
ilable at ScienceDirect

Digital Investigation 18 (2016) S87eS96
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS USA 2016 d Proceedings of the 16th Annual USA Digital Forensics Research Conference
Deleting collected digital evidence by exploiting a widely
adopted hardware write blocker

Christopher S. Meffert*, Ibrahim Baggili, Frank Breitinger
Cyber Forensics Research & Education Group, Tagliatela College of Engineering, ECECS, University of New Haven, 300 Boston Post Rd.,
West Haven, CT, 06516, United States
Keywords:
Digital forensics
Digital forensic tool testing
Hardware write blocker
Root access
Anti-Forensics
Vulnerability
Frameworks
Gismo
NIST
TD3
* Corresponding author.
E-mail addresses: cmeff1@unh.newhaven.edu (C

newhaven.edu (I. Baggili), FBreitinger@newhaven.ed
URL: http://www.unhcfreg.com/, http://www.FB

http://dx.doi.org/10.1016/j.diin.2016.04.004
1742-2876/© 2016 The Author(s). Published by Else
licenses/by-nc-nd/4.0/).
a b s t r a c t

In this primary work we call for the importance of integrating security testing into the
process of testing digital forensic tools. We postulate that digital forensic tools are
increasing in features (such as network imaging), becoming networkable, and are being
proposed as forensic cloud services. This raises the need for testing the security of these
tools, especially since digital evidence integrity is of paramount importance. At the time of
conducting this work, little to no published anti-forensic research had focused on attacks
against the forensic tools/process. We used the TD3, a popular, validated, touch screen disk
duplicator and hardware write blocker with networking capabilities and designed an
attack that corrupted the integrity of the destination drive (drive with the duplicated
evidence) without the user's knowledge. By also modifying and repackaging the firmware
update, we illustrated that a potential adversary is capable of leveraging a phishing attack
scenario in order to fake digital forensic practitioners into updating the device with a
malicious operating system. The same attack scenario may also be practiced by a
disgruntled insider. The results also raise the question of whether security standards
should be drafted and adopted by digital forensic tool makers.
© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

There is an ever growing need for collecting digital ev-
idence frommedia, especially from hard drives. As of 2004,
claims have been made that eighty to ninety percent of
cases in the United States involve some sort of digital evi-
dence (Rogers, 2006b). Since 2004, no doubt, computing
devices have increased in ubiquity and decreased in size. A
logical assumption can be made that this percentage may
continue to increase, thus, upholding the notion for the
necessity of digital evidence collection in an accurate and
efficient manner.
.S. Meffert), IBaggili@
u (F. Breitinger).
reitinger.de/

vier Ltd. This is an open acc
Digital forensic investigation is defined by Ieong (2006)
as “a process to determine and relate extracted information
and digital evidence to establish factual information for
judicial review”. If data on a disk drive can be considered
evidence then onemay argue that thewhole disk should be
considered evidence; both physically and digitally. If this is
to be the case then it becomes critical that the integrity of
the data is not compromised especially for the admissibility
of evidence into the court of law (Argy and Mason, 2007;
Accorsi, 2009; Givens, 2003). Landwehr (2001) defines
integrity conceptually as “assuring that digital information
is not modified (either intentionally or accidentally)
without proper authorization”.

Methods, procedures and tools exist to ensure that ev-
idence maintains its integrity throughout the digital fo-
rensics process. The two prominent tools in use today are
software and hardware write blockers, with hardware
write blockers being the preferred tool of choice.
ess article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cmeff1@unh.newhaven.edu
mailto:IBaggili@newhaven.edu
mailto:IBaggili@newhaven.edu
mailto:FBreitinger@newhaven.edu
http://www.unhcfreg.com/
http://www.FBreitinger.de/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2016.04.004&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2016.04.004
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.diin.2016.04.004
http://dx.doi.org/10.1016/j.diin.2016.04.004

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96S88
A software write blocker is a tool that handles write
blocking at the software level via the mounting process. It
ensures that the Operating System (OS) mounts the hard-
ware with write blocking flags set to on. Software write
blockers are easier to design and implement, but unless the
write blocking settings are handled at the lowest levels
possible (BIOS as an example), and the OS is secure, they
tend to be easier to subvert (Lyle and Black, 2005).

A hardware write blocker is a device that attaches a host
device (like a hard disk) typically to a forensic workstation
with the purpose of preventing any possible modifications
to the evidence drive before, during, and after the acqui-
sition process. The name hardware write blocker comes
from how the device prevents the write function from
executing as it uses techniques for blocking writes to the
media.

A hardware write blocker typically operates by breaking
the bus that connects the hard drive to the host machine
into two segments; a bus segment between the host and
blocking device and another bus segment from the block-
ing device to the evidence drive. The two bus segments
may consist of different protocols. One can be Small Com-
puter System Interface (SCSI) and the other Advanced
Technology Attachment (ATA). Once the devices are con-
nected and the blocking device is powered on, all com-
mands are intercepted by the blocking device. Once
intercepted, the blocking device will filter any write com-
mands from passing (Lyle, 2006). The Tableau TD3 used in
this research is an example of a hardware unit that includes
a hardware write blocker.

