is often split into many elements
and stored in the cloud. There are also legal challenges which limit
data investigators are able to gain access to.

Harichandran et al. [7] noted that in the foreseeable future IoT is
going to pose challenges to digital forensic examiners, yet, most re-
search on IoT and how it relates to digital forensics has been mostly
theoretical. It has also been indicated that IoT devices present a
complex dilemma for digital forensic investigators due to the sheer
number of different systems on the market. While few IoT devices
may be acquired and analyzed using traditional digital forensic
techniques, many are engineered with proprietary closed source
software and file structures. Adding to the complexity, their com-
munication protocols can be just as diverse, whether it be Bluetooth,
WiFi, RF, ZigBee, etc.

Another major challenge is that many IoT devices employ Real-
Time Operating Systems (RTOS) that serve real-time applications
and process data as it comes in, typically without buffering delays.
The processing times (including OS delay) are calculated in tenths
of seconds or shorter increments of time>. This means that data is
usually not stored in a RTOS making it difficult for examiners to
forensically acquire digital evidence from IoT devices.

Overall, these challenges prevent investigators from being able
to obtain and analyze IoT evidentiary data in a simple and timely
manner. We argue that this is a result of practitioners continuing
to chase historical data. The common idea of forensics being a post-
mortem field where historical data is collected and analyzed, while
still ideal, limits investigators in their work, especially when dealing
with devices that have limited or no storage capacity. As part of
this historical data, often, logs are analyzed to examine particular
state changes. We argue that knowing the state change of an IoT
device may be a practical solution to the IoT challenges at hand.

In an effort to overcome these obstacles, we devised and tested a
primary approach for aggregating state data from IoT devices based
on the acquisition framework we present in Section 4.

4 FSAIOT FRAMEWORK

The Forensic State Acquisition from Internet of Things (FSAIoT)
framework consists of a centralized controller which we title Foren-
sic State Acquisition Controller (FSAC, explained in Section 4.2)

3https://en.wikipedia.org/wiki/Real-time_operating_system

and three state collection methods where state refers to the current
state of an IoT device (e.g. door open or closed). The three methods
or modes are as follows: (1) controller to IoT device (see Section 4.3),
(2) controller to cloud (see Section 4.4), and (3) controller to con-
troller (see Section 4.5). Together, these three modes allow for the
state acquisition of a multitude of IoT devices. In order to realize /
implement the FSAC, we analyzed existing IoT controllers to pro-
vide a brief overview of existing solutions and motivate why we
implemented our FASC using openHAB (Section 4.1).

4.1 IoT Controllers

IoT controllers provide a centralized mechanism by which multiple
IoT devices can connect to, be managed and controlled. Through
a controller, developers and engineers can support a variety of
hardware and communication platforms. These controllers can
typically acquire and modify the state of an IoT device affording
users a single mobile application for controlling all the IoT devices
in their home.

Besides usability, these controllers also have security benefits.
For instance, [14] explained that there are pitfalls to having each
individual device attempt its own connection to the cloud. Privacy
and security are the top of the list. They propose a centralized
approach by using small gateway devices.

Currently, there are several available IoT controllers / small
gateway devices. Examples of these are the Wink Hub?*, Samsung
SmartThings Hub’, Insteon Hub® and the Logitech Harmony Hub
7. These are all closed source controllers. In addition to the closed
source controllers there is currently only one strongly active open
source controller - openHAB — which can be installed on computers
and microcomputers. In our work, openHAB was chosen because
it is open source, comprehensive, vendor agnostic, extensible and
well documented. More importantly, future work can modify the
openHAB source code to ensure the forensic soundness of the state
acquisition methods presented in this work to transform it into a
true FSAC.

4.2 Forensic State Acquisition Controller
(FSAC)

As mentioned, our framework will have its base rooted in what
we call a Forensic State Acquisition Controller or FSAC which is
based on the openHAB implementation presented in Section 5.1.2.
A FSAC should have the same functionality as an IoT controller
but with forensics in mind. By definition, for a controller to be
regarded as a FSAC, at a minimum, it should embody the following
attributes:

o Forensic soundness: A FSAC can only acquire state data from
IoT devices and is not allowed to change the state of an IoT
device.

e Date & time logging: A FSAC should be capable of accurately
logging the dates and times of state changes.

e Secure storage and integrity: A FSAC should embody se-
cure storage of the collected IoT state data, and should also

“http://www.wink.com/products/wink-hub/
Shttps://www.smartthings.com/
Chttp://www.insteon.com/insteon-hub/
"http://www.logitech.com/en-us/product/harmony-hub


http://www.wink.com/products/wink-hub/
https://www.smartthings.com/
http://www.insteon.com/insteon-hub/
http://www.logitech.com/en-us/product/harmony-hub

7=\

FSAC

Figure 1: FSAC to Device connection

FSAC

Figure 2: FSAC to cloud connection

hash the collected states at the time of collection for later
validation.