Initially, hardware write blockers were devices that
simply blocked writes to disks after being connected to
forensic workstations when digital media was either ac-
quired or mounted for triage (Rogers et al., 2006). As
products in this space continued to advance, devices
became smarter, more efficient and packed with features.
Devices such as disk duplicators with built-in hardware
write blockers were developed to allow for use in forensic
labs as well as on the field. As systems increased in size and
storage, the need to accomplish network forensic imaging
emerged. To tackle this challenge, these devices adopted
networking features.

With this advancement came many benefits such as
remote access via a user interface and the ability to
remotely image a drive on a disk of interest. Tableau's TD3
model is one of these devices, and allows for browsing
drives that are attached directly to the write blocker via
the Internet Small Computer System Interface (iSCSI)
protocol.1 iSCSI works on top of the Transport Control
Protocol (TCP) enabling the SCSI command to be delivered
end-to-end over Local Area Networks (LANs), Wide Area
Networks (WANs) or the Internet. The Ditto Forensic
FieldStation from WIEBETECH2 is another hardware write
blocker and disk duplicator that allows for remote cloning
and duplication of drives via iSCSI. Both devices allow for
1 https://www2.guidancesoftware.com/products/Pages/tableau/
products/forensic-duplicators/td3.aspx (last accessed April 11, 2016).

2 https://www.cru-inc.com/products/wiebetech/ditto_forensic_
fieldstation/ (last accessed April 11, 2016).
creating and modifying users and the settings associated
with them.

Since most devices are proprietary and costly, an open
source hardware write blocker and forensic imager alter-
native was developed by the Digital Forensics Investigation
Research laboratory (DigitalFIRE) at University College
Dublin (UCD). Their project aimed at providing law
enforcement in underdeveloped countries with a cheap yet
effective substitute to expensive hardware write blockers.
The open source hardware write blocker and imager en-
courages practitioners to purchase the necessary parts,
download an open source application, and assemble a de-
vice titled FIREBrick. The cost for its parts is approximately
$2003 (Tobin and Gladyshev, 2015).

Nevertheless, provided that evidence integrity is of
paramount importance in digital forensics, we argue that it
is important to test the security of these devices given their
wide adoption by government and industry e especially
due to their increased features and network connectivity. In
this work the following contributions were accomplished:

� We present a primary study focused on the security of
these hardware imaging and write blocking devices (In
specific we tested the most widely adopted one e the
Tableau TD3).

� We illustrate how one may gain root access to such
equipment.

� We construct and share the results of a preliminary
proof of concept attack against the integrity of the im-
aging process when using the Tableau TD3.

� We raise the much needed awareness within the digital
forensics community for integrating security testing as
part of the digital forensic tool testing process since
digital forensic tool testing focuses on the accuracy and
correctness of the tools without accounting for plausible
security weakness.

The rest of the paper is organized as follows. In Sec.
Related work, a review of the related literature is shared,
setting the motivation for this work. In Sec. Tableau TD3,
the widely adopted device used in our study e the Tableau
TD3 e is presented. Sec. Methodology delineates the
approach of gaining root access to the TD3, the con-
structed integrity attack scripts, and the testing approach
used to validate the integrity attack. In Sec. Results the
results are presented, followed by the limitation of our
work in Sec. Limitations. The work presented is then
discussed in Sec. Discussion, and concluded in Sec.
Conclusion. Lastly, we open the door for future research in
Sec. Future work.
Related work

The following sections review works related to digital
evidence integrity. These works underpin the motivation
for exploring the security of the TD3 device.
3 http://digitalfire.ucd.ie/?page_id¼1011 (last accessed April 11, 2016).

https://www2.guidancesoftware.com/products/Pages/tableau/products/forensic-duplicators/td3.aspx
https://www2.guidancesoftware.com/products/Pages/tableau/products/forensic-duplicators/td3.aspx
https://www.cru-inc.com/products/wiebetech/ditto_forensic_fieldstation/
https://www.cru-inc.com/products/wiebetech/ditto_forensic_fieldstation/
http://digitalfire.ucd.ie/?page_id=1011
http://digitalfire.ucd.ie/?page_id=1011

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96 S89
Digital evidence integrity

Maintaining evidence integrity in all investigative do-
mains both physical and digital is of chief significance. In
the digital domain, this means evidence remains un-
changed while it is being acquired, authenticated and
analyzed. Although, one may argue that only minimal
changes should be made especially in the areas of Small
Scale Digital Device (SSDD) and memory forensics. None-
theless, in traditional computer forensics, hardware write
blockers have become the golden standard for maintaining
the integrity of evidence during the acquisition and
authentication processes. Authenticating the copy of the
digital evidence is usually achieved via hashing functions.
Other forms of verification may be utilized as well during
the course of an investigation such as visual verification,
digital signatures, written documentation, Cyclic Redun-
dancy Checks (CRCs), encryption and other proprietary
methods (Cosic and Baca, 2010).
Anti-forensics

Anti-forensics relates to impeding the investigative
process through various means. There are examples of
research being conducted with regards to anti-forensics.
One example is the iSEC Partners fuzzing of Encase's soft-
ware suite, which yielded several different bugs as a result
of software issues (Homewood, 2012). With that said, anti-
forensics work is often overlooked by digital forensic re-
searchers as Baggili et al. (2012) pointed out that only 2%
out of their (n ¼ 500) analyzed scientific articles pertained
to anti-forensics. As a result of this lack of attention to anti-
forensics, research regarding hardware write blockers is
nearly non existent.

To the best of our knowledge, only one security issue has
been reported regarding hardware write blockers in the
media.4 The specific tool tested was a Ditto Forensic Field
Station.5 The attack vector was through the remote web
interface. Several Cross Site Scripting (XSS) attacks were
successful against the device.

As there are a number of anti-forensic tools and tech-
niques available, Rogers (2006a) proposed the following
high-level anti-forensic taxonomy:

� Data hiding
e Encryption
e Steganography
e Other forms of data hiding

� Artifact wiping
e Disk cleaning utilities
e File Wiping
e Disk degaussing/destruction techniques

� Trail obfuscation
� Attacks against computer forensic tools and processes
4 http://www.heise.de/ix/meldung/Kritische-Sicherheitsluecken-in-
Write-Blocker-entdeckt-2071582.html (last accessed April 11, 2016).

5 http://www.cru-inc.com/products/wiebetech/ditto_forensic_
fieldstation/ (last accessed April 11, 2016).
A complete discussion regarding the aforementioned
taxonomy is beyond the scope of this article, however, it
is of note that should one gain root access to a forensic
write blocking/duplicating device, then many of the
anti-forensic taxonomy elements may be abused by a
potential adversary. Our work is most synonymous to
attacks against computer forensic tools and processes as
it aimed at testing the security of a write blocking/disk
duplicating device while consecutively hindering the
forensic process by tainting the integrity of the collected
evidence.

Dependency on tools is a weakness that is easy to fall
into. The issue with depending on tools is that while they
are helpful in expediting the forensic process, they are not
immune to attacks. One thing to consider is how tools
commonly used in digital forensics may be exploited using
anti-forensics, which is why tool testing is of paramount
importance to the digital forensics community.

Digital forensic tool testing

Currently, the National Institute of Standards and
Technology (NIST) is the most prevalent organization that
leads an extensive Computer Forensics Tool Testing (CFTT)
program. They built their testing efforts around the
following overarching themes6: (1) Disk imaging (2)
Forensic media preparation (3) Write block (Software) (4)
Write block (Hardware) (5) Deleted file recovery (6) Mobile
devices (7) Forensic file carving and (8) String search.
Others have also conducted research on digital forensic tool
testing.

Baggili et al. (2007) suggested a mechanism for testing
mobile phone forensic tools. They proposed a systematic
database driven approach for testing mobile forensic tools.
By employing a database driven method, it allows re-
searchers and academics to study error rates and ensures
cataloging of the testing process.

Guo et al. (2009) devised a method of mapping funda-
mental functions required in computer forensic processes.
Through this effort they were able to develop a functionally
orientated validation and verification framework for
available digital forensic tools.

Other testing literature pertained to collecting images of
volatile memory to verify the accuracy of the tool being
used. In one unique approach, researchers adopted a visu-
alization method involving dot plots (typically used in
bioinformatics) to evaluate the accuracy and amount of
interference of a forensic memory imager (Inoue et al.,
2011).

Bootable forensic environments were also explored for
their robustness and ability to provide reliable evidence for
a court of law such as thework byMohamed et al. (2014). In
specific, they tested Knoppix v7.0, Helix 3 Pro 2009R3, and
Kali Linux v1.0. It is possible for the bootable media to
modify the hard disk. However, if modifications are pre-
dictable, and can be documented, it is acceptable to use the
tool. A differential forensic analysis (a term coined by
6 http://www.cftt.nist.gov/Methodology_Overview.htm (last accessed
April 11, 2016).

http://www.heise.de/ix/meldung/Kritische-Sicherheitsluecken-in-Write-Blocker-entdeckt-2071582.html
http://www.heise.de/ix/meldung/Kritische-Sicherheitsluecken-in-Write-Blocker-entdeckt-2071582.html
http://www.cru-inc.com/products/wiebetech/ditto_forensic_fieldstation/
http://www.cru-inc.com/products/wiebetech/ditto_forensic_fieldstation/
http://www.cftt.nist.gov/Methodology_Overview.htm

Fig. 1. Tableau TD3 hardware write blocker and disk duplicator.

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96S90
Garfinkel et al. (2012)) was performed to compare pre and
post use of bootable forensic environments. The results
indicated that Helix 3 Pro 2009R3 was the most robust
system in terms of its forensic soundness.

New frameworks have also been proposed to test
various forensic tools. Work by Anobah et al. (2014) pro-
posed a testing framework known as Maxwell, Oliver and
Shahzad (MOS) for mobile device forensics. The MOS
framework built on and extended the test plan fromNIST. It
accomplished this by including assertions and new test
actions that cover anti-forensics as they pointed out a
weakness in NIST's framework is not accounting for anti-
forensics.

Work by Knüfer (2014) presents another possible
method for testing forensic tools. Their work attempted to
structure digital forensic tool testing using a schema based
approach with an effort of identifying vulnerabilities. In
their work they showed that their approachwaswell suited
to find flaws in digital forensic tools.