4.3 FSAC to device

Often, 10T device connections are construed as a plain controller
to device type connection shown in Figure 1. A simple example
would be an IP camera and an application residing on a computer
within the same network used to control it. When a camera detects
motion it can be registered as a state change. This state change can
be reported back to a listening controller where further actions can
be taken based on the identified state change.

4.4 FSAC to cloud

Many of today’s IoT devices consume cloud services as points of
control and data collection. In this mode, IoT device states can be
obtained from the cloud data by leveraging APIs which are used
to manage IoT devices over the Internet. A prominent example of
such APIs is nest’s API3. The nest temperature controller receives
its communication through calls to the cloud (Figure 2). With this
access, it becomes possible to employ an FSAC’s access to the nest
device or the ability to construct individual scripts for direct access
to cloud data to log state and state changes of cloud controlled IoT
devices.

4.5 FSAC to controller

As mentioned before, controllers connect back to the Internet to
allow for simple control via mobile applications or web interfaces.
Thus, it is possible to go from a FSAC to a controller as shown in
Figure 3. By accessing the controller, the states of multiple devices
can be acquired. Obviously, this stands to be a lucrative data collec-
tion point in our framework. As companies expand their suite of
IoT devices, the need to maintain a central point of control is culti-
vated. This centralized point of control also promotes a consolidated
interface for collecting state data of multiple devices.

8 According to wikipedia, Nest Labs is a home automation producer of programmable,
self-learning, sensor-driven, Wi-Fi-enabled thermostats, smoke detectors, and other
security systems.

|
—==\

FSAC

Door Lock

Motion Sensor

Figure 3: FSAC to controller

5 FSAIOT FRAMEWORK PROOF OF CONCEPT
IMPLEMENTATION

It is important to test a proof of concept implementation of the
FSAIoT framework. In this section we implemented our proof of
concept using the apparatus listed in Table 1. Our framework im-
plementation and proof of concept was a result of three phases:

e Phase I: Setup / installation
— IoT device selection and configuration, FSAC implementa-
tion, and scenario creation.
e Phase II: Log / data acquisition.
e Phase III: Analysis and findings.

5.1 Phase I: Setup / installation

In the following, we first present the selection and configuration
of the IoT devices used in our implementation (Section 5.1.1), fol-
lowed by the FSAC implementation including the connections in
Section 5.1.2 and lastly the created laboratory testing scenario in
Section 5.1.3.

5.1.1  loT device selection and configuration. There are many IoT
devices that are available for binding given openHAB’s extensible
architecture (See Table 4) and the devices used in our testing are
not the only supported devices. However, to limit the scope of our
work, three types of devices were selected. An Insteon IP camera
was used as a FSAC to device test, the Insteon Hub was selected as a
FSAC to controller test, and the nest thermostat was used as a FSAC
to cloud test. Below is a brief synopsis of binding configurations
for selected devices:

Insteon IP Camera: The Insteon IP camera is supported by
the Insteon Hub. It can be directly controlled via an ap-
plication that Insteon provides to interface with the hub
(controller). openHAB does not officially support control of
any IP cameras. We constructed a custom script in order to
provide motion detection and video recording. The script
employs the fimpeg® package for recording images and video
from the IP camera stream. When the script runs, its output
is recorded in log files, and the videos are stored accordingly.

Insteon Hub: The Insteon Hub is similar in functionality to
the openHAB implementation. It is a controller for multiple
IoT devices. It is, however, closed source, and limited to

“https://ffmpeg.org/


https://ffmpeg.org/

Table 1: Apparatus

Tool Description

Utilization

Desktop PC
Raspberry Pi 2
sor
Ubuntu 16.04 Server
Rasbian Jessie Lite
OpenHAB v1.8
Open HAB Bindings
nest Thermostat v2.0
Insteon Hubversion?
Insteon Motion Sensor
Insteon Door Sensor
Instion IP camera
Foscam IP camera

Linux 4.4
Written in JAVA
nest & Insteon Hub

IoT Hub

IoT Motion Sensor
IoT Door sensor
IoT IP Camera

IoT IP Camera

OPTIPLEX 755 (Intel Core2 vPro)
900 MHz 32-bit quad-core ARM Cortex-A7 proces-  Prototype

Linux openHAB 4.4.0-59-generic

Home Smart Thermostat

Prototype

OS Used on Desktop PC

OS Used on Raspberry Pi

Core of Interface to IoT devices
Interface Devices to Open HAB
Sample data source

Device controller

motions sensor

door open/close sensor

Video multiaxis rotation

Video multiaxis rotation

Insteon brand IoT devices. In order to acquire state data
from devices connected to the hub it is necessary to acquire
the device ID. Device IDs is located on actual sensors.
In addition to locating device IDs on the hardware, it is pos-
sible to use the insteon-terminal '°. The terminal allows for
enumeration of devices connected to the hub. The terminal
requires the username and password that is also available
on the bottom of the Insteon Hub.
When openHAB is initialized and correctly configured to
support the Insteon Hub it will reach out and attempt to
connect to Insteon Hub’s modem database. This can be seen
in the openhab. cfg file. If it cannot find the hardware ad-
dress in the modem database it will cause error messages.
Currently, this appears to be the easiest way to talk to the
Insteon Hub and associated hardware devices connected.
There does appear to be API access in the works 1. We ap-
plied to acquire an API key'?, however, there has been no
response at the time of writing.

nest Thermostat: It is necessary to create both a nest de-
veloper account and standard nest user account. Simply
creating the developer account will also create a standard
user account. Once these accounts are created, logging into
the standard user account and adding the nest thermostat
is all that is needed to facilitate control via the nest APL
A 7 digit entry key is required which can be found via
the settings on the thermostat itself. A nest:client_id,
nest:client_secret, and nest:pin_code are necessary
for communicating with openHAB. The nest.items file
contains the entries necessary to acquire desired state data.

5.1.2  FSAC implementation and connection. As aforementioned,
the core of our setup is openHAB which was installed and config-
ured on a Dell OPTIPLEX 755. While this is an old hardware device,
it was sufficient to support Ubuntu Server and openHAB’s runtime
environment. The use of Ubuntu server limited the number of ex-
cess applications being installed while providing necessary support
for further customization, as well as the necessary packages to run
openHAB. Additionally, Ubuntu allowed for easy installation of
openHAB via the APT package management system!3.

Ohttps://github.com/pfrommerd/insteon-terminal
http://www.insteon.com/become-an-insteon-developer
2http://docs.insteon.apiary.io/#
3https://github.com/openhab/openhab/wiki

In parallel to building the openHAB implementation of our FSAC
on a desktop, a Raspberry Pi version was tested. The motivation
behind testing on a Raspberry Pi was that on an actual case it might
be necessary to have a mobile FSAC - should that be the purpose.
We contend that more testing is required to validate our initial
findings on the Raspberry Pi version.

Note, in its original implementation, openHAB is not a true FSAC
implementation. However, our goal was to test the feasibility of
acquiring state data from IoT devices. For openHAB to become
a true FSAC, future work should modify openHAB so that it is
more forensically sound, and that it stores data in a secure and
trustworthy manner for future integrity checking. More future
work is discussed in Section 9.

Connections. openHAB supports a diverse selection of IoT de-
vices. To talk to IoT devices, openHAB uses bindings to connect the
IoT devices to the run time backend for which the openhab.cfg
file needs to be edited. This file contains a list of all the devices
currently supported by openHAB. Each item has a section called
a binding. Within the binding section, the necessary connection
information must be configured. If a particular device is currently
not supported, it is also possible to code bindings.

In addition to the openhab. cfg file, each device needs to have
a *.item file located in the items folder on the controller. The
*.items file contains the specific states to monitor.

To apply the FSAIoT framework discussed in Section 4, we tested
the three different modes of obtaining forensically relevant IoT state
data:

e FSAC to device: FSAC communicates directly to the device.

e FSAC to controller: FSAC communicates to an IoT Hub such
as the Insteon Hub.

e FSAC to cloud: FSAC obtains data via a cloud APL

Although much of the data aggregation is performed through
openHAB, some devices cannot be interfaced with openHAB and
must be connected using another approach such as script writing
for interfacing with the IoT devices and acquiring their state data.

5.1.3  Scenario Creation. The experiment took place in our lab
(Figure 4); which consists of one large room and two small rooms
separated from the large room by doors. One of the small rooms
contains a server. The lab was set up with three IoT devices — door
sensor, motion sensor and an IP camera. The door sensor was placed
on the door between the large room and the hallway to record entry


https://github.com/pfrommerd/insteon-terminal
http://www.insteon.com/become-an-insteon-developer
http://docs.insteon.apiary.io/#
https://github.com/openhab/openhab/wiki

and exit to and from the lab. The motion sensor was placed in the
server room to detect motion. This was to detect movement to and
from the server room. The IP camera was located inside the server
room to monitor activity.

The Dell OPTIPLEX 755 running Ubuntu Server was set up to
monitor and record data from all of these devices using our open-
HAB FSAC implementation. At some point during the experiment, a
fictitious malicious individual made an attempt to access the server.
In addition to the hardware used in this scenario, a nest thermostat
was employed to provide an example of the FSAC to cloud mode
presented in the FSAIoT framework (Section 4).