Given the wide adoption of TD3s, the Department of
Homeland Security (DHS) released a report about tests
conducted on the Tableau TD3. The report conveyed results
of primarily testing the device's forensic imaging and
indicated that the TD3 acquired all visible and hidden
sectors completely and accurately (DHS, 2014). Even
though these tests focused on the forensic accuracy of the
device's imaging function, the work did not account for the
fact that the TD3 is a networkable device that could
potentially be exploited, possibly tainting the forensic
soundness of the acquired evidence. In the upcoming Sec.
Tableau TD3, we elaborate on the TD3 device that was used
in this research.
7 Script can be downloaded from http://www.unhcfreg.com under Data
& Tools.
Tableau TD3

The line of Tableau hardware write blockers from
Guidance Software provides a selection of portable forensic
imaging devices. These devices are stand alone allowing for
portability. The latest models typically have a user interface
allowing the user to control and interact with the device.
The TD3 model shown in Fig. 1 is of interest due to its
modular design and Graphical User Interface (GUI). Addi-
tionally, the device offers a web interface where users have
the ability to access it using a username and password. This
web based interface works in a standard browser as well as
a mobile browser.

The device is also capable of collecting forensic data
from Serial Advanced Technology Attachment (SATA),
Universal Serial Bus (USB) 1.1/2.0/3.0, Serial Attached SCSI
(SAS) and FireWire (1394A/B) drives.

Currently, the TD3 has two read/write ports, specifically
SATA and USB connections. It has read only ports for all
other connections described above. The TD3 also comes
with an integrated Ethernet port. This allows for the ability
to accomplish remote triage and network based imaging
and write blocking. The device also contains a Secure Dig-
ital (SD) card slot. This SD card contains the OS and without
it the device does not boot. The storage size of the SD card is
513.3 MB split into four partitions: three Linux partitions a
Linux swap partition and a Windows FAT 32 partition.
While the TD3's ability to block write commands to the
evidence drive has been shown to be robust (DHS, 2014),
there remains other possible avenues to corrupt data on the
collection (destination) drive. The process of finding ways
to corrupt, hide, or destroy data falls into the realm of anti-
forensics (see Sec. Anti-forensics).

Methodology

This research adopted a methodology which embodied
the following three major steps:

Gaining root access: First, root access was required to
exploit the device. Therefore, we performed reconnais-
sance on the device (details in Sec. Reconnaissance) and
then replaced the firmwarewith amodified version (details
are presented in Sec. Firmware update process).

Integrity attack scripts construction: Next, the Gismo
process was identified. This process manages the calling of
the different applications, duplication, hashing, etc. A script
was developed to monitor Gismo and corrupt data when it
stops. This is discussed in Sec. Data integrity compromise.
The script can be downloaded from our website.7

Testing: Lastly, the script was tested and verified to
guarantee that it corrupted the integrity of the data on the
destination drive (see Sec. Testing).

Reconnaissance

In this stage of the methodology the TD3 was explored
to recognize the OS, open ports and filesystem structure.
When the TD3 was powered on, a boot up screen appeared
which did not provide information about the OS and only
indicated that a filesystem was loading. Once the loading
process completed, the GUI appeared.

The device was connected to the network and Network
Mapper v6.49 BETA 4 (NMAP) was employed to fingerprint
the OS. The results yielded a Linux OS with a possible
kernel version of 2.6.32e3.10. Nevertheless, the exact

http://www.unhcfreg.com

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96 S91
kernel version was determined only after gaining root ac-
cess (see Sec. Firmware update process) and running
uname -r. In fact, the results showed that the TD3 used
kernel version 3.6.11.

To identify possible vulnerabilities (e.g., open ports,
services), we executed the NMAP command nmap -sS -sV
-T4 -O -A -v 10.101.1.149 which is the most invasive scan
one can run. The results showed that only port 3260 iSCSI
was open for firmware version 1.4.1. Using the same com-
mand after updating to firmware version 1.5, the following
open ports were discovered: 22 OpenSSH v5.8, 80
Lighthttpd v1.4.35, 443 Lighthttpd v1.4.35, and 3260 iSCSI.
This continued to be the case for all firmware updates
following version 1.5.

Per Guidance Software's website, the OS is kept on the
SD card. Mounting the SD card allowed for viewing and
modifying the root filesystem. The card consisted of a FAT
partition, two EXT4 partitions, and one swap partition. The
next logical stepwas to attempt an SSH login to the TD3. On
the first attempt an errormessagewas presented indicating
that only key exchange methods of authentication were
allowed for accessing the TD3 via SSH.

Mounting the SD card and modifying the OS

Initially, the SD card that contained the OS for the TD3
was mounted on a machine running Kali 2.0 Linux. After
the SD card was mounted, as a test, to examine if the
contents could be changed, the sshd_conf file was modified
and password authentication was enabled. An attempt was
then made to log into to the TD3 via SSH proving that the
filesystem could be modified by easily mounting the SD
card. Details on how the password for logging into the SSH
server was cracked is presented in Sec. Firmware update
process. Although this method was sufficient for gaining
root access to the TD3 device, it was important to explore
other avenues of attack that a potential adversary may use
to trick a practitioner into modifying the TD3 without
physical access to the device. Therefore, the TD3's firmware
update was the target of choice.