The researchers additionally recorded the events along with the
date and time each event occurred (e.g., entering the room) to cross-
validate our implementation findings. Lastly, the data captured by
our FSAC implementation was analyzed to construct a timeline
(Figure 5) of events and attempted to determine what had occurred
while comparing against the researcher notes.

A note about the scenario. Good security practices assume that
a large scale organization should be logging entry and exit, video,
audio and any other useful security data points. Where this scenario
is more likely to take place could be in a small business / home.

5.2 Phase II: Log / data acquisition

The openHAB FSAC implementation provided several methods of
data recording. Databases can be configured locally or remotely,
data can be pushed to a cloud service, or logs can be kept locally. In
the implemented FSAC prototype we decided to use log files stored
in /var/log/openhab. The log files that openHAB keeps locally
contain the necessary raw data to show device states with their
respective time stamps.

Dropbox was also used to save log files and associated video
recorded using a custom script. This allowed for long term storage
and off site analysis. It is possible to set the timing for how often
this push occurs. If set to a higher frequency, analysis can occur
near real time. openHAB provides a method to select other logging
capabilities should one desire an alternative.

5.3 Phase III: Analysis & findings

Within the log files are the states and the changes that occur, as
shown in Table 2. We selected the states to monitor in the *.item file.
With regards to the nest, there are states that would be considered
forensically useful. Examples consist of the timezone the device is
in, the location of the device by room name (this can be hard to
verify without gaining physical access to the nest as it is a custom
name that nest suggests be the room name). These states, and other
forensically relevant states from the nest are exemplified in Table 3.

We note something about accessing data from the Insteon Hub.
The Insteon system is largely event driven with a few exceptions
including the thermostat and dimmer module. This means that
Insteon Hub’s sensors cannot have their initial states pulled, and it
is not until the sensor registers an event that openHAB is updated
with the state of the sensor!4. As a result, the web interface shows
unknown as the current state. Once the sensor experiences a state
change, it updates showing the current sensor state. Specifically,
if an investigator wishes to know the previous state of a binary

4https://github.com/openhab/openhab/wiki/Insteon- PLM-Binding

Door Open/Close
Sensor
IP Camera &
Motion Sensor
Server Room
Main Lab
Office

Figure 4: Lab scenario layout showing IoT device locations

sensor, it is safe to assume it is the opposite of whatever the most
current state is. As an example, once openHAB is initialized, the
door sensor reads unknown. If we assert that the actual state of the
door is closed and the door is opened, the web interface and logs
are updated with door open. Therefore, the door’s initial state was
closed. This has been tested and verified in our analysis.

As mentioned in Section 5.1.1, the IP camera is a stand alone
device in our scenario. The custom script outputs an *.mp4 file as
well as logs showing when the camera saw motion. With both of
these files it becomes possible to have both visual and text based
confirmation of who caused the motion and when it occurred.

After running our scenario, a set of states were collected. An
excerpt of the log entries of interest are shown in Table 5. We will
use these entries to paint a picture of the events that took place.

In Figure 4, the facility and its layout are illustrated. This layout
could have been obtained perhaps by public access records or during
an initial set up or reconnaissance of the facility. Knowing what
10T devices are available and where they are located is important
to help map out events that occurred.

Recall, the scenario described in Section 5.1.3. The intent of plac-
ing our FSAC implementation on-site was to monitor the current
IoT devices and obtain state changes that would help convict a
possible intrusion and attempted access to private data. Examining
the logs generated in Table 2, one can clearly see when doors open
/ close, motion in a server room occurs, and when this motion is
recorded by the camera. With this evidence and if an investigator
had access to the logs on a victim’s server, it would be possible to
describe with detail the events that took place.

In Table 2, FSAC to controller and to device can be seen effectively
collecting states. The door and motion sensor fall under the FSAC
to controller portion of the framework and the camera falls under
FSAC to device. The additional testing of the framework not seen
in our scenario is the FSAC to cloud state acquisition. However, the
nest was configured and data was collected as a proof of concept.
Table 3 shows the states that were collected.

6 DISCUSSION

Our findings show that indeed IoT device state and or the state
change could be of forensic value. To substantiate our claim, queries


https://github.com/openhab/openhab/wiki/Insteon-PLM-Binding

13:12:37 13:12:40 13:12:48 13:12:52 13:13:04 13:13:06
DoorSen DoorSensor MotionSen Camera Motion event: DoorSensor DoorSensor
oorsensor CLOSE otionsensor Video shows suspect OPEN CLOSE

OPEN event Motion event - -
event placing USBin server event event
Figure 5: Timeline of events
Table 2: Scenario log excerpt
Date/Time Description State/File name
2017-01-10 13:12:37 doorSensor state updated to OPEN
2017-01-10 13:12:40 doorSensor state updated to CLOSE
2017-01-10 13:12:48 motionSensor state updated to OPEN(motion)
10-01-2017 13:12:52 Camera motion detected. Recording: 20170110131252.mp4
2017-01-10 13:13:04 doorSensor state updated to OPEN
2017-01-10 13:13:06 doorSensor state updated to CLOSED
Table 3: nest state captures
Date/Time Description Status
2016-11-27 00:00:16 den_room_target_temperature_f state updated to 72
2016-11-27 00:00:16 den_room_ambient_temperature_f state updated to 71

2016-11-27 00:00:16
2016-11-27 00:01:16

2016-11-27 00:01:16
2016-11-27 00:01:16

home_away_time_zone state updated to
home_away_structure_id state updated to

home_away_device_id state updated to
den_room_last_connection state updated to

America/New_York

mPOUQIuD9x9TxDPETEqF1AGiXdB-

WMSS70x4C3QE32U8jSvOgWdqg

DGYsZuvftgdLwhTaxwPKx50gHK5YW7p

20161127T00:01:11

2016-11-27 00:01:16 home_away state updated to

home

were performed to show both the current trend in IoT devices and
what sort of access might be available for these devices.

With that said, our method, provides a general solution towards
device state acquisition it does not physically acquire the memory
of the devices themselves. If we switch focus to the future of our
proposed approach, it becomes important to understand the future
of APIs in the IoT domain.

A forensically positive trend among many of the device con-
trollers such as the Wink Hub, Nest platform and Insteon Hub, is
the desire for these companies to offer API support. The goal be-
ing to provide developers the ability to integrate device status and
control methods into their applications. The three devices listed
above each have their own developer sites as well as APIs that are
available to those that apply for access. Once an API key is granted,
API calls can be made via whatever programming languages are
supported by the manufacturer.

Table 4 provides a list of some of the most popular IoT devices
today along with their potential compatibility with our FSAC imple-
mentation — openHAB. openHAB compatibility is characterized by
a device having either an open API that we can leverage or official
support from openHAB through a binding. They are ordered by
relevance of category, beginning with security devices. 9 out of 23
security devices have some sort of compatibility with openHAB,
whether it be through an API or through openHAB bindings. This

number is quite low and represents an area that we will need more
research by either constructing openHAB bindings or custom tools
to obtain state data. As for home automation devices, 16 out of 24
devices seem to be openHAB compatible. It is worth noting that a
few of the home automation and security devices actually fit into
both categories, such as the Insteon Hub.

Table 5 is a continuation of Table 4, again organized by category.
There are several devices on the market for tracking. These may in-
clude asset, fleet, or human tracking, and are most applicable in an
industrial or commercial environment. Half of these devices would
be compatible with our FSAC implementation at this time. The next
two blocks are appliances and entertainment devices. Only one
appliance is supported whereas all but one of the entertainment de-
vices are supported. The last block, miscellaneous, contains devices
that do not fit into any of the preceding categories. In general, these
devices do not align with FSAC objectives and happen to have low
amount of support. There are, however, four Wi-Fi router devices
that may be forensically interesting, but none of them are currently
openHAB compatible. This may be another area worth dedicating
research efforts for exploring future support.

In this work, nest’s API was leveraged. However, only a few of
the API calls were used. There are many more API calls that could
be employed. To show the rest of states that may be pulled beyond
what was used in our scenario, we share below nest’s API states:



Thermostat: Device_id, locale, software_version,name,
name_long, last_connect, is_online, is_using_emergency
_heat, target_temp_f, hvac_mode, where_id, is_locked,
where_name, previous|-havac_mode

Smoke/CO alarm: device_id, name, structure_id,
name_long, last_connection, smoke_alarm_state,
where_name, software_version, last_manual_test_time,
co_alarm_state, is_online, where_id

Cameras: device_id, software_version, structure_id,
where_id, where_name, public_share_url,
name_long, is_online, is_streaming, app_url,
is_audio_input_enabled, is_public_share_enabled,
is_video_history_enabled, name, last_is_online_change,
snapshot_url, last_event

While the nest API only supports three major devices currently,
the Wink Hub and Insteon Hub support even more hardware, and
while Insteon’s API is in its early stages of development, Wink
Hub’s APT is fully functional allowing for similar API calls to access
connected hardware.

As the reader can see, the presented states go beyond what was
presented in the simple scenario created. Two of the devices listed;
the Wink Hub and Insteon Hub, both are centralized controllers.
This will allow future FSAC implementations the ability to acquire
state data from a multitude of possible IoT devices.