Firmware update process

This section describes how the firmware update
installer was dissected and modified. It is worth noting now
that the firmware is digitally signed and while the modifica-
tions made were able to circumvent a hash match error, the
modifications did cause the digital signature to be corrupted.
More details on this are listed below. It necessary to share
all the tools used so the process could be replicated for
further investigation. Throughout this process, the
following tools were utilized (except for the Windows OS
all other tools were freely available):

� Microsoft Windows 7
� Kali Linux 2.0
� Tableau Firmware Update v7.13.msi8
8 https://www2.guidancesoftware.com/products/Pages/tableau/
products/forensic-duplicators/td3.aspx (last accessed April 11, 2016).
� LessMsi v1.49

� Advanced Installer v12.6.110

� Zip v3.0
� GZip v1.6

The firmware update file was available via Guidance
Software's website as a Microsoft Installer .msi file. This
file is an executable but can be expanded to view and
extract its contents using Lessmsi v1.4. The extracted files
revealed another compressed file; td3-update-1.x.x. After
decompressing that file, three files; ext_datafs.gz, fat_da-
tafs.gz and rootfs.gz were found. Extracting and mounting
the rootfs.gz yielded a set of files that could be replaced on
the device once the update was completed by modifying
the root filesystem.

Although a variety of attack vectors could be imple-
mented in the firmware update file such as modifying the
TD3's web interface code to steal credentials, we chose the
low hanging fruit e to modify the SSH server configuration
file as an example to test our firmware update exploit. The
server configuration file was located in the /etc directory
and was configured to not allow password authentication
but key exchange only. After adjusting this setting, it
allowed for shell access with the correct username and
password.

At this point it was necessary to re-compress the rootfs
file and re-compress all of the files back into a .msi file
using Advanced Installer v12.6.1. We then ran the installer
in an attempt to move the changes to the existing fil-
esystem on the TD3. This pushed the updated firmware v
1.5.0 to the TD3 but with the SSH server accepting pass-
word logins.

During and after the installation process therewere only
two indications that something was modified. The first
indication that anything had been modified was the digital
signature of the installer. The unmodified installer has
Guidance Software, Inc. listed as the publisher. Once
modified, the publisher was listed as unknown and Win-
dows displayed a warning message indicating that the file
does not have a valid signature. Work by Sharek et al.
(2008) showed that of a sample size of 42 people 63%
simply clicked ”OK” on pop up boxes, simply just trying to
get them to close. If the person tasked with installing the
update was in a rush, or was not properly trained, there is a
high chance they will simply click what is necessary to
move forward.

The second was a single box warning that the installed
update did not match the hash of the original downloaded
firmware hash as shown in Fig. 2. To make the attack less
obvious to a potential victim, we modified the error mes-
sage by manually changing the executable using a Hex
Editor to convince the user that the update was successful
as shown in Fig. 3.

One item remained for gaining SSH access to the TD3
device, which is the root password. John the Ripper pass-
word cracker v1.8.0.6-jumbo-1-bleeding-omp was used to
crack the root password. This was executed using the
9 http://lessmsi.activescott.com (last accessed April 11, 2016).
10 http://www.advancedinstaller.com (last accessed April 11, 2016).

https://www2.guidancesoftware.com/products/Pages/tableau/products/forensic-duplicators/td3.aspx
https://www2.guidancesoftware.com/products/Pages/tableau/products/forensic-duplicators/td3.aspx
http://lessmsi.activescott.com
http://www.advancedinstaller.com

Fig. 2. Warning message after firmware update.

Fig. 3. Modified warning message after firmware update.

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96S92
command unshadow on /etc/passwd and /etc/shadow,
piping this into a text file (filename.txt) and then running
John on the output. If John succeeded in cracking a password
it dumped it to /.john/john.pot. Issuing the command john
–show filename.txt showed the username and password. In
this case for user root, the password was simply secret.

Finally, an attempt was made to log into the SSH server
with username root and the password secret and root

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96 S93
access was granted. This illustrated that our approach for
updating the .msi installer, and pushing the modified
firmware to the TD3 was successful.

Data integrity compromise

After root access was acquired, thinking like the bad
guys, an attempt at an integrity attack was designed. Initial
thoughts were to redirect the commands issued when a
process was selected via the GUI or to somehowmodify the
commands to corrupt the integrity of the collection drive.
After gaining root access and logging in via SSH it was
possible to monitor the device's processes. Issuing the
command top11 allowed monitoring of the processes
running on the device. The goal of monitoring the processes
was to attempt to identify any critical processes when an
application was selected via the touch screen interface.
Wewere able to identify a spike in a process called Gismo,
which used up to 90% Central Processing Unit (CPU) capacity
during the disk duplication and hashing activities.When idle,
Gismo only consumed approximately 0.0%e1.0% CPU usage.

Gismo is proprietary software that appears to be
developed by Tableau to manage the applications provided
on the touch screen of the device. Gismo was taken as a
reference point. In other words, the %CPU use may be
constantly monitoredwith a script and thus used as a “flag”
to launch malicious code.
Script construction and pseudocode

A script was written to monitor Gismo's Process ID (PID)
and when the process ramped down it issued the com-
mand dd if¼/dev/zero of¼/dev/sdXXX bs¼1M. This com-
mand corrupted the copied image on the destination drive
by overwriting the entire disk with zeros. This left the end
user unaware that data was being corrupted since the
process launched after the imaging process and verification
stages were completed by the TD3.

When the TD3 runs the duplication process it gen-
erates a hash value at the end of its process. The script
only executes after it sees the CPU usage drop below 1%.
If the end user has the hash of the evidence drive and
compares it to the duplication hash generated it will
11 Top is a program that monitors the processes in Linux, similar to task
manager in MS Windows.
appear to match. The data itself meanwhile was cor-
rupted by the aforementioned command. Two scripts
were constructed to achieve this process. A bash script
was created that checked the PID of Gismo automatically
and then called the python script with the appropriate
PID.

In Algorithm 1, we present the pseudocode for the
main algorithm of the process.py script. The algorithm
executes a while loop that calculates the CPU percent for
the PID value passed in on execution of the script. It
then proceeds to check for a change in the CPU percent,
if this change has negative direction less than �10
percent and the current CPU percent is less than one
percent, the DD command was executed. If both of these
conditions were not meet, the previous CPU percent gets
assigned to the current CPU percent and the loop exe-
cutes again.
Testing

Testing the result of the script was necessary to validate
this integrity attack. A full duplication was executed on the
TD3 and a hash on the collection drive was run to verify
that it was altered. The following tools were utilized in this
testing process:

� Two identical 2 GB USB Flash Drives. One contained a
file to be duplicated (source drive). The other was blank
(destination drive).

� TD3 Forensic Imager with custom firmware.
� Network with a Dynamic Host Configuration Protocol

(DHCP) server enabled.
� process.py and callprocess.sh scripts loaded on the TD3

device (in the attack verification stage).
� Computer with access to the same network the TD3 was

connected to and an SSH client installed.

The test procedure was broken into three phases (I)
calibration pre-firmware update (II) calibration post-
firmware update and (III) attack verification.

Phase I, the calibration pre-firmware update, the source
drive was first hashed. A disk to disk duplication process
was completed from the source disk to the destination disk.
The destination disk was hashed to verify that both the
source disk and destination disk hash values matched post
duplication. Theymatched as expected. This confirmed that
the duplication was successful and the integrity of the
process was validated.

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96S94
Phase II, calibration post-firmware update, was the same
as Phase I. We repeated the steps to verify that themodified
firmware update did not affect the disk to disk duplication
processes. Again, it was found that both the source drive
and the destination drive hash values coincided.

Lastly, in Phase III, the customscriptwasfirst executedby
SSHing into the TD3 device, and then the disk to disk
duplication process commenced. After the disk duplication
completed, the TD3 showed to the user that the destination
drive hash value matched the hash values in Phases I and II.
However, when the destination drive was removed and
hashed, the hash value of the destination drive did not
match as expected, confirming that our constructed script
indeed compromised the integrity of the collected evidence.

Results

During the calibration phase, the results clearly verified
that the TD3 operated as intended, and the hash values
were:

The results also clearly validated that the integrity of the
destination drive was compromised after running the
integrity attack scripts on the TD3 device. The hash values
from this testing phase are shown below:

The results confirmed that the DD command was suc-
cessful in its process of corrupting the destination drive.
Recall, the DD command was executed only after the
duplication and verification processes were completed by
the TD3 as the goal was to corrupt the data whilst also
making the user believe that the data on the destination
drive was not compromised. To further validate this
method, the script was executed, and the destination drive
was removed even before the DD command completed its
task. This was done to confirm that as soon as the hash
verification process commenced by the TD3, and a hash
value is shown to the user, the script was still capable of
corrupting the destination drive.

Limitations

There are several limitations to this primary work along
with other limiting factors that makes future research
challenging.
From a vulnerability standpoint, the biggest challenge is
the need for physical access to the device. While convincing
somebody to push the modified firmware to the TD3 is not
out of the question, having access to the network by SSHing
into the device was the method utilized to execute the
scripts. Although this is a limitation in our initial work, one
may find a method to automate the script and repackage
that into the firmware update.

On top of the needed physical access, with regards to the
firmware update process, both a digital signature warning
and a warning indicating that the firmware did not match
its hash value were presented. The hash matching error
was rectified by modifying the error message as discussed
in Sec. Firmware update process. The original warning
message is shown in Fig. 2 and the modified one is illus-
trated in Fig. 3.

In regards to the digital signature issue, it would take an
end user that is intimate with the installation and upgrade
process to possibly recognize this change.

Another limitation of this work is the constructed script.
The DD command corrupted the destination drive by
writing zeros to the entire disk. While this was useful in
proving the ability to execute a process when desired, a
more robust script would better hide its data corruption
method; making it less obvious to the end user that a
malicious anomaly has taken place.

Lastly, the nature of the TD3 embedded system is one
that has been stripped of its tool packages, leaving only the
bare-bone necessities to make the device function. This
makes it challenging to add any additional tool packages.
The only compiler that appears on the system is the Python
2.7 interpreter. It does contain a selection of packages to
accomplish most of the basic scripting tasks.

Discussion

It is important to note the severity of our findings and
articulate them in a scenario. One should understand that
most, if not all digital forensic companies send product
updates to their customers via e-mail. Links to updated
firmware or software are usually embedded into a nicely
formatted e-mail.