7 LIMITATIONS

The biggest limitation both in IoT forensics and with the FSAC
prototype is accessing historical and deleted data. Currently, the
FSAC proof of concept can pull the state of the nest thermostat.
However, the Insteon door sensor and motion sensor will only allow
the acquisition of the change of state as mentioned in Section 5.3.
The second challenge lies in the need for physical access. This is a
common challenge with regards to digital forensics and security.
Another limitation lies in connecting to the different IoT devices.
In particular, the different wireless connection methods. Currently
the more common methods used are wireless (802.11a,b,g,n,ac),
Bluetooth, Zigbee, and Zwave. In order to acquire data via Zigbee
or Zwave it is necessary to have hardware that supports these
communication technologies. While this hardware is not common
place on a traditional computer or the Raspberry Pi, modules that
support these wireless standards are available.

Our work has limitations in that we did not explore the foren-
sic soundness of the implemented IoT acquisition controller. We
deemed that as future work. We also did not examine the robust-
ness of the implemented system by conducting test-retest reliability
experiments. Our overall goal was to examine the feasibility of the
proposed framework. We do not discount the importance of ro-
bustly testing our proposed framework and its generlizability but
we argue that this work is the initial step towards studying the
utility of the FSAIoT framework.

8 CONCLUSION

In this work we argued that there are many challenges related to
IoT device forensics. We presented the FSAIoT framework, and
illustrated its feasibility by implementing a proof of concept FSAC

using OpenHAB as well as self-created scripts to validate the fea-
sibility of the framework. We showed that we are able to reliably
collect state data from IoT devices using the three different modes:
controller to device, controller to cloud and controller to controller.
Even considering the limitations, we contend that our proposed
framework and FSAC proof of concept are essential steps in evolv-
ing a general methodology for obtaining valuable forensic evidence
from a diverse and thriving climate of IoT devices.

9 FUTURE WORK

Although this work shows promising results in our ability to acquire
state data from IoT devices in a forensic investigation, we present
research opportunities for expanding our work.

9.1 Forensic soundness

Many of the devices, such as dimmer modules or the thermostats
can have their states modified through the traditional openHAB
environment. This can be detrimental to the forensic process as
it would contaminating evidence. To protect against this, a full
review of the openHAB codebase should be performed to establish
which code blocks result in changing the state of particular devices,
and in what way. In some cases it may be necessary for openHAB
to write to a device in order to establish a connection or perform
other functions, but from a forensic perspective, it must be known
exactly what changes during the process. Other cases which involve
human intervention (adjusting the room temperature or dimming
the lights) should be disabled in the source code. This opens the
door for research in attempting to find general methods for an IoT
device state hardware / software writeblocking implementation.

9.2 User experience

It is critical for production purposes to implement a FSAC that is
more user friendly with a forensic-centric user interface. Currently,
in order to make use of all the features, a user needs to interact with
both the stock openHAB web interface as well as a considerable
use of the terminal. Terminal use is necessary for the setup process
to edit the various configuration files as well as for setting up the IP
camera recording. It would be useful to centralize all of these tasks
in a single web application where an investigator may perform
100% of the setup and analysis without ever having to use the
terminal. Furthermore, adding a visualization engine that enables
investigators to create time lines would be useful. This opens the
avenue for visualization research for IoT state data.

9.3 IoT network device fingerprinting

In order to make our proposed approach friendly to investigators, it
is worth exploring practical methods of automatically fingerprint-
ing and triaging IoT devices on a network under investigation. This
can help speed up the identification process in the digital forensic
process.

9.4 Network packet and reconstruction

It would be worthwhile to implement and research network packet
data between a FSAC and IoT devices so that more control may
be gained by technically trained network forensic examiners and
researchers for data that may not be available through a FSAC user



interfaces. This also opens the door to network protocol reverse
engineering researchers for methods of acquiring state data from
IoT devices.

9.5 Deleted data

Another important area of research is to clearly identify IoT devices
that do indeed store data and find mechanisms for the physical
acquisition of their memory for further analysis.

REFERENCES

(1]

(2]

[10]

[11]

[12]

[13]

[14]

Tamas Abraham and Olivier de Vel. 2002. Investigative profiling with com-
puter forensic log data and association rules. In Data Mining, 2002. ICDM 2003.
Proceedings. 2002 IEEE International Conference on. IEEE, 11-18.

Ibrahim Baggili, Jeff Oduro, Kyle Anthony, Frank Breitinger, and Glenn McGee.
2015. Watch what you wear: preliminary forensic analysis of smart watches. In
Availability, Reliability and Security (ARES), 2015 10th International Conference on.
IEEE, 303-311.