Now, imagine a situation where an adversary acquires
the e-mails of digital forensic practitioners (easy to do by
simply finding them on the web), and a phishing attack is
conceived. It is also important to recognize that many Law
Enforcement (LE) agency practitioners have only received
training for using digital forensic tools and many do not
possess a background in cybersecurity and/or computing.

The created phishing attack may target the list of e-mail
recipients and ask them to download a compromised
firmware update. The firmware may then be downloaded
by a victim practitioner, and the installation process would
be seamless. If this victim then attaches the compromised
device to the network, the network the device is on may
also now become compromised, plausibly allowing for
reverse shell access into the TD3. This type of social engi-
neering attack is not that far fetched.

Mitnick and Simon (2011) in their book The Art of
Deception list many cases of social engineering that are far
more elaborate and complex than the scheme we

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96 S95
introduced. If the idea of socially engineering an end user to
update the firmware may seem like stretch, perhaps the
idea of the jaded insider is more convincing. Consider cases
such as the leak of classified material by Edward Snowden.
It is certainly not a stretch to believe an insider might be
persuaded to install an updated firmware.

Provided the above scenario, it becomes clear that the
limitation of physical access, while challenging to over-
come, may be accomplished by tricking a victim into
installing a compromised firmware update.

Another point that needs addressing are the ramifica-
tions of a physical device like the TD3 being compromised.
The work developed in this paper was able to modify the
device and plausibly deceive an end user ultimately
affecting the authenticity of the acquired evidence.

As stated by Kerr (2001), before any party submits an
electronic record or evidence (disk drive), it must be shown
to be authentic and unaltered. Kerr (2001) also indicated
that hash values are an acceptable method to validate the
authenticity of a duplication. Currently, the script will allow
for a hash value to be generated that convinces the end user
of the authenticity of the generated hash value, while in
reality, the destination disk was altered.

If the script was modified to seek pertinent incrimi-
nating files and modify or delete only those files, the
consequence may appear less suspicious. It is likely that
many more of the tools in digital forensics will continue to
adapt features such as networking and remote access. As
these features become more prominent, so will the need to
test their security.

It is therefore of paramount importance for us to call for
integrating security testing into the digital forensic tool
testing process. We no longer live in a world where a
computer forensic lab is completely isolated from a
network. Network disk imaging is prevalent and devices
such as the TD3will continue to be used.We are also seeing
moves towards a Forensics as a Service (FaaS) model, where
testing the security of these services will also be of para-
mount importance. We finally note that the TD3 was used
as a case study in our work due to its wide adoption by
practitioners worldwide and its accepted forensic tool
testing evaluation (DHS, 2014).

Conclusion

In this work, several goals were accomplished. Pri-
marily, our goal was to test the security of digital forensic
tools. We used the TD3, a widely adopted forensic dupli-
cator and write blocker device as a case study. We were
able to gain root access to the device, as well as modify the
firmware update, creating the possibility of a plausible
social engineering/phishing attack asking practitioners to
update their devices with a compromised firmware
update.

Furthermore, a method was presented by ways of using
scripts that run on the device, that trick a potential prac-
titioner into believing that the hash value of the imaged
drive matched the source drive, however, as soon as that
process commenced, the destination drive's integrity was
corrupted. Our goal was to raise awareness for integrating
security testing into the digital forensic tool testing process,
as more digital forensic tools are being used in networked
environments increasing the risk for adversaries to
compromise the digital forensic process/tools.

Future work

This work opens the door for the security testing of
forensic tools. We posit the importance of formulating a
methodology for integrating security testing into the digital
forensic tool testing framework and call on the community
to account for this flaw. There is a body of knowledge that is
untapped on how penetration testing and digital forensics
intersect even though many consider them mutually
exclusive domains of knowledge. Additionally, we see a
need for developing concrete standards for the security of
both hardware and software forensic tools so that both
companies and researchers adhere to these standards
when constructing digital forensic tools.

In terms of the actual TD3 device, further analysis of the
processes running on the device to see if it is possible to
manipulate them is viable. For example, a Lighthttpd web
server is running on the TD3, so network analysis of the
traffic may lead to other security shortcomings. As a pre-
liminary test, the web interface files could also be found on
the device's filesystem, andmanipulating them to intercept
credentials may be another avenue of attack.

Ways of also advancing the constructed integrity attack
script is also possible. For example, DD may be used to
reverse a file, write zeros into the middle of a file, or
truncate a particular amount of bytes from the end of a file.
A more elaborate script may also be designed to seek out
potentially incriminating file types or files with known
signatures in an attempt to modify or wipe them.

In terms of network imaging, exploring the possible
corruption of network images via network layer attacks
may also be tenable. Futureworkmay also attempt to target
both software layer and hardware layer attacks against the
write blocked ports on the device, and not only the desti-
nation drives.
References

Accorsi R. Safe-keeping digital evidence with secure logging protocols:
state of the art and challenges. In: IT security incident management
and IT forensics, 2009. IMF'09. Fifth International conference on. IEEE;
2009. p. 94e110.

Anobah M, Saleem S, Popov O. Testing framework for mobile device fo-
rensics tools. J Digital Forensics Secur Law JDFSL 2014;9:221.