Konstantia Barmpatsalou, Dimitrios Damopoulos, Georgios Kambourakis, and
Vasilios Katos. 2013. A critical review of 7 years of Mobile Device Forensics.
Digital Investigation 10, 4 (2013), 323-349.

Simson L Garfinkel. 2010. Digital forensics research: The next 10 years. digital
investigation 7 (2010), S64-S73.

Pavel Gladyshev and Ahmed Patel. 2004. Finite state machine approach to digital
event reconstruction. Digital Investigation 1, 2 (2004), 130-149.

Sharon P Hall and Eric Anderson. 2009. Operating systems for mobile computing.
Journal of Computing Sciences in Colleges 25, 2 (2009), 64-71.

Vikram S Harichandran, Frank Breitinger, Ibrahim Baggili, and Andrew Mar-
rington. 2016. A cyber forensics needs analysis survey: Revisiting the domain’s
needs a decade later. Computers & Security 57 (2016), 1-13.

Andrew Marrington, Ibrahim Baggili, George Mohay, and Andrew Clark. 2011.
CAT Detect (Computer Activity Timeline Detection): A tool for detecting incon-
sistency in computer activity timelines. digital investigation 8 (2011), S52-S61.
Edewede Oriwoh, David Jazani, Gregory Epiphaniou, and Paul Sant. 2013. Internet
of Things Forensics: Challenges and approaches. In Collaborative Computing:
Networking, Applications and Worksharing (Collaboratecom), 2013 9th International
Conference Conference on. IEEE, 608-615.

Edewede Oriwoh and Paul Sant. 2013. The forensics edge management system:
A concept and design. In Ubiquitous Intelligence and Computing, 2013 IEEE 10th
International Conference on and 10th International Conference on Autonomic and
Trusted Computing (UIC/ATC). IEEE, 544~550.

Joseph Ricci, Ibrahim Baggili, and Frank Breitinger. 2016. Watch What You Wear:
Smartwatches and. Managing Security Issues and the Hidden Dangers of Wearable
Technologies (2016), 47.

Ting Sang. 2013. A log based approach to make digital forensics easier on cloud
computing. In Intelligent System Design and Engineering Applications (ISDEA),
2013 Third International Conference on. IEEE, 91-94.

Shams Zawoad and Ragib Hasan. 2015. FAIoT: Towards Building a Forensics
Aware Eco System for the Internet of Things. In Services Computing (SCC), 2015
IEEE International Conference on. IEEE, 279-284.

Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman,
John Wawrzynek, Edward A Lee, and John Kubiatowicz. 2015. The Cloud is Not
Enough: Saving IoT from the Cloud.. In HotCloud.



A 10T APIS AND OPENHAB COMPATIBILITY
Table 4: IoT APIs and openHAB compatibility

Manufacturer Device Description Open API openHAB Coverage
Category: Security
Schlage Schlage Door Locks Smart home locks No No No
Ring Ring: Video doorbell Doorbell No Yes Yes
Scout Scout Alarm No No No
Garageio Garageio Connected garage door No No No
Nest Dropcam Connected camera - Now Nest Cam Unofficial No Yes
August Smart Keypad Smart keypad Yes No Yes
August Doorbell Cam Doorbell cam Yes No Yes
Canary Canary system No No No
Chamberlain MyQ Garage door opener Yes Yes Yes
Netatmo Netatmo Welcome Indoor security camera Yes Yes Yes
Piper Piper Home security and a home automation hub No No No
CUJO CUJO Smart firewall for the smart home No No No
Logitech Logi Circle Portable Wi-Fi video camera Yes Yes Yes
Lockitron Bolt Smart Lock Yes No Yes
Sentri Sentri Home monitoring and automation No No No
Tripper Tripper Window and door sensor No Unofficial Yes
Arlo Arlo Smart home security camera system No No No
BeON BeON Home security No No No
Cocoon Cocoon Home security No No No
Point Point Home security No No No
Homeboy Homeboy Home security No No No
Kibbi Kibbi Home security No No No
Leeo Leeo Nightlight with home safety functionality No No No
Category: Home Automation
Wink WinkHub Smarthome hub that connects together many other ~ Yes No Yes
IoT products
Amazon Echo Smarthome hub Yes Yes Yes
Nest Nest Internet-connected thermostat, smoke and carbon  Yes Yes Yes
monoxide detectors, and cameras
Google Google Home smarthome hub Yes Unofficial Yes
Insteon Insteon Hub Smarthome hub - connects several devices together ~ No Yes Yes
for home automation
Honeywell Smart House Products thermostats, GPS asset tracking, locks, lighting,  Yes No Yes
video surveillance and more
Belkin WeMo Home IoT devices that includes smart switches, No Yes Yes
cameras, lights, an air purifier, heater, slow cooker,
humidifier and more
Samsung SmartThings smart outlets, hubs, motion sensors, multipurpose  Yes No Yes
sensors, arrival sensors, water leak sensors and
more
GE Link Lighting No Yes Yes
OSRAM Lightify Lighting Yes Yes Yes
Philips Hue Lighting Yes Yes Yes
Awair Awair Air-quality sensor No No No
Elgato Eve Monitor indoor air, outdoor weather, energy con-  Yes Yes Yes
sumption
Eversense Eversense Thermostat: senses where your smartphone isand  No No No
adjusts the temperature in each individual room
accordingly
Keen Home Smart Vent Opens and closes the vents in each room depending ~ No No No
on the temperature
Bosch Smart Home Sensors that go into other IoT devices as well as ~ Yes No Yes
some smart home appliances
Logitech Pop Smart button that allows you to control connected ~ Yes Yes Yes
devices
Ivee Ivee Voice Voice control for the home No No No
Logitech Logitech Harmony Elite Home Controller Yes Yes Yes
Switchmate Switchmate Smart lighting made simple No No No
NEEO NEEO Smart home remote No Yes Yes
Quirky Outlink Smart outlet No No No
Onecue Onecue Gesture Control for your home No No No
Tapt Tapt Smart light switch No No No
Brio Brio Smartest power outlet No No No




Table 5: IoT API’s and openHAB compatibility (cont)

Manufacturer Device Description Open API openHAB Coverage
Category: Tracking
Awarepoint Awarepoint Track the locations of employees, assets, customers,  On request No Yes
patients and more in real time
ATrack ATrack trackers GPS tracking for monitoring assets and vehicles No No No
DorsaVi ViSafe Track how employees are moving No No No
Impinj RFID sensors Tag chips, gateways, readers, antennas and soft-  Yes No Yes
ware for retailers, health care and other markets
Samsara Sensors IoT sensors for fleet telematics, energy monitoring,  Yes No Yes
cold chain monitoring, asset monitoring and other
purposes
Xerafy RFID sensors RFID tags and other technology for asset tracking ~ No No No
Category: Appliances
GE GE Connected Appliances wall ovens, ranges, refrigerators, dishwashers, No No No
washers and dryers, water heaters and air condi-
tioners
Whirlpool Smart Appliances No No No
June Intelligent Oven countertop oven No No No
Cinder Cinder Countertop grill No No No
LG SmartThinQ Kitchen (ranges and refrigerators), living (washers, No Yes Yes
dryers, robotic vacuums and air conditioners) and
safety (robot vacuum doubles as a safety monitor
with a video feed)
Nespresso Prodigio Coffee maker No No No
Maid Maid Microwave Oven No No No
Category: Entertainment
Sonos Sonos Smart speaker system Yes Yes Yes
Apple Apple TV Home entertainment Yes No Yes
Google Chromecast Home entertainment Yes Yes Yes
Roku Roku 3 Streaming media player Yes Yes Yes
Ray Super Remote Universal remote No No No
Category: Miscellaneous
Amazon Amazon Dash Buttons Buttons to order additional supplies of com- Yes Unofficial Yes
monly used household products directly from Ama-
zon.com
Google Google Wifi Boost home WiFi signal dead zones. No No No
Eero Eero WiFi system No No No
Starry Starry Station WiFi wireless router No No No
Google OnHub Connected home router No No No
Neurio Neurio Track energy usage Yes No Yes
Roost Roost Battery tells you when it needs to be changed No No No
Toymail Talkies Talkies combines a lovable friend with a built in ~ No No No
smartphone for communication
Mimo Mimo Smart baby monitoring No No No
NUZii NUZii The world’s first all-in-one smart life device No No No
Evermind Evermind Connected home care No No No
AdhereTech AdhereTech Smart, wireless pill bottles No No No




	Abstract
	1 Introduction
	2 Related work
	2.1 Wearable IoT forensics
	2.2 Mobile device forensics
	2.3 Logs
	2.4 IoT forensics

	3 IoT forensic challenges
	4 FSAIoT framework
	4.1 IoT Controllers
	4.2 Forensic State Acquisition Controller (FSAC)
	4.3 FSAC to device
	4.4 FSAC to cloud
	4.5 FSAC to controller

	5 FSAIoT framework proof of concept implementation
	5.1 Phase I: Setup / installation
	5.2 Phase II: Log / data acquisition
	5.3 Phase III: Analysis & findings

	6 Discussion
	7 Limitations
	8 Conclusion
	9 Future work
	9.1 Forensic soundness
	9.2 User experience
	9.3 IoT network device fingerprinting
	9.4 Network packet and reconstruction
	9.5 Deleted data

	References
	A IoT APIs and openHAB compatibility