Argy PN, Mason S. Electronic evidence: disclosure, discovery and
admissibility. LexisNexis Butterworths; 2007.

Baggili I, BaAbdallah A, Al-Safi D, Marrington A. Research trends in digital
forensic science: an empirical analysis of published research. In:
Digital forensics and cyber crime. Springer; 2012. p. 144e57.

Baggili IM, Mislan R, Rogers M. Mobile phone forensics tool testing: a
database driven approach. Int J Digital Evid 2007;6:168e78.

Cosic J, Baca M. Do we have full control over integrity in digital evidence
life cycle?. In: Information technology interfaces (ITI), 2010 32nd
International conference on. IEEE; 2010. p. 429e34.

DHS. Test results for digital data acquisition tool:tableau td3 forensic
imager version 1.3.0. 2014. URL: https://www.dhs.gov/sites/default/
files/publications/508_Test%20Report_NIST_Tableau%20TD3%
20Forensic%20Imager%201.3.0_August%202015_Final_0.pdf.

Garfinkel S, Nelson AJ, Young J. A general strategy for differential forensic
analysis. Digit Investig 2012;9:S50e9.

Givens JS. Admissibility of electronic evidence at trial: courtroom
admissibility standards. Cumb Law Rev 2003;34:95.

http://refhub.elsevier.com/S1742-2876(16)30035-4/sref1
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref1
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref1
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref1
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref1
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref2
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref2
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref3
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref3
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref4
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref4
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref4
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref4
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref5
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref5
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref5
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref6
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref6
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref6
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref6
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_Tableau%20TD3%20Forensic%20Imager%201.3.0_August%202015_Final_0.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_Tableau%20TD3%20Forensic%20Imager%201.3.0_August%202015_Final_0.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_Tableau%20TD3%20Forensic%20Imager%201.3.0_August%202015_Final_0.pdf
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref8
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref8
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref8
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref9
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref9

C.S. Meffert et al. / Digital Investigation 18 (2016) S87eS96S96
Guo Y, Slay J, Beckett J. Validation and verification of computer forensic
software tools searching function. Digit Investig 2009;6:S12e22.

Homewood AJ. Anti-forensic implications of software bugs in digital
forensic tools [Ph.D. thesis]. Auckland University of Technology;
2012.

Ieong RS. Forzaedigital forensics investigation framework that incorpo-
rate legal issues. Digit Investig 2006;3:29e36.

Inoue H, Adelstein F, Joyce RA. Visualization in testing a volatile memory
forensic tool. Digit Investig 2011;8:S42e51.

Kerr OS. Searching and seizing computers and obtaining electronic evi-
dence in criminal investigations [US Department of Justice, Computer
Crime and Intellectual Property Section]. 2001.

Knüfer P. Mitigating anti-forensics: a schema-based approach. 2014.
Landwehr CE. Computer security. Int J Inf Secur 2001;1:3e13.
Lyle JR. A strategy for testing hardware write block devices. Digit Investig

2006;3:3e9.
Lyle JR, Black PE. Testing bios interrupt 0x13 based software write

blockers [Retrieved January, 28, 2007]. 2005.
Mitnick KD, Simon WL. The art of deception: controlling the human
element of security. John Wiley & Sons; 2011.

Mohamed AFAL, Marrington A, Iqbal F, Baggili I. Testing the forensic
soundness of forensic examination environments on bootable media.
Digit Investig 2014;11:S22e9.

Rogers M. Anti-forensics: the coming wave in digital forensics [Retrieved
September, 7, 2008]. 2006.

Rogers M. Dcsa: a practical approach to digital crime scene analysis. West
Lafayette: Purdue University; 2006b.

Rogers MK, Goldman J, Mislan R, Wedge T, Debrota S. Computer forensics
field triage process model. In: Proceedings of the conference on
digital forensics, security and law; 2006. p. 27 [Association of Digital
Forensics, Security and Law].

Sharek D, Swofford C, Wogalter M. Failure to recognize fake internet
popup warning messages. 2008.

Tobin L, Gladyshev P. Open forensic devices. J Digital Forensics Secur Law
2015;10:97e104.

http://refhub.elsevier.com/S1742-2876(16)30035-4/sref10
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref10
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref10
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref11
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref11
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref11
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref12
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref12
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref12
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref12
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref13
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref13
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref13
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref14
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref14
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref14
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref15
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref16
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref16
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref17
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref17
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref17
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref18
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref18
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref19
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref19
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref19
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref20
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref20
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref20
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref20
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref21
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref21
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref22
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref22
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref23
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref23
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref23
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref23
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref24
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref24
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref25
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref25
http://refhub.elsevier.com/S1742-2876(16)30035-4/sref25

	Deleting collected digital evidence by exploiting a widely adopted hardware write blocker
	Introduction
	Related work
	Digital evidence integrity
	Anti-forensics
	Digital forensic tool testing

	Tableau TD3
	Methodology
	Reconnaissance
	Mounting the SD card and modifying the OS
	Firmware update process
	Data integrity compromise
	Script construction and pseudocode
	Testing

	Results
	Limitations
	Discussion
	Conclusion
	Future work
	References

